
CAE Specification

DCE 1.1: Authentication and Security Services

The Open Group



 August 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

This document and the software to which it relates are derived in part from materials which are copyright
 1990, 1991 Digital Equipment Corporation and copyright  1990, 1991 Hewlett-Packard Company.

CAE Specification

DCE 1.1: Authentication and Security Services

Document Number: C311

Published by The Open Group, U.K.

Any comments relating to the material contained in this document may be submitted to The
Open Group at:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii CAE Specification (1997)



Contents

Part 1 Introduction................................................................................................ 1

Chapter 1 Introduction to Security Services .................................................... 3
  1.1    Generalities on Security — The Architecture of Trust............................ 3
  1.1.1       Security Attributes: Authenticity, Integrity, Confidentiality............. 4
  1.1.2       Policy versus Service versus Mechanism............................................... 5
  1.1.3       Subjects and Objects, Privilege and Authorisation .............................. 6
  1.1.4       Knowledge versus Belief; Trust................................................................ 7
  1.1.5       Untrusted Environments: A Priori Trust and Trust Chains................ 7
  1.1.6       Distributed Security: Secrets and Cryptology....................................... 8
  1.1.7       Encoding/Decoding and Encryption/Decryption of Messages ....... 9
  1.1.8       Key-based Security: Kerckhoffs’ Doctrine.............................................. 9
  1.1.9       Outline of the Remainder of this Chapter, and of this Specification 10
  1.2    DCE Security Model ...................................................................................... 12
  1.3    Message Digests 4 and 5 (MD4, MD5) ....................................................... 16
  1.4    Data Encryption Standard (DES) ................................................................ 17
  1.5    Kerberos Key Distribution (Authentication) Service (KDS).................. 18
  1.6    Privilege (Authorisation) Service (PS) ....................................................... 25
  1.6.1       Name-based versus PAC-based Authorisation .................................... 30
  1.7    Cells — Cross-cell Authentication and Authorisation........................... 32
  1.7.1       The Complete Cross-cell Scenario ........................................................... 36
  1.7.2       Multi-hop Trust Chains.............................................................................. 38
  1.8    Access Control Lists (ACLs) ........................................................................ 40
  1.8.1       ACL Entries and their Types..................................................................... 40
  1.8.2       Object Types, ACL Types and ACL Inheritance ................................... 44
  1.9    ACL Managers, Permissions, Access Determination Algorithms ....... 46
  1.9.1       The Common Access Determination Algorithm for Delegation ...... 48
  1.9.1.1          Common ACL Manager Algorithm ..................................................... 50
  1.9.1.2          Delegation Common ACL Manager Algorithm ................................ 51
  1.9.1.3          Notes on Common ACL Manager ACLs ............................................ 52
  1.9.2       Multiple ACLs and ACL Managers......................................................... 52
  1.10    Protected RPC ................................................................................................. 54
  1.11    ACL Editors ..................................................................................................... 55
  1.12    Registration Service (RS) and RS Editors .................................................. 60
  1.12.1       ACL Manager Types Supported by the RS ............................................ 61
  1.12.2       RS Binding; rs_bind Interface and sec_rgy_bind API.......................... 61
  1.12.3       Policy Item, Policies and Properties; rs_policy RPC Interface ........... 62
  1.12.4       PGO Items; rs_pgo RPC Interface............................................................ 63
  1.12.5       Accounts; rs_acct RPC interface............................................................... 65
  1.12.6       Miscellaneous; rs_misc RPC Interface .................................................... 66
  1.13    ID Map Facility ............................................................................................... 67
  1.14    Key Management Facility ............................................................................. 69

DCE 1.1: Authentication and Security Services iii



Contents

  1.15    Login Facility and Security Client Daemon (SCD).................................. 71
  1.15.1       Delegation Related Functions................................................................... 75
  1.15.2       Further Discussion of Certification.......................................................... 77
  1.16    Integration with Time Services ................................................................... 80
  1.17    Integration with RPC Services..................................................................... 82
  1.18    Integration with Naming Services.............................................................. 84
  1.18.1       RPC Binding Models................................................................................... 86
  1.18.1.1          Bindingto TCB Servers ........................................................................... 86
  1.18.1.2          Bindingto ACL Servers........................................................................... 87
  1.19    DCE Delegation Model ................................................................................. 88
  1.19.1       Overview of Delegation Model................................................................ 89
  1.20    Components of Delegation Model.............................................................. 90
  1.20.1       The Extended PAC (EPAC) ....................................................................... 90
  1.20.1.1          LinkingEPAC Sets to Tickets ................................................................ 92
  1.20.2       Transmitting and Receiving EPACs ........................................................ 92
  1.20.3       Extended Privilege Attribute Facility...................................................... 93
  1.20.4       EPAC Accessor Function API................................................................... 93
  1.20.5       RPC Authorisation Extension................................................................... 95
  1.20.6       Enabling and Disabling Delegation......................................................... 95
  1.20.7       Delegation Controls .................................................................................... 95
  1.20.7.1          Anonymous Identity................................................................................ 96
  1.20.7.2          Delegation Tokens.................................................................................... 97
  1.20.8       Remote Interfaces........................................................................................ 97
  1.20.9       Extensions to ACLs..................................................................................... 98
  1.20.10       User Interfaces ............................................................................................. 99
  1.21    Extended Registry Attribute Facility.......................................................... 100
  1.21.1       Attribute Schema......................................................................................... 100
  1.21.2       Access Control for the xattrschema Object............................................ 101
  1.21.3       Schema Entries............................................................................................. 101
  1.21.3.1          Attribute Type Flags ................................................................................ 102
  1.21.4       The use_defaults Algorithm ..................................................................... 102
  1.21.5       The intercell_action Algorithm ................................................................ 103
  1.21.6       Attribute Scope ............................................................................................ 104
  1.21.7       Attribute Encodings.................................................................................... 104
  1.21.8       Attribute Triggers........................................................................................ 104
  1.21.8.1          Attribute Trigger Facility ........................................................................ 104
  1.21.8.2          Trigger Binding ......................................................................................... 105
  1.21.8.3          Query Triggers .......................................................................................... 106
  1.21.8.4          Update Triggers ........................................................................................ 106
  1.21.9       Attribute Sets................................................................................................ 106
  1.21.10       Access Control for Attribute Types ......................................................... 106
  1.21.10.1          AdditionalAttribute Permission Bits................................................... 107
  1.21.11       Access Control on Attributes with Triggers .......................................... 107
  1.21.12       Well-Known Attribute Types.................................................................... 108
  1.21.12.1          Unknown Intercell Action Attribute .................................................... 108
  1.22    Extended Login and Password Management Overview ....................... 109
  1.22.1       Pre-authentication ....................................................................................... 109
  1.22.1.1          Login Denial .............................................................................................. 109

iv CAE Specification (1997)



Contents

  1.22.2       Server............................................................................................................. 109
  1.22.2.1          Client........................................................................................................... 110
  1.22.3       Password Management.............................................................................. 110
  1.23    Pre-authentication and Obtaining a TGT.................................................. 111
  1.23.1       The Timestamps (AS + TGS) Protocol .................................................... 111
  1.23.2       The Third-Party (AS + TGS) Protocol ..................................................... 112
  1.23.2.1          Client Side.................................................................................................. 112
  1.23.2.2          Signature of padata Field ......................................................................... 113
  1.23.2.3          Server Side ................................................................................................. 113
  1.23.3       Third-party Pre-authentication Protocol ............................................... 114
  1.23.4       Environmental Parameters and Registry Attributes............................ 115
  1.23.5       Password Management.............................................................................. 116
  1.23.5.1          Password Expiration................................................................................ 117
  1.23.6       Schemas for Well-known Attributes ....................................................... 117
  1.23.6.1          disable_time_interval ERA..................................................................... 118
  1.23.6.2          max_invalid_attempts ERA................................................................... 118
  1.23.6.3          minimum_password_cycle_time ERA ................................................ 119
  1.23.6.4          passwords_per_cycle ERA..................................................................... 119
  1.23.6.5          pwd_val_type ERA.................................................................................. 120
  1.23.6.6          password_generation ERA..................................................................... 120
  1.23.6.7          pwd_mgmt_binding ERA ...................................................................... 121
  1.23.6.8          pre_auth_req ERA.................................................................................... 121
  1.23.6.9          passwd_override ERA............................................................................. 122
  1.23.6.10          login_set ERA............................................................................................ 122
  1.23.6.11          environment_set ERA ............................................................................. 123

Part 2 Security Services and Protocols .................................................. 125

Chapter 2 Checksum Mechanisms......................................................................... 127
  2.1    Terminology, Notation and Conventions ................................................. 127
  2.1.1       Use of Pseudocode ...................................................................................... 127
  2.1.2       Sequences...................................................................................................... 127
  2.1.3       Bits, Bytes, Words, etc................................................................................. 128
  2.1.4       Integer Representations (Endianness) .................................................... 128
  2.1.4.1          Mapping Bit Sequences to Integers ...................................................... 129
  2.1.4.2          Mapping Byte-sequences to Integers ................................................... 130
  2.1.4.3          Mapping Mixed Bit/Byte-sequences to Integers............................... 130
  2.1.5       Modular Arithmetic .................................................................................... 131
  2.1.6       Bitwise Operations and Rotations ........................................................... 131
  2.1.7       (IDL/NDR) Pickles ..................................................................................... 132
  2.2    CRC-32.............................................................................................................. 136
  2.2.1       Cyclic Redundancy Checksums............................................................... 136
  2.2.1.1          Registered CRCs....................................................................................... 138
  2.3    MD4................................................................................................................... 139
  2.3.1       Some Special Functions.............................................................................. 139
  2.3.2       Append Padding Bits.................................................................................. 140
  2.3.3       Append Length............................................................................................ 140
  2.3.4       Initialise State Buffer and Trigonometric Vector................................... 141

DCE 1.1: Authentication and Security Services v



Contents

  2.3.5       Compress Message in 16-word Chunks................................................. 141
  2.3.6       Output ........................................................................................................... 142
  2.4    MD5................................................................................................................... 143
  2.4.1       Some Special Functions.............................................................................. 143
  2.4.2       Append Padding Bits.................................................................................. 144
  2.4.3       Append Length............................................................................................ 144
  2.4.4       Initialise State Buffer and Trigonometric Vector................................... 144
  2.4.5       Compress Message in 16-word Chunks................................................. 145
  2.4.6       Output ........................................................................................................... 146

Chapter 3 Encryption/Decryption Mechanisms ............................................ 147
  3.1    Basic DES.......................................................................................................... 147
  3.2    CBC Mode........................................................................................................ 148
  3.3    DES-CBC Checksum...................................................................................... 150
  3.3.1       Composition Laws (Chaining Properties) ............................................. 150
  3.4    Keys to be Avoided........................................................................................ 151
  3.4.1       Weak Keys..................................................................................................... 151
  3.4.2       Semi-weak Keys........................................................................................... 152
  3.4.3       Possibly Weak Keys .................................................................................... 152
  3.5    Details of Basic DES Algorithm................................................................... 154
  3.5.1       Initial Permutation (IP) and Final Permutation (FP)............................ 154
  3.5.2       Key Schedule (KS): Permuted Choices (PC1, PC2)
        and Left Shift (LS)........................................................................................ 154
  3.5.3       Rounds (T): Cipher Function (F), Expansion (E),
        Permutation (P) and Selection/Substitution (S) ................................... 155
  3.5.4       DES Decryption ........................................................................................... 157
  3.6    Details of CBC Mode Algorithm................................................................. 158

Chapter 4 Key Distribution (Authentication) Services............................. 159
  4.1    Fundamental Concepts ................................................................................. 161
  4.1.1       The krb5rpc RPC Interface ........................................................................ 161
  4.1.2       AS and TGS Services................................................................................... 163
  4.1.3       Tickets, Keys and Cross-registration....................................................... 163
  4.2    Some Basic Data Types.................................................................................. 166
  4.2.1       Protocol Version Numbers ........................................................................ 166
  4.2.1.1          Registered Protocol Version Numbers................................................. 166
  4.2.2       Protocol Message Types............................................................................. 166
  4.2.2.1          Registered Protocol Message Types ..................................................... 166
  4.2.3       Timestamps, Microseconds and Clock Skew........................................ 167
  4.2.3.1          Maximum Allowable Clock Skew ........................................................ 168
  4.2.4       Cell Names.................................................................................................... 168
  4.2.4.1          Registered Syntaxes for Cell Names .................................................... 169
  4.2.5       Transit Paths ................................................................................................. 169
  4.2.5.1          Registered Transit Path Types ............................................................... 170
  4.2.6       RS Names ...................................................................................................... 172
  4.2.6.1          Registered RS Name Types .................................................................... 173
  4.2.7       Principal Names .......................................................................................... 174
  4.2.8       Host Addresses............................................................................................ 175

vi CAE Specification (1997)



Contents

  4.2.8.1          Registered Host Address Types ............................................................ 175
  4.2.9       Sequence Numbers ..................................................................................... 176
  4.2.10       Last Requests................................................................................................ 176
  4.2.10.1          Registered Last Request Types.............................................................. 177
  4.2.11       Error Status Codes/Text/Data................................................................. 177
  4.2.11.1          Registered Error Status Codes/Text/Data ......................................... 178
  4.3    Cryptography- and Security-related Data Types .................................... 183
  4.3.1       Nonces ........................................................................................................... 183
  4.3.2       Random Numbers....................................................................................... 183
  4.3.3       Encryption Keys .......................................................................................... 184
  4.3.3.1          Registered Encryption Key Types......................................................... 184
  4.3.4       Checksums.................................................................................................... 185
  4.3.4.1          Registered Checksum Types.................................................................. 185
  4.3.5       Encrypted Data ............................................................................................ 187
  4.3.5.1          Registered Encryption Types ................................................................. 188
  4.3.6       Passwords ..................................................................................................... 190
  4.3.6.1          Registered Password-to-key Mappings............................................... 190
  4.3.6.2          Minimum Implementation Requirements .......................................... 192
  4.3.7       Authentication Data ................................................................................... 193
  4.3.7.1          Registered Authentication Data Types................................................ 193
  4.3.8       Authorisation Data ..................................................................................... 194
  4.3.8.1          Registered Authorisation Data Types.................................................. 194
  4.4    Tickets............................................................................................................... 195
  4.4.1       Part of Ticket to be Encrypted .................................................................. 195
  4.4.2       Ticket Flags................................................................................................... 198
  4.5    Authenticators ................................................................................................ 200
  4.6    Authentication Headers................................................................................ 202
  4.6.1       Authentication Header Flags.................................................................... 203
  4.6.2       The Use-session-key Option ..................................................................... 203
  4.7    Reverse-authentication Headers................................................................. 205
  4.7.1       Part of Reverse-authentication Header to be Encrypted .................... 205
  4.8    KDS (AS and TGS) Requests........................................................................ 207
  4.8.1       KDS Request Body ...................................................................................... 208
  4.8.2       KDS Request Flags ...................................................................................... 210
  4.9    KDS (AS and TGS) Responses ..................................................................... 212
  4.9.1       Part of KDS Response to be Encrypted................................................... 213
  4.10    KDS Errors ....................................................................................................... 215
  4.11    RS Information................................................................................................ 217
  4.12    AS Request/Response Processing .............................................................. 220
  4.12.1       Client Sends AS Request to KDS.............................................................. 220
  4.12.2       KDS Server Receives AS Request and Sends AS Response................ 222
  4.12.3       Client Receives AS Response.................................................................... 227
  4.13    (Reverse-)Authentication Header Processing .......................................... 231
  4.13.1       Client Sends Authentication Header ...................................................... 232
  4.13.2       Server Receives Authentication Header and Sends Reverse-
        authentication Header................................................................................ 234
  4.13.3       Client Receives Reverse-authentication Header .................................. 238
  4.14    TGS Request/Response Processing ........................................................... 240

DCE 1.1: Authentication and Security Services vii



Contents

  4.14.1       Client Sends TGS Request ......................................................................... 240
  4.14.2       KDS Server Receives TGS Request and Sends TGS Response .......... 245
  4.14.3       Client Receives TGS Response ................................................................. 254
  4.15    KDS Error Processing .................................................................................... 258
  4.16    Cross-cell Authentication ............................................................................. 260

Chapter 5 Privilege (Authorisation) Services.................................................. 263
  5.1    PAC-based Privilege Service (PS) ............................................................... 263
  5.1.1       The rpriv RPC Interface ............................................................................. 263
  5.1.1.1          ps_message_t ............................................................................................ 264
  5.1.1.2          ps_attr_request_t...................................................................................... 264
  5.1.1.3          ps_attr_result_t......................................................................................... 264
  5.1.1.4          ps_app_tkt_result_t ................................................................................. 264
  5.1.1.5          ps_request_ptgt ........................................................................................ 264
  5.1.1.6          ps_request_become_delegate................................................................ 266
  5.1.1.7          ps_request_become_impersonator....................................................... 269
  5.1.1.8          ps_request_eptgt ...................................................................................... 271
  5.1.2       Registered Authentication Services......................................................... 273
  5.1.3       Registered Authorisation Services........................................................... 273
  5.1.4       Status Codes ................................................................................................. 273
  5.1.5       Status Code Origination ............................................................................ 275
  5.1.6       PTGS Service ................................................................................................ 275
  5.1.7       Privilege-tickets ........................................................................................... 276
  5.2    Data Types ....................................................................................................... 277
  5.2.1       Authorisation Identities ............................................................................. 277
  5.2.1.1          Security-version (Version 2) UUIDs ..................................................... 278
  5.2.2       Local and Foreign Authorisation Identities ........................................... 279
  5.2.3       Groups Associated With a Foreign Cell ................................................. 279
  5.2.4       PAC Formats ................................................................................................ 280
  5.2.5       Privilege Attribute Certificates (PACs)................................................... 280
  5.2.6       Pickled PACs ................................................................................................ 281
  5.2.7       Privilege-tickets ........................................................................................... 281
  5.2.8       Privilege Authentication Headers ........................................................... 282
  5.2.9       Privilege Reverse-authentication Headers............................................. 282
  5.2.10       PTGS Requests ............................................................................................. 282
  5.2.11       PTGS Responses .......................................................................................... 283
  5.2.12       PS Errors........................................................................................................ 283
  5.2.13       Extended PAC (EPAC) Interface.............................................................. 283
  5.2.13.1          Optional and Required Restrictions ..................................................... 283
  5.2.13.2          Entry Types for Delegate and Target Restrictions ............................. 284
  5.2.13.3          Delegate and Target Restriction Types ................................................ 284
  5.2.13.4          Set of Delegation and Target Restrictions ........................................... 285
  5.2.13.5          Delegation Compatibility Modes.......................................................... 285
  5.2.13.6          Supported Delegation Types.................................................................. 285
  5.2.13.7          Supported Seal Types .............................................................................. 285
  5.2.13.8          EPAC Seal .................................................................................................. 285
  5.2.13.9          Privilege Attributes for the EPAC......................................................... 286
  5.2.13.10          Handle for Privilege Attribute Data..................................................... 286

viii CAE Specification (1997)



Contents

  5.2.13.11          Cursor for Delegate Iteration................................................................. 286
  5.2.13.12          Cursor for Extended Attributee Iteration............................................ 286
  5.2.13.13          Extended PAC Data ................................................................................. 287
  5.2.13.14          List of seals................................................................................................. 287
  5.2.13.15          Extended PAC (EPAC) ............................................................................ 287
  5.2.13.16          Set of Extended PACs (EPACs) ............................................................. 288
  5.2.14       The sec_cred API for Abstracting EPAC Contents .............................. 288
  5.2.14.1          Anonymous Identity................................................................................ 288
  5.2.15       Delegation Token (Version 0) Format ..................................................... 289
  5.2.15.1          Version 0 Token Flags.............................................................................. 289
  5.2.16       Delegation Token......................................................................................... 290
  5.2.17       Delegation Token Set .................................................................................. 290
  5.3    RS Information................................................................................................ 291
  5.4    PTGS Request/Response Processing......................................................... 292
  5.4.1       Client Sends PTGS Request....................................................................... 292
  5.4.2       PS Server Receives PTGS Request and Sends PTGS Response ......... 293
  5.4.3       Client Receives PTGS Response............................................................... 295
  5.5    Privilege (Reverse-)Authentication Header Processing......................... 296
  5.5.1       Client Sends Privilege Authentication Header ..................................... 296
  5.5.2       Server Receives Privilege Authentication Header and Sends
        Privilege Reverse-authentication Header .............................................. 297
  5.5.3       Client Receives Privilege Reverse-authentication Header ................. 297
  5.6    TGS Request/Response Processing (By KDS) ......................................... 298
  5.7    PS Error Processing ........................................................................................ 298
  5.8    Cross-cell Authorisation — Vetting the Privilege-ticket-
     granting-ticket................................................................................................. 298
  5.9    Name-based Authorisation.......................................................................... 299

Chapter 6 DCE Security Replication and Propagation.............................. 301
  6.1    Replication Overview.................................................................................... 301
  6.2    The Master Replica......................................................................................... 302
  6.2.1       Propagation Queue ..................................................................................... 302
  6.2.2       Replica List ................................................................................................... 303
  6.2.2.1          Replica List Entries................................................................................... 303
  6.3    Replica Information ....................................................................................... 304
  6.3.1       Replica State ................................................................................................. 305
  6.4    Slave Replica ................................................................................................... 306
  6.4.1       Creating a Replica ....................................................................................... 306
  6.4.2       Delete A Replica .......................................................................................... 307
  6.5    Master Change ................................................................................................ 308
  6.6    Authentication between Replicas ............................................................... 309
  6.7    Name Service Registration........................................................................... 310
  6.7.1       Sample Cell Profile Entries ........................................................................ 310
  6.8    Locate a Security Server................................................................................ 311
  6.9    Registry Database Encryption ..................................................................... 311

DCE 1.1: Authentication and Security Services ix



Contents

Chapter 7 Access Control Lists (ACLs) ............................................................... 312
  7.1    Data Types ....................................................................................................... 312
  7.1.1       Interface UUID for ACLs ........................................................................... 312
  7.1.2       ACLE Types.................................................................................................. 312
  7.1.3       ACLE Permission Sets ................................................................................ 313
  7.1.4       Extended ACLE Information .................................................................... 313
  7.1.5       ACLEs............................................................................................................ 313
  7.1.6       ACLs............................................................................................................... 315
  7.1.7       ACL Types .................................................................................................... 315
  7.2    Common ACLs ............................................................................................... 317

Chapter 8 ACL Managers............................................................................................. 319
  8.1    Data Types ....................................................................................................... 319
  8.1.1       Common Permissions ................................................................................ 319
  8.1.2       Printstrings and Helpstrings..................................................................... 319
  8.1.2.1          Common Printstrings .............................................................................. 320
  8.1.2.2          Common Helpstrings.............................................................................. 320
  8.2    Common Access Determination Algorithm............................................. 321
  8.2.1       First Step: Reduction................................................................................... 322
  8.2.2       Second Step: Matching ............................................................................... 322
  8.2.2.1          Combined First and Second Steps ........................................................ 323
  8.2.3       Third Step: Subalgorithms......................................................................... 324
  8.2.4       Non-intermediary Subalgorithms ........................................................... 324
  8.2.4.1          USER_OBJ Subalgorithm........................................................................ 324
  8.2.4.2          USER/FOREIGN_USER Subalgorithm............................................... 325
  8.2.4.3          GROUP_OBJ/GROUP/FOREIGN_GROUP Subalgorithm............ 325
  8.2.4.4          OTHER_OBJ Subalgorithm.................................................................... 325
  8.2.4.5          FOREIGN_OTHER Subalgorithm........................................................ 326
  8.2.4.6          ANY_OTHER Subalgorithm.................................................................. 326
  8.2.5       Intermediary Subalgorithms..................................................................... 326
  8.2.5.1          USER_OBJ_DELSubalgorithm.............................................................. 326
  8.2.5.2          USER_DEL/FOREIGN_USER_DELSubalgorithm .......................... 327
  8.2.5.3          GROUP_OBJ_DEL/GROUP_DEL/FOREIGN_
           GROUP_DEL Subalgorithm................................................................... 327
  8.2.5.4          OTHER_OBJ_DEL Subalgorithm.......................................................... 327
  8.2.5.5          FOREIGN_OTHER_DEL Subalgorithm.............................................. 328
  8.2.5.6          ANY_OTHER_DEL Subalgorithm ....................................................... 328

Chapter 9 Protected RPC .............................................................................................. 329
  9.1    What is Specified in this Chapter................................................................ 329
  9.2    Security in the CL RPC Protocol ................................................................. 332
  9.2.1       CL Establishment of Credentials (Conversation Manager) ............... 332
  9.2.1.1          Conversation Manager in_data............................................................. 332
  9.2.1.2          Conversation Manager out_data .......................................................... 332
  9.2.2       CL Integrity and Confidentiality (PDU Verifiers and Bodies) ........... 334
  9.2.2.1          CL dce_c_authn_level_pkt ..................................................................... 335
  9.2.2.2          CL dce_c_authn_level_integrity ........................................................... 335
  9.2.2.3          CL dce_c_authn_level_privacy ............................................................. 336

x CAE Specification (1997)



Contents

  9.3    Security in the CO RPC Protocol................................................................. 337
  9.3.1       CO Establishment of Credentials (bind, bind_ack, alter_context,
        alter_context_response) ............................................................................. 338
  9.3.1.1          CO Verifier auth_value.assoc_uuid_crc .............................................. 338
  9.3.1.2          CO Verifier auth_value.checksum ........................................................ 339
  9.3.1.3          CO Verifier auth_value.credentials ...................................................... 340
  9.3.2       CO Integrity and Confidentiality (PDU Verifiers and Bodies) .......... 341
  9.3.2.1          CO dce_c_authn_level_pkt .................................................................... 341
  9.3.2.2          CO dce_c_authn_level_pkt_integrity .................................................. 342
  9.3.2.3          CO dce_c_authn_level_pkt_privacy .................................................... 342

Chapter 10 ACL Editor RPC Interface..................................................................... 345
  10.1    The rdacl RPC Interface ................................................................................ 345
  10.1.1       Identifying Protected Objects and ACLs................................................ 345
  10.1.2       Common Data Types and Constants for rdacl Interface..................... 346
  10.1.2.1          sec_acl_component_name_t .................................................................. 346
  10.1.2.2          sec_acl_p_t................................................................................................. 346
  10.1.2.3          sec_acl_list_t.............................................................................................. 346
  10.1.2.4          sec_acl_result_t......................................................................................... 346
  10.1.2.5          sec_acl_twr_ref_t...................................................................................... 347
  10.1.2.6          sec_acl_tower_set_t ................................................................................. 347
  10.1.2.7          sec_acl_posix_semantics_t ..................................................................... 347
  10.1.2.8          Status Codes .............................................................................................. 348
  10.1.3       Interface UUID and Version Number for rdacl Interface ................... 348
  10.1.3.1          Implementation Variability regarding Required Rights .................. 348
  10.1.4       rdacl_lookup() ............................................................................................. 349
  10.1.5       rdacl_replace()............................................................................................. 349
  10.1.6       rdacl_get_access( )....................................................................................... 350
  10.1.7       rdacl_test_access( ) ...................................................................................... 350
  10.1.8       rdacl_place_holder_1() .............................................................................. 351
  10.1.9       rdacl_get_manager_types( ) ...................................................................... 352
  10.1.10       rdacl_get_printstring()............................................................................... 352
  10.1.11       rdacl_get_referral()..................................................................................... 354
  10.1.12       rdacl_get_mgr_types_semantics( ) .......................................................... 355

Chapter 11 RS Editor RPC Interfaces ...................................................................... 357
  11.1    RS Protected Objects and their ACL Manager Types ............................. 358
  11.1.1       Supported Permissions .............................................................................. 359
  11.2    Common Data Types and Constants for RS Editors............................... 361
  11.2.1       bitset............................................................................................................... 361
  11.2.2       sec_timeval_sec_t ........................................................................................ 361
  11.2.3       sec_timeval_t................................................................................................ 361
  11.2.4       sec_rgy_name_t — Short and Long PGO Names................................. 361
  11.2.5       sec_rgy_pname_t......................................................................................... 362
  11.2.6       sec_rgy_login_name_t................................................................................ 362
  11.2.7       sec_rgy_cursor_t.......................................................................................... 362
  11.2.8       rs_cache_data_t............................................................................................ 363
  11.2.9       sec_rgy_handle_t......................................................................................... 363

DCE 1.1: Authentication and Security Services xi



Contents

  11.3    The rs_bind RPC Interface............................................................................ 364
  11.3.1       Common Data Types and Constants for rs_bind ................................. 364
  11.3.1.1          rs_replica_name_p_t................................................................................ 364
  11.3.1.2          rs_replica_twr_vec_p_t........................................................................... 364
  11.3.2       Interface UUID and Version Number for rs_bind................................ 364
  11.3.3       rs_bind_get_update_site( ) ........................................................................ 364
  11.4    The rs_policy RPC Interface......................................................................... 366
  11.4.1       Common Data Types and Constants for rs_policy .............................. 366
  11.4.1.1          sec_timeval_period_t............................................................................... 366
  11.4.1.2          sec_rgy_properties_flags_t..................................................................... 366
  11.4.1.3          sec_rgy_properties_t................................................................................ 367
  11.4.1.4          sec_rgy_plcy_pwd_flags_t ..................................................................... 368
  11.4.1.5          sec_rgy_plcy_t........................................................................................... 368
  11.4.1.6          sec_rgy_plcy_auth_t................................................................................ 370
  11.4.1.7          Status Codes .............................................................................................. 370
  11.4.2       Interface UUID and Version Number for rs_policy ............................. 374
  11.4.3       rs_properties_get_info( ) ............................................................................ 374
  11.4.4       rs_properties_set_info( ) ............................................................................ 374
  11.4.5       rs_policy_get_info( ) ................................................................................... 375
  11.4.6       rs_policy_set_info( ) .................................................................................... 375
  11.4.7       rs_policy_get_effective( ) ........................................................................... 376
  11.4.8       rs_auth_policy_get_info( ) ......................................................................... 376
  11.4.9       rs_auth_policy_get_effective( )................................................................. 377
  11.4.10       rs_auth_policy_set_info( ) ......................................................................... 377
  11.5    The rs_pgo RPC Interface ............................................................................. 379
  11.5.1       Common Data Types and Constants for rs_pgo .................................. 379
  11.5.1.1          sec_rgy_domain_t.................................................................................... 379
  11.5.1.2          sec_rgy_member_t................................................................................... 379
  11.5.1.3          sec_rgy_pgo_flags_t................................................................................. 379
  11.5.1.4          sec_rgy_pgo_item_t................................................................................. 380
  11.5.1.5          rs_pgo_id_key_t ....................................................................................... 381
  11.5.1.6          rs_pgo_unix_num_key_t........................................................................ 381
  11.5.1.7          rs_pgo_query_t......................................................................................... 381
  11.5.1.8          rs_pgo_query_key_t ................................................................................ 382
  11.5.1.9          rs_pgo_result_t ......................................................................................... 382
  11.5.1.10          rs_pgo_query_result_t............................................................................. 383
  11.5.2       Interface UUID and Version Number for rs_pgo ................................. 383
  11.5.3       rs_pgo_add()................................................................................................ 383
  11.5.4       rs_pgo_delete( )............................................................................................ 384
  11.5.5       rs_pgo_replace( ).......................................................................................... 385
  11.5.6       rs_pgo_rename() ......................................................................................... 385
  11.5.7       rs_pgo_get( ) ................................................................................................. 386
  11.5.8       rs_pgo_key_transfer( )................................................................................ 387
  11.5.9       rs_pgo_add_member() .............................................................................. 388
  11.5.10       rs_pgo_delete_member( ) .......................................................................... 389
  11.5.11       rs_pgo_is_member( ) .................................................................................. 389
  11.5.12       rs_pgo_get_members( ) .............................................................................. 390
  11.6    The rs_acct RPC Interface............................................................................. 391

xii CAE Specification (1997)



Contents

  11.6.1       Common Data Types and Constants for rs_acct .................................. 391
  11.6.1.1          sec_rgy_acct_key_t .................................................................................. 391
  11.6.1.2          sec_rgy_acct_admin_flags_t .................................................................. 391
  11.6.1.3          sec_rgy_acct_auth_flags_t...................................................................... 392
  11.6.1.4          sec_rgy_foreign_id_t ............................................................................... 392
  11.6.1.5          sec_rgy_acct_admin_t ............................................................................. 392
  11.6.1.6          sec_rgy_acct_user_flags_t ...................................................................... 393
  11.6.1.7          sec_passwd_type_t .................................................................................. 393
  11.6.1.8          sec_key_version_t .................................................................................... 394
  11.6.1.9          sec_passwd_version_t............................................................................. 394
  11.6.1.10          sec_passwd_des_key_t ........................................................................... 395
  11.6.1.11          sec_passwd_rec_t..................................................................................... 395
  11.6.1.12          sec_chksum_type_t.................................................................................. 396
  11.6.1.13          sec_chksum_t............................................................................................ 396
  11.6.1.14          sec_rgy_unix_passwd_buf_t.................................................................. 397
  11.6.1.15          sec_rgy_acct_user_t ................................................................................. 397
  11.6.1.16          rs_acct_parts_t .......................................................................................... 398
  11.6.1.17          rs_encrypted_pickle_t............................................................................. 398
  11.6.1.18          sec_etype_t................................................................................................. 399
  11.6.1.19          sec_bytes_t................................................................................................. 399
  11.6.1.20          sec_encrypted_bytes_t ............................................................................ 399
  11.6.1.21          rs_acct_key_transmit_t ........................................................................... 400
  11.6.1.22          sec_rgy_sid_t............................................................................................. 401
  11.6.1.23          sec_rgy_unix_sid_t................................................................................... 401
  11.6.1.24          rs_acct_info_t ............................................................................................ 401
  11.6.2       Interface UUID and Version Number for rs_acct ................................. 402
  11.6.3       rs_acct_add( )................................................................................................ 403
  11.6.4       rs_acct_delete( )............................................................................................ 404
  11.6.5       rs_acct_rename( )......................................................................................... 404
  11.6.6       rs_acct_lookup( ).......................................................................................... 405
  11.6.7       rs_acct_replace( ) ......................................................................................... 405
  11.6.8       rs_acct_get_projlist( ).................................................................................. 407
  11.7    The rs_misc RPC Interface ........................................................................... 408
  11.7.1       Common Data Types and Constants for rs_misc ................................. 408
  11.7.1.1          rs_login_info_t.......................................................................................... 408
  11.7.1.2          rs_update_seqno_t................................................................................... 409
  11.7.2       Interface UUID and Version Number for rs_misc................................ 409
  11.7.3       rs_login_get_info( ) ..................................................................................... 409
  11.7.4       rs_wait_until_consistent( ) ........................................................................ 410
  11.7.5       rs_check_consistency( ) .............................................................................. 410
  11.8    The rs_attr RPC Interface.............................................................................. 412
  11.8.1       Common Data Types and Constants for rs_attr ................................... 412
  11.8.1.1          sec_attr_component_name_t................................................................. 412
  11.8.1.2          rs_attr_cursor_t......................................................................................... 412
  11.8.1.3          sec_attr_bind_auth_info_type_t............................................................ 413
  11.8.1.4          sec_attr_bind_auth_info_t...................................................................... 413
  11.8.1.5          sec_attr_bind_type_t ............................................................................... 415
  11.8.1.6          sec_attr_twr_ref_t..................................................................................... 415

DCE 1.1: Authentication and Security Services xiii



Contents

  11.8.1.7          sec_attr_twr_set_t .................................................................................... 415
  11.8.1.8          sec_attr_bind_svrname........................................................................... 416
  11.8.1.9          sec_attr_binding_t.................................................................................... 416
  11.8.1.10          sec_attr_bind_info_t ................................................................................ 417
  11.8.1.11          sec_attr_enc_printstring_p_t ................................................................. 417
  11.8.1.12          sec_attr_enc_str_array_t ......................................................................... 417
  11.8.1.13          sec_attr_enc_bytes_t................................................................................ 417
  11.8.1.14          sec_attr_i18n_data_t ................................................................................ 418
  11.8.1.15          sec_attr_enc_attr_set_t ............................................................................ 418
  11.8.1.16          sec_attr_encoding_t................................................................................. 418
  11.8.1.17          sec_attr_value_t........................................................................................ 420
  11.8.1.18          sec_attr_t .................................................................................................... 421
  11.8.1.19          sec_attr_vec_t............................................................................................ 421
  11.8.2       Interface UUID for rs_attr.......................................................................... 422
  11.8.3       rs_attr_cursor_init( ) ................................................................................... 422
  11.8.4       rs_attr_lookup_by_id( ).............................................................................. 422
  11.8.5       rs_attr_lookup_no_expand( ).................................................................... 423
  11.8.6       rs_attr_lookup_by_name( ) ....................................................................... 424
  11.8.7       rs_attr_update( ) .......................................................................................... 425
  11.8.8       rs_attr_test_and_update( )......................................................................... 425
  11.8.9       rs_attr_delete( ) ............................................................................................ 426
  11.8.10       rs_attr_get_referral( ) .................................................................................. 426
  11.8.11       rs_attr_get_effective( ) ................................................................................ 427
  11.9    The rs_attr_schema RPC Interface.............................................................. 428
  11.9.1       Common Data Types and Constants for rs_attr_schema ................... 428
  11.9.1.1          sec_attr_acl_mgr_info_t.......................................................................... 428
  11.9.1.2          sec_attr_sch_entry_flags_t ..................................................................... 428
  11.9.1.3          sec_attr_intercell_action_t...................................................................... 429
  11.9.1.4          sec_attr_trig_type_flags_t....................................................................... 429
  11.9.1.5          sec_attr_acl_mgr_info_set_t................................................................... 430
  11.9.1.6          sec_attr_schema_entry_t ........................................................................ 431
  11.9.1.7          sec_attr_schema_entry_parts_t............................................................. 432
  11.9.2       Interface UUID for rs_attr_schema.......................................................... 433
  11.9.3       rs_attr_schema_create_entry( )................................................................. 433
  11.9.4       rs_attr_schema_delete_entry( )................................................................. 433
  11.9.5       rs_attr_schema_update_entry( )............................................................... 434
  11.9.6       rs_attr_schema_cursor_init( ) ................................................................... 434
  11.9.7       rs_attr_schema_scan( ) ............................................................................... 435
  11.9.8       rs_attr_schema_lookup_by_name( ) ....................................................... 435
  11.9.9       rs_attr_schema_lookup_by_id( ).............................................................. 436
  11.9.10       rs_attr_schema_get_referral( ) .................................................................. 436
  11.9.11       rs_attr_schema_get_acl_mgrs( ) ............................................................... 437
  11.9.12       rs_attr_schema_aclmgr_strings( ) ............................................................ 437
  11.10    The rs_prop_acct RPC Interface.................................................................. 439
  11.10.1       Common Data Types and Constants for rs_prop_acct ....................... 439
  11.10.1.1          rs_prop_acct_add_data_t ....................................................................... 439
  11.10.1.2          rs_prop_acct_key_data_t........................................................................ 440
  11.10.1.3          rs_replica_master_info_t and rs_replica_master_info_p_t ............. 440

xiv CAE Specification (1997)



Contents

  11.10.2       Interface UUID and Version Number for rs_prop_acct ...................... 441
  11.10.3       rs_prop_acct_add( )..................................................................................... 441
  11.10.4       rs_prop_acct_delete( )................................................................................. 441
  11.10.5       rs_prop_acct_rename( ).............................................................................. 442
  11.10.6       rs_prop_acct_replace( ) .............................................................................. 442
  11.10.7       rs_prop_acct_add_key_version( ) ............................................................ 443
  11.11    The rs_prop_acl RPC Interface.................................................................... 445
  11.11.1       Common Data Types and Constants for rs_prop_acl ......................... 445
  11.11.1.1          rs_prop_acl_data_t................................................................................... 445
  11.11.2       Interface UUID and Version Number for rs_prop_acl ........................ 445
  11.11.3       rs_prop_acl_replace( ) ................................................................................ 445
  11.12    The rs_prop_attr RPC Interface................................................................... 447
  11.12.1       Common Data Types and Constants for rs_prop_attr ........................ 447
  11.12.1.1          rs_prop_attr_list_t.................................................................................... 447
  11.12.1.2          rs_prop_attr_data_t ................................................................................. 447
  11.12.2       Interface UUID and Version Number for rs_prop_attr ....................... 447
  11.12.3       rs_prop_attr_update( ) ............................................................................... 448
  11.12.4       rs_prop_attr_delete( ) ................................................................................. 448
  11.13    The rs_prop_attr_schema RPC Interface................................................... 449
  11.13.1       Common Data Types and Constants for rs_prop_attr_schema ........ 449
  11.13.1.1          rs_prop_attr_sch_create_data_t ............................................................ 449
  11.13.2       Interface UUID and Version Number for rs_prop_attr_schema ....... 449
  11.13.3       rs_prop_attr_schema_create( ) ................................................................. 449
  11.13.4       rs_prop_attr_schema_delete( ) ................................................................. 450
  11.13.5       rs_prop_attr_schema_update( ) ............................................................... 450
  11.14    The rs_prop_pgo RPC Interface .................................................................. 451
  11.14.1       Common Data Types and Constants for rs_prop_pgo ....................... 451
  11.14.1.1          rs_prop_pgo_add_data_t........................................................................ 451
  11.14.2       Interface UUID and Version Number for rs_prop_pgo ...................... 451
  11.14.3       rs_prop_pgo_add()..................................................................................... 451
  11.14.4       rs_prop_pgo_delete( )................................................................................. 452
  11.14.5       rs_prop_pgo_rename() .............................................................................. 452
  11.14.6       rs_prop_pgo_replace( )............................................................................... 453
  11.14.7       rs_prop_pgo_add_member() ................................................................... 453
  11.14.8       rs_prop_pgo_delete_member( ) ............................................................... 454
  11.15    The rs_prop_plcy RPC Interface ................................................................. 456
  11.15.1       Interface UUID and Version Number for rs_prop_plcy...................... 456
  11.15.2       rs_prop_properties_set_info( ) ................................................................. 456
  11.15.3       rs_prop_plcy_set_info( ) ............................................................................ 456
  11.15.4       rs_prop_auth_plcy_set_info( ) .................................................................. 457
  11.15.5       rs_prop_plcy_set_dom_cache_info( ) ..................................................... 457
  11.16    The rs_prop_replist RPC Interface ............................................................. 459
  11.16.1       Interface UUID and Version Number for rs_prop_replist.................. 459
  11.16.2       rs_prop_replist_add_replica().................................................................. 459
  11.16.3       rs_prop_replist_del_replica() ................................................................... 459
  11.17    The rs_pwd_mgmt RPC Interface .............................................................. 461
  11.17.1       Common Data Types and Constants for rs_pwd_mgmt.................... 461
  11.17.1.1          rs_pwd_mgmt_plcy_t ............................................................................. 461

DCE 1.1: Authentication and Security Services xv



Contents

  11.17.2       Interface UUID and Version Number for rs_pwd_mgmt................... 461
  11.17.3       rs_pwd_mgmt_setup( ) .............................................................................. 461
  11.18    The rs_qry RPC Interface.............................................................................. 463
  11.18.1       Interface UUID and Version Number for rs_qry .................................. 463
  11.18.2       rs_query_are_you_there()......................................................................... 463
  11.19    The rs_repadm RPC Interface...................................................................... 464
  11.19.1       Common Data Types and Constants for rs_repadm ........................... 464
  11.19.1.1          rs_sw_version_t........................................................................................ 464
  11.19.1.2          rs_replica_info_t....................................................................................... 464
  11.19.2       Interface UUID and Version Number for rs_repadm.......................... 465
  11.19.3       rs_rep_admin_stop( ).................................................................................. 465
  11.19.4       rs_rep_admin_maint( ) ............................................................................... 465
  11.19.5       rs_rep_admin_mkey()................................................................................ 466
  11.19.6       rs_rep_admin_info()................................................................................... 466
  11.19.7       rs_rep_admin_info_full() .......................................................................... 466
  11.19.8       rs_rep_admin_destroy() ............................................................................ 467
  11.19.9       rs_rep_admin_init_replica() ..................................................................... 467
  11.19.10       rs_rep_admin_change_master( ) .............................................................. 467
  11.19.11       rs_rep_admin_become_master( ) ............................................................. 468
  11.19.12       rs_rep_admin_become_slave( ) ................................................................ 468
  11.20    The rs_replist RPC Interface ........................................................................ 469
  11.20.1       Common Data Types and Constants for rs_replist.............................. 469
  11.20.1.1          rs_replica_item_t and rs_replica_item_p_t......................................... 469
  11.20.1.2          Replica States ............................................................................................ 469
  11.20.1.3          rs_replica_prop_t...................................................................................... 470
  11.20.1.4          rs_replica_prop_info_t............................................................................ 471
  11.20.1.5          rs_replica_comm_t................................................................................... 471
  11.20.1.6          rs_replica_comm_info_t ......................................................................... 472
  11.20.1.7          rs_replica_item_full_t.............................................................................. 472
  11.20.2       Interface UUID and Version Number for rs_replist............................. 473
  11.20.3       rs_replist_add_replica()............................................................................. 473
  11.20.4       rs_replist_replace_replica( ) ...................................................................... 473
  11.20.5       rs_replist_delete_replica( )......................................................................... 474
  11.20.6       rs_replist_read() .......................................................................................... 474
  11.20.7       rs_replist_read_full().................................................................................. 475
  11.21    The rs_repmgr RPC Interface ...................................................................... 476
  11.21.1       Common Data Types and Constants for rs_repmgr............................ 476
  11.21.1.1          rs_replica_auth_t and rs_replica_auth_p_t ........................................ 476
  11.21.2       Interface UUID and Version Number for rs_repmgr........................... 476
  11.21.3       rs_rep_mgr_get_info_and_creds() .......................................................... 476
  11.21.4       rs_rep_mgr_init() ........................................................................................ 477
  11.21.5       rs_rep_mgr_init_done()............................................................................. 477
  11.21.6       rs_rep_mgr_i_am_slave( ) ......................................................................... 478
  11.21.7       rs_rep_mgr_i_am_master( ) ...................................................................... 478
  11.21.8       rs_rep_mgr_become_master( ) ................................................................. 479
  11.21.9       rs_rep_mgr_copy_all( )............................................................................... 479
  11.21.10       rs_rep_mgr_copy_propq()........................................................................ 480
  11.21.11       rs_rep_mgr_stop_until_compat_sw( ).................................................... 480

xvi CAE Specification (1997)



Contents

  11.22    The rs_rpladmn RPC Interface .................................................................... 481
  11.22.1       Interface UUID and Version Number for rs_rpladmn ........................ 481
  11.22.2       rs_rep_admin_stop( ).................................................................................. 481
  11.22.3       rs_rep_admin_maint( ) ............................................................................... 481
  11.22.4       rs_rep_admin_mkey()................................................................................ 481
  11.23    The rs_unix RPC Interface............................................................................ 482
  11.23.1       Common Data Types and Constants for rs_unix ................................. 482
  11.23.1.1          rs_unix_query_t........................................................................................ 482
  11.23.1.2          rs_unix_query_key_t............................................................................... 482
  11.23.1.3          sec_rgy_unix_login_name_t .................................................................. 483
  11.23.1.4          sec_rgy_unix_gecos_t.............................................................................. 483
  11.23.1.5          sec_rgy_unix_passwd_t.......................................................................... 483
  11.23.1.6          sec_rgy_member_buf_t........................................................................... 484
  11.23.1.7          sec_rgy_unix_group_t............................................................................. 484
  11.23.2       Interface UUID and Version Number for rs_unix ................................ 484
  11.23.3       rs_unix_getpwents( ) .................................................................................. 484
  11.23.4       rs_unix_getmemberents( ) ......................................................................... 485
  11.24    The rs_update RPC Interface ....................................................................... 487
  11.24.1       Interface UUID and Version Number for rs_update ........................... 487
  11.24.2       rs_rep_admin_info()................................................................................... 487

Chapter 12 ID Map Facility RPC Interface .......................................................... 489
  12.1    The secidmap RPC Interface........................................................................ 489
  12.1.1       Common Data Types and Constants for the secidmap Interface ..... 489
  12.1.1.1          rsec_id_output_selector_t ...................................................................... 489
  12.1.1.2          Global PGO Names.................................................................................. 490
  12.1.1.3          Status Codes .............................................................................................. 490
  12.1.2       Interface UUID and Version Number for the secidmap Interface .... 491
  12.1.3       rsec_id_parse_name( ) ................................................................................ 491
  12.1.4       rsec_id_gen_name() ................................................................................... 492
  12.1.5       rsec_id_parse_name_cache( ).................................................................... 493
  12.1.6       rsec_id_gen_name_cache( ) ....................................................................... 493

Chapter 13 Key Management Facility RPC Interface.................................... 495
  13.1    The Key Management RPC Interface ......................................................... 495
  13.1.1       Common Data Types and Constants for Key Management .............. 495
  13.1.1.1          Status Codes .............................................................................................. 495

Chapter 14 Login Facility and Security Client Daemon (SCD)
RPC Interface ............................................................................................... 497

  14.1    The scd RPC Interface ................................................................................... 497
  14.1.1       Common Data Types and Constants for scd Interface........................ 497
  14.1.1.1          Status Codes .............................................................................................. 497
  14.1.2       Interface UUID and Version Number for scd Interface....................... 497
  14.1.3       scd_protected_noop( ) ................................................................................ 498

DCE 1.1: Authentication and Security Services xvii



Contents

Part 3 Security Application Programming Interface ................. 499

Chapter 15 Access Control List API......................................................................... 501
  15.1    Introduction..................................................................................................... 501
    <dce/aclbase.h> ................................................................................................. 502
    sec_acl_bind( )...................................................................................................... 508
    sec_acl_bind_to_addr ( )....................................................................................... 510
    sec_acl_calc_mask ( ) ............................................................................................ 511
    sec_acl_get_access( ) ............................................................................................ 512
    sec_acl_get_error_info ( ) ..................................................................................... 513
    sec_acl_get_manager_types ( )............................................................................. 514
    sec_acl_get_mgr_types_semantics( ).................................................................. 516
    sec_acl_get_printstring ( ) ................................................................................... 518
    sec_acl_lookup ( ) .................................................................................................. 520
    sec_acl_release( ) .................................................................................................. 521
    sec_acl_release_handle ( ) ..................................................................................... 522
    sec_acl_replace ( ).................................................................................................. 523
    sec_acl_test_access( ) ........................................................................................... 525
    sec_acl_test_access_on_behalf ( )......................................................................... 527

Chapter 16 Registry API.................................................................................................. 529
  16.1    Introduction..................................................................................................... 529
    <dce/acct.h>........................................................................................................ 530
    <dce/binding.h>................................................................................................ 531
    <dce/misc.h> ...................................................................................................... 533
    <dce/pgo.h>........................................................................................................ 534
    <dce/policy.h> ................................................................................................... 535
    <dce/rgynbase.h>.............................................................................................. 536
    <dce/sec_rgy_attr.h> ........................................................................................ 537
    <dce/sec_rgy_attr_sch.h>................................................................................ 538
    sec_rgy_acct_add ( ) ............................................................................................. 540
    sec_rgy_acct_admin_replace ( ) ........................................................................... 543
    sec_rgy_acct_delete( ) .......................................................................................... 546
    sec_rgy_acct_get_projlist ( ) ................................................................................ 548
    sec_rgy_acct_lookup ( ) ........................................................................................ 551
    sec_rgy_acct_passwd ( ) ....................................................................................... 554
    sec_rgy_acct_rename( ) ....................................................................................... 556
    sec_rgy_acct_replace_all ( ) ................................................................................. 558
    sec_rgy_acct_user_replace( )............................................................................... 561
    sec_rgy_attr_cursor_alloc ( ) ............................................................................... 564
    sec_rgy_attr_cursor_init ( ) ................................................................................. 565
    sec_rgy_attr_cursor_release( ) ............................................................................ 567
    sec_rgy_attr_cursor_reset( ) ............................................................................... 568
    sec_rgy_attr_delete( ) .......................................................................................... 569
    sec_rgy_attr_get_effective( ) ............................................................................... 572
    sec_rgy_attr_lookup_by_id ( ) ............................................................................. 575
    sec_rgy_attr_lookup_by_name ( ) ....................................................................... 578
    sec_rgy_attr_lookup_no_expand ( ) .................................................................... 580

xviii CAE Specification (1997)



Contents

    sec_rgy_attr_sch_aclmgr_strings ( )................................................................... 583
    sec_rgy_attr_sch_create_entry( )........................................................................ 586
    sec_rgy_attr_sch_cursor_alloc ( )........................................................................ 588
    sec_rgy_attr_sch_cursor_init ( ).......................................................................... 589
    sec_rgy_attr_sch_cursor_release( )..................................................................... 591
    sec_rgy_attr_sch_cursor_reset( )........................................................................ 592
    sec_rgy_attr_sch_delete_entry( )........................................................................ 593
    sec_rgy_attr_sch_get_acl_mgrs ( )...................................................................... 595
    sec_rgy_attr_sch_lookup_by_id ( )...................................................................... 597
    sec_rgy_attr_sch_lookup_by_name ( ) ................................................................ 599
    sec_rgy_attr_sch_scan( ) ..................................................................................... 601
    sec_rgy_attr_sch_update_entry ( ) ...................................................................... 603
    sec_rgy_attr_test_and_update ( ) ........................................................................ 606
    sec_rgy_attr_update ( )......................................................................................... 609
    sec_rgy_auth_plcy_get_effective( )..................................................................... 612
    sec_rgy_auth_plcy_get_info ( )............................................................................ 614
    sec_rgy_auth_plcy_set_info ( ) ............................................................................ 616
    sec_rgy_cell_bind( ) ............................................................................................. 618
    sec_rgy_cursor_reset( )........................................................................................ 619
    sec_rgy_login_get_effective( ) ............................................................................. 620
    sec_rgy_login_get_info ( ).................................................................................... 623
    sec_rgy_pgo_add ( ) .............................................................................................. 626
    sec_rgy_pgo_add_member( )............................................................................... 628
    sec_rgy_pgo_delete ( )........................................................................................... 630
    sec_rgy_pgo_delete_member( ) ........................................................................... 632
    sec_rgy_pgo_get_by_eff_unix_num( ) ............................................................... 634
    sec_rgy_pgo_get_by_id ( ).................................................................................... 637
    sec_rgy_pgo_get_by_name( ).............................................................................. 640
    sec_rgy_pgo_get_by_unix_num( ) ..................................................................... 642
    sec_rgy_pgo_get_members( ) .............................................................................. 645
    sec_rgy_pgo_get_next ( )...................................................................................... 648
    sec_rgy_pgo_id_to_name ( ) ................................................................................ 651
    sec_rgy_pgo_id_to_unix_num ( )........................................................................ 653
    sec_rgy_pgo_is_member( ) .................................................................................. 655
    sec_rgy_pgo_name_to_id ( ) ................................................................................ 657
    sec_rgy_pgo_name_to_unix_num ( ).................................................................. 659
    sec_rgy_pgo_rename( ) ........................................................................................ 661
    sec_rgy_pgo_replace ( ) ........................................................................................ 663
    sec_rgy_pgo_unix_num_to_id ( )........................................................................ 665
    sec_rgy_pgo_unix_num_to_name ( ).................................................................. 667
    sec_rgy_plcy_get_effective( )............................................................................... 669
    sec_rgy_plcy_get_info ( ) ..................................................................................... 671
    sec_rgy_plcy_set_info ( )...................................................................................... 673
    sec_rgy_properties_get_info ( )............................................................................ 675
    sec_rgy_properties_set_info ( ) ............................................................................ 677
    sec_rgy_site_bind( ) ............................................................................................. 679
    sec_rgy_site_bind_update ( ) ............................................................................... 681
    sec_rgy_site_binding_get_info ( ) ....................................................................... 683

DCE 1.1: Authentication and Security Services xix



Contents

    sec_rgy_site_close( ) ............................................................................................ 685
    sec_rgy_site_get( ) ............................................................................................... 686
    sec_rgy_site_is_readonly ( )................................................................................. 688
    sec_rgy_site_open( )............................................................................................. 689
    sec_rgy_site_open_query( ) ................................................................................. 691
    sec_rgy_site_open_update ( ) ............................................................................... 693
    sec_rgy_unix_getgrgid ( ) .................................................................................... 695
    sec_rgy_unix_getgrnam( ) .................................................................................. 697
    sec_rgy_unix_getpwnam( )................................................................................. 699
    sec_rgy_unix_getpwuid( )................................................................................... 701
    sec_rgy_wait_until_consistent ( ) ....................................................................... 703

Chapter 17 ID Map API ................................................................................................... 705
  17.1    Introduction..................................................................................................... 705
    <dce/secidmap.h>............................................................................................. 706
    sec_id_gen_group( )............................................................................................. 707
    sec_id_gen_name( ).............................................................................................. 709
    sec_id_parse_group ( ) .......................................................................................... 711
    sec_id_parse_name( ) ........................................................................................... 713

Chapter 18 Key Management API............................................................................. 715
  18.1    Introduction..................................................................................................... 715
    <dce/keymgmt.h>............................................................................................. 716
    sec_key_mgmt_change_key ( ) ............................................................................. 718
    sec_key_mgmt_delete_key( ) ............................................................................... 720
    sec_key_mgmt_delete_key_type ( ) ...................................................................... 721
    sec_key_mgmt_free_key( )................................................................................... 722
    sec_key_mgmt_garbage_collect ( )....................................................................... 723
    sec_key_mgmt_gen_rand_key( )......................................................................... 724
    sec_key_mgmt_get_key( ).................................................................................... 726
    sec_key_mgmt_get_next_key( ) .......................................................................... 727
    sec_key_mgmt_get_next_kvno ( )........................................................................ 728
    sec_key_mgmt_initialize_cursor ( )..................................................................... 729
    sec_key_mgmt_manage_key( )............................................................................ 730
    sec_key_mgmt_release_cursor( )......................................................................... 731
    sec_key_mgmt_set_key( ) .................................................................................... 732

Chapter 19 Login API........................................................................................................ 735
  19.1    Introduction..................................................................................................... 735
    <dce/sec_login.h> ............................................................................................. 736
    sec_login_become_delegate ( ) .............................................................................. 742
    sec_login_become_impersonator ( ) ..................................................................... 745
    sec_login_become_initiator ( ) ............................................................................. 748
    sec_login_certify_identity ( ) ............................................................................... 751
    sec_login_cred_get_delegate ( )............................................................................ 753
    sec_login_cred_get_initiator ( ) ........................................................................... 755
    sec_login_cred_init_cursor ( ) ............................................................................. 756
    sec_login_disable_delegation ( )........................................................................... 757

xx CAE Specification (1997)



Contents

    sec_login_export_context ( ) ................................................................................ 758
    sec_login_free_net_info ( ) ................................................................................... 760
    sec_login_get_current_context ( ) ....................................................................... 761
    sec_login_get_expiration ( ) ................................................................................. 762
    sec_login_get_groups ( )....................................................................................... 763
    sec_login_get_pwent ( )........................................................................................ 764
    sec_login_import_context ( )................................................................................ 765
    sec_login_init_first( ) .......................................................................................... 766
    sec_login_inquire_net_info ( ) ............................................................................. 767
    sec_login_newgroups( ) ....................................................................................... 768
    sec_login_purge_context ( ) ................................................................................. 770
    sec_login_purge_context_exp ( ) ......................................................................... 771
    sec_login_refresh_identity ( )............................................................................... 772
    sec_login_release_context ( )................................................................................ 773
    sec_login_set_context ( ) ...................................................................................... 774
    sec_login_set_extended_attrs ( ) .......................................................................... 775
    sec_login_setup_first( )........................................................................................ 777
    sec_login_setup_identity ( ) ................................................................................. 778
    sec_login_tkt_request_options ( ) ........................................................................ 780
    sec_login_valid_and_cert_ident ( ) ..................................................................... 782
    sec_login_validate_first( ) ................................................................................... 784
    sec_login_validate_identity ( )............................................................................. 785

Chapter 20 EPAC Accessor Function (sec_cred) API..................................... 787
  20.1    Introduction..................................................................................................... 787
    sec_cred_free_attr_cursor( ) ................................................................................ 788
    sec_cred_free_cursor( ) ........................................................................................ 789
    sec_cred_free_pa_handle ( ).................................................................................. 790
    sec_cred_get_authz_session_info ( ).................................................................... 791
    sec_cred_get_client_princ_name( ) .................................................................... 793
    sec_cred_get_deleg_restrictions( ) ...................................................................... 794
    sec_cred_get_delegate( ) ...................................................................................... 795
    sec_cred_get_delegation_type ( ) ......................................................................... 797
    sec_cred_get_extended_attrs( ) ........................................................................... 798
    sec_cred_get_initiator ( )...................................................................................... 800
    sec_cred_get_opt_restrictions ( ) ......................................................................... 801
    sec_cred_get_pa_data ( )....................................................................................... 802
    sec_cred_get_req_restrictions( ).......................................................................... 803
    sec_cred_get_tgt_restrictions( ).......................................................................... 804
    sec_cred_get_v1_pac ( ) ........................................................................................ 805
    sec_cred_initialize_attr_cursor ( )....................................................................... 806
    sec_cred_initialize_cursor ( ) ............................................................................... 807
    sec_cred_is_authenticated ( ) ............................................................................... 808

Chapter 21 Miscellaneous Routines Needed for DCE Security ............. 809
  21.1    Introduction..................................................................................................... 809
    rs_ns_entry_validate ( ) ....................................................................................... 810

DCE 1.1: Authentication and Security Services xxi



Contents

Part 4 Appendices ................................................................................................. 813

Appendix A Symbol Mapping Table ......................................................................... 815

Appendix B Error Code Mapping List ...................................................................... 819

    Glossary........................................................................................................... 861

    Index.................................................................................................................. 869

List of Figures

1-1 DCE Security Model...................................................................................... 12
1-2 Basic KDS (AS+TGS) Protocol..................................................................... 21
1-3 KDS+PS Protocol............................................................................................ 28
1-4 Cross-registration Mediating Cross-cell Trust Link ............................... 33
1-5 Cross-cell Protocol (Single-hop) ................................................................. 34
1-6 Cross-cell Protocol (Multi-hop) .................................................................. 37
1-7 Hierarchical Trust Chains ............................................................................ 39
1-8 Common Access Determination Algorithm ............................................ 50
1-9 Delegation Common Access Determination Algorithm ....................... 51
1-10 Namespace Junction (Federated Naming) Model .................................. 55
1-11 EPAC Seal within EPAC and A_D Field of PTGT .................................. 91
1-12 EPAC Seal (and Optional Version 1.0 PAC)

within A_D Field of PTGT .......................................................................... 91
1-13 Transmitting EPACs with Service Tickets ................................................ 92
1-14 Extended Delegation Access Control Algorithm.................................... 98
1-15 Signature of the KDS padata Field .............................................................. 113
1-16 Pre-authentication Protocol for KDS ......................................................... 115
2-1 Endianness ...................................................................................................... 129
5-1 Version 0 Delegation Token Format........................................................... 289
6-1 Master to Slave Conversion......................................................................... 309

List of Tables

1-1 Extended Attribute Schema ACL Manager Permission Bits ................ 101
5-1 Possible Source of rpriv RPC Interface Status Codes............................. 275
11-1 ACL Managers Supported by RS................................................................ 358
11-2 ACL Permissions Supported by RS............................................................ 358
11-3 ACLE Types Supported by RS .................................................................... 359
11-4 Delegation ACLE Types Supported by RS ............................................... 359

xxii CAE Specification (1997)



Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the Open Brand, represented by the ‘‘X’’ mark, that designates
vendor products which conform to Open Group Product Standards

• promoting the benefits of the IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

DCE 1.1: Authentication and Security Services xxiii



Preface

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of CAE and Preliminary Specifications through an industry consensus
review and adoption procedure (in parallel with formal standards work), and the development
of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

The ‘‘X’’ mark is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the X/Open Trade Mark
Licence Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys,
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our Product Standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. CAE Specifications are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

xxiv CAE Specification (1997)



Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

DCE 1.1: Authentication and Security Services xxv



Preface

This Document

This document is a Preliminary Specification (see above). It specifies the DCE security model,
services, interfaces and protocols. Its purpose is to provide a portability guide for security
application programs and a conformance specification for DCE security implementations.

This document is organized as follows:

• Part 1 presents an introduction to issues in security and describes how general concepts in
security are supported by DCE. Included new for DCE 1.1 are such topics as delegation,
extended registry attributes, and extended login and password management.

• Part 2 defines in detail the security specifications, formats, protocols and RPC interfaces
supported by DCE. These include the following:

— infrastructure protocols and services, including checksum and encryption/decryption
mechanisms, key distribution services and privilege services

— access control lists (ACLs) and ACL managers

— delegation

— replication and propagation

— protected communication services

— higher-level facilities, including ACL editors, registration service, ID map facility, key
management facility, login facility and credentials facility.

• Part 3 contains reference manual pages describing the following security APIs supported by
DCE:

— access control list

— registry

This API has significant additions for DCE 1.1.

— ID map

— key management

— login

This API has additions for delegation.

— credentials.

• Part 4 contains a symbol mapping table, list of error codes and a glossary. The error codes
are new for DCE 1.1.

Intended Audience

This document is written for security application programmers and developers of DCE security
implementations.

xxvi CAE Specification (1997)



Preface

Typographic Conventions

The following typographical conventions are used throughout this document:

• Bold font is used for system elements that must be used literally, such as interface names and
defined constants.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote function names and variable values such as interface
arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font.

• Variables within syntax statements are shown in italic fixed width font .

DCE 1.1: Authentication and Security Services xxvii



Trade Marks

Open Software FoundationTM, OSFTM, the OSF logo, OSF/1TM, OSF/MotifTM and MotifTM are
trade marks of The Open Software Foundation, Inc.

Network Computing System is a registered trade mark of Hewlett-Packard Company.

DECnet and VAX are registered trade marks of Digital Equipment Corporation.

Microsoft, NetBIOS and NetBEUI are registered trade marks of Microsoft Corporation.

NetWare is a registered trade mark of Novell, Inc.

System/370 and IBM are registered trade marks of International Business Machines
Corporation.

Cray is a registered trade mark of Cray Research, Inc.

Postscript is a registered trade mark of Adobe Systems Incorporated.

Statemate is a registered trade mark of i-Logix Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

This list represents, as far as possible, those products that are trademarked. The Open Group
acknowledges that there may be other products that might be covered by trademark protection
and advises the reader to verify them independently.

X/Open is a registered trademark, and the ‘‘X’’ device is a trademark, of X/Open Company
Limited.

xxviii CAE Specification (1997)



Referenced Documents

The following documents are referenced in this specification:

ANSI X3.92
American National Standards Institute, Inc. (ANSI): X3.92−1981, American National
Standard Data Encryption Algorithm

ANSI X3.106
ANSI X3.106−1983, American National Standard for Information Systems — Data
Encryption Algorithm — Modes of Operation

CCITT V.42
CCITT (now ITU-T) Recommendation V.42−1988.

CCITT X.208
CCITT (now ITU-T) Recommendation X.208-1988.

CCITT X.209
Recommendation X.209-1988 (Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1)).

CCITT X.509
Recommendation X.509-1988.

It is cited in Section 2.2 on page 136. ISO/IEC 3309:1993(E) is equivalent for the purposes of
that section.

DCE Directory
X/Open CAE Specification, December 1994, X/Open DCE: Directory Services
(ISBN: 1-85912-078-4, C312).

DCE RPC
X/Open CAE Specification, August 1994, X/Open DCE: Remote Procedure Call
(ISBN: 1-85912-041-5, C309).

DCE Time
X/Open CAE Specification, January 1994, X/Open DCE: Time Services
(ISBN: 1-85912-067-9, C310).

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

RFC 1321
The Internet document RFC 1321, by R. Rivest, dated April 1992.

RFC 1510
The Internet document RFC 1510, by J. Kohl and C. Neuman, dated September 1993.

DCE 1.1: Authentication and Security Services xxix



Referenced Documents

xxx CAE Specification (1997)



CAE Specification

Part 1

Introduction

The Open Group

Part 1 Introduction 1



2 CAE Specification (1997)



Chapter 1

Introduction to Security Services

This chapter provides an overall introduction to the security services supported.

Section 1.1 supplies some general background information on security, in an analytic top-down
fashion. Section 1.2 on page 12 supplies an encompassing security model for DCE. The remaining
sections of this chapter supply information on the specific security features supported by DCE, in
a synthetic bottom-up fashion. Thus, this chapter as a whole gives the reader an overall
understanding of how his/her intuitive concepts of security are supported by DCE.

The remaining chapters discuss the detailed descriptions, specifications and interfaces (both
RPC interoperability interfaces and API portability interfaces) of all the supported DCE security
features.

1.1 Generalities on Security — The Architecture of Trust
The goal of this section is to introduce terminology, within the context of explicating the
concepts that computer users (‘‘should’’) have in mind when they think about ‘‘(distributed)
computer security from first principles’’. Although a technical orientation is taken, this
explication is an intuitive and informal discussion of the philosophy and psychology of security —
as distinguished from a formal or rigorous model of the logic and mathematics of security. Thus,
to this extent at least, this section is largely informative, and not normative. Nevertheless, the
inclusion of a section on generalities like this is considered important (even necessary) here, for
several reasons:

• Computer security as an academic discipline has not yet penetrated the engineering
curriculum to the point where it can be assumed as common background for the audience of
DCE (producers and consumers of products based upon it).

• The current security literature is too voluminous and complex to admit an adequate
appraisal of all of its technical aspects here — and yet there does not seem to exist a
convenient summary meeting the requirements that can be cited. (The interested reader is
encouraged to consult the literature; the reader already familiar with this material may skim
this section, but should not skip it altogether because of the terminology introduced.)

• The various models and terminology sets that exist in the current literature differ from one
another to various extents, and despite some general agreement on certain overall principles,
many details have not yet reached final form. It would thus be inappropriate for this
specification to be expressed in a way that favours a single one of those models. An intuitive
approach as presented in this section, admitting mappings to various such models, best
satisfies the needs of this specification.

• At the deepest levels, some scepticism continues to be expressed about the very efficacy and
viability of the more abstract attempts to ‘‘finalise’’ security theory, especially formal models
and the ability to verify implementations of such models. For example, no completely
satisfactory model of even so basic a notion as ‘‘identity’’ has yet been given. Indeed, it has
been seriously suggested that the shortcomings of attempted abstractions indicate there is no
single ‘‘Platonic form’’ of security (even theoretically), but rather several concepts of security
that bear only a ‘‘family resemblance’’ to one another.

• Ultimately, it is imperative to come to a ‘‘human’’ understanding (for example, an intuitively
appealing ‘‘programmer’s model’’) of the meaning of security, precisely because the

Part 1 Introduction 3



Generalities on Security — The Architecture of Trust Introduction to Security Services

problems it attempts to solve are explicitly human ones (as opposed to technological ones,
see below), and are consequently not completely self-evident.

It can be concluded that (at least currently) some intuition is not captured by, and the intuition is
therefore more reliable than, ‘‘rigorous’’ definitions of security (if such exist) — certainly so for
the casual user — and this justifies the limited goal of this section: merely to explicate this
intuition. As stated above, since an appropriate treatment of the basic intuitive content of
computer security along these lines does not seem to be readily available, it is therefore
necessary to provide one here.

As the discussion thus far shows, in the present state of information technology definitive
understanding of many of the problems of computer security is lacking, much less their
solutions (though as this specification shows, there are some adequate solutions for some of the
problems that are understood). Security is unique in this respect, in that other areas of computer
technology are circumscribed by relatively limited technological parameters, whereas security
must take into account the unlimited ingenuity of skillful and determined human attackers
having the full range of computer (and other) tools at their disposal. This dichotomy is justified
and rationalised by the costs required to reduce to acceptable levels the risks to correct system
behaviour from various threats: the risks from (non-human) benign glitches (for example, bugs,
equipment failure, natural disaster) can often be held to very low levels by comparatively simple
and cheap engineering practices, but the risks from (human) malicious attacks can usually be held
to acceptably low levels only by instituting more complex and expensive countermeasures.

Therefore the security services supported by this specification must be viewed as indicative of
only one possible state of the (security) art. In particular, the fitness of the facilities described
here for the security requirements of a given installed environment relies on specialised
evaluation processes beyond the scope of this specification, especially the way that these facilities
interact with security facilities provided by other system components (such as hardware, OSs,
user guidelines and administrative policies).

Finally, it is to be noted that nothing currently specified in this revision of this specification is
intended to preclude future enhancements as they become socially acceptable, technically viable
and commercially available.

1.1.1 Security Attributes: Authenticity, Integrity, Confidentiality

The overall goal of security is to prevent the (human) misuse (either illicit use altogether, or licit-
but-irresponsible use) of resources — or, failing prevention, to at least detect misuse and recover
from it. This definition is to be interpreted broadly (for example, it includes such ‘‘misuses’’ as
illicit repudiation). Proper usage is to be allowed, of course, but it is the essentially negative
nature of the ‘‘prevent misuse’’ clause that signals why security is so difficult to achieve in
practice: namely, anticipating and defending against all possible misuses is an essentially open-
ended challenge — it’s hard to prove that ‘‘bad things didn’t happen’’.

Translating this goal into the language of information technology, it can be said that computer
security attempts to protect the security attributes (to be specified below) of computer resources,
especially information (data) — that is, to preserve these attributes as invariants. The word
‘‘protect’’ is used here in a primitive, undefined (but intuitively appealing) sense. Resources
whose security attributes are ‘‘adequately’’ protected are said to be secure; otherwise, they are
said to be (potentially) compromised or insecure.

In DCE, the resources to be protected further exist in a distributed environment; that is, one in
which the notion of communication is an explicit model primitive — in particular ‘‘data-in-
communication’’ (‘‘on-the-wire’’) is equally as important as static data (in memory, or in storage
media) itself.

4 CAE Specification (1997)



Introduction to Security Services Generalities on Security — The Architecture of Trust

The specific ‘‘security attributes’’ (in an intuitive sense, as always throughout this section) to be
protected must support the stated goal of preventing misuse of resources. To this end, the ones
currently supported in the DCE security model are the following:

• Authenticity

The state of genuinely representing reality, in an extrinsic sense; that is, of being correct
(actually representing that which is alleged to be represented), especially of data originating
at a definitive, authoritative source.

• Integrity

The state of being in an unimpaired condition, in an intrinsic sense; that is, of being sound
and whole, especially of being unmodified (either in their place of residence, or in transit).

• Confidentiality

The state of controlled accessibility; that is, of being accessible to only a designated few; of
being known to only a limited few (privacy or secrecy).

To a first order of approximation, and focusing only on communications traffic, one can think of
preserving ‘‘authenticity’’ to mean being certain of the identity of the peer communicating entity;
preserving ‘‘integrity’’ to mean protection against (undetectable) writes (either in-place or active
wiretapping); and preserving ‘‘confidentiality (privacy)’’ to mean protection against reads (either
in-place or passive wiretapping).

Security attributes other than those listed above are sometimes contemplated — for example,
assured service (the state of being available and obtainable for use when needed; its opposite is
known as denial of service) — but these are currently only peripherally (that is, other than access
control via ACLs, see below) within the scope of DCE (though they are typically supported by
certain implementation and administrative practices associated with DCE, such as partitioning,
replication, backup and restore). On the other hand, some other attributes (for example,
qualitative or intangible attributes, such as accuracy, timeliness and reliability) are commonly
considered to be ineligible as security attributes, on the basis that they cannot be protected from
misuse directly (and are better protected indirectly by other security attributes such as those
above), or are beyond the reach of current computer security technology.

1.1.2 Policy versus Service versus Mechanism

The notion of security policy refers to a set of high-level requirements or rules an ‘‘organisation’’
places on the security attributes of its assets (often independently of the use of computers).
Security services refer to the tools (computer and otherwise) available to the organisation for
enforcing such policies, and security mechanisms refer to the lowest-level technology used to
implement security services. A security domain (or realm) is the scope of a particular security
policy. Since organisations often exist in hierarchical or other relationships (in the degenerate
case they consist of just a single individual), the condition of overlapping security domains is
potentially an important one (for example, site security officer may require every department’s
policies to be subservient to the site’s, in some sense).

As an example of policies, security policies that allow or require individual members of an
organisation to protect the data they ‘‘own’’ are said to be discretionary; policies that mandate
organisational, not individual users’, control are said to be mandatory. As an example of services,
services for controlling access of ‘‘subjects’’ to ‘‘objects’’ (see Section 1.1.3 on page 6) can be
identity-based (that is, ‘‘who’’-criteria such as individual identity and group membership), or rule-
based (for example, ‘‘what’’-criteria such as clearance of subject and sensitivity of object, ‘‘when’’-
criteria such as time-of-day restrictions, and ‘‘where’’-criteria, such as the hosts on which
programs reside). As an example of mechanisms: cryptographic algorithms (see below) can be

Part 1 Introduction 5



Generalities on Security — The Architecture of Trust Introduction to Security Services

based on symmetric or asymmetric key technology. Various types of security services and
mechanisms, or combinations of them, may (or may not) be suitable for protecting an
organisation’s resources, depending on the security policy the organisation has adopted (for
example, discretionary policies are often supported by identity-based services, and mandatory
policies are often supported by rule-based services).

This specification supports computer security services (and the mechanisms necessary to
implement them) that can be used by organisations in a variety of ways, to support in whole or
in part many different security policies. But it is always the responsibility of the organisation to
evaluate the adequacy of this specification’s (or any other) security services and mechanisms for
supporting its specific policies. Such an evaluation will normally be based on a threat analysis,
but a discussion of that topic is beyond the scope of this specification.

1.1.3 Subjects and Objects, Privilege and Authorisation

In the security sense, the term object is used to refer to ‘‘the passive aspect of’’ entities (or
resources, for example, data) whose security attributes are to be protected, and subject or
principal refers to ‘‘the active aspect of’’ entities (for example, people or computer processes) that
interact with objects. Subjects are also considered to be objects insofar as they have security
attributes that need to be protected. Subjects are sometimes further classified into initiators
(those subjects that initiate interaction with objects, and are accountable for the interaction) and
intermediaries or delegates (intermediates that merely assist a principal in an interaction but are
not responsible for initiating it). This distinction is typically only important in a distributed
environment, because the initiator/delegate relationship is typically established by subjects
communicating with one another. (Note that DCE supports delegation in this revision.)

In the security sense, the term access refers to the interaction (mentioned above) of a subject with
an object, the possible types of access in a system being classified into types or classes called
access modes (for example, read or write a file, signal or communicate with a process, execute on a
processor). The specific instances of access modes that a specific subject has been granted (as
opposed to denied) to a specific object are called the subject’s access permissions (or rights) to the
object. A subject that has been granted privilege to access an object in a specified mode is said to
be authorised to access the object in that mode.

The abstract matrix (which is primarily conceptual, not actually realised by a single monolithic
data structure in implementations) whose rows are parameterised by subjects and whose
columns are parameterised by objects, and whose entries consist of the permissions that the
subjects have to the objects, is called the access matrix of the security system. A row of the access
matrix (that is, the ‘‘subject-side’’ or ‘‘client-side access information that a single subject has to
all objects) is called the privilege information (or vector) or capability list associated with the
subject. A column of the access matrix (that is, the ‘‘object-side’’ or ‘‘server-side’’ access
information that all subjects have to a single object) is called the control information (or vector) or
authorisation list or access control list (ACL) associated with the object.

Note that there do exist entities other than subjects and objects in computer systems; for example,
hardware and OSs. (No special name is reserved for these, other than simply ‘‘(computing)
entities’’.) Such entities do not figure into the access matrix (alternatively, such entities as
hardware and OSs may be inserted into the access matrix with ‘‘infinite privileges’’), but they
obviously have a part to play in the security of systems. Much of what is said here about
subjects and objects applies with appropriate modification of detail (in the usual intuitive sense
appealed to throughout this section) to these entities — and this understanding is assumed
throughout this specification unless explicitly stated otherwise.

6 CAE Specification (1997)



Introduction to Security Services Generalities on Security — The Architecture of Trust

1.1.4 Knowledge versus Belief; Trust

Subjects cannot always have absolute knowledge (in the sense of logical provability) of the true
status of security attributes of objects. Instead, they must often rely on relative belief (based on a
variety of considerations, evoking various levels of confidence or assurance) about their status —
and they are then entitled and expected to act ‘‘as if’’ their belief were knowledge. Belief is often
a subjective matter and can be based on such qualitative criteria as ‘‘climate of opinion’’ (for
example, ‘‘everybody ‘knows’ DES is ‘pretty safe’ ’’) or ‘‘assessment of personal character (of
individual humans)’’, but there does exist at least one objective criterion that is universally
accepted as an appropriate standard on which to base belief, and that is mathematical probability
(and its concomitant, computational complexity).

This is best illustrated by an example. Users are usually justified in believing that their
password (which is a piece of protectable data, and is therefore an object in the security sense), if
well-chosen, is secure (in particular, its confidentiality attribute is protected), because the
probability of someone’s guessing it is acceptably low. But if the user discovers their password
written on a scrap of paper in a wastebasket, they are justified in believing (and acting ‘‘as if’’) it
has been compromised — that is, even if they do not know with certainty that a miscreant
intends to illicitly access their account, the probability of that event is now unacceptably high.
Of course, the actual values of ‘‘low’’ and ‘‘high’’ probability, and the recovery procedures to be
taken upon suspicion of compromise, are matters of security policy.

A subject is said to trust an object (or a subject, or other entity such as hardware or OS) if it
believes the object is secure. That is, subject A trusts object B if A believes B’s security attributes
such as authenticity, integrity and confidentiality have not been compromised. If case B is a
subject (or other active entity, such as hardware or OS), this is often paraphrased by saying ‘‘A
trusts B if A believes B behaves correctly (that is, the way B is specified to behave)’’, though this
paraphrase focuses only on the attribute of authenticity. As conceived of here, ‘‘trust’’ cannot be
created; it can only be posited (a priori) of an entity, and then transferred to other entities (‘‘chains’’
of trust) — see Section 1.1.5.

1.1.5 Untrusted Environments: A Priori Trust and Trust Chains

It is the classical position of computer security to take a conservative (or ‘‘fail-safe’’) stance; that
is, to council a subject to believe its environment to be untrustworthy unless it can be convinced
to believe otherwise. The accepted technique for this is to ‘‘bootstrap’’ the trusted environment:
introduce a minimal number of ‘‘small’’ (that is, easily protectable) a priori trusted entities to
serve as the foundation upon which a layer of more and ‘‘larger’’ (that is, harder to protect)
trusted objects can be established (by trusted means, especially by logically sound arguments),
and continue in this way to build up (trust) chains of trusted entities (also called indirect or
transitive trust), resulting in an overarching trusted environment (= set of trusted objects).

These a priori trusted entities can take many forms, and go by many names, for example:

• Self

Every subject is assumed to trust itself (self-deception is beyond the scope of most security
models).

• Physical Security

A secure entity to which no attacker can gain access can be trusted to remain secure from
external attack. (This does not address the question of internal security, however; for
example, malicious code.)

Part 1 Introduction 7



Generalities on Security — The Architecture of Trust Introduction to Security Services

• Trusted Computing Base (TCB)

The fundamental core set of hardware and software that must be trusted a priori (for
example, local machine hardware and OS). (As usual in this section, this definition does not
purport to be rigorous, but its intuitive import is clear enough: ‘‘All the computer stuff that is
relevant to supporting security policy’’.)

• Reference Monitor

A trusted subject (or entity) that mediates all access to a protected object. Indeed, the
reference monitor is considered to embody the protection of the object.

• Trusted Algorithm or Protocol

An algorithm or protocol whose efficacy is trusted — in particular, cryptographic algorithms
(see below), and, in a distributed environment, cryptographic protocols (a ‘‘protocol’’ is
simply a distributed algorithm; that is, one in which communication is an explicit primitive
operation).

• Secrets

The ‘‘smallest’’ (in the sense of ‘‘easiest to protect’’) objects, whose security is considered
tantamount to the security of ‘‘larger’’ (in the sense of ‘‘harder to protect’’) objects, by means
of trust chains (see discussion below on key-based security).

• Authority (Trusted Third Party)

An entity which is trusted to know the secrets of objects other than itself.

A typical responsibility for an authority is to certify objects; that is, to vouch for their security.
For example, consider a credential, which is a data element (an object) containing security
information (say, privilege information) about a subject, say A. Suppose A presents its
(purported) credential to another subject, B, which acts as a reference monitor for the object to
which A desires access. In order for B to make an informed access decision, it needs to be
convinced of the credential’s security (otherwise, it should make the default ‘‘fail-safe’’ decision
to deny access). But if A is trusted by an authority, say X, which B trusts, and if X has certified the
credential (thereby turning it into a certificate (or token, or ticket), and so on), then B is justified in
granting or denying access on the basis of the (now trusted) credential.

1.1.6 Distributed Security: Secrets and Cryptology

A certain amount of physical security is a necessary element of a priori trust in all environments,
and may even (depending on security policy) be sufficient for all the security of some suitable
environments (for example, of standalone machines, or of machines and the network itself in
small local area networks). But physical security by itself is usually an incomplete solution even
within a single physical security domain (because there usually exist threats from sources other
than ones related to physical access), and is certainly inadequate in an environment of
geographically dispersed distributed systems (such as those contemplated by DCE) that span
multiple physical security domains. So, physical security is almost always supplemented with
logical security (security based on non-material entities).

Indeed, the single most important tool for building trust chains, especially in a distributed
environment, is an entity of logical security, namely the concept of secrets. The idea is that if a
subject A can demonstrate (via a trusted protocol in the distributed environment) to another
subject B that it knows a (secure) secret, then B is justified in believing A itself is secure. This
‘‘link’’ in the ‘‘chain’’ of trusted subjects, from a ‘‘small’’ object like a secret to a ‘‘large’’ object
like a subject (and the objects it acts as reference monitor for), effects the ‘‘bootstrapping’’
mentioned above. In this way, the seemingly intractable problem of the security of a complex

8 CAE Specification (1997)



Introduction to Security Services Generalities on Security — The Architecture of Trust

system as a whole is reduced to the more tractable problem of the security of a small subset of
the system: its secrets (‘‘Kerckhoffs’ Doctrine’’ — see below).

The science of using secrets to implement security mechanisms is called cryptography, and the art
of analysing cryptographic mechanisms for the purpose of (potentially) compromising systems
based on them is called cryptanalysis; the two together go under the combined name of
cryptology. Of course, these ideas predate the use of computers; using secrets for security
purposes was implemented already for military purposes in prehistoric antiquity, where
messages relayed by courier figured in early ‘‘distributed systems’’.

1.1.7 Encoding/Decoding and Encryption/Decryption of Messages

Secrets are particularly effective in protecting the security of messages; that is, ‘‘data-in-
communication’’. A primitive way to do this is by the mechanism of encoding/decoding. By
prearrangement, two subjects agree that a specified message is to be semantically represented
(encoded) by a specified utterance — the actual mapping between message and utterance (the so-
called codebook) is kept secret between the two subjects. For example, ‘‘The moon is full’’ might
be mapped to ‘‘Drop the bomb at midnight’’. While this mechanism in its purest form is rather
secure, it is rigid (it’s hard to communicate concepts not in the prearranged codebook), and it’s
difficult to implement securely (the codebook is difficult to protect).

By making use of syntax instead of semantics (via alphabetic writing), a mechanism flexible
enough to effectively support the security of arbitrary messages, called encryption/decryption or
encipherment/decipherment, becomes available. The message to be communicated is first (non-
secretly) represented in a well-known alphabetic representation (for example, first express the
message in English, then spell it using the symbols for, say, lower-case letters, digits, space and
period — an alphabet of 38 characters), then the resulting representation is ‘‘scrambled’’
(encrypted or enciphered) by some secret (or secret-based) technique prearranged between the
communicating subjects. For example, the scrambling algorithm might consist of a specified
combination of substitutions (whereby each symbol is replaced by another predetermined one,
possibly from another alphabet; for example, ‘‘a’’ is replaced by ‘‘α’’, ‘‘b’’ by ‘‘β’’, and so on), and
transpositions (permutations) (whereby each symbol of the message is interchanged with another
symbol of the message; for example, each symbol is interchanged in pairs with its neighbour).
The receiving subject decrypts (or deciphers) the received cryptotext (ciphertext) by an inverse
technique, thereby recovering the original plaintext (cleartext) message.

With the advent of digital computers, the principles of encryption/decryption not only remain
valid (the plaintext alphabet consisting now of binary bit-representations, say ASCII), but have
been raised to new levels of sophistication because of the raw power of computers for both
cryptographic and cryptanalytic purposes. A new ‘‘golden age’’ of cryptology has, in fact, arisen
precisely because of the ‘‘digital (computer) age’’ — and due to this, the field is changing rapidly
at the present time.

1.1.8 Key-based Security: Kerckhoffs’ Doctrine

As discussed above, the security of (secret-based) communications can be reduced to the
security of the secrets driving the encryption/decryption mechanisms. A further refinement of
this idea is to require to be kept secret, not the entire algorithm used for encryption/decryption,
but only a small (that is, even easier to protect) part of it, namely, a parameter to the algorithm.
Such a secret parameter is called a cryptovariable or key (in analogy with ‘‘locks and keys’’, not
‘‘database query keys’’ — the terminology predates computers). This idea is called Kerckhoffs’
Doctrine (in honour of the pioneering 19th century cryptologist Auguste Kerckhoffs, who first
articulated it), and is usually paraphrased as:

Part 1 Introduction 9



Generalities on Security — The Architecture of Trust Introduction to Security Services

SECURITY RESIDES SOLELY IN THE KEYS

and not, for example, in such qualities as attackers’ ignorance of the cryptoalgorithms
themselves (the latter is humourously known as ‘‘security by obscurity’’). By this means, the
security of the encryption/decryption mechanism is decomposed into two components:

1. the strength of the underlying (non-secret) algorithm (that is, its resistance to cryptanalysis
that may compromise the contents of encrypted messages to an attacker not initially
knowing the key)

2. the secrecy of the key itself.

Extended to distributed security, Kerckhoffs’ Doctrine continues to assume that distributed
security must reside solely in the keys, even if the attacker knows the cryptographic protocols in
use, and has completely ‘‘compromised the network’’; that is, has the unlimited ability to
intercept and modify all data-in-communication. In this manner, the infrastructure of secrecy-
based secure communication mechanisms is reduced to just three elements (which must be
scrutinised both individually and in combination for their adequacy in supporting the chosen
security policy):

• strong cryptographic algorithms

• key management — creation, storage, distribution, use and destruction of the keys themselves

• secure protocols (the new element introduced by distribution).

DCE security, in common with all practical contemporary distributed computer-based security,
is based on these elements (see the discussion of tickets, in Section 1.2 on page 12).

1.1.9 Outline of the Remainder of this Chapter, and of this Specification

The presentation of this chapter is now shifted from generalities (‘‘general security theory
independent of DCE’’) to specifics (‘‘specific services and mechanisms supported by DCE’’). To
that end, the remaining sections of this chapter proceed as follows:

• Next to be presented is an overall DCE Security Model.

This marshalls all the DCE security services and mechanisms into a unified encompassing
mental construct (or architecture, or framework).

• The most basic infrastructural elements of DCE security are then presented, revolving
around cryptographic algorithms and cryptographic protocols as discussed above:

— Checksum Mechanisms (MD4, MD5)

— Encryption/Decryption Mechanisms (DES)

— Key Distribution Services (Kerberos AS+TGS Authentication System)

— Privilege Services (PS Authorisation System)

— Cells, and the Cross-cell Authentication/Authorisation Model.

• The DCE mechanisms for general access control (authorisation) are presented next:

— Access Control Lists (ACLs)

— ACL Managers, Permissions and Access Determination Algorithms(s)

• The above-listed services and facilities reside at a conceptual layer ‘‘below’’ Protected RPC.
At this point, the central fact of integration of security with communications, which
determines the DCE programming model, is presented: Protected Communication Services
(RPC Application-level Authentication, Authorisation, Integrity and Confidentiality).

10 CAE Specification (1997)



Introduction to Security Services Generalities on Security — The Architecture of Trust

• The remaining services and facilities reside ‘‘above’’ Protected RPC. The first to be discussed
is the management of ACLs, identities and keys:

— ACL Editors

— Registration Service (RS, including the ACL manager types it supports)

— ID Map Facility

— Key Management Facility

— Login Facility

— Extended Registry Attribute Facility

— Extended Privilege Attribute Facility

— Password Management Facility.

• Next, discussion of the integration of security services with other services supported by DCE
is given:

— integration with Time Services

— integration with RPC Services

— integration with Naming Services.

• Finally, these additional security features are discussed:

— delegation, introduced for DCE 1.1 and newer versions, and which extends the DCE
security facilities to encompass this capability.

Note: It is anticipated that future versions of DCE will support additional security features
— for example, auditing, alternate cryptographic algorithms (especially, asymmetric
key technology), alternate authentication and privilege services, and so on.

Part 1 Introduction 11



DCE Security Model Introduction to Security Services

1.2 DCE Security Model
This section forms a bridge between the generalities of Section 1.1 on page 3, and the specifics of
the following sections. It introduces the basic DCE security model; that is, the architecture or
framework into which the various DCE security services and facilities may fit. This section just
gives a ‘‘once over lightly’’ treatment — all terminology and details not properly introduced in
this section are discussed fully in the following sections and chapters.

The security model is depicted in Figure 1-1, which shows as its focal element an application
Client (source of an RPC) interacting with an application Server (target of an RPC) in a DCE
environment.

From the point of view of communications (RPC), the client and server are communicating
entities, with the server acting as the Resource Manager for the resources (objects) under its control
— that is, the client invokes a remote procedure call, which is executed by the server, acting on
its resources. From the point of view of security, the client and server are subjects, and the server
acts as a Reference Monitor for its (protected) objects; that is, the ultimate arbiter for access by
clients to the objects.

The application server is responsible for associating an ACL to every object it wishes to protect.
The exact definition of what is an ‘‘object’’ (or ‘‘resource’’) is entirely at the discretion of the
server; that is, it is application-dependent. As examples, an object could be an item of stored
data (such as a file), or could be a purely computational operation (such as matrix inversion).
Said another way, by its choice of the things it attaches ACLs to, the server defines what its
(protected) objects are. Note that even if the ACLs are actually physically stored separately from
the objects they protect (that is, in an ‘‘ACL server’’), DCE recognises them as being within the
same security domain as the objects and the object server — intuitively stated, ‘‘the ACLs cannot
be more secure than the objects or the object server (reference monitor)’’. ACL Editors are
programs that directly manipulate servers’ ACLs (without actually accessing the objects
protected by those ACLs). (ACL Editors that support a user interface, enabling end-users such as
the ‘‘owners’’ of objects to interactively manage the ACLs on objects, are called ACL Editing
Commands — these are not specified in this specification.)

The security environment in which such client/server access happens has three services —
implemented as RPC servers — at its core:

• Registration Service (RS), or Registry Service, or simply The Registry (Rgy)

• Key Distribution Service (KDS), or Authentication Service/Ticket-granting Service (AS+TGS)

• Privilege Service (PS), or Privilege-ticket-granting Service (PTGS).

These three services are trusted third parties in the DCE security model, and they form part of the
DCE Trusted Computing Base (TCB) — also called the network TCB, for short. These three services
are thus entrusted to know the secrets of subjects and other security information, and to
implement the mechanisms for enforcing security policies. Their security must therefore not be
compromised, and in an installed site they must run on secure computers (consistent with the
organisation’s security policy; for example, physically secure machines running secure OSs
under the administration of a security officer).

The RS, KDS and PS are actually distributed, partitioned (and potentially replicated) services,
with the unit of partition being the cell (that is, for security purposes, an instance of the
RS/KDS/PS triple). The cell in whose RS datastore the security information for a given
principal is held is called the home cell of the principal. In a multiple-cell environment, the
various RS, KDS and PS services participate in an inter-cell (or cross-cell) coordination, to provide
logically unitary services (that is, to create the effect of a multi-cell DCE TCB). In this inter-cell
coordination, the per-cell RS, KDS and PS servers do not need to communicate directly with

12 CAE Specification (1997)



Introduction to Security Services DCE Security Model

.......................................................
...
...
...
...
...
...
...
...
...
...
...
...
...
....................................................................................................

............................
...
...
...
...
...
...
...
...................................................

Protected RPC

PS

RS

KDS

hardware and software (for example, OS).]

ID
Map

RS
Editor

Key
Mgmt

Login

Local TCB [Also includes localSCD

[Get
TKT &

ACL
Editor

CLIENT

EPAC(s)TKT(s)

SERVER

ACL(s)Object(s)

ACL
Mgr(s)

[Carries metadata (TKT & EPAC seal);

(EPAC Seal protected, EPAC not).]

cryptographically protects data.

EPAC.]

DCE TCB [Also includes:

(One RS/KDS/PS triple per cell.)

trusted random number generation;
trusted algorithms (MD5, DES);
trusted protocols (Kerberos);
trusted time (DTS, not shown).]

Figure 1-1 DCE Security Model

their foreign-cell counterparts in the performance of their services (they may do so incidentally,
however, for such purposes as parsing stringnames into their component pieces, or for cross-cell
key management). Intra-cell, the RS, KDS and PS do communicate amongst themselves, but
these communications are not specified in the current version of this specification. Thus, for
example, implementations are not prevented from implementing a cell’s RS, KDS and PS within
a single process (potentially replicated) — which is then typically known by a comprehensive

Part 1 Introduction 13



DCE Security Model Introduction to Security Services

name, such as a security server or security daemon.

Before a principal (either client or server) can participate in the DCE security environment, it
must have a (principal) identity registered with the RS. (This registration must initially be ‘‘out of
band’’ of the protocols specified by DCE, in order to guarantee its security. The intuitive reason
for this is that a user’s password must be initially agreed to ‘‘by word of mouth’’ (that is, ‘‘out of
band’’) between the user and the administrator before the system can use the protocols specified
herein to authenticate the user. Furthermore, the initial administrative principal must also be
installed by another ‘‘out of band’’ process, such as by pre-installing it before initial system
startup.) These identities are represented by both user-friendly cell and principal (string)names
and by their UUIDs (the ID Map Facility provides correspondences between these). The RS
maintains a datastore of the identities of all subjects, and long-term secrets (cryptographic keys
for the DES cryptoalgorithm) associated with them. RS Editors (or Registry Editors) are programs
that directly manipulate RS datastores — typically, RS Editors support an administrative interface,
enabling security administrators to interactively manage the RS datastore (this is not specified in
this document).

Having previously registered their identities with the RS, before a client and a server can
successfully participate in a client/server session within the DCE security environment, they
must ‘‘establish their identities’’, which can be accomplished only by ‘‘knowing their own
secret’’ (that is, knowing the secret (long-term key) associated with their identity in the RS
datastore). Clients are typically endowed (by process-hierarchy inheritance) with the identity of
the end-user invoking them, and these end-users establish their identities by means of the Login
Facility (which is password-driven, for the convenience of interactive human users). Servers, on the
other hand, are typically endowed with an identity independent of any end-user (for example, a
system administrator) invoking them, and they establish their identities by means of the Key
Management Facility (which is key-driven, for the convenience of non-interactive servers). In order
for the local TCB to evaluate its trust of the DCE TCB (for such purposes as, for example, storing
its ‘‘standalone-machine’’ user data in the ‘‘network’’ RS datastore), the local TCB must itself be a
principal (the host principal, or machine principal) — this is the role fulfilled by the Security Client
Daemon (SCD). The SCD (‘‘host principal’’ or ‘‘machine principal’’) can be viewed in some ways
as the security analog of the ‘‘host address’’ communications concept.

At this point, it is convenient to introduce the notions of ticket and Privilege Attribute Certificate
(PAC). Tickets are (protected) credential certificates, representing the ‘‘authenticated identity’’
of a client, trusted by a specified server to which they are targeted (that is, encrypted in the
server’s long-term key), and containing a short-term session key, which actually represents the
authentication between the client and the server. Either this session key, or another one securely
negotiated between the client and server, can function as a conversation key (also known as a
subsession key or true session key); that is, actually used to cryptographically protect client/server
communications.

Note: It is a common practice to use the terms ‘‘session key’’ and ‘‘conversation key’’
synonymously; indeed, the same key can function as both, but it is preferable to
distinguish between these notions.

PACs are (protected) certificates, specifying the attributes of the client that the server uses to
determine (‘‘grant’’ or ‘‘deny’’) access to its protected objects. Tickets that have PACs associated
with them are called privilege-tickets). Non-privilege-tickets are managed by the KDS, and PACs
are managed by the PS; privilege-tickets are managed by the KDS and PS working together.

All of this scaffolding has its culmination in the Protected RPC facility. When a client wishes to
initiate a session with a server, it obtains a privilege-ticket targeted to the specified server, and
then RPC service requests and responses between the client and server are protected (for
authenticity, integrity and/or confidentiality, as agreed upon by the client and server) with the

14 CAE Specification (1997)



Introduction to Security Services DCE Security Model

session key contained in the privilege-ticket or a negotiated conversation (‘‘true session’’) key.
When the client’s initial RPC service request containing the privilege-ticket arrives at the server,
the server’s ACL Manager module uses the PAC associated with the privilege-ticket and the ACL
attached to the protected object specified by the client, to make an access control decision; that
is, whether to grant or deny access (for the specific operation specified by the client) to the object
in question. Subsequent RPC service requests need not carry a privilege-ticket — once the
session/conversation key and PAC have been securely established with the initial service
request, they can be used with confidence to protect subsequent requests until an agreed-upon
time-out date, typically on the order of a couple of hours, is reached (and then they can be re-
established if necessary).

Note: The preceding description has been couched in terms of RPC, because that is the
communications technology specified by DCE. However, the security technology
specified in this specification is clearly applicable, with appropriate modification of
detail, to arbitrary communications mechanisms. Clients and servers can still
participate in a secure environment (clients protect their PACs, servers protect their
objects with ACLs, and so on), provided a well-defined means is specified for
communicating the necessary messages. However, the only communications
mechanism currently specified in DCE is RPC.

The authentication protocols employed ensure two-way (mutual, bilateral) authentication between
client and server. That is, they not only ‘‘authenticate the client to the server’’ (preventing a
masquerading attack, whereby the client can gain access to a server posing as an identity for
which it does not know the secret), but also ‘‘authenticate the server to the client’’ (preventing a
spoofing attack, whereby a counterfeit server — other than the one designated by the client — can
trick the client into believing it is communicating with the designated server).

Note: There is a potential ‘‘vicious circle’’ co-dependency of security on (RPC)
communications and vice versa. This is because the protected RPC architecture
requires that certain metadata (called RPC verifiers) are present in RPC PDUs (protocol
data units), but that metadata is not available until after the client has communicated
with the KDS and PS servers. This potential problem is averted by the KDS and PS
services being offered over ‘‘unprotected’’ RPC. The security information required
by protected RPC is thereby conveyed as data (cryptographically protected, to be
sure), not metadata. The resulting dependency graph is thus simplified; protected
RPC depends on security services, which in turn depend (only) on unprotected RPC
(which of course does not depend on security services).

All the servers specified in DCE (RS, KDS, PS, SCD) communicate via RPC. The KDS and PS use
unprotected RPC (their data is protected by direct cryptographic means, not by protected RPC).
The RS and SCD use protected RPC, with authentication service rpc_c_authn_dce_secret, of
authorisation type rpc_c_authz_dce, and of protection level rpc_c_protect_level_pkt_integ.
(See the referenced X/Open DCE RPC Specification, augmented by this specification, for
explanations of this terminology.)

Part 1 Introduction 15



Message Digests 4 and 5 (MD4, MD5) Introduction to Security Services

1.3 Message Digests 4 and 5 (MD4, MD5)
Message Digest 4 (MD4) and Message Digest 5 (MD5) are ‘‘non-invertible’’ (‘‘one-way’’) functions:
given any message as input, MD4/5 produces a 128-bit message digest (or hash, checksum or
fingerprint) as output. The critical cryptographic property claimed by MD4/5 is that they are
collision-resistant (or collision-‘‘proof’’); it is very ‘‘difficult’’ (that is, computationally infeasible) to
exhibit distinct messages having the same MD4/5 checksum.

Note that the MD4/5 algorithms are not encryption/decryption mechanisms (which are
invertible functions), and they do not depend on a cryptographic key. In DCE, MD4/5
checksums are encrypted with DES to produce keyed cryptographic checksums for purposes of
integrity-protection. A keyed cryptographic checksum of a message is called a signature or
message integrity code (MIC) or token for the message.

DCE protects the authenticity and integrity (but not the confidentiality) attributes of a message
by DES-MD4/5 crypto-checksumming the message; that is, DES-encrypting its MD4/5
checksum using a DES conversation key known only to the originator and recipient of the
message (and, possibly, other third parties they trust). (Confidentiality protection is supported
by DES-encrypting the whole message, not just its MD4/5 checksum.)

No interfaces to raw MD4/5 routines are directly supported in DCE. Instead, MD4/5 are
embedded in various DCE protocols as discussed below.

16 CAE Specification (1997)



Introduction to Security Services Data Encryption Standard (DES)

1.4 Data Encryption Standard (DES)
The only encryption/decryption algorithm currently supported by DCE is the Data Encryption
Standard (DES), in Cipher Block Chaining (CBC) Mode. This algorithm has been in steady use
since the late 1970s, and in that time has received intense scrutiny without revealing debilitating
weaknesses. Hence, it is generally considered to be ‘‘secure’’ by many commercial users.
(Though as always it is the responsibility of each organisation to determine if DES is secure
enough to satisfy its security policy.)

DES is based on 64-bit keys, of which only 56 bits are ‘‘active’’; that is, the key is treated as a 64-
bit data item, though only 56 bits actually participate in the cryptographic characteristics of the
algorithm. This means that an exhaustive key search attack would require O(256) operations, which
is currently considered to be ‘‘computationally infeasible’’ for most commercial (non-military)
applications. Note, however, that the key space may effectively (depending on the actual
implementation) be much smaller in systems that use human-memorisable secondary keys such
as passwords that are subsequently mapped into DES keys — such keys may therefore be more
susceptible to dictionary attacks (exhaustive ‘‘guessing’’ of all passwords). Furthermore, the mere
size of key spaces is no guarantee that more efficient (non-exhaustive) attacks don’t exist.

The core DES algorithm acts on 64-bit blocks of plaintext and ciphertext. It is the CBC Mode that
specifies how to encrypt/decrypt messages of length other than 64 bits.

DCE protects the authenticity, integrity and confidentiality attributes of a message by DES-
encrypting it (or, if confidentiality is not required, encrypting only the message’s MD4/5
message digest) in a DES conversation key known only to the originator and recipient of the
message (and, possibly, third parties they trust).

No API to raw DES routines is directly supported in DCE. Instead, DES is embedded in various
DCE protocols as discussed below.

Note: There may be restrictions on the use and/or import/export of DES by some national
governments. Future versions of DCE may support other cryptographic algorithms
to support the needs of these and other organisations.

Part 1 Introduction 17



Kerberos Key Distribution (Authentication) Service (KDS) Introduction to Security Services

1.5 Kerberos Key Distribution (Authentication) Service (KDS)
The function of the Kerberos Key Distribution Service (KDS) is to distribute session keys and tickets
(certificates, protected credentials). Session keys are short-term keys generated on the fly and used
to authenticate a client and a server to one another. Either the session key or a subsequently
negotiated conversation (‘‘true session’’) key is used to protect most communications (especially,
application-level communications) in the DCE environment — these are to be distinguished
from the long-term keys associated with principals, which are held in the RS datastore and used
only minimally, namely to protect internal protocols (‘‘metadata’’, as opposed to application-
level data), ‘‘bootstrapping’’ the rest of the protected DCE environment (see the outline below).
Stringnames in tickets represent the ‘‘authentication identity’’ of clients (as distinguished from
their ‘‘authorisation identity’’, which is represented by UUIDs carried in privilege-tickets — see
Section 1.6 on page 25). Tickets are trusted by a specific server to which they are ‘‘targeted’’, by
cryptographically protecting them in the server’s long-term key (or another key the server trusts).

A ticket that is targeted to a KDS server principal (KDS principals are also called cell principals,
because of their central position in the architecture) is called a ticket-granting-ticket (TGT); its
only use is as a kind of ‘‘metaticket’’, to be used for authenticating the client to the KDS server,
so that the client can avail itself of the KDS’s services (as seen in the next paragraph, the KDS
supports only the ‘‘metaservice’’ of issuing tickets). A ticket that is targeted to a non-KDS server
(that is, a non-ticket-granting-ticket) is sometimes called a service-ticket when it is necessary to
emphasise its role in obtaining ‘‘useful’’ services (as opposed to the ‘‘metaservice’’ of merely
obtaining tickets from the KDS). However, pointedly making a distinction between ticket-granting-
tickets and service-tickets is avoided in this specification unless it is absolutely necessary.

The KDS offers (exactly) two kinds of services (and because of these two services, the KDS is
also known as the ‘‘AS+TGS’’):

• Authentication Service (AS)

Issues initial tickets (either ticket-granting-tickets or service-tickets), on the basis of
unauthenticated requests (that is, an authenticating ticket is not required by the AS).

• Ticket-granting Service (TGS)

Issues subsequent (non-initial) tickets (either ticket-granting-tickets or service-tickets), on the
basis of authenticated requests (that is, an authenticating ticket is required by the TGS).

By abuse of language, one speaks of these two services as if they were autonomous entities.
Thus, for example, ‘‘A sends a message to the AS’’ really means ‘‘A sends a message to the KDS,
requesting its AS service’’.

Tickets contain the following information, appropriately protected (the ‘‘names’’ mentioned here
are fully discussed elsewhere in this specification):

• Named Client

Stringname of the client principal, represented by its cell name, and by its per-cell principal
name (held in its cell’s RS datastore).

• Targeted Server

Stringname of the server principal, again represented by cell name and per-cell RS datastore
name.

• Session Key

For protecting communications (or negotiating a subsequent conversation — ‘‘true session’’
— key to do the actual protection of communications) between the named client and targeted
server (or indeed, between any two principals that the client and/or server share the session

18 CAE Specification (1997)



Introduction to Security Services Kerberos Key Distribution (Authentication) Service (KDS)

key with).

• Lifetime Timestamps

The interval of time for which the ticket — and also the session key it carries, and the
conversation keys derived from it — is to be honoured. This is represented by a set of
timestamps, primarily consisting of a start time and an expiration time, but also including an
additional authentication time and absolute expiration time for technical reasons.

• Transit Path

The ordered sequence of authentication authorities (KDS servers) that vouch for this ticket,
treated as an unordered set.

• Various other data discussed in detail in Chapter 4.

Given these concepts, the basic (intra-cell) Kerberos authentication protocol for authenticating a
client A and a server B to one another is outlined below. This outline, while not an entirely
minimal one, is intended to give only a ‘‘working knowledge’’ of the protocol, and does not
delve into its many intricacies (full details are covered in Chapter 4). To this end, the scope of
the outlines in this and the following two sections is to discuss the roles of:

• Primarily: identities (represented by stringnames in this section, and/or by UUIDs in Section
1.6 on page 25); session keys (representing the concrete manifestation of the abstract notion of
‘‘authentication’’); and tickets (certificates). Readers encountering Kerberos for the first time
are advised to focus solely on these primary items.

• Secondarily: (forward and reverse) authenticators (for client-to-server and server-to-client
authentication, respectively); lifetime timestamps (consisting of a start timestamp earlier than
which the ticket is not to be honoured for service requests, expiration timestamp later than
which the ticket is not to be honoured for service requests, and an absolute expiration
timestamp later than which the ticket is not to be renewed by the KDS); authentication
timestamp (determining ‘‘freshness’’ of communications); nonces (for matching requests and
responses); checksums (for supporting integrity); transit paths; conversation keys (which are the
‘‘true session’’ keys used for actual protection of application-level data, as opposed to the
metadata of the Kerberos protocol itself); and authorisation data (which is more properly
introduced in Section 1.6 on page 25).

• Tertiary paraphernalia of the Kerberos protocol, such as client addresses, options, flags, sequence
numbers, and so on, are not discussed in this chapter at all (see Chapter 4).

• Privilege-tickets and the inter-cell authentication protocol are discussed in Section 1.6 on
page 25 and Section 1.7 on page 32.

• Access control lists (ACLs) and access determination algorithms are covered in Section 1.8 on
page 40 and Section 1.9 on page 46.

• Finally, integrating security with RPC is mentioned in Section 1.10 on page 54 (but is not
analysed at the protocol level until Chapter 9).

Note: The aspect of lifetimes of tickets (and short-term session and conversation keys)
enables the capability of (secure) caching, which has a profound impact on
implementations. Caching is currently considered to be implementation-dependent
and therefore beyond the scope of this specification, but typical implementations
exploit caching heavily because of the benefits in performance efficiency that it
confers. In particular, a client need obtain a ticket-granting-ticket to a given cell only
when it first needs to authenticate to a server in that cell (for example, at ‘‘login time’’
in its home cell), and again whenever it expires or ‘‘times out’’, and then the client
can use it to obtain many other tickets. Similarly, a client need obtain a service-ticket

Part 1 Introduction 19



Kerberos Key Distribution (Authentication) Service (KDS) Introduction to Security Services

to a given server only the first time the server is contacted (and again whenever it
times out), and then the client and server can use the corresponding session key (or
an associated conversation key) many times. And similarly again, a client’s privilege
attributes (PAC) need be obtained by the server only once (and again whenever it
times out), and cached there to be used many times to determine access rights for
many service requests.

Throughout the outlines below, the following (standard) notations are used:

• A → B: M

• A ← B: M´

‘‘Message’’ (that is, data) M communicated from A to B (typically via RPC invocation),
followed by message M´ communicated from B to A (typically via RPC return).

Strictly speaking, the notation ‘‘A → B: M’’ actually means: ‘‘it is the design intent of the
protocol that the message M be sent by A and received by B.’’ And in a sequence of
messages, ‘‘it is the design intent that the order of messages be that specified’’. Since the
communications environment of cryptographic protocols is one in which messages may be
rerouted, corrupted, maliciously modified, duplicated, resequenced, delayed, lost, and so on,
assurance of any of these qualities cannot be guaranteed unless it is provided by the protocol
itself.

• M1, M2

Message consisting of two ‘‘parts’’ M1 and M2. (Similarly for messages consisting of more
than two parts.)

As befits the high-level intent of this chapter, this notation is not to be interpreted as carrying
low-level formatting connotations, such as ‘‘ordering’’ or ‘‘concatenation’’ of the parts M1
and M2. (However, such formatting issues are covered carefully in the detailed protocol
specifications of later chapters.)

• {M}K

Message M encrypted with a key K, via some specified encryption mechanism.

Again in accordance with the high-level intent of this chapter, this notation is not to be
interpreted as carrying low-level information. In particular, the ‘‘specified encryption
mechanism’’ may encompass more than a mere ‘‘raw’’ encryption algorithm; that is, higher-
level information such as ‘‘confounder’’ and ‘‘built-in-integrity’’ information (see Section
4.3.5.1 on page 188).

Figure 1-2 on page 21, then, is the basic Kerberos authentication protocol, in the environment of
a single cell X.

20 CAE Specification (1997)



Introduction to Security Services Kerberos Key Distribution (Authentication) Service (KDS)

Client A ServerB

AS TGS

2

KDS

3

1

Figure 1-2  Basic KDS (AS+TGS) Protocol

• A → AS: A, KDS, LA,KDS, NA,AS

1 (AS Request: Ask for ticket to KDS.)

A, as a communicating entity, sends an AS Request message to the KDS server (in X, A’s
home cell), communicating its (A’s) claimed principal stringname (not UUID), thereby
requesting a (ticket-granting-)ticket (TGT), denoted TktA,KDS, targeted to the (same) KDS
server. (The principal stringnames are here denoted simply ‘‘A’’ and ‘‘KDS’’, though in
reality they are something like /.../cellX/clientA and /.../cellX/krbtgt/cellX. See Section 1.7 on
page 32 and Section 1.18 on page 84). Included in this request is the desired lifetime LA,KDS of
the ticket TktA,KDS and of the session key KA,KDS it carries (no ticket is to be honoured whose
lifetime has expired), and a nonce NA,AS that A will use to associate this request message with
its corresponding response message. Prior to DCE 1.1, this communication is unprotected (‘‘in
the clear’’, ‘‘unauthenticated’’) — in particular, this figure currently specifies no ‘‘pre-
authentication’’ (whereby A tries to prove to the KDS that it ‘‘really is A’’, in the sense of
knowing the long-term key, KA, of the principal it claims to be). Refer to Section 1.23.3 on
page 114 for the DCE 1.1 (and newer versions) pre-authentication protocol.

• A ← AS: A, {KDS, KA,KDS, LA,KDS, NA,AS}KA, TktA,KDS

1 ⁄1
2 (AS Response: Receive ticket to KDS.)

Upon receiving the AS Request message (allegedly) from A, the KDS server first generates a
‘‘high-quality’’ (cryptographically random) secure session key, KA,KDS, to be used in
protecting communications between A and the KDS. Then the KDS constructs the ticket,
TktA,KDS, naming the claimed principal A and containing the session key KA,KDS, protecting
TktA,KDS with the long-term key KKDS of the KDS (that is, the ticket is targeted to the KDS
server itself). Also included in this ticket are the identity of the KDS server to which it is

Part 1 Introduction 21



Kerberos Key Distribution (Authentication) Service (KDS) Introduction to Security Services

targeted, and the lifetime LA,KDS (which may be different from the lifetime requested by A,
depending on policy, though this isn’t indicated notationally), and its transit path PX (which,
in this intra-cell case, is merely a trivial path indicating this cell X only):

TktA,KDS = KDS, {A, KA,KDS, LA,KDS, PX}KKDS

The KDS then communicates all this information back to A, including also the nonce NA,AS
which associates this response with the request that triggered it. This AS Response message
is protected with the long-term key KA of the principal A claimed in the request (the KDS
learns this key by retrieving it from the RS).

• A → TGS: B, LA,B, NA,TGS, [{EPAC}K[ˆ]
A,KDS,] TktA,KDS, {A, CA,TGS, [KÂ,KDS,] TA,TGS} KA,KDS

2 (TGS Request: Ask for ticket to server.)

When A receives the AS Response message from the KDS, A can correctly interpret it (that is,
decrypt it, and thereby learn the session key KA,KDS) only if it ‘‘really is A’’ (in the sense of
knowing the named client’s long-term key KA). For the same reason, A is convinced that the
AS Response message really did come from the genuine KDS server (that is, no ‘‘reverse
authenticator’’ is necessary here — the message itself is ‘‘self-mutually-authenticating’’). A’s
next step is to send a TGS Request message to the KDS, containing the principal stringname
(not UUID) of the desired target (non-KDS) server B, and TktA,KDS, thereby requesting a ticket
to B, denoted TktA,B. As with AS Requests, a desired lifetime LA,B and a nonce NA,TGS are
included in the TGS Request; and A can also optionally include some authorisation data,
denoted here ‘‘EPAC’’ (evoking ‘‘extended privilege attribute certificate’’), to be more
properly introduced in Section 1.6 on page 25 (this option is rarely used in TGS Requests —
see below in this paragraph for the meaning of the notation K[ˆ]

A,KDS). But unlike an AS
Request, the TGS Request is protected (or ‘‘authenticated’’), by including a (forward)
authenticator in it. This authenticator contains the identity of A and a timestamp TA,TGS which
indicates the current time-of-day on A’s system (and also on KDS’ system, modulo an
allowable clock skew, assuming ‘‘loosely (on the order of a few minutes) synchronised
clocks’’) — it is primarily these two items that ‘‘authenticate A to KDS’’, in the sense that they
prove to the KDS that ‘‘A really does know the session key KA,KDS, now’’. Also included in the
authenticator are a checksum CA,TGS binding the otherwise-unprotected (unencrypted) data
in the message (B, LA,B, NA,TGS) to the authenticator, and optionally a conversation key KÂ,KDS
generated by A. If A includes the optional key KÂ,KDS in the TGS Request, that key is used to
protect the authorisation data (in the EPAC, with an EPAC seal), otherwise the key KA,KDS is
used (that’s the meaning of the notation K[ˆ]

A,KDS above). The authenticator is encrypted with
the key KA,KDS.

• A ← TGS: A, {B, KA,B, LA,B, NA,TGS} K[ˆ]
A,KDS, TktA,B

2 ⁄1
2 (TGS Response: Receive ticket to server.)

The KDS now generates a session key, KA,B, which is the actual ‘‘physical manifestation’’ of
the logical notion of ‘‘authentication’’ between A and B; it will be used to protect the initial
communications between A and B, and optionally to support negotiation of subsequent
conversation (‘‘true session’’) key(s) (KÂ,B and/or KˆÂ,B) between them. Then the KDS
constructs the ticket TktA,B, naming A and containing KA,B, as well as the lifetime LA,B, the
authorisation data PAC if it had been included in the TGS Request, and the transit path PX.
TktA,B is protected with the long-term key KB of B (that is, the KDS targets this ticket to B):

TktA,B = TktA,X,B = B, {A, KA,B, LA,B, [EPAC,] PX} KB

The KDS communicates all this information to A in the TGS Response message. As with the
AS Response message, the TGS Response message requires no ‘‘reverse authenticator’’. The
KDS uses the key K[ˆ]

A,KDS to protect the TGS Response message.

22 CAE Specification (1997)



Introduction to Security Services Kerberos Key Distribution (Authentication) Service (KDS)

• A → B: TktA,B, {A, [CA,B,] [KÂ,B,] TA,B} KA,B

• A ← B: {[KˆÂ,B,] TA,B} KA,B

• A → B: {Service Request(s) / Application-level Data} KA,B
[ˆ[ˆ]]

• A ← B: {Service Response(s) / Application-level Data} KA,B
[ˆ[ˆ]]

3 (Service Request/Response: Get service from server.)

Finally, A sends a message to B, containing the ticket TktA,B and an authenticator (including
in it an optional conversation key KÂ,B if it so desires), protecting the authenticator with KA,B.
B can correctly interpret (decrypt) TktA,B, thereby learning the named client A and the session
key KA,B (and the other information in TktA,B), only if it ‘‘really is B’’ (in the sense of knowing
the targeted server’s long-term key KB). Using the session key KA,B, B then decrypts the
authenticator, which completes the authentication of A to B. The (mutual) authentication of
B to A is finally completed when B returns to A the reverse authenticator, containing the same
timestamp that A had sent to B, TA,B, together with an optional conversation key KˆÂ,B if B so
desires. From this point on, A and B can now engage in protected communications (that is,
service request/responses) using either the session key KA,B or one of the ‘‘negotiated’’
conversation keys KÂ,B or KˆÂ,B (exactly which of these keys is used is an application-
dependent determination) — that’s the meaning of the notation KA,B

[ˆ[ˆ]]. (The conversation
key could be further negotiated at application-level; for example ‘‘exclusive-OR of KÂ,B and
KˆÂ,B’’, but that is beyond the scope of this specification.) There is no need for A and B to
make further exchanges of tickets, authenticators, and so on, until the conversation key KA,B

[ˆ[ˆ]]

times out (as indicated by the lifetime LA,B). (As an optimisation, an initial service request
could have been piggy-backed with the TktA,B and authenticator message, and its
corresponding service response piggy-backed with the reverse authenticator message — but
such piggy-backing is application-dependent, not an integral feature of the security
architecture.)

Note that the programming model supported by DCE hides these complications behind API and
RPC interfaces, and does not expose them to application developers. Applications invoke the
KDS only indirectly through the RPC facility (not through a direct API), by ‘‘annotating the
binding handle with rpc_c_authn_dce_secret’’ — see Section 1.10 on page 54 and Section 1.17 on
page 82, and the referenced X/Open DCE RPC Specification.

The KDS has the principal name krbtgt/cell-name (within its cell), and it supports the krb5rpc
RPC interface, which supports the following operation:

• kds_request( ) — send a message (via RPC, as always) to the KDS, requesting a ticket (or
privilege-ticket — see Section 1.6 on page 25). The supported messages are those exhibited in
the basic Kerberos protocol just described, namely:

— AS messages (together comprising the AS Exchange):

— AS Request — unauthenticated request to the AS, requesting an initial ticket (usually a
ticket-granting-ticket, but occasionally a service-ticket).

— AS Response — Response to AS Request, returning the requested initial ticket.

— TGS messages (together comprising the TGS Exchange):

— TGS Request — Authenticated request to the TGS, requesting a subsequent (that is,
non-initial) ticket (usually a service-ticket, but occasionally a ticket-granting-ticket).

— TGS Response — Response to TGS Request, returning the requested subsequent ticket.

— KDS Error — KDS error message, generated in response to either a failed AS Request or a
failed TGS Request.

Part 1 Introduction 23



Kerberos Key Distribution (Authentication) Service (KDS) Introduction to Security Services

Note: In the current version of DCE, only an indirect RPC interface to the KDS is
supported, but no true direct ‘‘APIs’’ (just the rpc_c_authn_dce_secret RPC
‘‘annotation’’ constant). Such APIs may be added in a future version.

24 CAE Specification (1997)



Introduction to Security Services Privilege (Authorisation) Service (PS)

1.6 Privilege (Authorisation) Service (PS)
The DCE Privilege (or Authorisation) Service (PS) (or Privilege-ticket-granting Service (PTGS))
manages the privilege attributes associated to principals, and issues credentials witnessing these
privileges. The credentials issued by the PS are called Privilege Attribute Certificates (PACs) prior
to DCE 1.1. As of DCE 1.1, the PAC has been extended to include additional attributes stored in
the RS, and is called an EPAC. PACs are carried in (and protected by) privilege-tickets. EPACS are
not carried in privilege-tickets. Instead, a cryptographic checksum of the EPAC is generated by the
Privilege Server when a privilege-ticket is created. This checksum is called the seal of the EPAC,
and this seal is what is carried in the privilege-ticket for DCE 1.1 and newer versions. (PACs may
still be carried in the privilege-ticket for legacy reasons.) In either case, privilege-tickets represent the
‘‘authorisation identity’’ of clients, represented by UUIDs (as opposed to their ‘‘authentication
identity’’, represented as a stringname, in non-privilege-tickets). So in this sense (that is, the
sense of identifying the client by UUIDs instead of by stringname, except optionally), privilege-
tickets are sometimes said, by abuse of language, to be ‘‘anonymous’’.

Privilege-tickets are instances of tickets, and as such participate all the same general concepts; in
particular, a privilege-ticket that is targeted to a KDS server is called a privilege-ticket-granting-
tickets (PTGT). But there are three significant features about privilege-tickets that distinguish
them from non-privilege-tickets:

• The most obvious difference is that privilege-tickets contain a PAC (prior to DCE 1.1) or an
EPAC seal (for DCE 1.1 and newer versions), but non-privilege-tickets don’t.

• The most counter-intuitive difference is that, although privilege-tickets contain a ‘‘named
client’’ field (a stringname, not a UUID) and either a PAC containing ‘‘client privileges’’
(UUIDs, not stringnames) or an EPAC seal containing ‘‘extended client privileges’’, a
different ‘‘client’’ is referred to in each use of this word: in a privilege-ticket, the ‘‘named client’’
is the PS in the server’s cell, while the ‘‘nominated client’’ to which the PAC (or EPAC) refers (via its
privilege attribute UUIDs) is the actual initiating client (or a delegate acting on its behalf) which is
requesting access to a targeted server’s protected resources. It is by this means (that is, by checking
that the privilege-ticket names the PS) that the targeted server can trust that the PS actually
vouches (that is, is responsible) for the PAC (or EPAC). The terminology nominated client is
therefore introduced to denote the client to which the PAC (or EPAC) refers (via its privilege
attribute UUIDs), and the PAC (or EPAC) is said to nominate A. (The nominated client is
able to use the privilege-ticket because of protocol guarantees that it knows the session key
carried in the privilege-ticket, so it can, in this sense, ‘‘legitimately impersonate’’ the named
client, the PS in the server’s cell.)

• The final difference between non-privilege-tickets and privilege-tickets is that non-privilege-
tickets carry a transit path field (that is, a record of the trust chain involved in an
authentication) whose trust the target server is responsible for evaluating, but privilege-
tickets do not carry such a transit path (or rather, they don’t carry a ‘‘meaningful’’ transit
path: the transit path is present, but it always indicates the trivial path consisting only of the
target server’s cell). The responsibility for evaluating the trust path falls, not to the target
server itself, but to the PS in the target server’s cell (which ‘‘consumes’’ the transit path in
doing so). That is to say, in this sense, privilege-tickets are trusted by the targeted server by
virtue of the trust the target server has in the PS in its cell (in particular, the PS vouches for
the identity of the nominated client and its cell, which is still projected to the target server in
the privilege-ticket’s PAC (or EPAC seal)).

PACs contain privilege attributes (that is, client-side access control information — that portion of
the client’s credentials to be used in server-based access control decisions), consisting of:

• Authentication Flag

Part 1 Introduction 25



Privilege (Authorisation) Service (PS) Introduction to Security Services

Boolean flag, communicated to target servers, indicating whether or not this PAC has been
authenticated by the TCB (and therefore whether or not the server can trust the PAC,
depending on security policy). Clients have the ability to send unauthenticated (said to be
‘‘merely asserted’’) PACs to servers, but these must be viewed suspiciously by the servers.
Typically, server security policy will require that unauthenticated requests are rejected
outright, although a special ‘‘UNAUTHENTICATED ACL Entry’’ is supported to deal with
unauthenticated requests if server security policy allows this — see Section 1.8.1 on page 40.

• (Local) Cell UUID

UUID of the cell to which the client ‘‘belongs’’, and hence the cell whose PS has initially
vouched for the contents of this PAC. (In a cross-cell operation, PSs in multiple cells vouch
for the PAC’s contents.) The Cell UUID uniquely determines this cell, to which the PAC is
said to refer.

• Principal UUID

UUID of the principal for which this PAC contains privilege attributes. The ordered pair
<(Local) Cell UUID, Principal UUID> uniquely determines this principal, to which the
Principal UUID and the PAC are said to refer.

• Primary Group UUID

UUID identifying the ‘‘primary’’ or ‘‘main’’ group of which the principal is a member. The
ordered pair <(Local) Cell UUID, Primary Group UUID> uniquely determines this group, to
which the Primary Group UUID and the PAC are said to refer.

• Local Secondary Group UUIDs

List (unordered set of distinct elements, possibly empty) of UUIDs of the ‘‘local’’
‘‘secondary’’ groups of which the principal is a member. Each ordered pair <(Local) Cell
UUID, Local Secondary Group UUID>, uniquely determines such a group, to which the Local
Secondary Group UUID is said to refer, and to all of which the PAC is said to refer.

• Foreign Secondary Group IDs

List of ordered pairs of two UUIDs, <Foreign Cell UUID, Foreign Secondary Group UUID>, of
the ‘‘foreign’’ ‘‘secondary’’ groups of which the principal is a member. (‘‘Foreign’’ in the
sense of PACs has the commonsense meaning that the Foreign Cell UUID is not equal to the
(Local) Cell UUID. However, it is not forbidden for a PAC to contain a Foreign Secondary
Group ID whose Foreign Cell UUID component is equal to the (Local) Cell UUID — it is just
inefficient to do so.) Each such ordered pair uniquely determines such a group, to which the
Foreign Secondary Group ID is said to refer, and to all of which the PAC is said to refer.

In addition to the identity and group membershop information present in a DCE 1.0 format
PAC, the extended PAC (EPAC) contains optional delegation controls, optional and required
restrictions (both of which are discussed under the topic, ‘‘Delegation’’, in this chapter), and
extended attributes. EPACS also require the following:

• Global Group Name

Name consisting of the UUID identifying the cell to which the client, acting as a delegate,
belongs, and hence the cell whose PS has initially vouched for the contents of this EPAC.
Also the UUID identifying the ‘‘primary’’ or ‘‘main’’ group of which the principal is a
member.

• Global Principal Name

Name consisting of the UUID identifying the cell to which the client, acting as a delegate,
belongs. Also the UUID identifying the principal.

26 CAE Specification (1997)



Introduction to Security Services Privilege (Authorisation) Service (PS)

For more information on Global Group Names and Global Principal Names refer to Chapter 12
on page 489 and Chapter 17 on page 705.

(The distinction between primary groups and secondary groups is made for administrative
purposes only, and is largely historical. In particular, the two kinds of groups are not
discriminated between in the Common Access Determination Algorithm (see Section 1.9.1 on
page 48).)

Note: As is seen from the structure of PACs and EPACs above (see also Section 5.2.5 on
page 280, as well as the Common Access Determination Algorithm in Section 8.2 on
page 321), authorisation identities in DCE are represented not by a single UUID, but
by a pair of UUIDs: <Cell UUID, Subject UUID> (where, for the purposes of this
discussion, ‘‘subject’’ means principal or group). At first glance this may seem odd:
since UUIDs are ‘‘unique in space and time’’, one wonders why two UUIDs are
needed to identify one security subject. The answer has to do not with identification
per se, but in the trust to be invested in the uniqueness of UUIDs (especially in an
environment where untrusted other parties may be generating some of the UUIDs),
and especially in the containment of damage in the event of UUID non-uniqueness.
For, assuming a single-UUID scheme, consider the situation where a cell X were
compromised, but that no other cell were aware of this compromise. In that
situation, the compromiser of cell X could then assign arbitrary (bogus) UUIDs to
principals and groups in X — these could even be the (otherwise genuine) UUIDs
assigned to principals and groups in (any) other cells. The (bogus) clients from cell X
would then be able to authenticate to servers in X and in those other cells that ‘‘trust
X’’ (through (potentially chains of) cross-registrations), and would then be able to
access all protected objects in those servers (because the server would be unable to
distinguish the bogus UUIDs from the genuine ones). That is to say, under a single-
UUID scheme, the compromise of a single cell would compromise the security of all
protected objects in all cells that ‘‘trust X’’. This is unacceptable. In the double-
UUID scheme, this doesn’t happen: the compromise of cell X compromises the
security, not of all protected objects in cells that ‘‘trust X’’, but only of those protected
objects (in cells that ‘‘trust X’’) that themselves ‘‘trust X’’, in the sense of only those
protected objects whose very ACLs grant access to subjects from X. This is a more
acceptable containment of damage.

The manner in which privilege-tickets figure into the DCE security environment is that the basic
(intra-cell) Kerberos authentication protocol is extended to include the PS, as outlined below.
Consider a client A that desires to obtain service from a server B (see Figure 1-3 on page 28).

Part 1 Introduction 27



Privilege (Authorisation) Service (PS) Introduction to Security Services

Client A ServerB

AS TGS PS

5

1 2 4 3

Figure 1-3  KDS+PS Protocol

• A → AS: A, KDS, LA,KDS,NA,AS

• A ← AS: A, {KDS, KA,KDS, LA,KDS, NA,AS} KA, TktA,KDS

1 (AS Request/Response: Get ticket to KDS.)

First, A obtains a ticket, TktA,KDS, from the AS (naming A, targeted to the KDS, and containing
a session key KA,KDS), exactly as in the basic authentication protocol (above).

• A → TGS: PS, LA,PS, NA,TGS, TktA,KDS, {A, CA,TGS, [KÂ,KDS,] TA,TGS} KA,KDS

• A ← TGS: A, {PS, KA,PS, LA,PS, NA,TGS} K[ˆ]
A,KDS, TktA,PS

2 (TGS Request/Response: Get ticket to PS.)

Next, A sends its TktA,KDS and the principal stringname of the PS to the KDS, requesting a
ticket, TktA,PS, to the PS. Still following the basic authentication protocol, the KDS obliges by
returning the requested TktA,PS (naming A, targeted to the PS, and containing a session key
KA,PS) to A.

• A → PS: KDS, LÃ,KDS, NA,PS, TktA,PS, {A, CA,PS, [KÂ,PS,] TA,PS} KA,PS

3 (PS Request: Ask for privilege-ticket to KDS.)

Now, A sends TktA,PS to the PS, thereby requesting a privilege-(ticket-granting-)ticket
(PTGT), denoted PTktA,KDS, targeted to the KDS. The PS decrypts TktA,PS, learning A’s
stringname and the session key KA,PS. (The ‘‘˜’’-notation just distinguishes a new occurrence
of a data item — in this case, the lifetime of a key to be shared between A and the KDS —
from a similar one that has occurred previously in this run of the protocol.)

28 CAE Specification (1997)



Introduction to Security Services Privilege (Authorisation) Service (PS)

• A ← PS: A, {PS, KÃ,KDS, LÃ,KDS, NA,PS} K[ˆ]
A,PS, PTktA,KDS

3 ⁄1
2 (PS Response: Receive privilege-ticket to KDS.)

The PS constructs PACA from A’s privilege information (which it retrieves from the RS), and
then constructs the privilege-ticket, PTktA,KDS. This PTktA,KDS names the PS itself (not A),
contains PACA (that is, nominates A), contains a new session key KÃ,KDS (generated by the
KDS), and is protected with the long-term key, KKDS, of the KDS:

PTktA,KDS = KDS, {PS, KÃ,KDS, LÃ,KDS, PACA, PX} KKDS

(The mechanics of how this PTktA,KDS gets generated — in particular, how its encrypted part
gets encrypted in the key KKDS — is implementation-dependent, and not specified in this
document. One method is that the encryption key KKDS can be shared between the KDS and
PS (the manner is unspecified here, but it must be done in some secure manner — for
example, the PS and KDS could be co-located on the same host, or even in the same process).
Another method (usable in implementations where the KDS and PS are not co-located) is that
the PS sends a TGS Request including PACA to the KDS (PS → TGS: KDS, LPS,KDS, NPS,TGS,
{PACA}K[ˆ]

PS,KDS, TktPS,KDS, {PS, CPS,TGS, [KP̂S,KDS,] TPS,TGS} KPS,KDS), receiving in the
corresponding TGS Response the ticket TktP̃S,KDS = KDS, {PS, KPS,KDS, LPS,KDS, PACA, PX}KKDS
— this ticket then serves as the required PTktA,KDS.) In particular, note that the PACA in
PTktA,KDS contains UUIDs describing A’s privilege attributes for authorisation purposes, but
does not necessarily contain the principal stringname of A (though it may do so optionally)
for authentication purposes. The PS returns KÃ,KDS and PTktA,KDS to A (protecting this
message with K[ˆ]

A,PS). As with AS and TGS Responses, the PS Response requires no ‘‘reverse
authenticator’’.

• A → TGS: B, LA,B, NÃ,TGS, PTktA,KDS, {PS, CÃ,TGS, [K˜Â,KDS,] TÃ,TGS} KÃ,KDS

4 (TGS Request: Ask for privilege-ticket to server.)

At this point, A proceeds along the same lines as the basic authentication protocol, but now
using the privilege-ticket PTktA,KDS instead of the non-privilege-ticket TktA,KDS (it is A’s
knowledge of KÃ,KDS that enables it to use PTktA,KDS, by ‘‘legitimately posing’’ as PS). Thus,
A sends a message to the KDS, containing the principal stringname of B and the PTktA,KDS,
requesting a privilege-ticket, PTktA,B targeted to B. (Note incidentally that the identity in the
authenticator is that of the PS, not A, because the named client in the privilege-ticket
PTktA,KDS is PS, not A.) This message is protected with the session key KÃ,KDS.

• A ← TGS: PS, {B, KA,B, LA,B, NÃ,TGS} K˜[ˆ]
A,KDS, PTktA,B

4 ⁄1
2 (TGS Response: Receive privilege-ticket to server.)

The KDS treats this request just as it would an ordinary request (that is, one using a non-
privilege-ticket instead of a privilege-ticket), with the additional function of ‘‘blindly
copying’’ (that is, without interpreting) the PACA received in PTktA,KDS into the privilege-
ticket, PTktA,B. That is, the KDS constructs a PTktA,B, with PS as its named client, containing a
session key KA,B and PACA, and protected with the long-term key, KB, of B:

PTktA,B = B, {PS, KA,B, LA,B, PACA, PX} KB

The KDS returns KA,B and PTktA,B to A, in a message protected by K˜[ˆ]
A,KDS.

• A → B: PTktA,B, {PS, [CA,B,] [KÂ,B,] TA,B} KA,B

• A ← B: {[KˆÂ,B,] TA,B} KA,B

• A → B: {Service Request(s) / Application-level Data} KA,B
[ˆ[ˆ]]

Part 1 Introduction 29



Privilege (Authorisation) Service (PS) Introduction to Security Services

• A ← B: {Service Response(s) / Application-level Data} KA,B
[ˆ[ˆ]]

5 (Service Request/Response: Get service from server.)

Finally, A sends its privilege-ticket, PTktA,B, to B (protecting this message with KA,B). B
decrypts PTktA,B, learning its named client (which must be PS, so B knows it can trust PACA),
PACA nominating A (though not the principal stringname of A, except optionally), and the
session key KA,B. A and B can now proceed with their interactions exactly as in the basic
authentication protocol, with the additional functionality that B can make its authorisation
decisions based on the trusted PACA information contained in PTktA,B.

As with the KDS, no APIs to the PS are directly supported in DCE. Instead, the use of the PS is
signaled in RPC applications by the use of the rpc_c_authz_dce identifier (see Section 1.10 on
page 54 and Section 1.17 on page 82, and the referenced X/Open DCE RPC Specification).

The PS has the principal name dce-ptgt (within its cell), and it supports the rpriv RPC interface,
which supports the following operations:

• ps_request_ptgt( ) — request a privilege-ticket-granting-ticket (as in the protocol just
described).

• ps_request_eptgt( ) — request an extended privilege certificate to the ticket-granting service
(PS).

• ps_request_become_delegate( ) — request a privilege-ticket-granting-ticket for an intermediary
caller (server) so the intermediary can become a delegate for the caller.

• ps_request_become_impersonator( ) — request a privilege-ticket-granting-ticket for an
intermediary caller (server) so the intermediary can become an impersonator for the caller.

1.6.1 Name-based versus PAC-based Authorisation

Note: Prior to DCE 1.1, name-based authorisation was included in DCE primarily for
support of legacy applications only; its use for any other purpose was discouraged.
However, in DCE 1.1 and newer versions, since delegation is being supported,
name-based authorisation is being used to ensure the integrity of the arguments
across the network due to the introduction of delegated identities.

In addition to the PAC-based authorisation service described above, DCE also supports another
authorisation service, said to be (string)name-based. It is signaled in RPC applications by the use
of the identifier rpc_c_authz_name. Name-based authorisation is a very primitive service
compared to the sophisticated privilege service described above, in several senses (some
terminology is used here that won’t be introduced until later sections):

• It is based solely on KDS-related protocols, not PS-related ones (see also the cross-cell
protocol in Section 1.7 on page 32); that is, the PS is not visited in the course of a name-based
authorisation. In technological terms: no privilege-tickets are involved, only non-privilege-
tickets; thus the ticket’s ‘‘nominated client’’ is not that referred to by a PAC (because there is
no PAC), but is instead the ‘‘named client’’, identified by principal stringname.

• It is not flexible or extensible, because the only ‘‘privilege attribute’’ (or ‘‘authorisation
information’’) projected from the client to the server is the client’s principal stringname, not a
UUID profile (as in a PAC). In particular, there is no support for ‘‘name-based groups’’.

• There is no DCE support for ‘‘name-based ACLs’’, nor for ‘‘name-based permissions’’ or
‘‘name-based access control managers’’, ‘‘name-based access control editors’’ or ‘‘name-
based common access determination algorithm’’.

30 CAE Specification (1997)



Introduction to Security Services Privilege (Authorisation) Service (PS)

• It doesn’t afford good cross-cell security, because the PS isn’t visited. The point here is that
while the KDS specifications have it blindly copying authorisation information and
evaluating trust chains at the level of immediate cross-cell links, the PS specifications have it
‘‘vetting’’ (or ‘‘modulating’’, or ‘‘tempering’’) authorisation information and evaluating the
global shape of trust chains. This is discussed in Section 1.7 on page 32.

Part 1 Introduction 31



Cells — Cross-cell Authentication and Authorisation Introduction to Security Services

1.7 Cells — Cross-cell Authentication and Authorisation
A cell (sometimes called realm or domain, when the focus is solely on security) is the basic unit of
configuration and administration in a DCE environment. Each cell contains one RS/KDS/PS
triple (potentially replicated). In the preceding sections, only the per-cell nature of the DCE
security features has been discussed. In this section, the manner in which these features are
extended across cells is explained. This creates the effect of a multi-cell DCE TCB (though
different levels of trust may be invested in different cells). As will be seen, principals in distinct
cells can establish trust chains to one another. But such trust chains are inherently less
trustworthy than trust relationships within a single cell. This is due simply to general security
principles (and is not specific to DCE security), namely cross-cell trust chains are longer than
intra-cell ones, and trust chains are in general (by the ‘‘fail-safe’’ principle) no more trustworthy
than their weakest link (and the longer the chain the higher the likelihood of some link being
compromised). This simply reinforces the general security principle that entities ‘‘near’’ to
‘‘self’’ are more trustworthy (easier to protect) than entities ‘‘farther away’’.

Consider, therefore, a client A in cell X, and a server B in cell Y. Denote each cell’s security
services with subscripts (for example, KDSX, KDSX,Y — but when they appear in subscripts
themselves they will be upgraded to avoid embedded subscripts; for example, KKDSX, KKDSXY).
The problem is to extend the single-cell security model to this multi-cell case. In terms of trust
chains, A trusts TCBX, and B trusts TCBY, so what remains is to establish a trust link between
TCBX and TCBY. In terms of keys, in order for A and B to communicate securely, they need to
share a session key they both trust, and it is this key distribution problem that is at the crux of
the cross-cell security model. In terms of tickets, A must present to B a privilege-ticket protected
with B’s long-term key, but the normal distributor of tickets to A, KDSX, does not know B’s
long-term key (nor should it — only KDSY should know B’s key).

The solution involves cross-registering the cell principals KDSX and KDSY in one another’s cells,
using (two copies of) a ‘‘surrogate’’ cell principal, as follows (see Figure 1-4 on page 33). In order
for clients in cell X to be able to (mutually) authenticate to servers in cell Y, KDSY is endowed
with an additional surrogate principal identity, denoted KDSX,Y, and registered in RSY with a
new long-term key KKDSXY (distinct from the long-term key, KKDSY, of KDSY itself — which is
also denoted KDSY,Y in this context); and in addition, this same surrogate principal KDSX,Y is also
registered with the same key KKDSXY in RSX, as another copy of the surrogate of the KDSX,Y in
RSY. That is, it is the cross-cell surrogate (double) principal KDSX,Y which mediates the KDSX →
KDSY trust link (as detailed below, the point is that KDSY knows the long-term key of the
principal KDSX,Y in the foreign cell X). As a communicating entity (that is, as an RPC server),
KDSX,Y is typically implemented to be the same as KDSY (in cell Y) or as KDSX (in cell X),
respectively.

Note: The use of arrow notation to denote a trust link, ‘‘KDSX → KDSY’’, is distinct from,
and not to be confused with, the use of arrow notation to denote communications
messages.)

32 CAE Specification (1997)



Introduction to Security Services Cells — Cross-cell Authentication and Authorisation

KDSX,YKDSX,Y

surrogate
surrogate

Cell X Cell Y

cross-registration

(same principal)

KDSY (= KDSY,Y)

Figure 1-4  Cross-registration Mediating Cross-cell Trust Link

The above discussion concerned only the ‘‘unilateral’’ mediation of trust; that is, from clients in
X to servers in Y. Conversely, for clients in Y to be able to authenticate to servers in X, KDSX is
endowed with a similar cross-cell surrogate double principal identity, denoted KDSY,X,
registered in both RSX and in RSY, with a new long-term key KKDSYX. That is, KDSY,X mediates
the KDSY → KDSX trust link. In general (that is, for a given pair of cells X and Y), zero, one or
two of the principals KDSX,Y and KDSY,X may exist. And in the case where both exist, they may
be equal (KDSX,Y = KDSY,X; that is, KKDSXY = KKDSYX) or they may be distinct (KDSX,Y ≠ KDSY,X;
that is, KKDSXY ≠ KKDSYX). These are called the symmetric (or one-key) and asymmetric (or two-key)
cases of mutual trust peers, respectively. Cross-registration is an explicit expression of trust; cells
that do not trust one another do not cross-register with one another.

The naming model for the principal stringnames of the cross-cell surrogates involved in cross-
registration is specified as follows. Suppose the cell name of X is (in full DCE syntax) /.../cellX
and the cell name of Y is /.../cellY, so that the per-cell principal name of KDSX (= KDSX,X) is
krbtgt/cellX (within RSX) and the per-cell principal name of KDSY (= KDSY,Y) is krbtgt/cellY
(within RSY) (that is, in full DCE syntax, /.../cellX/krbtgt/cellX and /.../cellY/krbtgt/cellY,
respectively). Then within RSX, both KDSX,Y and KDSY,X are identified by the single per-cell
principal name krbtgt/cellY (that is, in full DCE syntax, /.../cellX/krbtgt/cellY). And within RSY
both KDSX,Y and KDSY,X are named krbtgt/cellX (that is, /.../cellY/krbtgt/cellX).

Note: (The following comments are worded in terms of RSX, though the same comments
apply to RSY, of course.) According to the above naming model, the (potentially
distinct) cross-cell principals KDSX,Y and KDSY,X in RSX have the same stringname,
namely /.../cellX/krbtgt/cellY. Thus, those principals (and the keys associated to
them) cannot be distinguished within RSX by their stringnames. In the symmetric
case this causes no confusion, because there is only one long-term key associated to
the name /.../cellX/krbtgt/cellY. In the asymmetric case (if it is supported by a given
implementation), some administrative means of distinguishing between the (distinct)
‘‘outgoing’’ key (KKDSXY) and ‘‘incoming’’ key (KKDSYX) must be provided by RSX. In
practice, the policy of most cells is to support only the symmetric case (and indeed,
most implementations of DCE do not provide the required administrative means to
support the asymmetric case). That is, while the protocols as specified in this
specification support both symmetric and asymmetric mutual trust peers, most cells
(and implementations) support only the symmetric case. This has implications for
interoperability between any pair of cells supporting different policies (namely, if one
of the cells requires that its trust relationship with the other cell be symmetric, while
that other cell requires that the relationship be asymmetric, then the two cells cannot
be mutual trust peers — full, unrestricted bidirectional authentication between

Part 1 Introduction 33



Cells — Cross-cell Authentication and Authorisation Introduction to Security Services

clients and servers in the two cells cannot exist).

The consequence of cross-registration is to enable the establishment of trust relationships
between clients and servers in different cells, as the following steps outline. The discussion in
this outline is briefer than the previous ones, since so much of it has already been explained in
the previous outlines (see Figure 1-5).

2 4

Client A

3 5 7 6

8

1

Cell X

PSTGSAS

Cell Y

PSTGS

ServerB

Figure 1-5  Cross-cell Protocol (Single-hop)

• A → ASX: A, KDSX, LA,KDSX, NA,ASX

• A ← ASX: A, {KDSX, KA,KDSX, LA,KDSX, NA,ASX} KA, TktA,KDSX

• A → TGSX: PSX, LA,PSX, NA,TGSX, TktA,KDSX, {A, CA,TGSX, [KÂ,KDSX,] TA,TGSX} KA,KDSX

• A ← TGSX: A, {PSX, KA,PSX, LA,PSX, NA,TGSX} K[ˆ]
A,KDSX, TktA,PSX

• A → PSX: KDSX, LÃ,PSX, NA,PSX, TktA,PSX, {A, CA,PSX, [KÂ,PSX,] TA,PSX} KA,PSX

• A ← PSX: A, {PSX, KÃ,KDSX, LÃ,KDSX, NA,PSX} K[ˆ]
A,PSX, PTktA,KDSX

1; 2; 3 (Get ticket to local KDS; Get ticket to local PS; Get privilege-ticket to local KDS.)

Client A in cell X desires a service from server B in a foreign cell Y. A begins, as usual, by
acquiring its ticket to KDSX, TktA,KDSX, from ASX, and its privilege-ticket, PTktA,KDSX, from
PSX, for services within cell X.

• A → TGSX: B, LA,B, NÃ,TGSX, PTktA,KDSX, {PSX, CÃ,TGSX, [K˜Â,KDSX,] TÃ,TGSX} KÃ,KDSX

• A ← TGSX: PSX, {KDSX,Y, KA,KDSXY, LA,KDSXY, NÃ,TGSX} K˜[ˆ]
A,KDSX, TktA,X,KDSXY

4 (Get ticket to foreign KDS.)

34 CAE Specification (1997)



Introduction to Security Services Cells — Cross-cell Authentication and Authorisation

Following the usual protocol, A now requests KDSX for a privilege-ticket to B. But instead of
that, KDSX returns to A a cross-cell referral (ticket-granting-)ticket, TktA,X,KDSXY, which
names PSX, nominates A, and is targeted to the surrogate principal KDSX,Y in cell X:

TktA,X,KDSXY = KDSX,Y, {PSX, KA,KDSXY, LA,KDSXY, PACA,X, PX,Y} KKDSXY

As for any request for any ticket or privilege-ticket, KDSX blindly copies PACA,X from
PTktA,KDSX into TktA,X,KDSXY, and returns it to A with a session key KA,KDSXY between A and
KDSX,Y. Note that TktA,X,KDSXY is not yet considered to be a ‘‘privilege-ticket’’ at this point,
because it names PSX instead of PSY. This indicates that PSY has not yet had an opportunity
to ‘‘vet’’ (‘‘modulate’’, ‘‘temper’’) PACA,X and the transit path PX,Y (indicating the trust link
TCBX → TCBY).

• A → TGSY: PSY, LA,PSY, NA,TGSY, TktA,X,KDSXY, {PSX, CA,TGSY, [KÂ,KDSXY,] TA,TGSY} KA,KDSXY

• A ← TGSY: PSX, {PSY, KA,PSY, LA,PSY, NA,TGSY} K[ˆ]
A,KDSXY, TktA,X,Y,PSY

5 (Get ticket to foreign PS.)

Now, A presents this TktA,X,KDSXY to (not the surrogate KDSX,Y in cell X, but to) the surrogate
KDSX,Y in cell Y (which recognises TktA,X,KDSXY as a well-formed ticket because it is protected
with its long-term key, KKDSXY), requesting a ticket, TktA,X,Y,PSY, naming PSX, nominating A,
and targeted to PSY:

TktA,X,Y,PSY = PSY, {PSX, KA,PSY, LA,PSY, PACA,X, PX,Y} KPSY

KDSY (KDSX,Y) issues this TktA,X,Y,PSY (blindly copying PACA,X from TktA,X,KDSXY to
TktA,X,Y,PSY in the usual manner) and returns it and its session key KA,PSY to A. Again,
TktA,X,Y,PSY is not yet considered to be a ‘‘privilege-ticket’’.

• A → PSY: KDSY, LÃ,KDSY, NA,PSY, TktA,X,Y,PSY, {PSX, CA,PSY, [KÂ,PSY,] TA,PSY} KA,PSY

• A ← PSY: PSX, {PSY, KÃ,KDSY, LÃ,KDSY, NA,PSY} K[ˆ]
A,PSY, PTktA,KDSY

6 (Get privilege-ticket to foreign KDS.)

Next, A presents this TktA,X,Y,PSY to PSY, requesting a privilege-ticket, PTktA,KDSY (naming PSY,
nominating A, and targeted to KDSY), in the usual manner:

PTktA,KDSY = KDSY, {PSY, KÃ,KDSY, LÃ,KDSY, PACA,Y, PY} KKDSY

PSY honours this request, but since RSY does not hold A’s privilege attributes, PSY instead
retrieves PACA,X from TktA,X,Y,PSY, and inspects it, in the process vetting (modulating,
tempering) it for use in Y, thereby turning it into a ‘‘PACA,Y’’. (This vetting could potentially,
depending on policy, involve such activities as discarding some privilege attributes
disallowed in cell Y, or translating ‘‘X-privileges’’ into ‘‘Y-privileges’’, and so on.) This
PACA,Y is placed into PTktA,KDSY, becoming the authorisation information nominating A to
servers in cell Y. Moreover, PSY ‘‘consumes’’ the transit path PX,Y (that is, vets it, and replaces
it with the trivial transit path PY). PSY also returns to A a new session key KÃ,KDSY between A
and KDSY, as usual.

• A → TGSY: B, LA,B, NÃ,TGSY, PTktA,KDSY, {PSY, CÃ,TGSY, [K˜Â,KDSY,] TÃ,TGSY} KÃ,KDSY

• A ← TGSY: PSY, {B, KA,B, LA,B, NÃ,TGSY} K˜[ˆ]
A,KDSY, PTktA,B

• A → B: PTktA,B, {PSY, [CA,B,] [KÂ,B,] TA,B} KA,B

• A ← B: {[KˆÂ,B,] TA,B} KA,B

• A → B: {Service Request(s) / Application-level Data} KA,B
[ˆ[ˆ]]

Part 1 Introduction 35



Cells — Cross-cell Authentication and Authorisation Introduction to Security Services

• A ← B: {Service Request(s) / Application-level Data} KA,B
[ˆ[ˆ]]

7; 8 (Get privilege-ticket to server; Get service from server.)

Armed with a PTktA,KDSY (containing PACA,Y) usable in Y, A can now proceed according to
the usual Kerberos protocol to request services from servers (such as B) in cell Y: send the
stringname of B and PTktA,KDSY to KDSY requesting a privilege-ticket, PTktA,B, to B, and so on.
Since this is exactly the same as the single-cell authentication protocol (which has already
been explained), it is not repeated here. Note in particular that the privilege-ticket that KDSY
receives from the foreign principal A, PTktA,KDSY, looks exactly the same as the privilege-tickets
that KDSY receives from the local principals within its own cell (KDSY cannot distinguish
between the two kinds of privilege-tickets). The same is true of the privilege-ticket that B
receives from A:

PTktA,B = B, {PSY, KA,B, LA,B, PACA,Y, PY} KB

That is to say, B cannot tell from this privilege-ticket’s format that A is a foreign principal (it
can only tell so by looking into A’s identity information carried in PACA,Y).

1.7.1 The Complete Cross-cell Scenario

The preceding outline envisions only the case where a direct trust link has been established
between cells X and Y. The general case of indirect trust chains (that is, whose number of links is
greater than 1, with intermediate cells intervening between X and Y) is an inductive
generalisation of that one, whereby A engages in a succession of cross-cell referrals from one
cell’s KDS server to another’s (intermediate PS servers are not visited), bringing it ‘‘ever closer
to’’ (and eventually arriving at) B’s cell, at each stage engaging in the protocol outlined above.
(The various cells’ KDS servers only ‘‘indirectly refer’’ to one another, never ‘‘directly chain’’ to
one another, in the sense that during the performance of their mainline services they only ever
‘‘communicate’’ cross-cell with one another via the intermediary of A, never communicating
directly to one another — they only do so for such incidental purposes as parsing stringnames
into their component pieces, or for cross-cell key management. See Section 1.13 on page 67 and
Section 1.14 on page 69.)

The successive intermediate cross-cell referral tickets contain at each stage a record (transit path)
of the trust chain of cells to that point, say:

PX,Z´, Z´´,⋅⋅⋅, Z´´´, Z´´´´ = TCBX → TCBZ´ → TCBZ´´ → ⋅⋅⋅ → TCBZ´´´ → TCBZ´´´´

and so the corresponding cross-cell referral ticket may be denoted:

TktA,X,Z´, Z´´,⋅⋅⋅,Z´´´, KDSZ´´´Z´´´´ = KDSZ´´´, Z´´´´, {PSX, KA, KDSZ´´´Z´´´´, LA, KDSZ´´´Z´´´´, PACA,X, PX,Z´,
Z´´,⋅⋅⋅,Z´´´, Z´´´´} KKDSZ´´´Z´´´´

When the target server’s cell, Y, is eventually reached, the corresponding cross-cell referral ticket,
TktA,X,Z´, Z´´,⋅⋅⋅, Z´´´´, KDSZ´´´´Y, is used to obtain a (service) ticket to the PS server in cell Y:

TktA,X,Z´, Z´´,⋅⋅⋅, Z´´´,Z´´´´, Y,PSY = PSY, {PSX, KA,PSY, LA,PSY, PACA,X, PX,Z´, Z´´,⋅⋅⋅, Z´´´,Z´´´´, Y} KPSY

This TktA,X,Z´, Z´´,⋅⋅⋅, Z´´´,Z´´´´, Y,PSY is then presented to PSY, which vets the PACA,X (turning it into a
‘‘PACA,Y’’) and the transit path PX,Z´, Z´´,⋅⋅⋅, Z´´´, Z´´´´,Y (‘‘consuming’’ the latter), and returns a
privilege-ticket that A can use in cell Y:

PTktA,KDSY = KDSY, {PSY, KÃ,KDSY, LÃ,KDSY, PACA,Y, PY} KKDSY

Finally, this PTktA,KDSY is presented to KDSY, which uses it to generate a (service-)privilege-
ticket, PTktA,B:

PTktA,B = B, {PSY, KA,B, LA,B, PACA,Y, PY} KB

36 CAE Specification (1997)



Introduction to Security Services Cells — Cross-cell Authentication and Authorisation

In summary, the sequence of communications (RPCs) involved in a complete protected
(authenticated/authorised) RPC from a client A in cell X to a server B in cell Y, transiting
through cells Z´, Z´´, ⋅⋅⋅, Z´´´, Z´´´´ can be depicted as shown in Figure 1-6.

Client A ServerB

AS TGS PS

Cell X

TGS

Cell Z´

TGS PS

Cell Y

TGS

Cell Z´´´´

. . .

. . .

. . .

2 4 3 5 6 7 9 8

10

. . .

1

Figure 1-6  Cross-cell Protocol (Multi-hop)

Following are very brief descriptions of each step (for details see above, or the chapters to
follow). In each step after the first one, A presents to its target the ticket (or privilege-ticket) it
received from the previous step.

• 1 (Get ticket to local KDS.)

A presents its identity to KDSX, requesting ASX for an initial ticket, TktA,KDSX to KDSX, and
receives it.

• 2 (Get ticket to local PS.)

A presents TktA,KDSX to KDSX, requesting TGSX for a ticket, TktA,PSX (= TktA,X,PSX), to PSX, and
receives it.

• 3 (Get privilege-ticket to local KDS.)

A presents TktA,PSX to PSX, requesting PSX for a privilege-ticket, PTktA,KDSX, to KDSX, and
receives it. (Note that steps 1−3 typically happen at A’s ‘‘login time’’, while the remaining
steps occur ‘‘on demand’’ when A desires service from an end-service B.)

• 4 (Get ticket to foreign KDS.)

A presents PTktA,KDSX to KDSX, requesting TGSX for a privilege-ticket to B, but instead
receives a cross-cell referral ticket, TktA,X,KDSXZ´, to KDSX,Z´. (The cross-cell tickets issued in
this sequence of steps are not yet privilege-tickets, even though they carry authorisation

Part 1 Introduction 37



Cells — Cross-cell Authentication and Authorisation Introduction to Security Services

information (a PAC) for the nominated client, A. This is explained in Section 1.7 on page 32.)

• 5 (Get ticket to foreign KDS.)

A presents TktA,X,KDSXZ´ to KDSZ´, requesting TGSZ´ for a ticket to PSY, but instead receives a
cross-cell referral ticket, TktA,X, Z´, KDSZ´Z´´, to KDSZ´,Z´´.

• ⋅⋅⋅ (Get tickets to foreign KDSs.) ⋅⋅⋅

• 6 (Get ticket to foreign KDS.)

A presents TktA,X,Z´, Z´´,⋅⋅⋅, Z´´´, KDSZ´´´Z´´´´ to KDSZ´´´´, requesting TGSZ´´´´ for a ticket to PSY, but
instead receives a cross-cell referral ticket, TktA,X,Z´, Z´´,⋅⋅⋅, Z´´´, Z´´´´, KDSZ´´´´Y, to KDSZ´´´´,Y.

• 7 (Get ticket to foreign PS.)

A presents TktA,X,Z´, Z´´,⋅⋅⋅, Z´´´, Z´´´´, KDSZ´´´´Y to KDSY, requesting TGSY for a ticket, TktA,X,Z´, Z´´,⋅⋅⋅,
Z´´´, Z´´´´,Y,PSY, to PSY, and receives it. (Again, this TktA,X,Z´, Z´´,⋅⋅⋅, Z´´´,Z´´´´, Y,PSY, is not yet a

privilege-ticket.)

• 8 (Get privilege-ticket to foreign KDS.)

A presents TktA,X,Z´, Z´´,⋅⋅⋅, Z´´´, Z´´´´,Y,PSY, to PSY, requesting PSY for a privilege-ticket, PTktA,KDSY,
to KDSY, and receives it.

• 9 (Get privilege-ticket to server.)

A presents PTktA,KDSY to KDSY, requesting TGSY for a privilege-ticket, PTktA,B, to B, and
receives it.

• 10 (Get service from server.)

A presents PTktA,B to B, requesting B for service, and receives it (provided that A’s PACA,Y
grants it access per B’s access determination algorithm and the ACL protecting the accessed
object).

Of course, the DCE RPC programming model hides all these complexities from the application
programmer.

1.7.2 Multi-hop Trust Chains

In the descriptions given above, no solution has yet been given to the following closely related
twin problems, which together are referred to as the multi-hop trust chain problem:

• How does each cell’s KDS server ‘‘know’’ which foreign KDS servers to refer clients to?

That is, how does each KDSZ, which nominally knows only about the foreign KDSs it is
directly cross-registered with, understand the overall global graph of other KDSW’s direct
cross-registrations, so that the cross-cell referral ticket, TktA,X,Z, KDSZW, that KDSZ´ returns to a
client A actually does point A ‘‘closer to’’ its targeted end-server B, guaranteeing that any
sequence of cross-cell referrals KDSX → KDSZ´ → KDSZ´´ → ⋅⋅⋅ → KDSZ´´´ → KDSZ´´´´ → ⋅⋅⋅
ultimately terminates (at KDSY)?

• How does each cell’s PS server ‘‘know’’ whether or not to trust a transit path?

That is, how does each PSY know whether or not the transit path PX,Z´, Z´´,⋅⋅⋅, Z´´´, Z´´´´,Y,
presented to it for vetting, conforms to a ‘‘trusted shape’’?

This revision of this specification does not, in fact, specify a solution to this multi-hop trust chain
problem. Thus, the only solution to the cross-cell trust chain problem that is fully specified in
this revision of DCE is the single-hop (direct) case. Nevertheless, it is anticipated that a solution
to the multi-hop trust chain problem will be specified in a future revision of DCE, and that the

38 CAE Specification (1997)



Introduction to Security Services Cells — Cross-cell Authentication and Authorisation

specified solution will be the so-called hierarchical (or up-over-down) trust chain solution, which is
depicted in Figure 1-7. In that figure, the arrowed lines indicate trust links, while the non-
arrowed lines indicate namespace parent/child relationships (solid ones indicate direct links;
dotted ones indicate a span of several generations; dashed ones indicate the step from a cell’s
TCB to a principal within that cell). Very briefly, the idea is that the hierarchical structure of cell
names (indicated in Figure 1-7 by sequences of atomic names in angle brackets) is exploited to
navigate an ‘‘up-over-down’’ path from client to server, seeking the ‘‘least common trust peer
link’’ between the client’s cell ancestry and the server’s cell ancestry. Only a direct relationship
between these cell ancestries is deemed acceptable (not a chain through intermediate ancestries,

Z´´, as indicated).

..
..

..
..

..

. .
. .

. .
..

. .

..
..

..
..

..

. .
. .

. .
..

. .

Cell(s)Z´´ Cell Y ´´

Cell X´´´

Cell X´

Cell X Cell Y

Cell Y ´

Cell Y ´´´

Client A ServerB

<>

<x´´´,...,x´´,...,x´> <y´´´,...,y´´,...,y´>

<x´´´,...,x´´,...,x´,x> <y´´´,...,y´´,...,y´,y>

<x´´´,...,x´´,...,x´,x,a> <y´´´,...,y´´,...,y´,y,b>

<x´´´> <y´´´>

<x´´´,...,x´´> <y´´´,...,y´´>
Cell X´´

Root

Figure 1-7  Hierarchical Trust Chains

Part 1 Introduction 39



Access Control Lists (ACLs) Introduction to Security Services

1.8 Access Control Lists (ACLs)
Note: Much of the ACL Facility specified in DCE is ‘‘modelled after’’ the ACL Specification

in POSIX P1003.6 Draft 12 (with allowable extensions). However, no claim of
‘‘conformance to’’ POSIX ACLs is made here, because of the preliminary (draft)
nature of the POSIX ACL model. Harmonisation of the ACL Facility specified here
with the final POSIX ACL Standard is for future study. (Note, for example, the
disappearance and reappearance of MASK_OBJ in various POSIX drafts.)

The Access Control List (ACL) Facility manages server-side access control information, thereby
enabling a server to control clients’ access to the (protected) objects (that is, objects to which ACLs
are attached) managed by the server. The ACL Facility comprises ACLs and ACL Managers,
which are discussed in this section and Section 1.9 on page 46.

An ACL consists of:

• ACL Manager Type UUID

UUID identifying the semantics of the ACL; that is, the kind or type of ACL Manager that can
interpret the ACL (see below), especially with respect to the permissions granted or denied in
the ACL Entries (ACLEs). By this means, protected objects are partitioned into classes,
according to the types of ACL managers that can interpret their ACLs. An object protected
by ACLs can have an arbitrary number of ACLs associated with it, but at most one of any
given ACL Manager Type (see Section 1.9.2 on page 52).

• Default Cell UUID

UUID identifying the cell to which the ACLEs of ‘‘local’’ (non-‘‘foreign’’) type apply (see
below), and said to be the cell to which the ACL refers.

Note: The ACL’s default cell UUID does not necessarily identify the cell the protected
object itself belongs to (that is, the cell in which the server protecting the object is
registered as a principal), though this will typically be the case.

• ACL Entries (ACLEs)

Specifies the access rights of subjects to the protected object, according to the access
determination algorithm (see below).

1.8.1 ACL Entries and their Types

An ACLE consists of:

• ACLE Type

This indicates how the ACLE is to be interpreted by the access determination algorithm (see
below).

• Tag UUID Field(s)

UUID(s) (0, 1 or 2 of them), of some combination of cells, principals and groups, used to
‘‘qualify’’ certain ACLE types, as explained below.

• Permissions Field

Specifies access rights (up to 32 of them) afforded by this ACLE. The semantics of these
access rights are interpretable only by ACL Managers of the ACL Manager type specified by
the ACL (see below).

The ACLE Types are organised into the following taxonomy:

40 CAE Specification (1997)



Introduction to Security Services Access Control Lists (ACLs)

• Local ACLE types

Refer to subjects in the ACL’s default cell:

— USER_OBJ or UO (no Tags)

Establishes permissions for the object’s owning user (in the POSIX sense), identified by the
ordered pair <Default Cell UUID, Owning Principal UUID>, to which the USER_OBJ
ACLE is said to refer. The Owning Principal UUID is a UUID determined in an
application-specific way (not specified in DCE).

Note: The USER_OBJ ACLE type is principally supported for purposes of POSIX
compliance (especially, for POSIX-compliant filesystems). Its utility for most
other applications is minimal — indeed, some authorities believe its use
should in general be deprecated.

— USER or U (with a Principal Tag UUID)

Establishes permissions for the principal identified by the ordered pair <Default Cell
UUID, Principal Tag UUID>, to which the USER ACLE is said to refer.

— GROUP_OBJ or GO (no Tags)

Establishes permissions for the object’s owning group (in the POSIX sense), identified by
the ordered pair <Default Cell UUID, Owning Group UUID>, to which the GROUP_OBJ
ACLE is said to refer. The Owning Group UUID is a UUID determined in an application-
specific way (not specified in DCE).

Note: The GROUP_OBJ ACLE type is principally supported for purposes of POSIX
compliance (especially, for POSIX-compliant filesystems). Its utility for most
other applications is minimal — indeed, some authorities believe its use
should in general be deprecated.

— GROUP or G (with a Group Tag UUID)

Establishes permissions for the group identified by the ordered pair <Default Cell UUID,
Group Tag UUID>, to which the GROUP ACLE is said to refer.

— OTHER_OBJ or O (no Tags)

Establishes permissions for all principals and groups in the cell identified by the ACL’s
Default Cell UUID, to which the OTHER_OBJ ACLE is said to refer.

• Foreign ACLE types

Refer to subjects in foreign cells (‘‘foreign’’ in the sense of ACLs has the commonsense
meaning of referring to cells other than the ACL’s default cell; that is, that the Cell Tag UUIDs
of foreign ACLE types are distinct from the ACL’s Default Cell UUID. However, it is not
forbidden for an ACLE to contain a Cell Tag UUID which is equal to the ACL’s Default Cell
UUID — it is just inefficient to do so):

— FOREIGN_USER or FU (with a Cell Tag UUID and a Principal Tag UUID)

Establishes permissions for the principal identified by the ordered pair <Cell Tag UUID,
Principal Tag UUID>, to which the FOREIGN_USER ACLE is said to refer.

— FOREIGN_GROUP or FG (with a Cell Tag UUID and a Group Tag UUID)

Establishes permissions for the group identified by the ordered pair <Cell Tag UUID,
Group Tag UUID>, to which the FOREIGN_GROUP ACLE is said to refer.

Part 1 Introduction 41



Access Control Lists (ACLs) Introduction to Security Services

— FOREIGN_OTHER or FO (with a Cell Tag UUID)

Establishes permissions for all principals and groups identified by the Cell Tag UUID, to
which the FOREIGN_OTHER ACLE is said to refer.

• Universal ACLE type

Refers to subjects in the ACL’s default cell or in foreign cells:

— ANY_OTHER or AO (no Tags)

Establishes permissions for all principals and groups (in the ACL’s default or in foreign
cells), to which the ANY_OTHER ACLE is said to refer.

• Mask ACLE types

Used as masks (subtracting rights at most, not adding them) in the access determination
algorithm:

— MASK_OBJ or M (no Tags)

Masks all ACLEs except USER_OBJ and OTHER_OBJ.

Note: The MASK_OBJ ACLE type is principally supported for purposes of POSIX
compliance (especially, for POSIX-compliant filesystems). Its utility for most
other applications is minimal — indeed, some authorities believe its use
should in general be deprecated.

— UNAUTHENTICATED or UN (no Tags)

Masks all ACLEs in an ‘‘unauthenticated’’ access request (that is, one whose PAC has a
FALSE authentication flag).

Note: The UNAUTHENTICATED ACLE type is principally supported for purposes
of ‘‘system level’’ applications (for example, ‘‘bootstrapping’’ the system). Its
utility for most other applications is minimal — indeed, some authorities
believe its use should in general be deprecated.

• Extended ACLE type

Used as a compatibility aid, and does not appear directly in the access determination
algorithm:

— EXTENDED or E (no Tags)

A special type for ensuring extensibility/compatibility of the ACL mechanism. The intent
is that if a new version of a server supports ACLE types that were not supported in earlier
versions, then the new server is supposed to convert said new ACLE types to the
EXTENDED type before passing ACLs back to old clients (via rdacl_lookup ( ) — see
Section 1.11 on page 55).

• Delegation Local ACLE types

Refer to subjects in the ACL’s default cell:

— USER_OBJ_DELEG or UOD (no Tags)

Establishes permissions for the object’s owning user (in the POSIX sense) acting as a
delegate, identified by the ordered pair <Default Cell UUID, Owning Principal UUID>, to
which the USER_OBJ_DELEG ACLE is said to refer. The Owning Principal UUID is a
UUID determined in an application-specific way (not specified in DCE).

42 CAE Specification (1997)



Introduction to Security Services Access Control Lists (ACLs)

Note: The USER_OBJ_DELEG ACLE type is principally supported for purposes of
POSIX compliance (especially, for POSIX-compliant filesystems). Its utility
for most other applications is minimal — indeed, some authorities believe its
use should in general be deprecated.

— USER_DELEG or UD (with a Principal Tag UUID)

Establishes permissions for the principal acting as a delegate identified by the ordered pair
<Default Cell UUID, Principal Tag UUID>, to which the USER_DELEG ACLE is said to
refer.

— GROUP_OBJ_DELEG or GOD (no Tags)

Establishes permissions for the object’s owning group (in the POSIX sense) acting as a
delegate, identified by the ordered pair <Default Cell UUID, Owning Group UUID>, to
which the GROUP_OBJ_DELEG ACLE is said to refer. The Owning Group UUID is a
UUID determined in an application-specific way (not specified in DCE).

Note: The GROUP_OBJ_DELEG ACLE type is principally supported for purposes of
POSIX compliance (especially, for POSIX-compliant filesystems). Its utility
for most other applications is minimal — indeed, some authorities believe its
use should in general be deprecated.

— GROUP_DELEG or GD (with a Group Tag UUID)

Establishes permissions for the group acting as a delegate identified by the ordered pair
<Default Cell UUID, Group Tag UUID>, to which the GROUP_DELEG ACLE is said to
refer.

— OTHER_OBJ_DELEG or OD (no Tags)

Establishes permissions for all principals acting as a delegate in the cell identified by the
ACL’s Default Cell UUID, to which the OTHER_OBJ_DELEG ACLE is said to refer.

• Delegation Foreign ACLE types

Refer to subjects in foreign cells acting as a delegate (‘‘foreign’’ in the sense of ACLs has the
commonsense meaning of referring to cells other than the ACL’s default cell; that is, that the
Cell Tag UUIDs of foreign ACLE types are distinct from the ACL’s Default Cell UUID.
However, it is not forbidden for an ACLE to contain a Cell Tag UUID which is equal to the
ACL’s Default Cell UUID — it is just inefficient to do so):

— FOREIGN_USER_DELEG or FUD (with a Global Principal Tag UUID)

Establishes permissions for the principal acting as a delegate identified by the <Global
Principal Tag UUID>, to which the FOREIGN_USER_DELEG ACLE is said to refer.

— FOREIGN_GROUP_DELEG or FGD (with a Global Group Tag UUID)

Establishes permissions for the group acting as a delegate identified by the <Global Group
Tag UUID>, to which the FOREIGN_GROUP_DELEG ACLE is said to refer.

— FOREIGN_OTHER_DELEG or FOD (with a Cell Tag UUID)

Establishes permissions for all principals acting as a delegate identified by the Cell Tag
UUID, to which the FOREIGN_OTHER_DELEG ACLE is said to refer.

• Delegation Universal ACLE type

Refers to subjects in the ACL’s default cell or in foreign cells:

Part 1 Introduction 43



Access Control Lists (ACLs) Introduction to Security Services

— ANY_OTHER_DELEG or AOD (no Tags)

Establishes permissions for all principals acting as a delegate (in the ACL’s default or in
foreign cells), to which the ANY_OTHER_DELEG ACLE is said to refer.

There are a few conditions that an ACL must satisfy in order to be considered (absolutely) well-
formed. For example, a well-formed ACL must not contain more than one USER ACLE that
refers to a given principal. These ‘‘formation rules’’ are given in detail in Chapter 7.

1.8.2 Object Types, ACL Types and ACL Inheritance

Resource managers in general (and, by extension, reference monitors) distinguish between two
types of objects: container objects and simple objects. (In general the unqualified word ‘‘object’’
refers to either container or simple objects, but when the context requires just one of these types,
plain ‘‘object’’ means a simple object.) Container objects ‘‘contain’’ (in some application-defined
sense, often reflected in a hierarchical name structure) other objects (simple or container).
Simple objects do not contain other objects. The words parent and child are used to express the
relationship between containers and the objects contained in them, respectively. Examples of
container objects might include a filesystem directory or a database table; examples of simple
objects might include a file or a database entry. Not all resource managers need support
container objects.

To protect both simple and container objects, and to enable newly created objects to automatically
inherit default ACLs from their parent container objects (a usability criterion), the ACL facility
supports two ACL types (this is to be distinguished from the ACL’s manager type, defined in
Section 1.8 on page 40):

• Protection (or Object) ACLs are associated with either simple or container objects, and control
access to them (that is, figure into the access determination algorithm exercised by ACL
Managers (see below)).

Note: By abuse of language, when one speaks of ‘‘the’’ ACLs associated with protected
objects, it is always the Protection ACLs that are meant, unless explicitly
indicated otherwise.

• Initial (or Default Creation) ACLs are associated with container objects only. Their function is
not to control access to the container, but rather to supply default values for the ACLs
inherited by child objects (both simple objects and containers) when they are initially created
in the container. There are two kinds of Initial ACLs:

— Initial Object (‘‘IO’’) ACLs

Supplies default values for Protection ACL of simple child objects, and for the IO ACL of
container child objects.

— Initial Container (‘‘IC’’) ACLs

Supplies default values for the Protection ACL and the IC ACL of container child objects.

Thus, in this inheritance model, simple objects have only one ACL associated with them (a
Protection ACL), while container objects have three ACLs associated with them (Protection, IO
and IC ACLs). And the creation of (simple and container) child objects obeys the following ACL
Inheritance Rules:

• When a simple child object is created in a parent container, the child inherits, by default, the
parent’s IO ACL as the child’s Protection ACL. (But if an ACL is specified, it overrides this
default.)

44 CAE Specification (1997)



Introduction to Security Services Access Control Lists (ACLs)

• When a child container is created in a parent container, the child inherits, as defaults, the
parent’s IC ACL as the child’s Protection ACL, and the parent’s IO and IC as the child’s IO
and IC ACLs, respectively. (But if any of these ACLs are specified, they override the
corresponding default.)

Other than the distinctions described above, there are no differences between the Protection ACL
and Initial ACL types — therefore, the information about ACLs in the rest of this section does
not differentiate between ACL types.

Part 1 Introduction 45



ACL Managers, Permissions, Access Determination AlgorithmsIntroduction to Security Services

1.9 ACL Managers, Permissions, Access Determination Algorithms
ACL Managers are the modules within RPC servers that interpret (that is, lend semantics to)
ACLs. Namely, every ACL Manager is identified within a server by a UUID called the ACL
Manager’s type UUID, and a given ACL Manager can interpret a given ACL if and only if the
ACL Manager’s type UUID is the same as the ACL’s ACL Manager Type UUID (the latter is
defined in Section 1.8 on page 40).

Note: Different ACL Managers — that is, those having different type UUIDs — can share
the same executable code.

This notion of interpreting an ACL manifests itself in the following areas:

• ACLs and ACLEs

An ACL Manager need not support all possible absolutely well-formed ACLs (where
‘‘absolute’’ refers to the general ACL Facility), but may define its own notion of relatively
well-formed ACLs (where ‘‘relative’’ refers to the specific ACL Manager itself) — but the ACLs
that it does support must be well defined. As an example, an ACL Manager need not
support all the ACLE types supported by the ACL Facility itself (for example, an ACL
Manager that never grants access to unauthenticated requests need not support the
UNAUTHENTICATED ACLE). As another example, an ACL Manager might require that a
certain ‘‘minimal’’ configuration of ACLEs is present in every ACL it supports (for example,
a USER_OBJ/GROUP_OBJ/OTHER_OBJ triple, or at least one ACLE that grants Control
(‘‘Write-ACL’’) permission (see below)).

(Also, not all ACL Types (Protection, IO, IC) and their Inheritance Rules as specified in Section
1.8.2 on page 44 need be supported — but that is a property of the server as a whole, not a
property of a specific ACL Manager.)

• Permissions

The meanings of the permissions to protected objects vary according to the ACL Manager
type associated with the ACL. Permissions themselves are considered to be ‘‘primitives’’,
and access requests are determined (granted or denied) on the basis of combinations
((unordered) sets) of these primitives. In DCE, permissions are implemented as bits
(represented as integers 2i for 0 ≤ i ≤ 31), and combinations of them as bit-vectors (represented
as integers in the range [0, 232−1]). The number of permissions supported by an ACL
Manager can be any number between 1 and 32 inclusive. (DCE does not support ACL
Managers having 0 permissions; objects protected by more than 32 permissions can be
supported by protecting them with multiple ACLs, each having a distinct ACL Manager
Type — see Section 1.9.2 on page 52.)

• Printstrings and Helpstrings

To each permission it supports, an ACL Manager associates, for human consumption, a
printstring identifying the permission, as well as a helpstring that further explains the
semantics of the permission. These strings are relayed to users by ACL Editors, as discussed
above.

• Access Determination Algorithm (or Authorisation Decision Computation)

The algorithm that takes as input a principal’s PAC, an object’s ACL, and an access request,
and returns as output a judgement whether the server should grant or deny the access, is
implemented by the ACL Manager.

In principle, there can be many distinct classes of ACL Managers, implementing the above areas
in different application-specific ways (consistent with the security requirements of application
servers). DCE currently defines (below) one distinguished class of ACL Managers, namely, the

46 CAE Specification (1997)



Introduction to Security ServicesACL Managers, Permissions, Access Determination Algorithms

so-called Common ACL Managers. However, no strict rules of the form ‘‘DCE-conformant ACL
Managers must be Common ACL Managers’’ (or for that matter, ACL managers of any other
type) are specified in DCE. Thus, the notion of Common ACL Manager may be considered
merely to be a suggestive example. Furthermore, other classes of ACL Managers (other than
Common ACL Managers) may be defined in future revisions of DCE. (On the other hand,
applications that can support their security requirements by implementing Common ACL
Managers may be well-advised to do so — it is a desirable ‘‘user-friendliness’’ issue for users to
find such a level of consistency amongst all the ACL managers in all the applications throughout
their environment.)

Common ACL Managers are defined as follows:

• ACLs and ACLEs

Common ACL Managers support at least the USER, GROUP, OTHER_OBJ,
FOREIGN_USER, FOREIGN_GROUP, FOREIGN_OTHER and ANY_OTHER ACLEs. (Thus,
Common ACL Managers need not, but may, support the USER_OBJ, GROUP_OBJ,
MASK_OBJ, UNAUTHENTICATED or EXTENDED ACLEs.)

Concerning ACL Types and their Inheritance Rules (which are within the scope of the server as
a whole, not of a specific ACL Manager): if a Common ACL Manager supports both simple
objects and containers, then it supports all the ACL Types (Protection, IO, IC), with their
Inheritance Rules as specified in Section 1.8.2 on page 44.

• Permissions and printstrings

There are 7 permission bits that are distinguished by the ACL Facility, with respect to their
(C-language) names, values (bit representations) and printstrings (see Section 8.1.1 on page 319
and Section 8.1.2.1 on page 320; for recommended helpstrings, see Section 8.1.2.2 on page 320).
However, the generic ACL Facility itself does not specify the access semantics of those
permissions — that is the responsibility of individual ACL managers themselves. In the case
of Common ACL Managers, those semantics are described in the following list, wherein the 7
distinguished permissions are identified by their ‘‘colloquial’’ names (in English). (Thus,
Common ACL Managers that support permissions having semantics as described in the
following list use the bit representation and printstring associated with them (as specified in
Section 8.1.1 on page 319 and Section 8.1.2.1 on page 320), and those bit representations and
printstrings are not used for any other permission semantics; however, Common ACL
Managers need not support all seven of these permission semantics, nor are they limited to
supporting only these seven permission semantics.)

— Read

Disclose information associated with the protected object.

— Write

Modify information associated with the protected object.

— Execute

Cause a processing element to deliver service associated with the protected object.

— Control (or Change or Write-ACL)

Modify the ACL itself (as for protected object), thereby ‘‘controlling’’ access to the object
protected by the ACL. Typically, ‘‘owners’’ (in some site- or application-specific sense) of
protected objects are given control access to the object’s ACL. (See rdacl_replace ( ).)

Note: DCE does not specify how Common ACL Managers manage disclosure of
ACLs (Read-ACL access), so that aspect of Common ACL managers remains

Part 1 Introduction 47



ACL Managers, Permissions, Access Determination AlgorithmsIntroduction to Security Services

implementation-specific. One possible solution is to support it with a
permission, similar to the Control permission. Another solution (the most
typical one, and the one suggested by DCE) is to grant Read-ACL access to any
principal to which the ACL grants any access whatsoever (according to the
Common Access Determination Algorithm described below). (This type of
‘‘any access’’ is not represented by a ‘‘permission’’ supported by the ACL
Manager, so is an exception to the ‘‘rule’’ that Common ACL Managers
mediate all access to protected objects (such as the ACL itself) via the
Common Access Determination Algorithm (below).) The POSIX solution
(which contemplates only filesystems, and only in a non-distributed
environment) is to grant Read-ACL access to any principal that is granted
‘‘POSIX search’’ access to the hierarchy of (filesystem) directories containing
the object (file) in question (but not necessarily the object itself). (See
rdacl_lookup ( ) and other operations in Section 1.11 on page 55.)

— Insert

Insert objects into the protected container object.

— Delete

Delete objects from the protected container object.

— Test

Compare a presented value to a value associated with the protected object, without
disclosing its actual value. For example, compare a presented password with an actual
password (though this isn’t the way DCE supports password-based authentication).

• Access Determination Algorithm

Common ACL managers support the Common Access Determination Algorithm specified in
the next section.

Note: DCE does not currently specify an ACL Manager API (although it is envisioned that
one will be supported in a future revision). Typically, implementations will support
(implementation-dependent) ACL Manager APIs with routines that support the
server’s rdacl RPC interface (see Section 1.11 on page 55).

1.9.1 The Common Access Determination Algorithm for Delegation

As of DCE 1.1, Common ACL Managers support the Common Access Determination Algorithm, as
described in this section (and specified carefully in Chapter 8). This is the algorithm that is
executed by a Common ACL Manager upon an access request. The output of the algorithm
consists of a judgement whether the server should ‘‘grant’’ or ‘‘deny’’ access to the protected
object. Prior to DCE 1.1, Common ACL Managers needed only to ensure secure operations
between two principals, typically described as a client and a server. As of DCE 1.1, clients and
servers are able to invoke secure operations through one or more intermediaries. The Common
Access Determination Algorithm has been modified as of DCE 1.1 in order to verify that the
privilege attributes for each principal involved in the operation have the necessary rights in
order to support delegation. This is because, for delegation, there is a delegation chain consisting
of the intermediaries involved in servicing the requested operation. The order of intermediaries
is not considered significant (for access determination — order is important in terms of
certification, for instance. See Section 1.15.2 on page 77 for further discussion on this subject). The
input to the algorithm consists of:

• An EPAC (presented from the client to the server, via a protected RPC). This EPAC contains
the identity and group membership information present in a DCE 1.0 format PAC. This

48 CAE Specification (1997)



Introduction to Security ServicesACL Managers, Permissions, Access Determination Algorithms

EPAC also contains the privilege attributes of each participant (principal) in the chain.

Note: For compatibility with DCE 1.0, a PAC may be generated from an EPAC (by the
Privilege Server, PSZ, and be transmitted in the A_D field of a ticket (PTGT). Thus,
existing legacy authorization models will continue to work.

• The principal involved in the operation, for each principal involved in the EPAC.

Note: The order of intermediaries is not considered significant. Thus, the order of the
checking of principals is not specified, and has no effect upon the standard access
algorithm.

• Privilege Attribute Set for each principal involved in the operation. This Privilege Attribute
Set is contained within the EPAC.

• An ACL, having the ACL manager type UUID of the invoked Common ACL Manager, and
containing a list of ACLEs with types and tags as described above. (Note that a single ACL
can represent at most 32 distinct permissions, because a single ACL can be associated with
only a single ACL manager type UUID. The case of more than 32 permissions is dealt with in
Section 1.9.2 on page 52.)

• An access request (of ‘‘required permissions’’), which is considered to be a non-empty subset of
the permissions supported by the ACL Manager. (The case of an empty access request is not
specified by DCE; it is implementation-specific.)

Part 1 Introduction 49



ACL Managers, Permissions, Access Determination AlgorithmsIntroduction to Security Services

1.9.1.1 Common ACL Manager Algorithm

Given this input, the Common ACL Manager grants or denies access according to Figure 1-8 (of
the ACLEs of the ACL in question), which affords a memorisable mental image of the common
access determination algorithm.

FOREIGN_USER’s

FOREIGN_OTHER’s

ANY_OTHER

GROUP_OBJ

GROUP’s

FOREIGN_GROUP’s
..............................................

...

...

...

...

...

...

......................................................................

USER’s

MASK_OBJ

OTHER_OBJ

USER_OBJ

Match PAC against ‘‘access ACLEs’’:

Mask acquired permissions against ‘‘mask ACLEs’’:

UNAUTHENTICATED

Figure 1-8  Common Access Determination Algorithm

In words, Figure 1-8 is to be interpreted as follows (this description is a loose paraphrase of the
common access determination algorithm which is specified in detailed pseudocode in Chapter
8):

• Match (in the sense defined in the pseudocode in Chapter 8) the incoming PAC against the
ACL’s access ACLEs (in the top-to-bottom order shown, namely: UO, U, FU, GO/G/FG, O,
FO, AO), stopping at the first such match (except that all matches are considered
‘‘simultaneously’’ in the case of the indicated group-like ACLEs), and note the permissions
granted by the matched ACLE (or, in the case of the group-like ACLEs, the union of the
permissions granted by all the matched ACLEs).

• Mask (that is, intersect) the acquired permissions against the permissions in the ACL’s mask
ACLEs, as necessary (namely, mask with MASK_OBJ permissions if the match occurred in
the center column, and/or mask with UNAUTHENTICATED permissions if the PAC is
unauthenticated). (If the ACL Manager doesn’t support these two mask ACLEs, this step is a
null operation.)

Note: While this mental image shows incoming PACs, it is applicable to EPACs as well —
in particular, for the initiator of a request. Intermediaries use the algorithm whose
mental image is given in Section 1.9.1.2 on page 51.

50 CAE Specification (1997)



Introduction to Security ServicesACL Managers, Permissions, Access Determination Algorithms

1.9.1.2 Delegation Common ACL Manager Algorithm

Given the input specified in Section 1.9.1 on page 48, the Common ACL Manager grants or
denies access according to Figure 1-9 (of the ACLEs of the ACL in question), which affords a
memorisable mental image of the delegation common access determination algorithm. This
algorithm for delegation operates upon a set of extended entries in the ACL that apply only to
principals acting as intermediaries. These extended entries permit intermediaries to be listed on
the ACL without granting those intermediaries the ability to operate on the target object directly.
Without these extensions, an intermediary would be otherwise be granted the ability to perform
the operation requested of their own initiative.

Note: In this figure, the standard ACL entries are extended with entries identifying the
abilities of the intermediary. The entries are traditionally extended with the
_DELEGATE specification. However, in this mental image, they have been
shortened to _DEL.

FOREIGN_USER_DEL’s

FOREIGN_OTHER_DEL’s

ANY_OTHER_DEL

GROUP_OBJ_DEL

GROUP_DEL’s

FOREIGN_GROUP_DEL’s
...................................................

...

...

...

...

...

...

...........................................................................

USER_DEL’s

MASK_OBJ

OTHER_OBJ_DEL

USER_OBJ_DEL

Match EPAC against ‘‘access ACLEs’’:

Mask acquired permissions against ‘‘mask ACLEs’’:

UNAUTHENTICATED

Figure 1-9  Delegation Common Access Determination Algorithm

In words, Figure 1-9 is to be interpreted as follows (this description is a loose paraphrase of the
common access determination algorithm which is specified in detailed pseudocode in Chapter
8):

• Match (in the sense defined in the pseudocode in Chapter 8) the incoming EPAC against the
ACL’s access ACLEs (in the top-to-bottom order shown, namely: UOD, UD, FUD,
GOD/GD/FGD, OD, FOD, AOD), stopping at the first such match (except that all matches
are considered ‘‘simultaneously’’ in the case of the indicated group-like ACLEs), and note the
permissions granted by the matched ACLE (or, in the case of the group-like ACLEs, the union
of the permissions granted by all the matched ACLEs).

Part 1 Introduction 51



ACL Managers, Permissions, Access Determination AlgorithmsIntroduction to Security Services

• Mask (that is, intersect) the acquired permissions against the permissions in the ACL’s mask
ACLEs, as necessary (namely, mask with MASK_OBJ permissions if the match occurred in
the center column, and/or mask with UNAUTHENTICATED permissions if the EPAC is
unauthenticated). (If the ACL Manager doesn’t support these two mask ACLEs, this step is a
null operation.)

1.9.1.3 Notes on Common ACL Manager ACLs

Notes:

1. In the case of Common ACL Managers that support only ‘‘relatively well-
formed’’ ACLs (such as, for example, ACL Managers that do not support
MASK_OBJ), some simplifications of the two figures above and (or) the
pseudocode description in Chapter 8 may be possible (for example, by omitting
some ACLEs from the diagram, or rearranging some clauses of the algorithm).
But such simplifications could lead to confusion, and should be avoided, as the
diagram and pseudocode as presented are fully general enough to encompass
all Common ACL Managers.

2. The access model supported by DCE is ‘‘object-based’’, as opposed to ‘‘name-
based’’, in the sense that it depends only on the ACL of the target object, not
those of intermediate naming nodes used to specify the object. This is in
contradistinction to certain other systems, notably POSIX, whose access
semantics support a notion of ‘‘pathname resolution’’, whereby a ‘‘search’’
(‘‘traverse’’) permission is required of intermediate naming nodes in addition to
the access permissions of the ultimate target (leaf) object.

1.9.2 Multiple ACLs and ACL Managers

It is a typical scenario for a server to support only a single (protection) ACL per protected object,
and a single ACL Manager to interpret the ACLs on all protected objects. But it is entirely
conceivable that a server may support more than one ACL and/or ACL Manager. The following
are some of the scenarios where this is useful or necessary:

• Multiple types of protected objects

If a server supports multiple types of protected objects, it should (or rather, ‘‘must’’, since
this is virtually the definition of ‘‘type of protected object’’) support a different ACL Manager
type for each type of protected object. An example of this is given by the RS server itself
(which supports five types of protected objects) — see Section 1.12.1 on page 61.

• More than 32 permissions

If a server supports more than 32 permissions, then since each ACL and each ACL Manager
can support at most 32 permissions, the server must support multiple ACLs and ACL
managers. Conceptually, all such ACL Managers would support exactly the same access
determination algorithm (perhaps even sharing the same code), but the interpretation of the
permission bits would differ among the ACL Managers. Colloquially speaking, ‘‘bit i (that is,
2i, for 0 ≤ i ≤ 31) means something different for ACL Manager Type UUID1 than it does for
ACL Manager Type UUID2.’’ For example, a given server might protect its objects with ACLs
having a (hypothetical) ‘‘Search’’ permission mapped to bit 27 of ACL Manager Type UUID1
and an ‘‘Append’’ permission mapped to bit 27 of ACL Manager Type UUID2. An access
request that required only, say, Search permission would then have to query only one ACL,
while a request requiring both Search and Append permissions would have to query two
ACLs (exactly the same ACL Manager code could potentially be used for both checks, but
that’s an implementation choice). At the extreme, a server could even support only a single

52 CAE Specification (1997)



Introduction to Security ServicesACL Managers, Permissions, Access Determination Algorithms

permission bit per ACL Manager (leaving the other 31 bits unused), thereby effecting a one-
to-one mapping between its protected object’s permission bits and UUIDs (the latter coming
from the ACL Manager’s Type UUID).

• Exotic combinations

Some servers may need to query multiple quite different ACLs, some application-specific
combination, to determine access; the potential combinations are unbounded in number. A
simple example is afforded by the RS server itself, whose deletion operation (rs_pgo_delete( )
— see Section 11.5.4 on page 384) checks both the ACL of the object to be deleted as well as
the ACL of the parent container of that object.

Variations on the ACL and ACL Manager architecture along these lines will be taken for granted
in the remainder of this specification, and will not be mentioned explicitly again.

Part 1 Introduction 53



Protected RPC Introduction to Security Services

1.10 Protected RPC
As discussed above, the KDS and PS identify subjects to one another (including communicating
privilege information), and perform session key management. Once a client and server share a
session (or conversation) key, they can communicate ‘‘application-level’’ data securely. The
protection level that an application may set using RPC determines the level of security of network
messages.

Note: Part of the rationale for supporting a range of protection options is that, as a rule,
higher security has an inversely proportional relationship to performance (because of
the cost of code paths that go through security code, especially
encryption/decryption and cryptographic checksum checking). The RPC facility
provides several levels of protection so that applications can control this tradeoff
between security and performance.

Following are the supported protection levels, arranged in order of ‘‘increasing’’ protection. The
exact interpretation of these descriptions is dependent on underlying RPC and transport
protocols (as specified in the referenced X/Open DCE RPC Specification), and is given in
Chapter 9.

• rpc_c_protect_level_none

No security guarantees. This amounts to the client and server receiving mere ‘‘assertions’’
(of low trustworthiness) about security attributes, as opposed to more convincing evidence
of their trustworthiness (namely, TCB cryptographic protection). ‘‘Protected RPC’’ of this
protection level is also called unprotected RPC.

• rpc_c_protect_level_connect

Mutual authentication established when client and server initially establish a session.

• rpc_c_protect_level_call

Mutual authentication established at the initiation of every RPC call between client and
server.

• rpc_c_protect_level_pkt

Mutual authentication established for every packet (unit of communication, as interpreted by
underlying RPC and transport protocols) between client and server.

• rpc_c_protect_level_pkt_integ

rpc_c_protect_level_pkt protection plus integrity protection of every packet (in the
rpc_c_authn_dce_secret regime, this integrity protection is achieved with DES and MD5).

• rpc_c_protect_level_pkt_privacy

rpc_c_protect_level_pkt_integ protection plus confidentiality protection of every packet (in
the rpc_c_authn_dce_secret regime, this confidentiality protection is achieved with DES).

54 CAE Specification (1997)



Introduction to Security Services ACL Editors

1.11 ACL Editors
Clients that manipulate a server’s ACLs as data (as distinguished from clients that only use ACLs
as metadata; that is, clients that only access the underlying objects that the ACLs actually protect),
are called ACL Editors. The API that ACL Editors call is the sec_acl API, and the RPC interface
that RPC servers export to support the sec_acl API is the rdacl RPC interface.

For the purposes of the rdacl interface, ACLs are identified by a combination of 4 items:

• The identity of the protected object itself. This is identified by:

1. the identity of the server managing the protected object, and

2. a server-supported stringname that ‘‘further identifies’’ the protected object within the
server.

• The identity of the specific ACL associated with the protected object. This is given by:

3. its ACL manager UUID, and

4. its ACL type.

The server-supported stringname, in particular, enables the possibility of extending the naming
model, so that protected objects ‘‘appear as named objects in the (combined CDS-supported and
server-supported) namespace’’ — and this is how the sec_acl API views protect objects.
(Concerning CDS, see the referenced X/Open DCE Directory Services Specification.) This is
especially useful for servers that support large numbers of protected objects (though its use is
‘‘optional,’’ in the sense that servers can register each protected object solely via a server name in
the CDS and an empty server-supported stringname, if they so wish). In the extended naming
model, a server registers its own RPC binding name and an RPC object UUID in the usual way
(with the CDS and with the local Endpoint Map) — the RPC object UUID (only one such should
be registered in a given CDS namespace server entry) represents the ‘‘root’’ of the (server-
supported) namespace (which may be hierarchical or not, and may have a different syntax from
the CDS namespace). An ACL Editor can then address protected objects (and their ACLs) by
uttering a pair of names: the server’s CDS-registered name and the server-supported name of the
protected object. It is even possible to view this pair of names as a single (syntactically
concatenated) name, provided that the naming service in which the server is registered supports
a resolution-with-residual support operation (that is, the namespace server resolves the
concatenated name up to the server’s registration point, returning to the client the resolved
(parsed) and residual (unparsed) parts of the name). This enables the client to query the
namespace at the resolved name for the server’s registered binding information, and then to bind
to it and present to it the server-supported part of the name. (The CDS name servers do support
such a resolution-with-residual operation — see rpc_ns_entry_inq_resolution( ); potentially, the
two steps of resolution-with-residual and binding-query could be combined into a single
operation.) Note that this describes a general mechanism, called the namespace junction (or
federated naming) model, whose utility is not limited to ACL editing. This is illustrated in Figure
1-10 (where hierarchical namespaces are illustrated using abstract ordered tuples of nodes, but
for simplicity their concrete syntaxes are not shown). (For an example of junctions, see Section
1.12 on page 60, which discusses the RS’s own use of this naming model.)

The rdacl RPC interface consists of the following operations:

• rdacl_get_manager_types ( )

Obtain a list of ACL manager types protecting an object.

• rdacl_get_mgr_types_semantics( )

Part 1 Introduction 55



ACL Editors Introduction to Security Services

root

junction
point

server’s
root

node
target

...........

...........
...........

...........
...........

...........

...........

...........

...........
...........

...........

...........

namespace

<x,y,z> to server for its
internal resolution.

presents residual name
using binding information;

Namespace
Server(s)

syntax); namespace resolves this binding information in namespace,
thereby ‘‘mounting’’ its root on a

(without further context)
is ambiguous, referring
to both the namespace
junction point and the
server’s internal root.]

[After mount operation,

1

2

3

2. Client utters concatenated name
1. Server registers its usual RPC

3. Clerk binds to server

to clerk the ‘‘residual name’’

binding information.

(junction protocol, caching,
partial failures, and so on).]

ClerkUser

[‘‘User’’ is human end-user;
‘‘clerk’’ is local agent that
insulates client from ‘‘network’’

CLIENT

SERVER

a

b

c

x

y

z

(leaf) ‘‘junction point’’, <a,b,c>.

the raw name <a,b,c>

<a,b,c,x,y,z> (in an appropriate

to junction point <a,b,c>; returns

<x,y,z> and the server’s

Figure 1-10 Namespace Junction (Federated Naming) Model

Obtain a list of ACL manager types protecting an object, together with information about the
semantics they support.

• rdacl_get_printstring ( )

Obtain human-readable representations of permissions supported by an ACL manager.

• rdacl_lookup ( )

Retrieve (that is, ‘‘read’’) ACLs on a protected object, creating a copy locally on the client.
ACL modification is done by manipulating the local copy, then applying this to the remote
protected object with rdacl_replace ( ).

• rdacl_replace ( )

Apply (that is, ‘‘write’’) ACLs to a protected object. This replaces the currently existing ACL
on the protected object with a new one.

Note: The ‘‘currently existing ACL’’ that gets replaced by an invocation of
rdacl_replace ( ) might not be the same as the ‘‘old ACL’’ that was previously
retrieved by rdacl_lookup ( ), because of a race condition: an intervening
rdacl_replace ( ) from another client may have already replaced that old ACL on the
protected object by a different ACL (that is, no locking/transactional semantics
are supported to prevent this from happening). In fact, an rdacl_replace ( ) may

56 CAE Specification (1997)



Introduction to Security Services ACL Editors

even fail if an intervening rdacl_replace ( ) installs an ACL that denies the necessary
control permission. This potential for interleaved rdacl_lookup ( )/rdacl_replace ( )s
may be a minor inconvenience for some applications, but it is not typically a
major inconvenience because it is rare for multiple clients to be managing the
same ACL at the same time. In any case, this race condition does not compromise
security (because every client’s authority to manage ACLs is always checked, via
the ACL’s control permission), nor does it compromise consistency (because
rdacl_replace ( ) is atomic, writing whole ACLs at a time).

• rdacl_get_access ( )

Obtain calling principal’s permissions to a protected object.

• rdacl_test_access( )

Determine whether calling principal has the specified permission to access a protected object.

• rdacl_test_access_on_behalf ( )

Determine whether a specified principal (not necessarily the calling principal) has the
specified permission to access a protected object. This can be used to support a primitive
form of delegation.

• rdacl_get_referral ( )

Obtain a referral to an ACL ‘‘update site’’ (that is, a server instance or replica that manages a
writable copy of the ACL, as opposed to a read-only copy). This operation can be used to
support server replication (of a simple type).

The sec_acl API consists of the following routines:

• sec_acl_bind( )

Obtain a ‘‘protected object handle’’ (that is, a handle referring to a protected object,
represented by the sec_acl_handle_t data type), identifying the protected object by full name
(that is, by CDS namespace entry concatenated with a server-supported namespace name).
ACLs themselves are identified by a combination of this handle, the manager type UUID of
the ACL, and the type of the ACL (protection, object creation or container creation).

• sec_acl_bind_to_addr ( )

Identical to sec_acl_bind( ), except that the protected object in question is identified by a
combination of the address of the server and a server-supported namespace name.

• sec_acl_release_handle ( )

Release protected object handle previously created by sec_acl_bind( ) or
sec_acl_bind_to_addr ( ).

• sec_acl_get_manager_types ( )

Obtain a list of ACL manager types (UUIDs) protecting an object. (Layered over
rdacl_get_manager_types ( ).)

• sec_acl_get_mgr_types_semantics( )

Obtain a list of ACL manager types protecting an object, together with information about the
semantics they support. (Layered over rdacl_get_mgr_types_semantics( ).)

• sec_acl_get_printstring ( )

Obtain human-readable representations of permissions supported by an ACL manager.
(Layered over rdacl_get_printstring ( ).)

Part 1 Introduction 57



ACL Editors Introduction to Security Services

• sec_acl_lookup ( )

Retrieve (‘‘read’’) ACLs on a protected object. (Layered over rdacl_lookup ( ).)

• sec_acl_replace ( )

Apply (‘‘write’’) ACLs to a protected object. (Layered over rdacl_replace ( ).)

• sec_acl_release( )

Free (local copy of) ACLs previously created by sec_acl_lookup ( ).

• sec_acl_get_access( )

Obtain calling principal’s permissions to a protected object. (Layered over
rdacl_get_access ( ).)

• sec_acl_test_access( )

Determine whether calling principal has the specified permission to access a protected object.
(Layered over rdacl_test_access( ).)

• sec_acl_test_access_on_behalf ( )

Determine whether another principal has the specified permission to access a protected
object. (Layered over rdacl_test_access_on_behalf ( ).)

• sec_acl_get_error_info ( )

Obtain DCE runtime support routine error information related to the sec_acl API.

• sec_acl_calc_mask ( )

Calculate a new MASK_OBJ ACLE for an ACL (or list of ACLs), whose permissions are the
union of the permissions of all ACLEs of types USER, FOREIGN_USER, GROUP_OBJ,
GROUP, FOREIGN_GROUP, FOREIGN_OTHER, ANY_OTHER.

Notes:

1. The sec_acl_calc_mask ( ) routine is supported for POSIX-compliant
applications; that is, those that support MASK_OBJ with its POSIX
semantics. The set of ACLEs listed, of which the newly calculated
MASK_OBJ is the union, corresponds approximately to what POSIX calls
the ‘‘File Group Class ACLEs’’, though that designation is inappropriate in
the context of DCE.

2. The sec_acl API is designed to be a general programming interface for
managing all ACLs in such a way that the client is unaware of the principal
identity of the server that controls the objects protected by the ACLs. As
such, the server’s principal name does not occur as a parameter to the
sec_acl API (see, for example, sec_acl_bind( )). This implies, in particular,
that the sec_acl API supports only one-way (client-to-server) authentication,
not mutual (server-to-client) authentication. Applications that require
mutual authentication should use the ‘‘raw’’ rdacl RPC protocol, not the
sec_acl API. (Mutual authentication may be added to the sec_acl API in a
future revision of DCE.)

3. No local ‘‘high-level ACL manipulation’’ API routines are currently
supported (for example, ‘‘add or delete such-and-such an ACLE from this
ACL’’, or ‘‘deny all privileges for such-and-such a principal’’). Such
operations are typically supported by interactive command-level ACL
editing user interfaces, but those are beyond the scope of this revision of

58 CAE Specification (1997)



Introduction to Security Services ACL Editors

DCE.

Part 1 Introduction 59



Registration Service (RS) and RS Editors Introduction to Security Services

1.12 Registration Service (RS) and RS Editors
The Registration (or Registry) Service (RS) is the TCB’s repository for security-relevant data (in
particular, identities, long-term cryptographic keys and privilege information) in DCE. The RS
maintains a datastore, whose clients are the KDS and PS, and RPC interfaces for the RS Editor,
ID Map and Key Management facilities (see Figure 1-1 on page 12). The stored elements of the
RS datastore are here called items — not objects, to distinguish terminologically between ‘‘the
entities themselves’’ (‘‘objects’’) and the datastore information (‘‘items’’ with ‘‘attributes’’
attached to them) stored about the objects. Certain collections of items are called domains. The
items in the RS datastore are organised into the following five categories:

• (RS) Policy Item

Contains cell-wide information applicable to all the entities in the cell (not just, for example,
principals in a particular organisation or group within the cell — not to be confused with
‘‘organisation policies’’, below). The Policy item has two categories of attributes, respectively
called (Registry) policies and (Registry) properties.

• Principal (P) Domain

Contains principal items; that is, information about principals (or ‘‘principal objects’’). Each
principal is normally associated with an account (see below).

• Group (G) Domain

Contains group items; that is, information about groups (or ‘‘group objects’’). Each group is
associated with an (unordered) set of principals (not, however, of other groups), called the
members of the group.

• Organisation (O) Domain

Contains organisation items; that is, information about organisations (or ‘‘organisation
objects’’). Each organisation is associated with an (unordered) set of principals (not,
however, of groups or other organisations), called the members of the organisation.
Organisations have as attributes organisation policies.

• Account Domain

Contains account items; that is, information about accounts (or ‘‘account objects’’). Accounts
identify the targets of DCE login rituals (see the Login Facility, below). They consist of a
triplet, consisting of principal, group, and organisation items.

Principals (and other entities, such as groups and organisations) whose security data is held in a
cell’s RS are said to belong to that cell (in the security sense at least, and usually in the
administrative sense also); similarly, the protected objects that server principals act as reference
monitors for are said to belong to the server principal’s cell. The RS itself has the principal name
dce-rgy (within its cell).

Programs that manipulate (for administrative purposes) the RS datastore are called RS Editors
(or Rgy Editors). To support RS Editors, the RS supports the rs_policy, rs_pgo and rs_acct RPC
interfaces, described below. (The RS also supports additional RPC interfaces for other uses, and
these are introduced in context in other sections.)

Note: In the current revision of DCE, the only RS Editor APIs that are supported are those
related to binding to RS servers — that is, the RS Editor RPC interfaces supported by
DCE are not currently supported by corresponding APIs. It is anticipated that such
APIs will be added in a future revision.

60 CAE Specification (1997)



Introduction to Security Services Registration Service (RS) and RS Editors

1.12.1 ACL Manager Types Supported by the RS

The RS is the only service in the DCE TCB that supports a datastore of persistent items, and is
the only one (not counting DTS) that protects its objects with ACLs (the KDS and PS protect the
objects they manage by direct cryptographic means, not with ACLs). This section briefly
discusses RS ACL management (an extended discussion occurs in Section 11.1 on page 358).

The RS acts as the reference monitor to five kinds of protected objects (items in its datastore),
supported by five Common ACL Manager types. Each of the RS’s protected objects is of exactly
one of the following kinds (that is, no item can (currently) be ‘‘polymorphic’’, in the sense of
being of more than one of the following kinds):

• Policy ACL Manager Type

Manages ACLs on the RS’s Policy item.

• Directory ACL Manager Type

Manages ACLs on directories. These directories are containers internal to the RS itself, not
one of the items managed by the RS datastore.

• Principal ACL Manager Type

Manages ACLs on principal items.

• Group ACL Manager Type

Manages ACLs on group items.

• Organisation ACL Manager Type

Manages ACLs on organisation items.

The ACL Manager Type UUIDs, the supported permissions and ACLE Types of these ACL Manager
types, and the printstrings, bit representations and semantics associated with their supported
permissions, are all specified in Chapter 11.

1.12.2 RS Binding; rs_bind Interface and sec_rgy_bind API

This section discusses the RS binding and replication model, and its corresponding rs_bind RPC
interface and sec_rgy_bind API. These are used to manage RPC bindings (or ‘‘contexts’’)
between clients and (potentially replicated) RS servers, thereby enabling communications
sessions between them.

A basic concept supported by DCE is that of replication of the RS service. For the purposes of
this replication model, the terms server, instance, replica and site are considered to be synonymous.
Specifically, the RS replication model supports a model of replication of the RS datastore
consisting of two kinds of replicas: (one or more) writable (update) servers, and (zero or more)
readable (query) servers, where every update server is a query server as well. This model is
satisfied by, for example, any of the following:

1. an unreplicated RS server

2. replicated ‘‘master/slave’’ RS servers (one update replica and multiple query replicas)

3. ‘‘mirrored’’ RS servers (multiple RS servers which support all RS services and whose
datastores are maintained synchronously).

Note: The RPC-level protocols to actually support this replication model are not specified
in this revision of DCE; it is anticipated that they will be supported in a future
revision.

Part 1 Introduction 61



Registration Service (RS) and RS Editors Introduction to Security Services

All RS replicas (query or update) export the rs_bind RPC interface, which supports the
following operation:

• rs_bind_get_update_site ( )

Get binding to update server (in the same cell).

This rs_bind_get_update_site ( ) operation supports the RS Binding and replication models
discussed above. Namely, clients can target query operations to arbitrary replicas; and they can
target update operations to update replicas whose binding is determined by an invocation of
rs_bind_get_update_site ( ) (the latter can be targeted to an arbitrary (query or update) replica).

At RPC level, a context with an RS site is represented by an RPC binding handle, of data type
handle_t. At API level (in the sec_rgy_bind API, and other RS APIs to be supported in future
revisions of DCE), a context is represented by an RS handle, of data type sec_rgy_handle_t. The
sec_rgy_bind API supports the following routines:

• sec_rgy_cell_bind( )

Bind to (that is, establish a context with) some (unspecified) RS site in a specified cell.

• sec_rgy_site_bind( )

Bind to an RS site.

• sec_rgy_site_bind_update ( )

Bind to an RS update site.

• sec_rgy_site_open( )

Bind to an RS site, with default security characteristics.

• sec_rgy_site_open_update ( )

Bind to an RS update site, with default security characteristics.

• sec_rgy_site_close( )

Free an RS handle, and unbind RS site.

• sec_rgy_site_is_readonly ( )

Determine whether an RS site is a query site or an update site.

• sec_rgy_site_binding_get_info ( )

Retrieve information about RS site.

1.12.3 Policy Item, Policies and Properties; rs_policy RPC Interface

The (RS) Policy Item holds Policy and Property information that affects all accounts in a cell. (This
is not to be confused with Organisation Policies, which affect only the accounts of principals that
are members of a particular organisation.)

• (Registry) Properties include such information as:

— The version number of the RS software used to create and read the RS datastore.

— The name and UUID of the cell associated with the RS, and whether an RS site is valid for
update (‘‘writable’’) or only for query (‘‘read-only’’).

— Minimum and default lifetimes for tickets issued to principals.

62 CAE Specification (1997)



Introduction to Security Services Registration Service (RS) and RS Editors

— Bounds on the local ID numbers used for principals, and whether the UUIDs of principals
also contain embedded local ID numbers.

• (Registry) Policies and Organisation Policies control the accounts of principals that are members
of the cell or of an organisation within the cell. This data controls the lifetime and length of
passwords, as well as the character set from which passwords may be composed. It also
controls the default lifespan of accounts. The policy in effect for any principal or
organisation (said to be its effective policy) is the most restrictive combination of the cell policy
and the policy for the principal or organisation.

• (Registry) Authentication Policies and Account Authentication Policies control the maximum
lifetime of tickets, both upon first issue and upon renewal. The policy in effect for any
account (said to be its effective policy) is the most restrictive combination of the cell policy and
the policy for the account.

The RS supports the rs_policy RPC interface for operating on property and policy information,
which supports the following operations:

• rs_properties_get_info ( )

Get cell property information.

• rs_properties_set_info ( )

Set cell property information.

• rs_policy_get_info ( )

Get cell or organisation policy information.

• rs_policy_get_effective( )

Get cell or organisation effective policy information.

• rs_policy_set_info ( )

Set cell or organisation policy information.

• rs_auth_policy_get_info ( )

Get cell or account authentication policy information.

• rs_auth_policy_get_effective( )

Get account’s effective authentication policy.

• rs_auth_policy_set_info ( )

Set cell or account authentication policy information.

1.12.4 PGO Items; rs_pgo RPC Interface

The Principal, Group and Organisation items in the RS datastore are known collectively as PGO
items. PGO items primarily contain:

• A ‘‘human-friendly’’ (string)name, which serves as the normal datastore query (lookup) key (not
to be confused with cryptographic keys) to PGO items (within a cell). There are separate
namespaces for Principals, for Groups and for Organisations, and each is organised
hierarchically. (For more on naming, see Section 1.13 on page 67 and Section 1.18 on page 84.)

• A ‘‘computer-friendly’’ (because of its small fixed size and its ability to be automatically
generated) UUID which serves as the definitive identifier of the PGO item (within the context
of its cell). (‘‘Definitive’’ here means that each principal has a unique UUID, though it may

Part 1 Introduction 63



Registration Service (RS) and RS Editors Introduction to Security Services

have multiple (alias) stringnames.)

The Principal domain (though not the Group or Organisation domains) supports aliases; that is,
multiple names pointing to the same datastore entry.

The following principal names are reserved (within each cell).

Note: The corresponding principal UUIDs are not reserved, and in fact they’re expected to
be different in each cell — see Section 1.6 on page 25 concerning DCE’s ‘‘double-
UUID identification scheme’’.

• krb5tgt/cell-name

KDS (or surrogate) in (local or foreign) cell /.../cell-name. Thus, for example, if the cell name of
cell X is /.../cellX, then the principal name of KDSX within the RSX principal namespace is
krb5tgt/cellX. Similarly, for a foreign cell Y whose cell name is /.../cellY, the principal name
of KDSY within the RSX principal namespace is krb5tgt/cellY.

• dce-ptgt

PS in the cell.

• dce-rgy

RS in the cell.

• host-name/self

SCD on the specified host (host-name) in the cell. This is also called the host principal or
machine principal of the host host-name.

The following group name is reserved (within each cell):

• none

Names a default group, intended to be used as the primary group associated with an account
if no other group is specified (also used by some reserved accounts).

The following organisation name is reserved (within each cell):

• none

Names a default organisation, intended to be used as the organisation associated with an
account if no other organisation is specified (also used by some reserved accounts).

The RS supports the rs_pgo RPC interface for operating on RS PGO datastore items, which
supports the following operations:

• rs_pgo_add ( )

Add a PGO item.

• rs_pgo_delete( )

Delete a PGO item (also delete any account (see below) depending on the deleted PGO item).

• rs_pgo_rename( )

Change the name of a PGO item.

• rs_pgo_replace ( )

Replace the information associated with a specified PGO item.

64 CAE Specification (1997)



Introduction to Security Services Registration Service (RS) and RS Editors

• rs_pgo_add_member( )

Add a member principal to a group or organisation.

• rs_pgo_delete_member( )

Delete a member principal from a group or organisation.

• rs_pgo_is_member( )

Test whether a principal is a member of a group or organisation.

• rs_pgo_get_members( )

Return a list of member principals of a group or organisation.

• rs_pgo_get( )

Retrieve a PGO item (identified by any of several query key formats) from the RS datastore.

• rs_pgo_key_transfer ( )

Convert one query key format to another.

1.12.5 Accounts; rs_acct RPC interface

Accounts are the targets of login rituals. Account items consist of, minimally, a triplet of a
principal, a primary group, and an organisation. The account may also contain a list of secondary
groups known as a concurrent group set, which together with the primary group specifies the
principal’s project list; that is, all the groups to which the principal corresponding to the account
belongs. The principal and group information in an account is typically constructed for a user
(in a PAC, in a privilege-ticket) at login time, for use by the user throughout its login session.

Accounts are named by their principal domain component name. Thus, when a user responds to
a ‘‘login prompt’’ with their principal name, they are identifying their account name as well. But
even though a principal name can be associated with only one account, the principal itself
(identified within its cell by its definitive principal UUID identifier) can belong to multiple
accounts, because of the alias feature of the Principal domain (each alias of a principal can
identify a different account).

The following accounts are reserved within each cell (expressed as a <P, G, O> triple):

• <krb5tgt/cell-name, none, none>

KDS account in the (local) cell (where cell-name is this cell’s name).

• <dce-ptgt, none, none>

PS account in the cell.

• <dce-rgy, none, none>

RS account in the cell.

• <host-name/self, none, none>

SCD account on the specified host (host-name) in the cell.

The RS supports the rs_acct RPC interface for operating on RS account items, which supports
the following operations:

• rs_acct_add ( )

Add an account.

Part 1 Introduction 65



Registration Service (RS) and RS Editors Introduction to Security Services

• rs_acct_delete( )

Delete an account.

• rs_acct_get_projlist ( )

Return the project list for an account.

• rs_acct_lookup ( )

Return data for an account.

• rs_acct_rename( )

Rename an account (associate account information to another principal name).

• rs_acct_replace( )

Replace an account’s data.

1.12.6 Miscellaneous; rs_misc RPC Interface

The RS supports the rs_misc RPC interface for miscellaneous operations:

• rs_login_get_info ( )

Retrieve local system login information from the RS.

66 CAE Specification (1997)



Introduction to Security Services ID Map Facility

1.13 ID Map Facility
The ID Map Facility maps (global) PGO (principal, group or organisation) names into their cell-
name and cell-relative components, and to the UUIDs corresponding to them — and vice versa.
It supports the secidmap RPC interface and the ID Map (or sec_id) API.

As has been mentioned already (at least for principals and groups, see Section 1.6 on page 25),
PGOs in the DCE security environment are definitively identified by a double-UUID scheme;
that is, by an ordered pair of (‘‘computer-friendly’’) UUIDs, consisting of a cell UUID and a per-
cell PGO UUID — pgo-ID = <cell-UUID, pgo-UUID>, or:

• principal-ID = <cell-UUID, principal-UUID>

• group-ID = <cell-UUID, group-UUID>

• organization-ID = <cell-UUID, organization-UUID>

Note: Under normal circumstances, all pgo-UUIDs in all cells will be distinct from one
another. However, the security of the services specified in DCE require this property
to hold only within cells, not necessarily across cells. This is discussed in detail in
Section 1.6 on page 25.

Additionally, PGOs can be addressed by ‘‘human-friendly’’ (string)names, namely they are
identified by a concatenated cell name and a per-cell PGO name — pgo-name = /.../cell-name/cell-
relative-pgo-name or:

• principal-name = /.../cell-name/cell-relative-principal-name

• group-name = /.../cell-name/cell-relative-group-name

• organization-name = /.../cell-name/cell-relative-organization-name

Thus, what the ID Map Facility does is give a bidirectional mapping — pgo-name ↔ pgo-ID or:

/.../cell-name/cell-relative-pgo-name ↔ <cell-UUID, pgo-UUID>

(For more information concerning naming syntax, see Section 1.18 on page 84.)

Note that the ID Map Facility depends on dynamic (or semantic) information, because there is no
static (or syntactic) way to decompose global PGO names into their cell-name and cell-relative
name components. For example, a PGO name such as /.../foo/bar/zot is ‘‘syntactically
ambiguous’’ (disregarding the fact that the actual syntactic string foo is not supported by any
currently DCE-supported global naming service), in the sense that it is impossible to determine
syntactically whether its components are:

cell-name = foo and cell-relative-PGO-name = bar/zot

or:

cell-name = foo/bar and cell-relative-PGO-name = zot

The DCE security facilities guarantee, however, that names are not ‘‘semantically ambiguous’’;
that is, that only one (at most) principal (or group, or organisation) has the name /.../foo/bar/zot.
Note, however, that there may be a principal and a group and an organisation all having the
name /.../foo/bar/zot. (Some more discussion of the relationship between security and naming is
given in Section 1.18 on page 84.)

The RS exports the secidmap RPC interface, to support the sec_id API. It supports the following
operations:

Part 1 Introduction 67



ID Map Facility Introduction to Security Services

• rsec_id_parse_name( )

Decompose (or ‘‘parse’’) a global PGO name into its cell-name and cell-relative name parts,
and their UUIDs.

• rsec_id_gen_name( )

Generate (or ‘‘translate’’) a global PGO name, and its corresponding cell name and cell-
relative name parts, from a cell UUID and a cell-relative UUID.

• rsec_id_parse_name_cache( ) and rsec_id_gen_name_cache( )

These are the same as the above, but additionally support client-side cache management.

The sec_id API supports the following routines:

• sec_id_parse_name( )

Decompose a global principal name into its cell-name and cell-relative principal name, and
their UUIDs.

• sec_id_parse_group ( )

Decompose a global group name into its cell-name and cell-relative group name, and their
UUIDs.

• sec_id_gen_name( )

Generate (or ‘‘translate’’) a global principal name, and its corresponding cell name and cell-
relative name parts, from a cell UUID and a cell-relative UUID.

• sec_id_gen_group( )

Generate (or ‘‘translate’’) a global group name, and its corresponding cell name and cell-
relative name parts, from a cell UUID and a cell-relative UUID.

68 CAE Specification (1997)



Introduction to Security Services Key Management Facility

1.14 Key Management Facility
The Key Management Facility provides the means by which ‘‘non-interactive’’ subjects (that is,
ones that do not respond to an interactive ‘‘login’’ prompt, such as server programs) manage
their long-term cryptographic keys (stored in the RS datastore, as well as in local key store). It
supports the Key Management (or sec_key_mgmt) API.

Every account — interactive or non-interactive — in DCE has an entry in its cell’s RS datastore
that specifies a long-term secret key. In the case of an interactive principal (in particular, an
end-user), this long-term key is derived from the principal’s password (see Section 1.15 on page
71), and such principals need to keep their password secure by memorising it (rather than, say,
writing it down). Similarly, a non-interactive principal (in particular, an RPC server) also needs
to be able to store and retrieve its long-term key in a secure manner. This has both advantages
and disadvantages: it is an advantage that a non-interactive principal’s long-term key need not
be memorisable — that is, need not be derived from a password (because randomly generated
keys are more secure than keys derived from passwords, since they are drawn from a larger key
space and therefore cannot be ‘‘guessed’’ as easily as passwords (password-based keys)); but it
is a disadvantage that a non-interactive principal does not have a secure storage area (such as a
‘‘brain’’) for memorising its long-term key. The Key Management Facility provides such a
secure key management facility for non-interactive principals.

The RS datastore holds a (single) long-term key (together with its key version number, see
below) for each account, which is referred to as the ‘‘current’’ long-term key. Since
cryptographic keys become inherently less secure as more and more data is protected with them,
it is good security policy to change long-term keys occasionally (this is analogous to interactive
users changing their passwords). When the current long-term key is changed, however, there
may continue to exist outstanding tickets protected with previous key(s) (in fact, this is the usual
case). This necessitates a mechanism for keeping track of ‘‘usable’’ keys (that is, those for which
outstanding usable tickets protected with these keys continue to exist). That problem is solved
in DCE by providing for key version numbers and a local key store, whereby all usable (current and
previous) long-term keys are tagged with a version number; and this information is maintained
‘‘locally’’ by each server (that is, securely with respect to security policy, and in an
implementation-defined sense). It is the sec_key_mgmt API that realises this key maintenance
facility. Implementations are required to retain keys of all version numbers for which there may
exist outstanding tickets, unless such tickets need to be explicitly revoked because their keys are
suspected of being compromised (see sec_key_mgmt_delete_key( ) and
sec_key_mgmt_delete_key_type ( ), below).

While these key management routines themselves are designed to be secure, the ultimate
security of the long-term keys they manage — in particular the implementation-dependent local
key storage of the keys themselves — depends also upon the security of local hardware and OS,
and that involves questions of integration of DCE security and local security beyond the scope of
this specification. Typical implementations will locally store keys in files (called key table files)
managed by the local OS (and therefore protected by whatever means the local OS protects it
files), although the Key Management Facility accommodates other storage means as well.

Finally, the Key Management Facility provides a means to delete keys (thereby revoking tickets
protected with those keys) — non-interactive principals use this when old keys expire, or when a
key is suspected of being compromised.

Some of the routines below take a key type as a parameter, which identifies the cryptoalgorithm
in use (for example, DES).

The Key Management (or sec_key_mgmt) API consists of the following routines (except for
those specifically noted to communicate with the RS server, they are all ‘‘local’’; that is, no
protocol is specified for them, and the implementation must guarantee their security):

Part 1 Introduction 69



Key Management Facility Introduction to Security Services

• sec_key_mgmt_change_key ( )

Change a principal’s key to a specified value, both locally (in local key storage) and remotely
(in the RS datastore).

• sec_key_mgmt_set_key( )

Change a principal’s key to a specified value, locally but not remotely.

• sec_key_mgmt_gen_rand_key( )

Generate a random key. (Does not change principal’s key, either locally or remotely.)

• sec_key_mgmt_manage_key( )

Change a principal’s key to a random value, locally and remotely, on a periodic schedule.

• sec_key_mgmt_get_key( )

Retrieve principal’s key, of a specified key version number, from local key storage.

• sec_key_mgmt_free_key( )

Free memory allocated to a key.

• sec_key_mgmt_get_next_kvno ( )

Determine next key version number from RS.

• sec_key_mgmt_initialize_cursor ( )

Initialise a cursor to local key store.

• sec_key_mgmt_release_cursor( )

Dispose of cursor to local key store.

• sec_key_mgmt_get_next_key( )

Retrieve key pointed to by cursor to local key store.

• sec_key_mgmt_delete_key( )

Delete keys of specified version number and all types from local key store (thereby
‘‘revoking’’ tickets protected with those keys).

• sec_key_mgmt_delete_key_type ( )

Delete key of specified version number and type from local key store (thereby revoking
tickets protected with that key).

• sec_key_mgmt_garbage_collect ( )

Delete unusable keys (that is, those for which no usable ticket can exist) from local key store.

70 CAE Specification (1997)



Introduction to Security Services Login Facility and Security Client Daemon (SCD)

1.15 Login Facility and Security Client Daemon (SCD)
The Login Facility provides the means by which subjects (RPC clients) manage their DCE login
context(s). It supports the Login (or sec_login) API.

A (‘‘network’’) login context contains the information necessary for a subject to become a client in
the DCE security environment; that is, to invoke protected RPCs. Namely, a client ‘‘annotates’’
an RPC binding handle with the security information present in a login context, via
rpc_binding_set_auth_info ( ) (as described in the referenced X/Open DCE RPC Specification).

Login contexts are represented to the application programmer as an ‘‘opaque pointer’’ (that is, a
pointer to a data structure whose internal structure is implementation-dependent and not
further specified), but conceptually the information held in login contexts normally includes
such items as:

• Identity information concerning the subject’s account (stored in the RS datastore), such as
principal stringname and principal/group UUIDs, contained in a ticket and privilege-ticket
issued by the KDS and PS of the subject’s cell. The protected parts of this information
(including the session keys between the subject and the KDS and PS) may be encrypted (if
the login context is unvalidated) or decrypted (if it is validated).

• (Registry) policy information, such as the maximum lifetime of tickets.

• State information, including the validation state of the login context (that is, whether or not it
has been ‘‘validated’’ (decrypted)), and its certification state (that is, whether or not is has
been ‘‘certified’’ (described below)).

• The authority for authentication information (it may originate from the DCE TCB, or from
the local TCB if the network is unavailable for some reason).

Note: A ‘‘login context’’ need not be established by an actual interactive end-user login
ritual, but may be established via the sec_login API. Furthermore, multiple login
contexts may be associated with a single ‘‘process context’’, and vice versa. Another
name for ‘‘login context’’ is (client-side) security context.

A login context is said to be validated if the information contained in it is trusted by the
principal/account associated with the login context (provided, as always, that the
principal/account trusts the security of its own long-term key). Said in more intuitive terms, an
unvalidated (or prevalidated) login context is one which is still protected (that is, partially
encrypted) in the long-term key of the principal/account with which it is associated; a validated
login context is one which has been (correctly) decrypted (and hence can be trusted to the extent
that the key used to decrypt it is trusted). The practical meaning of ‘‘validation’’ is that the login
context is in a format (namely, decrypted) that can be used for protected RPCs (that is, to
‘‘annotate’’ RPC handles), and that the client trusts it for this purpose.

A more specialised notion than that of validation is certification. A validated login context is
said to be certified if — and to the extent that — it is trusted by parties other than the
principal/account associated with the login context. The prototypical example of such an ‘‘other
party’’ is the local TCB of the client’s host, especially its ‘‘login program’’ (or other ‘‘entrance
portal’’): the local TCB typically requires a high level of trust in a client’s login context, because it
typically uses the client’s network login context to establish its local login context, issuing the
client its local security credentials on the basis of its global (‘‘network’’) credentials (by means of
a host-specific ‘‘UUID-to-host-ID’’ mapping), thereby enabling the client to access local OS
resources (modulo local access controls). However, an ‘‘other party’’ could just as well be a
non-TCB party (that is, another principal) instead. This certification of a (validated) login
context, by another party suspicious of it, can be accomplished if the other party can use the
login context to successfully ‘‘impersonate’’ the principal/account associated with the login

Part 1 Introduction 71



Login Facility and Security Client Daemon (SCD) Introduction to Security Services

context (note that the other party has access to the required identity information to attempt this,
since it is present in the login context — in particular, the client must trust the other party to the
extent that it exposes this information to it): for, if the login context can be used to successfully
execute a protected RPC to a trusted party (say, to the local TCB itself), then the information in
the login context must have been genuine; that is, it is trustable. (There is, however, a subtle
point regarding ‘‘trusted communications’’ between the other party and its local TCB — this is
discussed in Section 1.15.2 on page 77.) This model requires that the local TCB is instantiated as
a (server) principal with respect to the DCE TCB — and it is the function of the Security Client
Daemon (SCD) to perform that role: the SCD ‘‘is the DCE principal of the local machine’’. It has
principal name host-name/self (within its cell). The SCD supports the scd RPC interface for the
purpose of supporting certification.

Note: There is no necessary relationship between the DCE host name, host-name, and any
other (non-DCE) name the machine may be endowed with (for example, last
component of Internet host name). By convention, however, host-name typically has
the form hosts/short-host-name (within its cell), where short-host-name is ‘‘the same’’
short name that the machine is known by for other purposes (for example, the last
component of an Internet host name).

Of all the login contexts supported by a given process, there is (at most) one that is distinguished
among them, called the process’ current login context. This is a process-wide notion (and not, for
example, a thread-specific notion). A process’ current login context is, by definition, the (only)
login context that is (automatically) inherited by child processes; it is very common for a process
to possess only a single login context, and for this to be designated its current login context. The
current login context is also the process’ default login context, which is by definition the login
context that is considered to be in effect in situations where a login context is required but none
is otherwise specified (see, in particular, rpc_binding_set_auth_info ( ) in the referenced X/Open
DCE RPC Specification). Care should be taken not to confuse the (process-wide) notions of
current and default login context with the notion of the host’s login context, which is by definition
the login context associated with the host’s principal/account itself (‘‘self’’).

A process at its start-up time may or may not have a current login context, depending on its
parent’s actions (namely, whether or not the parent had designated a current login context and
enabled or disabled current login context inheritance). This consideration is especially
interesting in the case of a ‘‘machine boot’’ scenario, where for typical implementations it is
desirable for an operating system’s ‘‘initial process’’ (sometimes called init) to ‘‘run as the host
principal’’ (that is, to have its current login context be the login context of the host
principal/account), and for that login context to be inherited by the other boot or ‘‘daemon’’
processes (but not by ordinary ‘‘user’’ processes). Special routines are included in the sec_login
API (below) to cater to this important special case.

An end-user command for ‘‘logging in’’ to the DCE environment is not specified in this
document, though implementations will typically provide a host-specific ‘‘login program’’ (or
‘‘login command’’), and give it the following functionality (all relative to the user’s home cell):

• Request the user’s login name, and obtain a ticket for that user from the KDS. (That is, begin
to set up a login context for the user; see sec_login_setup_identity ( ) below.)

• Request the user’s password, map it to a cryptographic key, and verify that it is the same as
the user’s long-term key protecting the ticket (by verifying that it correctly decrypts the
ticket). (That is, validate and complete the set-up of the login context; see
sec_login_validate_identity ( ) below.) Then, send the ticket to the KDS, requesting a ticket to
the PS; and send this ticket to the PS to obtain a privilege-ticket for the user, and decrypt that.

• Map the user’s ‘‘network identity information’’ (stored as a stringname in the ticket, and as
UUIDs in the PAC (or obtainable through the EPAC set seal) in the privilege-ticket) to ‘‘local

72 CAE Specification (1997)



Introduction to Security Services Login Facility and Security Client Daemon (SCD)

host identity information’’, after first checking that the information contained in the ticket
and privilege-ticket is trustworthy. (That is, certify the login context; see
sec_login_certify_identity ( ) below.) (Actually, for the important special case of a (locally)
privileged process — that is, a trusted process in the host’s TCB, such as its login program —
a special routine is supported, sec_login_valid_and_cert_ident ( ), which not only combines
validation and certification, but is ‘‘more infallible’’ than sec_login_certify_identity ( ) — see
Section 1.15.2 on page 77.)

• Arrange for the user’s login context to be inherited by the login process hierarchy, so that it is
available for the user’s entire login session (typically, the user’s ‘‘login shell’’ and its child
processes (recursively)). (That is, set the current context; see sec_login_set_context ( ) below.)

To accomplish these activities, the login program uses (parts of) the sec_login API, which
consists of the following routines. These routines are designed to be called both by interactive
host login programs (as described above), and by non-interactive programs that need to act as
RPC clients (under potentially multiple principal/account identities). A few of these routines
are primarily designed to be called by specific programs, such as a host’s login program, or the
local host’s first (or ‘‘initial’’) process (‘‘init’’) after a system boot.

• sec_login_init_first( )

Initialise the calling process’ current login context inheritance mechanism, thereby making
the calling process’ current login context (potentially) accessible to other processes on the
local host. In typical usage, this routine is called only by the host’s initial process at boot
time (‘‘init’’) to initialise the host’s login context for inheritance by the host’s hierarchy of
daemon processes which are spawned as child (and sub-child) processes of the initial
process. (The calling process’ current login context is actually ‘‘set up’’ by
sec_login_setup_first( ), below.)

• sec_login_setup_first( )

Similar to sec_login_setup_identity ( ) (below), except that the only login context it can set up is
the local host’s (unvalidated) login context (that is, the login context associated with the
host’s principal/account (‘‘self’’)). In typical usage, this routine is called only by the host’s
initial process (or, if this functionality has not been integrated into the host’s initial process,
by SCD).

• sec_login_validate_first( )

Similar to sec_login_validate_identity ( ) (below), except that the only login context it can
validate is the local host’s login context.

• sec_login_setup_identity ( )

Set up a login context; that is, create an (unvalidated and uncertified) login context for a
specified principal/account (recall that accounts are uniquely identified by their principal
name component), in the address space of the calling client. Such a login context is protected
(that is, parts of it are encrypted), and it is not usable until it has been validated (that is,
decrypted, by sec_login_validate_identity ( )).

• sec_login_validate_identity ( )

Validate a login context; that is, make it usable for making protected RPCs (in the sense of
making it usable by rpc_binding_set_auth_info ( )), and in the process demonstrate its
trustworthiness (for use in protected RPCs) to the principal/account to which it is associated
(assuming the security of the long-term key of the principal/account associated with the
login context). This is typically accomplished by decrypting the encrypted part of the login
context (and verifying that the decryption is correct), using the long-term key of the

Part 1 Introduction 73



Login Facility and Security Client Daemon (SCD) Introduction to Security Services

principal/account — hence, this information must have been encrypted by an entity knowing
the principal/account’s long-term key, which must have been a trusted entity (by
hypothesis).

• sec_login_certify_identity ( )

Certify a (validated) login context; that is, demonstrate its trustworthiness (for the purpose of
basing access decisions on information carried in it) to parties other than the
principal/account to which it is associated. This is typically accomplished by impersonating
(as a client) the principal/account to which the login context is associated, by verifying that
the login context can be used to execute a protected RPC to the local host’s SCD. (See Section
1.15.2 on page 77.)

• sec_login_valid_and_cert_ident ( )

Simultaneously validate and certify a login context (that is, combine the functionality of
sec_login_validate_identity ( ) and sec_login_certify_identity ( ) into a single routine), in a manner
appropriate for use by privileged processes. This is typically accomplished by impersonating
the local host’s SCD, which may be thought of as ‘‘the local TCB invoking a protected RPC to
itself’’, and is ‘‘infallible’’ (that is, completely secure, modulo the security of the local TCB).
(See Section 1.15.2 on page 77.)

• sec_login_set_context ( )

Set a login context; that is, register it in the sense of making it (potentially) accessible to other
processes on the local host, and moreover make it the calling process’ current login context.

• sec_login_get_current_context ( )

Retrieve the calling process’ current login context.

• sec_login_release_context ( )

Release a login context; that is, free the memory allocated to it (this does not affect the
accessibility of other processes to the login context).

• sec_login_purge_context ( )

Purge a login context; that is, unregister it in the sense of making it inaccessible to the calling
process and to other processes on the local host (typically, this involves eradicating all
memory and disk storage of the login context).

• sec_login_export_context ( )

Export a login context; that is, create an advertisement for it. Such an advertisement consists of
information that can be communicated to other processes and enables them to (potentially)
share the login context (such sharing is restricted to processes on the local host).

• sec_login_import_context ( )

Import a login context; that is, create a login context from its advertisement.

• sec_login_newgroups( )

Restrict the list of groups associated with a login context. (This is designed for supporting
‘‘least privilege’’ security policies that require clients to act with the minimal set of privileges
necessary for successful completion of their tasks.)

• sec_login_get_groups ( )

Retrieve local host group membership information from a login context.

74 CAE Specification (1997)



Introduction to Security Services Login Facility and Security Client Daemon (SCD)

• sec_login_get_expiration ( )

Retrieve the expiration date of a login context, which is the date beyond which RPC binding
handles annotated with the login context (in the sense of rpc_binding_set_auth_info ( ) in the
referenced X/Open DCE RPC Specification) will fail.

• sec_login_refresh_identity ( )

Refresh a login context; that is, increase its expiration date to the maximum allowable; the
refreshed login context must be revalidated.

• sec_login_inquire_net_info ( )

Retrieve certain ‘‘network information’’ (PAC data and expiration data) from a login context.

• sec_login_free_net_info ( )

Free memory allocated for ‘‘network information’’ structure.

• sec_login_get_pwent ( )

Retrieve local host information associated with a login context.

In addition, support for delegation introduced into DCE in DCE 1.1 provides the additional
functionality listed in the next section.

1.15.1 Delegation Related Functions

The following functions are used to establish delegation chains and perform delegation related
functions. The provide the following functionality:

• The ability to enable delegation.

• Also, the ability to select the type or form of delegation desired. This permits the following
capabilities:

• The ability of an intermediary service to impersonate the initiator of the service. In this
instance, the identity of the (impersonator) participant in the call chain is not preserved in
a call chain of participants associated with performing the requested service.

• The ability of an intermediary service to act as a delegate on behalf of the initiator of the
service. In this instance, the identity of the (delegated) participant is preserved in a call
chain of participants associated with performing the requested service.

To accomplish this, the implementation’s host-specific ‘‘login program’’ (or ‘‘login command’’)
uses (parts of) the sec_login API consisting of the following routines. As previously mentioned,
these routines are designed to be called by both interactive host login programs and by non-
interactive programs that need to act as RPC clients. The routines are:

• sec_login_become_delegate ( )

This function is used by intermediate servers to become a delegate for their caller.

• sec_login_become_impersonator ( )

This function is used by intermediate servers to become an impersonator for their caller.

• sec_login_become_initiator ( )

This function constructs a new login context that enables the selected delegation type. The
login context is unvalidated and uncertified. Unless this function is invoked, delegation is not
permitted on behalf of the the originator of a request for service.

Part 1 Introduction 75



Login Facility and Security Client Daemon (SCD) Introduction to Security Services

The delegation types that are permitted are impersonation and (traced) delegation.

• sec_login_cred_get_delegate ( )

This function is used to iterate through and extract the privilege attributes of the delegates
listed in a specified login context.

• sec_login_cred_get_initiator ( )

This function is used to extract the initiator’s privilege attributes from a specified login
context.

• sec_login_cred_init_cursor ( )

This function is used to intiialise a sec_cred_curson_t to be used as a cursor to iterate
through the list of delegates for a service. It is used in calls to the iterative routine
sec_login_cred_get_delegate.

• sec_login_disable_delegation ( )

This function returns a login context without delegation or impersonation enabled, from one
that has one of the two delegation types enabled.

• sec_login_purge_context_exp ( )

This function destroys expired network credentials associated with a specified (AS) ticket.

• sec_login_set_extended_attrs ( )

This function constructs a new login context that contains the requested attributes.

Note: Attributes cannot be added to a delegation chain in this manner. Thus, if a login
context referring to a delegation chain is passed to this routine, an error indication
an invalid context will be returned.

• sec_login_tkt_request_options ( )

This function is used by a client to request specific AS ticket options. It is an optional
function. It is designed to be called after sec_login_setup_identity ( ) or
sec_login_refresh_identity ( ) and before sec_login_validate_identity ( ) or
sec_login_valid_and_cert_ident ( ).

The requeste options will override the defaults when the ticket is requested at validation
time.

The SCD exports the scd RPC interface, which supports the following operation:

• scd_protected_noop ( )

This operation is nothing more than an ‘‘protected no-op’’, which serves the purpose of
‘‘certifying the login context’’ that was involved in the client’s invocation of this RPC call (see
sec_login_certify_identity ( ) above).

76 CAE Specification (1997)



Introduction to Security Services Login Facility and Security Client Daemon (SCD)

1.15.2 Further Discussion of Certification

The notion of certification (as introduced in Section 1.15 on page 71) is a subtle one, in respect
both of:

1. the need for such a notion

2. the requirements it makes upon implementations.

Therefore, in order to clarify this notion, this section discusses it in more depth, with special
emphasis on these two points. The synopsis of this section is as follows:

There exists a certain (very small) risk that a login context can be returned by
sec_login_setup_identity ( ) and validated by sec_login_validate_identity ( ), yet still be
counterfeit. The scenario for this to happen is a rather arcane attack, called a multi-prong
attack (described below). Applications that are concerned about the risk presented by this
threat must defend themselves against this multi-prong attack. Simple validation is
insufficient for this defense; the more subtle notion of certification is required. It is the
thwarting of this multi-prong attack that is precisely the purpose of ‘‘certification’’ — no more, no
less. On the other hand, applications that are unconcerned about the risk presented by this
threat of a multi-prong attack need not certify their login contexts (and it is to support this
latter set of applications that sec_login_certify_identity ( ) is provided as a separate routine).

To simplify the exposition, it is convenient to begin the discussion in this section with a definite
example. To this end, the focus will begin on the concrete case of a host’s login program (which
resides in a host’s local TCB, and is privileged) — the general case of arbitrary (not necessarily
privileged) ‘‘other parties’’ as envisioned in Section 1.15 on page 71 will then be a corollary of
this discussion of the login program.

Consider, then, a user U attempting to log in to a host H, claiming (a string name that identifies)
a principal identity A, and presenting a password P which maps to a long-term key KP by means
of a well-known algorithm (see Section 4.3.6.1 on page 190). The login program L begins by
calling sec_login_setup_identity ( ) to set up a login context, and sec_login_validate_identity ( ) to
validate it. In terms of the Kerberos authentication protocol (see Section 1.5 on page 18 and
Section 4.12 on page 220), sec_login_setup_identity ( ) sends an AS Request message (intended to
be received by the genuine KDS (in A’s home cell)) and receives an AS Response message
(intended to be received from the genuine KDS), and the successful invocation of
sec_login_validate_identity ( ) convinces L that the AS Response message was correctly protected
with the key KP. If L could somehow be certain that KP = KA (where, as usual, KA denotes the
long-term key of A, held in the genuine RS datastore (in A’s home cell)), then L could be
confident that U ‘‘really is’’ A, and that the (suspicious) ticket, TktU,KDS (let’s call it), received in
the AS Response (and contained in the login context) really is a genuine TktA,KDS naming A. This
TktA,KDS could then be used to obtain a ticket, TktA,PS, to the genuine PS (in A’s home cell) and a
privilege-ticket, PTktA,KDS containing a trustable seal of an EPACA set ( or PACA), and L could
then with confidence retrieve this EPACA set seal (or PACA) from the login context (using
sec_login_inquire_net_info ( )), and map the information in the EPACA set seal (or PACA) to
trustable local OS credentials. Note here that the EPAC set contains one EPAC for the initiator
and one EPAC for each delegate involved in the operation when traced delegation is in use. In
order to be sure that the privilege-ticket, PTktA,KDS is genuine in this scenario, the seal the PS (in
A’s home cell) places into PTktA,KDS must be for the ordered list of EPAC seals in the EPAC set.
In turn, in order for L to be certain that KP = KA, it is sufficient that L be certain that the AS
Request/Response message exchange had actually been conducted with the genuine KDS.

However, L needs to be convinced of this — it cannot blindly assume that the AS
Request/Response message exchange had been conducted with the genuine KDS (because the
AS service is unauthenticated). Namely, there is a threat that L is the target of a multi-prong

Part 1 Introduction 77



Login Facility and Security Client Daemon (SCD) Introduction to Security Services

attack, whereby a malicious user U collaborates with bogus security servers (that is, malicious RPC
servers that masquerade as the genuine KDS, PS, RS and SCD servers), with the goal of the
attack being to trick L into believing that a counterfeit login context is genuine, and thereby
granting U an unauthorised login session on the targeted host. In such an attack, the principal A
(which properly exists in the genuine RS datastore, with its genuine long-term key KA stored
there) would have a fraudulent entry in the bogus RS datastore, with the fraudulent long-term
key KP stored there. If an unwary login program L were to accept mere validation as proof of the
authenticity of login contexts, it would be vulnerable to a multi-prong attack such as this. What
is required is a way for L to certify login contexts; that is, to defend against such a multi-prong
attack.

What, then, is involved in certification? That is, what does it take to convince L that KP = KA? By
tracing backwards along the trust chain involved in the following sequence of tickets (where the
subscript ‘‘U’’ indicates that L is suspicious of these tickets until it can be convinced of their
genuineness):

TktU,KDS → TktU,PS → PTktU,KDS → PTktU,SCD

it can be deduced that: if PTktU,SCD is correctly protected with the genuine long-term key KSCD of
the local host’s SCD, and if L can be convinced of this fact, then L is justified in believing that all
these suspicious tickets are in fact genuine, and in particular that the long-term key protecting
TktU,KDS is KA — that is, that KP = KA. (All this assumes that the DCE network TCB and the local
host’s TCB are uncompromised, of course.)

At this point, recall that L is part of the local host’s TCB; that is, is privileged. Therefore, it is
possible (and is not a breach of security) for L to (legitimately) adopt the identity (as a server) of
the local host’s SCD, in the sense of L’s knowing and using the long-term key KSCD (which L can
retrieve by using sec_key_mgmt_get_key( ) or an implementation-specific equivalent). If L can
successfully use KSCD to directly verify that PTktU,SCD is correctly protected with the genuine
long-term key KSCD, then the certification problem is thus solved for L. This adoption of the
SCD’s identity by L can be thought of as ‘‘the local TCB invoking a protected RPC to itself’’, and
it is ‘‘infallible’’ (in the sense of being completely secure, modulo the security of the network and
local TCBs). And this is typically how sec_login_valid_and_cert_ident ( ) is implemented
(furthermore, this direct access to KSCD shows ‘‘why’’ sec_login_valid_and_cert_ident ( ) is a
privileged routine).

While this adoption of the SCD’s identity solves the certification problem for privileged
processes, it is not a solution that is available to non-privileged processes (because it is a breach of
security for non-privileged processes to have knowledge of the local TCB’s long-term key KSCD;
that is, to have KSCD in their address spaces). This is why sec_login_certify_identity ( ) is
supported. The design criterion for sec_login_certify_identity ( ) is that it is intended to provide
the strongest guarantee of certification that can be provided to a non-privileged process, modulo the
exigencies of a given implementation. The strength of this guarantee is, in general, implementation-
specific — in particular, sec_login_certify_identity ( ) may be ‘‘not quite as infallible’’ as
sec_login_valid_and_cert_ident ( ) (in which case, this must be specified in the implementation’s
documentation of sec_login_certify_identity ( )).

Note: In typical implementations, sec_login_certify_identity ( ) is implemented as a protected
RPC intended to be handled by the local host’s SCD server, at a protection level other
than rpc_c_protect_level_none (see Section 1.10 on page 54), and annotated (in the
sense of rpc_binding_set_auth_info ( )) using the suspicious login context in question
(that is, using PTktU,SCD to authenticate the invoker of sec_login_certify_identity ( ) to
the SCD server). If this RPC returns successfully (that is, the SCD’s
scd_protected_noop ( ) operation succeeds as a protected operation), then, similarly to
the case of sec_login_valid_and_cert_ident ( ) above, the calling application is justified

78 CAE Specification (1997)



Introduction to Security Services Login Facility and Security Client Daemon (SCD)

in concluding that PTktU,SCD is correctly protected with the genuine long-term key
KSCD, and the certification problem is thus solved in the non-privileged case.

There is a caveat in this scenario, however; the implementation of the RPC (called
inside sec_login_certify_identity ( )) must somehow guarantee (in a manner that does
not depend on the suspicious PTktU,SCD) that this RPC really is handled by the local host’s
genuine SCD server. To the extent that the implementation can make this guarantee,
sec_login_certify_identity ( ) can be trusted (that is, approaches the ‘‘infallibility’’ of
sec_login_valid_and_cert_ident ( )). An example of criteria that implementations may
support that are sufficient to make this guarantee (and thereby make certification via
sec_login_certify_identity ( ) just as infallible as that via sec_login_valid_and_cert_ident ( ))
is the following:

The client’s RPC to the SCD is:

1. done over a trusted local host-only transport (such as a ‘‘local loop-back
transport’’, or ‘‘UNIX-domain sockets’’, or ‘‘local shared memory’’, and so
on)

2. addressed to a trusted transport endpoint on which the SCD is listening (for
example, the SCD could have written this to a world-readable file, protected
by local host security, at its boot time, from which
sec_login_certify_identity ( ) could read it in a trusted fashion).

Not all platforms are able to meet the above criteria, and even those that do may not
do so in a portable manner. Another example of implementation criteria, which are
more widely supported and portable but which, however, give a guarantee not as
‘‘infallible’’ as the preceding, are the following:

The client’s RPC to the SCD is:

1. done over an untrusted transport implemented in such a way that messages
addressed to transport endpoints on the local host do not go off-host (this
property, which is quite common in existing implementations, guarantees
that the conversation key Kˆˆˆ in criterion (3) below is not exposed to
network eavesdropping)

2. addressed to a trusted transport endpoint on which the SCD is listening (see
above)

3. the conversation key Kˆˆˆ involved in the RPC is specified by the client and is
used by the SCD (to protect its returned error_status_ok status value). (Note
that criterion 3. is satisfied by the CL RPC protocol (see Section 9.2.1.2 on
page 332), but not by the CO RPC protocol (see Section 9.3.1.3 on page 340).)
(The threat of off-host bogus servers sending messages to the client at
exactly the right moments still exists, but the danger of doing so
successfully is lessened by the presence of the client-chosen conversation
key.)

If an implementation of sec_login_certify_identity ( ) does not support the same strong
guarantee of ‘‘infallible’’ certification that sec_login_valid_and_cert_ident ( ) does, this
fact (as well as information about the strength of the guarantee that actually is
supported) must be noted in the implementation’s documentation of
sec_login_certify_identity ( ).

Part 1 Introduction 79



Integration with Time Services Introduction to Security Services

1.16 Integration with Time Services
It is a fundamental characteristic of cryptographic algorithms and protocols based on
computational complexity (as opposed to those based on ‘‘theoretically perfect security’’, such as
so-called one-time pads (for example, single-use codebooks)) that their security depends in an
essential way on time. The reason is that their security can be undermined if the cryptanalyst has
access to sufficient computational power to overcome the barriers imposed by computational
complexity, and availability of such computational power can be guaranteed (at least
theoretically, if not practically) if enough time is available. For example, given enough time, a
cryptanalyst can ‘‘crack’’ (that is, cryptanalyse) a key-based cryptosystem by simply
‘‘exhausting the keyspace’’; attempting to decrypt encrypted messages using all possible keys
until one ‘‘correctly’’ decrypts the message (provided the ‘‘correct’’ decryption can be
recognised, for example, by recognising some ‘‘verifiable plaintext’’). Further, the longer a key
has been in use, the more traffic has likely been protected with it, and therefore the more likely it
will become the target of a compromise attempt. Thus, among other considerations, the length
of time a key is valid needs to be limited.

As a countermeasure intended to thwart such attacks, the Kerberos authentication protocols use
timestamps, in several ways:

• Tickets

Four timestamps in each ticket are used as timeouts to bracket the validity of the ticket; that is,
to delimit the times at which the clients should present and servers should honour the ticket
(that is, use the session key in the ticket or a negotiated conversation key, with good
expectations of security). These timestamps are generated by the KDS itself, and interpreted
by the target server. (With most current technology, a day is usually considered a relatively
safe lifetime for a DES key.)

• Authenticators

One timestamp (broken up into two fields) is used in each authenticator, as a freshness
constraint to counter replay attacks (see below). This timestamp is generated by the
originating client and interpreted by the target server, to prove to the server that the client
‘‘currently’’ knows the session key (where a clock skew on the order of a few minutes is built
into the interpretation of ‘‘currently’’, to compensate for network or other processing delays
— this clock skew is taken into account in all other authentication protocol timestamps, too).

(‘‘Replay attack’’ in general refers to a wiretapper intercepting a message and later (perhaps
after disabling the initiator’s system, for example, for the purpose of using its
network/transport address) resending it to the intended target claiming to be the original
sender. In the present case, the replay attack threatens only to provide opportunities for
bogus authentications, not to expose keys — thus only the security attribute of authenticity is
at risk, not integrity or confidentiality.)

• Other

Timestamps are also used in various other places in the authentication protocol (generated
and interpreted by various entities, sometimes protected and sometimes not protected), and
elsewhere (for example, as timeouts for long-term keys in the RS). Details are discussed at
appropriate places in later chapters.

Some compromises of timestamp security might be tolerated if they only lead to denial of
service, but in order to generally guarantee the security of the authentication protocols,
timestamps must be not only protected by the protocol itself, but they must also be secure when
initiators generate them, and when receivers interpret them. That is, all these entities must have a
secure source of (accurate) time available to them.

80 CAE Specification (1997)



Introduction to Security Services Integration with Time Services

This secure source of time is provided in the DCE environment by the Distributed Time Service
(DTS) — which therefore needs to be considered as a component of the DCE TCB. (This does
not preclude other sources of trusted time being used.) In the DTS architecture, communications
among DTS entities are protected, leaving the only exposed transmission of time information
being the original importation of time from an external source into the DCE environment.
Securing that external trust link, together with resolving the issues involved in bootstrapping
and configuration of the DCE environment (for example, to break the potential ‘‘vicious circle’’
of the symbiotic relationship of DTS depending on Security and vice versa), while security-
relevant, are administrative (not architectural) concerns, and as such are beyond the scope of this
specification. That is, this aspect of the security environment is implementation-dependent.

Part 1 Introduction 81



Integration with RPC Services Introduction to Security Services

1.17 Integration with RPC Services
The programming model supported by DCE endeavours to present security services to ‘‘main-line’’
RPC programmers in a way that largely insulates them from the intricacies of the underlying
security mechanisms, and from the security APIs and RPC interfaces specified in this
specification, thereby enhancing assurances that security-sensitive applications can be written
correctly. The security RPC APIs (specified in the referenced X/Open DCE RPC Specification)
relevant to this purpose are the following:

Notes:

1. Prior to DCE 1.1, servers would call rpc_binding_inq_auth_client ( ) to obtain a
handle to a client’s credentials (rpc_authz_handle_t). This handle was not
opaque and was dereferenced with a cast to the data type sec_id_pact_t *.

Because that datatype lacks abstraction, it cannot be used to obtain DCE 1.1 (or
beyond) credentials, which may be a chain of EPACs. Instead,
rpc_binding_inq_auth_caller ( ) has been added for use by all servers for DCE 1.1
and newer versions. It replaces the rpc_binding_inq_auth_client ( ) which is still
available for use with existing (pre-DCE 1.1) application servers.

2. The security-relevant parameters to these interfaces relating to authentication,
protection and authorisation services, rpc_c_authn_dce_secret and
rpc_c_authz_dce, are introduced elsewhere in this chapter.

• rpc_server_register_auth_info ( )

Set server’s security information, by registering it with the RPC runtime.

• rpc_binding_set_auth_info ( )

Set client’s security information, by ‘‘annotating’’ an RPC binding handle to a server.

• rpc_binding_inq_auth_caller ( )

Server retrieval of an authenticated client’s security information from a binding handle.

• rpc_binding_inq_auth_client ( )

Server retrieval of client’s security information from a binding handle.

Note: This call is provided for compatibility with pre_DCE 1.1 applications only. It
should not be used for DCE 1.1 and newer version applications.

• rpc_binding_inq_auth_info ( )

Client retrieval of server’s security information from a binding handle.

• rpc_mgmt_inq_server_princ_name( )

Return server’s principal name to client.

• rpc_mgmt_set_authorization_fcn ( )

Establish server’s authorisation function, for its RPC management routines.

Finally, it is to be noted that security metadata (such as tickets and authenticators), apart from its
implicit appearance within protected RPC protocols (and therefore invisible from the point of
view of the programming model), appears as explicit application-level data in the krb5rpc and
rpriv RPC interfaces. Due to the specification of the transfer syntax of this data (in ASN.1/BER,
not IDL/NDR), these RPC interfaces are specified in terms of the IDL byte data type (so-called
‘‘opaque RPC transport’’, not making use of the marshalling features of IDL). These RPC
interfaces are invoked at protection level rpc_c_protect_level_none (because the data they carry

82 CAE Specification (1997)



Introduction to Security Services Integration with RPC Services

is already protected by direct cryptographic means, not via ‘‘protected RPC’’).

Note: Some implementations may wish to offer KDS services over ‘‘raw’’ UDP (port 88) in
order to be compatible with other implementations of the Kerberos protocols, but
that is an implementation choice and this document makes no specifications along
those lines.

Part 1 Introduction 83



Integration with Naming Services Introduction to Security Services

1.18 Integration with Naming Services
As discussed in Section 1.12 on page 60, the RS in every cell maintains a (RS) Policy item and
three datastore ‘‘domains’’ of PGO items. For datastore query/lookup purposes, the RS addresses
these items by names managed by the RS server itself, called RS-names or security-relative names
(the relationship of RS-names to other kinds of names is specified in this section). The RS-names
of the Policy item and of the PGO items have the forms:

• policy

(RS) Policy item.

• principal/P-name

Principal items.

• group/G-name

Group items.

• org/O-name

Organisation items.

P-names, G-names and O-names are collectively known as PGO-names. (For reserved PGO-
names, see Section 1.12.4 on page 63. See also Section 11.5 on page 379, where the three PGO
‘‘domains’’ are identified by explicit parameters instead of by initial namestring components —
a naming technique equivalent to the namestring syntax discussed here, but more convenient for
‘‘computer-oriented’’ use, as opposed to ‘‘human-oriented’’ use.)

Now, the RS protects its (Policy and PGO) items with ACLs, hence in accordance with Section
1.11 on page 55, these protected items must be named. In order to name these protected RS
items, DCE specifies that the RS in every cell must be registered, not only as an RPC service in
CDS as a simple RPC server entry (via its rs_bind interface), but also as an RPC server group entry,
called the security junction RPC group, referred to as ‘‘sec-junction’’ (concerning the notion of
junctions, see Section 1.11 on page 55). Within each cell, the actual name of sec-junction is not
itself directly specified, but it is indirectly identified in the /.:/cell-profile RPC profile entry
(which is a well-known name) as having the name associated with a certain UUID (namely, that
of the rs_bind interface). (Conventionally, sec-junction is usually simply called sec.) For more
information on this topic, see Section 1.18.1 on page 86.

That is, the (RS) Policy and PGO items held in the RS in each cell are identified, for the purposes of
ACL editing (‘‘as for protected objects in the RS datastore itself’’), by names appropriate to the
sec_acl API interface, and these have the form:

• /.../cell-name/sec-junction/policy

• /.../cell-name/sec-junction/principal/P-name

• /.../cell-name/sec-junction/group/G-name

• /.../cell-name/sec-junction/org/O-name

Note that these names, because they include the /sec-junction/domain substrings (where domain
varies over principal, group and org), are slightly different from the global principal and group
names appropriate to the ID Map Facility. (Note the ID Map Facility has no notion of the Policy
item at all; and while the secidmap RPC interface supports ‘‘organisation names’’, the sec_id
API doesn’t.) Namely, global principal (resp., group) names consist only of the cell-name and
the cell-relative principal (resp., group) name, where the latter is defined to be ‘‘the same as’’ the
corresponding RS datastore item’s P-name (resp., G-name) — the sec-junction/domain substring is
not included. Thus, principals (resp., groups) have ‘‘the same’’ global names as their

84 CAE Specification (1997)



Introduction to Security Services Integration with Naming Services

corresponding RS datastore items, except that the substring sec-junction/principal/ (resp., sec-
junction/group/) is omitted.

Thus, for example, the ‘‘partially qualified’’ terminal string foo/bar/zot taken out of context is
ambiguous, because it can name several different things depending on its context, as follows:

• ‘‘The principal foo/bar/zot in a cell’’ (in a context where a principal name is appropriate) has
the fully qualified name (in the sense of the ID Map Facility):

/.../cell-name/foo/bar/zot

• ‘‘The RS datastore item in a cell holding information for principal foo/bar/zot’’ (that is,
having this P-name) has the fully qualified name (in an ACL management context):

/.../cell-name/sec-junction/principal/foo/bar/zot

• ‘‘The group foo/bar/zot in a cell’’ (in a context where a group name is appropriate) has the
fully qualified name (in the sense of the ID Map Facility):

/.../cell-name/foo/bar/zot

• ‘‘The RS datastore item in a cell holding information for group foo/bar/zot’’ (that is, having
this G-name) has the fully qualified name (in an ACL management context):

/.../cell-name/sec-junction/group/foo/bar/zot

• ‘‘The RS datastore item in a cell holding information for organisation foo/bar/zot’’ (that is,
having this O-name) has the fully qualified name (in an ACL management context):

/.../cell-name/sec-junction/org/foo/bar/zot

A final question arises about the relationship between client and server principal names and
their CDS-registered service names (holding binding information) as RPC applications. That
there is no necessary relationship is easily seen from the fact that both clients and servers must
have principal names to participate in the DCE security environment, yet for RPC binding
purposes only servers (not clients) need be registered with CDS (and in fact, even servers need
not be registered if ‘‘string bindings’’ are used). Similarly, there is no necessary relationship
between the principal name of an RPC server and its CDS service name. The simplest convention
is for servers to have ‘‘the same’’ name in both roles, for example:

• ‘‘The principal foo/bar/zot in a cell’’ (in a context where a principal name is appropriate):

/.../cell-name/foo/bar/zot

• ‘‘The service foo/bar/zot in a cell’’ (that is, the CDS entry where its RPC binding information
is kept):

/.../cell-name/foo/bar/zot

However, this is merely a convention, and is not required by DCE. All that is really required is
that the means by which the principal name of a server (or any other subject) is obtained must be
secure. It is best to consider the principal name to be part of the service’s very definition (or
‘‘service contract’’) — just as much a part of its definition as, say, its service (binding) name or its
RPC interface UUID — and that an incorrect specification of any part of the service’s definition
will lead to incorrect results.

Part 1 Introduction 85



Integration with Naming Services Introduction to Security Services

1.18.1 RPC Binding Models

This section gives more detailed information on the RPC binding models supported by DCE; that
is, the manner in which RPC clients use the CDS directory services to locate and establish an
RPC communications context with the RPC servers supported by DCE — both ‘‘TCB servers’’
(servers belonging to the DCE TCB, namely, RS, KDS, PS, and local hosts’ SCD’s), as well as
‘‘ACL servers’’ (RPC servers, possibly, but not necessarily, belonging to the TCB, that support
protected objects (via ACLs), by exporting the rdacl RPC interface). This section requires
familiarity with the referenced X/Open DCE RPC Specification and referenced X/Open DCE
Directory Services Specification, and it has a closer affinity with those specification than it does
with the security-specific material of the present specification.

1.18.1.1 Binding to TCB Servers

By specification, in every cell there exists in the cell’s CDS namespace, a well-known CDS node
known as /.:/cell-profile, which is an RPC profile node. Also in every cell, there exists by
specification in the cell’s CDS namespace a CDS node known as /.:/sec-junction, which is an RPC
group node; the actual name of /.:/sec-junction is not ‘‘well-known’’ (it can vary per cell), but by
convention it is named ‘‘/.:/sec’’, and it will be denoted as such in the remainder of this section.
(As will be seen, it would even be technically possible to split the name sec into multiple
different names, say sec1, sec2, and so on, according to its usage by different servers, say RS, KDS,
and so on — however, that would lead to unnecessary complication, and it is not supported by
this specification.)

By administrative action at cell-creation time, the following 3 interface specifications (interface
UUID and version number) are added as elements to the /.:/cell-profile node, all of them
pointing to the /.:/sec group node:

• The interface UUID and version number of the rs_bind interface, as specified in Section
11.3.2 on page 364. This interface specification is to be used by clients when they bind to the
RS server.

• The interface UUID and version number of the krb5rpc interface, as specified in Section 4.1.1
on page 161. This interface specification is to be used by clients when they bind to the KDS
server.

• The interface UUID and version number of the rpriv interface, as specified in Section 5.1.1 on
page 263. This interface specification is to be used by clients when they bind to the PS server.

During their initialisations, the RS, KDS and PS servers in a cell create CDS RPC server nodes for
themselves (the names of these are unspecified in DCE, though in typical implementations the
RS, KDS and PS servers all reside in a single RPC server, and they have names like
/.:/subsys/dce/sec/master for the master instance and /.:/subsys/dce/sec/rep_n for replicas), in
which they register their (per-cell) RPC object UUIDs (all replicas share this UUID), their
interface handles (in the notation of the ‘‘rpc data types’’ reference page of the referenced
X/Open DCE RPC Specification, these interface handles are rs_bind_v2_0_s_ifspec,
krb5rpc_v1_0_s_ifspec and rpriv_v1_0_s_ifspec, respectively), and their RPC binding
information. Then, they add themselves to the /.:/sec CDS RPC group node, using the CDS RPC
name of the server node they just created and registered themselves in.

To bind to security services (RS, KDS or PS), a client uses the rpc_ns_binding_import_* ( ) routines
to query the /.:/cell-profile node, using the appropriate interface handle (rs_bind_v2_0_c_ifspec,
krb5rpc_v1_0_c_ifspec or rpriv_v1_0_c_ifspec, respectively), and a null object UUID.

Concerning local hosts’ SCDs, see Section 1.15.2 on page 77. As discussed there, in order to
support a secure sec_login_certify_identity ( ), the SCD’s RPC binding information (as well as the
transport underlying the RPC) must be part of the local host’s TCB.

86 CAE Specification (1997)



Introduction to Security Services Integration with Naming Services

1.18.1.2 Binding to ACL Servers

The model (‘‘junctions’’) that clients use for binding to ACL servers (servers exporting the rdacl
RPC interface) has already been discussed in the context of ACL Editors (clients of the rdacl
interface), in Section 1.11 on page 55. That discussion is best treated in the context of ACL
Editors, and need not be repeated here.

In the particular case where the ACL server in question is the RS itself, the ACL binding model
of Section 1.11 on page 55 together with the RS binding model of Section 1.18.1.1 on page 86,
leads to the naming conventions (of the form /.../cell-name/sec/principal/P-name, and so on)
mentioned in Section 1.18 on page 84. (Note that it would be technically possible to use a
junction name that is different from the group name /.:/sec (say) — however, that would lead to
unnecessary complication, and it is not supported by this specification.)

Part 1 Introduction 87



DCE Delegation Model Introduction to Security Services

1.19 DCE Delegation Model
In a simple distributed environment, the DCE 1.0 facilities were sufficient to permit secure
operations between two principals, typically described as a client and a server — the initiator
and the target of the operation. In this simple environment, the target of the operation can
reasonably make authorisation decisions based upon the identity of the initiator. This model,
while adequate for simple client/server distributed computing, does not address the
requirements of more complex environments, for example, those based upon distributed objects,
where the target (server) needs to perform operations on other components on behalf of the
initiator. These operations on other components must be invoked in a secure manner by
intermediaries that may not be known to the initiating principal (cleint).

The distributed environment has the characteristic that intermediate objects, which are used to
hide the details of complex system operations, pervient the target (service as distinguished from
object) from securely determining the identity of the initiator of the operation on the object. All
requests arriving at the target service appear to be the result or action of the intermediary rather
than the true initiator of the operation.

The inability to determine the true initiator of a request presents distributed systems with
unsatisfactory choices, such as:

• implementing the service as a local one running with the identity of the initiator.

In this instance, the service loses the benefits of distribution.

• running as a privileged principal that has full access to all services it abstracts (via distributed
objects).

In this instance, the service may retain distribution, but then it would be required to
implement an access control function for each of the services (represented by distributed
objects).

• requiring use of an alternate set of target service interfaces that permit the authorised principal to
specify the principal on whose behalf the operation is (really) being performed.

This solution comes at the expense of redundant interfaces that expose the details of
privilege attributes to the application protocol (thus providing opportunities for malicious
attacks).

• implementing the service in a manner that impersonates the (true) initiator, but where the initiator
transmits its credentials (tickets and keys) to the intermediary (impersonator) so as to permit the
intermediary to be indistinguishable from the initiator.

Unfortunately, this approach, while distributed (and in DCE, having a high degree of
location transparency), exposes the client to a very great risk of attack — for instance, being
compromised by a Trojan horse.

The solution to this problem involves the concept of delegation. Delegation permits an
intermediary to operate upon other (non-target) objects on behalf of the initiator in a manner
that both reflects the initiator of the operation and is distinguishable from the (true) initiator of
the request. In its simplest form, delegation permits a subject (as described in Section 1.1.3 on
page 6, which herein is called principal A to invoke an oepration upon (an object associated
with) principal C through (an object associated with) principal B (herein called an intermediary)
in such a manner that reflects the true initiator of the operation (A) but which can also be
distinguished from the same operation invoked directly by A (or B, for that matter,) on C.

88 CAE Specification (1997)



Introduction to Security Services DCE Delegation Model

1.19.1 Overview of Delegation Model

The DCE 1.1 delegation model being described here consists of three components:

• An intermediary is permitted to operate upon objects in a manner that reflects the initiator’s identity
as well as its own.

A target (server) receiving such a chained request would see the privilege attributes of each
participant in the chain (without their being exposed to the application).

• The authorisation model is extended so as to permit the target (server or servers) to make use of the
distinction between initiators and intermediaries.

Thus, owners of a rewource may grant rights to principals acting as intermediaries on behalf
of authorised initiators without granting rights for these principals to act (upon the objects
representing these or other services) on their own behalf.

• Clients (initiators) performing operations (on objects) are permitted to place restrictions upon the use
of their identity in a chain of requests for services (upon abstract objects representing the totality of the
services necessary to perform the original client reqest) upon a target (service).

A client may choose to entirely disallow delegation or to limit which principals
(intermediaries) may use the client’s identity in a delegated manner.

• Additionally, the nature of a caller’s identity (whether initiator, intermediary or target) is
extended to include arbitrary (in the sense of being optional) attributes stored in the registry
services (RS) of the user.

These attributes require extensions to the PAC, and may be used by applications when
making authorisation decisions. Constrained (delegate) restrictions and also restrictions
upon the target may be imposed by the client, and also by intermediaries, with these
attributes.

In essence, the DCE 1.1 Delegation Model consists of extensions to the following DCE 1.0 items:

• The DCE 1.0 Privilege Attribute Certificate (PAC). (See Section 5.2.13 on page 283 for
details.)

• The Privilege Server (PS) interface for generating PACs.

(A new interface, sec_cred, is provided for abstracting the contents of the EPAC. Details can
be found in Chapter 20. )

• Privilege Server evaluation of inter-cell extended attributes.

• ACL entry types (ACLE’s). See Section 7.1.2 on page 312 and Section 7.1.5 on page 313 for
details.

and finally,

• The ACL evaluation algorithm, more commonly termed the Access Determination
Algorithm, described initially in Section 1.9.1 on page 48 and also in Chapter 8, in greater
detail.

It also consists of a new set of user interfaces to support this delegation model. These are
primarily in support of the new ACLE’s which also require a set of new library interfaces as well.
All this will be discussed in greater detail in the following sections.

Part 1 Introduction 89



Components of Delegation Model Introduction to Security Services

1.20 Components of Delegation Model
This section discusses the major components of the DCE 1.1 Delegation Model introduced in the
preceeding section, in greater detail. Extensions to the sec_login interface (listed in Section 1.15
on page 71) provide the ability for a client to enable and disable delegation and also provide a
function for servers to become delegates. A new interface, sec_cred, is provided as an abstraction
of a set of accessor functions for access to privilege attributes.

In addition, the PAC has been extended to encompass the privilege attributes neccessary to
accomplish delegation, and the DCE access control mechanism has been amended to check
access of the composed principals (intermediaries) involved, as well. Part of the delegation
extensions to the PAC include delegation controls as well as delegate and target restrictions.
Additional application-specified required and optional restrictions may be present.

Finally, a new set of remote interfaces is provided to aid in authentication and authorisation.
These interfaces are invoked (indirectly) in support of delegation, and are not intended for direct
use by the application.

1.20.1 The Extended PAC (EPAC)

The trust mechanisms for authentication employed in DCE 1.0 by the Privilege Server when
constructing a PAC are built upon for delegation by nesting delegated privilege attributes in an
extended PAC (EPAC).

The extended PAC contains the identity and group membership information present in a DCE
1.0 format PAC. For compatibility with DCE 1.0.x, a PAC may be imbedded in the authorisation
data (A_D) field of (the version 5, which is used in DCE 1.1) Kerberos tickets. This will be shown
in Figure 1-12 on page 92 and is dependent upon whether compatibility is required by the DCE
application.

In addition to the information contained in the PAC, the EPAC contains the following:

• optional delegation controls

These controls provide a mechanism for specifying the form of delegation — permitting one
to select between simple delegation and traced delegation (simple delegation is also known
as impersonation). These concepts are explained elsewhere in this document.

In addition, DCE 1.1 delegation provides the ability for an initiator or intermediary to impose
restrictions on the identities of delegates in a chain and the set of targets to which an identity
can be presented.

• optional and required restrictions

These are provided as classes of extended registry attributes for use by applications that have
specific authorisation requirements. They may be set by initiators and intermediaries.

• extended attributes

These include the privilege attributes of the initiator (of the chain of operations) as well as the
privilege attributes for each intermediary involved in the chain. Thus, the notion of identity is
extended to include chained identities. Adding extended attributes to the EPAC permits DCE
to use existing legacy authorisation models.

Note that by including attributes within an EPAC, the attributes may be transmitted securely
(and automatically) along with a principal’s identity information. This content change also
requires a change in the manner in which extended PACs are handled in DCE.

Figure 1-11 on page 91 shows both an EPAC, and part of the Authorisation Data field of a PTGT.
Note that since the extensions in an EPAC (as compared to a PAC) can contain an arbitrary

90 CAE Specification (1997)



Introduction to Security Services Components of Delegation Model

amount of application-selected data (which may be limited by the practicalities imposed by RPC
authorisation information size restrictions). For this reason (and also other reasons, such as
performance) EPACs will not be placed in PTGTs. Instead, the authorisation data field will
contain a seal (cryptographic checksum) of the EPAC.

The A_D field may optionally contain a DCE 1.0 format PAC (as shown in Figure 1-12) if
compatibility with DCE 1.0 is required. When delegation is enabled, the initiator may specify
this parameter.

Note: The cryptographic checksum (seal of the EPAC) is performed by the Privilege Server,
PSZ, and placed within the EPAC. This provides the same integrity guarantees
previously provided for DCE 1.0 PACs, where the entire PAC was included in the
A_D field, which is encrypted by the privilege server.

The following figure depicts the seal of the EPAC.

EPAC PTGT

Seal

Seal
A_D Field

Figure 1-11  EPAC Seal within EPAC and A_D Field of PTGT

The following figure shows the optional Version 1.0 PAC within the PTGT.

EPAC PTGT

Seal

Seal

A_D Field
(optional)

V 1.0 PAC

Figure 1-12  EPAC Seal (and Optional Version 1.0 PAC) within A_D Field of PTGT

Part 1 Introduction 91



Components of Delegation Model Introduction to Security Services

Information on the EPAC seal can be found in Chapter 5, in the section ‘‘Data Types’’. In
particular, see Section 5.2.13 on page 283 and Section 5.2.13.8 on page 285.

1.20.1.1 Linking EPAC Sets to Tickets

When traced delegation is (enabled and) in use, there may be a set of EPACs to transmit. This set
of EPACs contains one EPAC for the initiator and one EPAC for each delegate involved in an
operation. In this case, a single seal in the PTGT is no longer sufficient to guarantee the validity
of an EPAC. The individual integrity of each EPAC as well as the specific order of the EPACs
must be guaranteed. To obtain this integrity, the A_D portion of a PTGT carries the seal of the
ordered list of EPAC seals.

1.20.2 Transmitting and Receiving EPACs

EPACs are transmitted during the authentication phase of a request. During this phase, A PTGT
is sent from the client to the server. In DCE 1.0, the Authorization Data field of the PTGT
contained a Version 1.0 PAC. As of DCE 1.1, the Authorization Data field of the PTGT contains
the seal of the EPAC, rather than the EPAC, for performance reasons (since it can contain
arbitrary amounts of data). So, for DCE 1.1, the KRB_AP_REQ that is passed between the client
and server will have the EPAC (or EPAC chain) appended directly to the Kerberos
KRB_AP_REQ, whereas for DCE 1.0, the KRB_AP_REQ did not have this appendage. To
summarize, for DCE 1.0, the security message that passes between the client and server
consisted solely of a KRB_AP_REQ, which contained a PAC. As of DCE 1.1, the security
message consists of a KRB_AP_REQ which contains a seal of an EPAC, followed by an EPAC
chain. This is shown by the following figure:

PTGT

Seal

A_D Field
(optional)

V 1.0 PAC

EPACs

Figure 1-13  Transmitting EPACs with Service Tickets

92 CAE Specification (1997)



Introduction to Security Services Components of Delegation Model

1.20.3 Extended Privilege Attribute Facility

The Extended Privilege Attribute Facility permits clients and servers to invoke secure operations by
way of one or more intermediate servers. Prior to DCE 1.1, simple client/server operations
involved two principals:

• the initiator of the operation

• the target of the operation.

The target (server) in this scenario makes decisions based upon the identity of the initiator.

However, in distributed object oriented environments, frequently server principals need to
perform operations on behalf of a client principal. In these instances, authorisation decisions
based simply on the identity of the initiator, since the initiator of the operation may not be tie
principal that requests the operation. This is particularly true in the case of delegation.

To handle these situations, the Extended Privilege Attribute Facility allows principals to operate
on objects on behalf of (as delegates of) an initiating principal. The collection of the delegation
initiator and the intermediaries is referred to as a delegation chain. Using this facility (including
related sec_login calls), an application may be written that allows client principal A to invoke an
operation on server principal C by way of server principal B. The Authorisation Service (AS)
will know the true initiator of the operation (principal A) and can distinguish the delegated
operation from the same operation invoked directly by principal A.

The Extended Privilege Attribute Facility consists of:

• Login functions of the form sec_login that are used to establish delegation chains and other
related delegation functions, listed in Section 1.15.1 on page 75.

• Security credential functions of the form sec_cred listed in the next section.

The sec_cred and Login sec_login_cred functions extract privilege attribute information
associated with an opaque handle to an authenticated identity. The sec-cred functions are used
by servers that have been called by a client with atuenticate credentials. They provide servers
with the ability to retrieve information from the caller’s EPAC, since the EPAC is not available to
the application as PACs were prior in DCE 1.0. The sec_login_cred functions are used by clients
that are part of a delegation chain, and also provide the ability to return the privilege attributes
of delegates in or initiators of, a delegation chain.

1.20.4 EPAC Accessor Function API

The EPAC Accessor Functions consist of an API for retrieval of Privilege Attribute information
from Extended PACs. (They all start with the identifier, sec_cred.)

This API is provided as an abstraction of the contents of an EPAC. It insulates applications from
the format of a PAC or EPAC, thereby relieving the necessity of dealing directly with PAC or
EPAC formats.

There are 18 functions which comprise this interface. Their names and brief descriptions of their
functions follow. See Section 5.2.14 on page 288 for further information:

• sec_cred_is_authenticated ( )

Returns true if the caller privilege attrbutes are authenticated; false otherwise.

• sec_cred_get_client_princ_name( )

This function is used to extract the principal name of a server’s RPC client, if the
authorisation service can provide it. If not, a sec_cred_s_authz_cannot_comply status is
returned.

Part 1 Introduction 93



Components of Delegation Model Introduction to Security Services

• sec_cred_get_initiator ( )

This function is used to extract the initiator’s privilege attributes from the RPC runtime.

• sec_cred_get_delegate( )

This function is used to iterate through and extract the privilege attributes of the delegates
involved in this operation from the RPC runtime.

• sec_cred_get_authz_session_info ( )

This function is used to retrieve session-specific information that represents the
authenticated client’s credentials. The session information is meant to aid applicaation
servers in the construction of identity-based caches.

• sec_cred_get_v1_pac ( )

This function is used to extract a version 1 DCE PAC from a privilege attribute handle.

• sec_cred_get_pa_data ( )

This function is used to extract identity information from a privilege attribute handle.

• sec_cred_get_extended_attrs( )

This function is used to extract extended attributes from a privilege attribute handle.

• sec_cred_initialize_attr_cursor ( )

This function is used to initialise a sec_cred_attr_cursor_t for use in calls to the iterative
routine sec_cred_get_extended_attrs( ).

• sec_cred_initialize_cursor ( )

This function is used to initialise a sec_cred_cursor_t for use in calls to the iterative routine
sec_cred_get_delegate( ).

• sec_cred_get_delegation_type ( )

This function is used to extract the allowed delegation type from the privilege attribute
handle.

• sec_cred_get_tgt_restrictions( )

This function is used to extract target restrictions from a privilege attribute handle.

• sec_cred_get_deleg_restrictions( )

This function is used to extract delegate restrictions from a privilege attribute handle.

• sec_cred_get_opt_restrictions ( )

This function is used to extract optional restrictions from a privilege attribute handle.

• sec_cred_get_req_restrictions( )

This function is used to extract required restrictions from a privilege attribute handle.

• sec_cred_free_cursor( )

Free the local resources assocated with a delegate cursor.

• sec_cred_free_attr_cursor( )

Free the local resources assocated with an attribute cursor.

94 CAE Specification (1997)



Introduction to Security Services Components of Delegation Model

• sec_cred_free_pa_handle ( )

Free the local resources assocated with a privilege attribute handle returned by
sec_cred_get_initiator ( ) or sec_cred_get_delegate( ).

1.20.5 RPC Authorisation Extension

Due to the need for abstraction in handling DCE 1.1 credentials (the preceeding section listed the
functions available for this purpose), a new function, rpc_binding_inq_auth_caller ( ) has been
added for DCE 1.1. It replaces the rpc_binding_inq_auth_client ( ) which is still available for use
with existing (pre-DCE 1.1) application servers. This is also discussed in Section 1.17 on page 82,
‘‘Integration with RPC Services’’. This new function is used in conjunction with the sec_cred_*( )
functions — in particular, for obtaining the client’s credentials.

1.20.6 Enabling and Disabling Delegation

A set of extensions to the sec_login_*( ) functions provides the ability to enable delegation and
also to select the type of delegation desired. They also provide the capability for servers to
become intermediaries in support of an operation. These functions are listed in Section 1.15 on
page 71 and described in Chapter 19, ‘‘Login API’’.

In addition, the extensions to sec_login_*( ) provide facilities for controlling the use of
delelgation, such as the ability to restrict the allowable set of delegate and target principals.
These facilities are described in the next section, Section 1.20.7.

The sec_login_disable_delegation ( ) function disables delegation for a specified login context. Use
of this function for that context prevents any further delegation.

1.20.7 Delegation Controls

The DCE 1.0 model of privelege attributes permits the data in a PAC to be extended. With the
extensions to the PAC, the following mechanisms for controlling the form of delegation are
provided. They permit an application to implement its own variety of models and policy for
delegation.

Note: Delegation only occurs if a client has chosen to enable the projection of its identity to
another entity in the distributed system in a manner that permits that entity to
operate on behalf of the initiator.

A client process may enable delegation by annoting a login context with the allowable set of
delegates and target principals. Once so annotated, operations using the context will transmit
the appropriate data to the server servicing the operation. In addition, a client desiring to
delegate access (to an object) obtains a delegation token from the Privilege Server. The
delegation token is ‘‘signed’’ by the Privilege Server, PSZ, to guarantee that the privilege
attributes are not modified by either the client or the server involved in the delegation. The client
identifies the desired delegates and the eventual targets of the delegation when making the call
to the Privilege Server. The Privilege Server, in turn, seals that information along with the
privilege attributes of the client, which are transmitted in the request (from the PAC or EPAC),
into the delegation token. Delegation Tokens are discussed in greater detail in Section 1.20.7.2 on
page 97. The data type is described in Section 5.2.15 on page 289.

The following summarizes the delegation controls provided in DCE 1.1.

• Impersonation or Delegation

The application can control the form of delegation by selecting between simple (called
impersonation) or traced delegation. This form is enabled by the client application calling

Part 1 Introduction 95



Components of Delegation Model Introduction to Security Services

sec_login_become_initiator ( ) with the delegation_type_permitted argument specifying either
delegation or impersonation. (See Section 5.2.13.6 on page 285 for specific encodings.)

In addition, the form of delegation can be selected by an intermediary when calling either
sec_login_become_delegate ( ) or sec_login_become_impersonator ( ).

While two forms (delegation or impersonation) of delegation may be specified, an
intermediary is not permitted to use a form of delegation that was not enabled by the
initiator. Impersonation permits an intermediate service to ‘‘impersonate’’ the initiator —
where the initiator transmits to the intermediary service the credentials (tickets and keys)
necessary to be indistinguishable from the initiator. It is often useful for implementing
remote system login utilities, for instance, and while this increases the risk to the client of
being compromised, by a Trojan horse application, its usefulness precludes its not being
provided. If an intermediate service attempts to select a delegation type that is not enabled
by the client, an error will be returned. (Appendix B lists the errors that may be returned in
DCE 1.1).

• Delegate and Target Restrictions

Delegate and Target Restrictions are placed by the client and enforced by the Privilege Server
(for Delegate Restrictions) when producing delegation credentials, or by the Authentication
Services (for Target Restrictions) when determining if the target server is permitted to see the
client’s identity. The data types for Delegate and Target Restrictions are specified in Section
5.2.13.2 on page 284. They are specified by initiators and intermediaries as an argument to
one of the functions sec_login_become_initiator ( ), sec_login_become_delegate ( ) or
sec_login_become_impersonator ( ).

• Required and Optional Restrictions

Required restrictions are added to (inserted into) the EPAC by the Privilege Server to restrict
the activities that a server can perform. An example can be time-of-day restrictions, or
interface selections, or target object restrictions. They are enforced by the Authentication
Services for the target server. Required restrictions must be understood by the receiving
application server; otherwise they must deny access.

Optional restrictions are processed like required restrictions except that applications that are
unable to decode a given optional restriction are free to ignore them. Thus, their effect may
also be limited to a given (sub)set of applications.

The data type defining Optional and Required restrictions is found in Section 5.2.13.1 on page
283.

Required and Optional Restrictions are specified by initiators and intermediaries as an
argument to one of the functions sec_login_become_initiator ( ), sec_login_become_delegate ( ) or
sec_login_become_impersonator ( ).

1.20.7.1 Anonymous Identity

When one of the Delegate Restrictions or Target Restrictions placed by a client prevents an
identity from being delegated by an intermediary or seen by a target server, that identity will be
protected by being replaced in the delegation chain by an identity containing well known
anonymous privilege attributes — in other words, by an EPAC containing id’s belonging to a well
known anonymous principal and group.

The data type representing the Anonymous Identity can be found in Section 5.2.14.1 on page 288.

96 CAE Specification (1997)



Introduction to Security Services Components of Delegation Model

Notes:

1. All implementations must implement these id’s as specified in the just
referenced section to ensure interoperability.

2. Currently (in DCE 1.1 and newer versions) the Authorisation Service only has
access to the server’s principal name. It does not have access to any other
privilege attributes. Thus, Target Restrictions are limited in that if ANY are
specified in a given EPAC, all target servers will only see the Anonymous
Identity (consisting of the Anonymous Group UUID and the Anonymous
Principal UUID) for that EPAC.

3. For Delegate Restrictions, if the intermediary does not satisfy the restrictions
set by a particular identity, the Privilege Server will replace that identity’s
EPAC with one indicating that an anonymous participant (Anonymous
Identity - consisting of the Anonymous Group UUID and the Anonymous
Principal UUID) was involved.

1.20.7.2 Delegation Tokens

A client that desires to delegate access to a server obtains a delegation token from the Privilege
Server, PSZ, which is ‘‘signed’’ by the PS to quarantee that privilege attributes are not modified
by either the client or any server involved in the delegation.

When a new PTGT is generated as a result of calling either ps_request_ptgt( ),
ps_request_become_delegate( ) or ps_request_become_impersonator( ) (described in Chapter 5), the
Privilege Server inserts a deletation token into the Authorisation Data field of the PTGT. (These
functions are described in Chapter 5.

This delegation token will be passed along with the Authorisation Data, in any authenticated
RPC calls made using the new login context. Servers receiving those calls will need to use the
delegation token in a ps_request_*( ) to become a delegate or impersonator. Upon receiving such
a request, the PS will verify that the delegation token matches the delegation chain (or single
identity passed in) to ensure that the proper steps were taken to enable delegation and that none
of the data has been tampered with (since that time).

The delegation token is an MD5 checksum over the EPAC, encrypted in the key of the Privilege
Server — the seal being of the type sec_id_seal_type_md5_des. Only the PS can generate such a
seal (it’s signature), so any tampering of the data sealed by a delegation token would break that
seal, and the Privilege Server would then reject any requests to use that data.

Note: The delegation token is passed in the Authorization Data field along with the
standard seal over the EPAC, which has not been previously encrypted. The seal of
the EPAC is used to verify the integrity of the EPAC data for authenticated RPC calls.

1.20.8 Remote Interfaces

A set of new interfaces, described in Section 5.1.1 on page 263 is also provided to aid in
authorisation. They permit a PTGT to be obtained from the Privilege Server, PSZ, by
intermediary callers after having the appropriate verifications made (depending upon the
circumstances). The data types associated with these functions are also described in Chapter 5,
in the subsections under ‘‘Data Types’’.

Part 1 Introduction 97



Components of Delegation Model Introduction to Security Services

1.20.9 Extensions to ACLs

DCE 1.0 access control lists contain entries that identify the access rights to be granted to
principals bearing certain privilege attributes. As of DCE 1.1, clients and servers are able to
invoke secure operations through one or more intermediaries. When delegation is activated, a
target server will receive an extended PAC that contains the privilege attributes for the initiator
of the chain of operations as well as the privilege attributes for each intermediary involved in the
chain. The Common Access Determination Algorithm has been modified to verify that the
privilege attributes for each principal involved in the operation, as specified in the EPAC, have
been granted the necessary rights to perform the operation.

More specifically, the standard ACL entries are extended with a set of entries that only apply to
principals acting as intermediaries. These extended entries are called delegate entries and permit
intermediaries to be listed on the ACL without granting those intermediaries the ability to
operate on the target object directly. The new delegate ACL entry types used to provide access to
an identity acting as an intermediary only are:

user_obj_deleg Identity that owns object

user_deleg Specific principal, identified by cell-relative principal name

for_user_deleg Specific principal, identified by global principal name

group_obj_deleg Identity of group that is listed as owner of object

group_deleg Specific group, identified by cell-relative group name

for_group_deleg Specific group, identified by global group name

other_obj_deleg Any principal in the local cell

for_other_deleg Any principal in the specified cell

any_other_deleg Any principal in any cell

For specific information on these types, the sec_acl_entry_type_t data type describing the
delegate ACLEs can be found in Section 7.1.2 on page 312.

The extended authorisation algorithm is as follows:

(I) Check Initiator:
Apply standard algorithm
IF access mode is denied THEN

Deny Access & Terminate Algorithm
ENDIF

(II) Check Each Intermediary:
FOR EACH Extended PAC DO

Apply standard algorithm (allow delegate entries)
IF access mode is denied THEN

Deny Access & Terminate Algorithm
ENDIF

END

(III) Grant Access

Figure 1-14  Extended Delegation Access Control Algorithm

98 CAE Specification (1997)



Introduction to Security Services Components of Delegation Model

The preceeding figure presents a very high-level overview of the algorithm. Section 1.8 on page
40 and Section 1.9.1 on page 48 provide additional information on the extensions to the ACLEs
and the authorisation steps. The details of the extended delegation access control algorithm can
be found in Chapter 8, in Section 8.2 on page 321.

1.20.10 User Interfaces

The user interfaces to support this delegation model are limited to a new set of DCE ACL entry
types that are in addition to the ones existing for DCE 1.0. The addition of these types does not
cause any change in behavior for existing ACL Editors (unless they explicitely need to use one or
more of the new entry types to provide authorisation control for delegation purposes). For the
new entries, the key and permission types are defined exactly as they would for other existing
DCE ACLEs. (As noted in the previous section, the new extensions to the ACL entry types can
be seen in Section 1.8 on page 40. The authorisation steps can be seen in Section 1.9.1 on page 48
which lists the steps for both existing (legacy) ACL management, and also those for delegation.)

No wire protocol changes are necessary to support these new ACL entry types, since they are
simply additional values of the existing sec_acl_entry_type_t data type, which can be seen in
Section 7.1.2 on page 312.

Part 1 Introduction 99



Extended Registry Attribute Facility Introduction to Security Services

1.21 Extended Registry Attribute Facility
The DCE 1.0 user registry facility uses a static schema. The Extended Registry Attribute Facility is
an attribute facility that employs a dynamic schema.

The Registry (for DCE 1.0) is a repository for principal, group, organization and account data. It
stores the network privilege attributes used by the DCE as well as account data used by local
operating systems. The local account atributes are appropriate only for UNIX operating
systems.

The Extended Registry Attribute (ERA) Facility provides a mechanism for extending the
Registry schema to include data (attributes) for operating systems other than UNIX. This data
includes attribute schema and attribute instances. These are stored in the Registry and
propagated from the master security server to replicas, just like the existing Registry data. The
attribute schema has a cell-wide influence, but not an inter-cell influence. The Extended Registry
Attributes (ERAs) are manipulated by a set of operations for creating and maintaining the
attribute schema and attribute instances.

These operations provide the ability to define attribute types and attach attribute instances to
registry objects. Registry objects are nodes in the Registry (database) to which access is
controlled by an ACL Manager type. The Registry Objects are:

• Principal

• Group

• Organisation

• Policy

• Directory

• Replist

• Attr_schema

These registry objects and their accompanying ACL Manager type are explained elsewhere in
this document. The ACL Manager types can be seen in Section 11.1 on page 358.

The Extended Registry Attribute (ERA) Facility also provides a trigger interface that servers use
to integrate their attribute services with the ERA services.

1.21.1 Attribute Schema

An attribute schema is a catalog of attribute types known to a system (in the sense of ‘‘operating
system’’). Each entry in the schema defines the format and function of an attribute type. There is
an attribute schema identified by the architectural name ‘‘xattrschema’’ under the security
junction point (usually ‘‘/.:/sec’’) in the CDS namespace. The schema may be dynamcially
updated to create or destroy schema entries. Access to the (attribute) schema is controlled by an
ACL on the schema object. (As previously mentioned, the schema is propagated from the
master security server to replicas like other Registry data.) Since the schema is local to a cell, it
defines the types that can be used within the cell, but not outside the cell (unless the type is also
defined in another cell). See Section 1.21.2 on page 101 for information on the ACL object
permissions.

Note: When an attribute is used in an authorisation decision, it is likely that the value of
that attribute for a particular principal must not be the same as the value of that
attribute for any other principal. Therefore, when attributes are used for
authorisation decision, they should be unique. The ERA schema entries have a
‘‘unique’’ boolean as one of the characteristics of the attribute type. In order for an

100 CAE Specification (1997)



Introduction to Security Services Extended Registry Attribute Facility

attribute to be unique, this boolean must be set to the value TRUE (1).

1.21.2 Access Control for the xattrschema Object

The Registry ACL Manager has the xattrschema acl_mgr_type identified by the UUID
755cd9ce-ded3-11cc-8d0a-08009353559 which supports the following set of permission bits:

Permission Bit Name Description
d delete Delete an entry from the schema
i insert Create a new entry in the schema

m management Modify a schema entry
r read View the contents of the schema
c control Modify the ACL on the schema

Table 1-1  Extended Attribute Schema ACL Manager Permission Bits

1.21.3 Schema Entries

A schema entry defines the characteristics of an attribute type known to the system. Once a
schema entry has been created for an attribute type, instances of that attribute type can be
created on objects that are dominated by the schema.

The primary identifier of an attribute type is its unique identifier (UUID). The schema entry also
contains a unique string name that can be used as a secondary key. Although schema entries
may be created and deleted dynamically, only certain fields in the schema entry may be
modified after creation. The prohibition of certain fields from being modified after creation
avoids inconsistent Registry data and access control. The sec_attr_schema_entry_t data type
defines a schema entry. It is shown in Section 11.9.1.6 on page 431.

The following fields in a schema entry (sometimes also called an attribute type) can be modified:

• attr_name

• acl_mgr_set

• reserved

• intercell_action

• trig_binding

• comment

Additional ACL managers may be added to the acl_mgr_set field after creation of the entry, but
none may be deleted or changed. If a dramatic change, such as a different attr_encoding or
acl_mgr_type (in the acl_mgr_set), must be made to an schema entry, the schema entry must first
be deleted (which will force deletion of all attributes of that type), then re-created.

The acl_mgr_set lists the ACL Manager types that support the object types on which attributes of
a type can be created. For instance, if an attribute is to be attached to principal objects, the
principal acl_mgr_type must be specified. Similarly, if the attribute is additionally intended for
use on the policy object, the policy acl_mgr_type must be specified. For each acl_mgr_type, the
permissions required for attribute operations on the corresponding object type are also specified.
The data type structure for this is the sec_attr_acl_mgr_info_t, which is defined in Section
11.9.1.1 on page 428.

Part 1 Introduction 101



Extended Registry Attribute Facility Introduction to Security Services

1.21.3.1 Attribute Type Flags

Some of the fields in a schema entry are known as flags. Their settings have special meanings to
the entry. If for instance, the reserved flag is set, the entry cannot be deleted. If a principal with
the required permissions changes this flag (field), for instance, the cell administrator, to FALSE
(0), then authorized principals can delete the schema entry.

If the use_defaults flag is TRUE (1), then when searching for a default attribute value, the DCE
1.1 RS ERA function first examines the organisation (specified in the principal’s account, if any)
for an attribute instance of the requested type. It secondly inspects the policy object for an
attribute instance of the same type (When a rs_attr_get_effective( ) query is made on a group or
organisation object, only the policy object is inspected for an attribute instance to use as a default
value).

The flags are defined in the sec_attr_sch_entry_flags_t data type in Section 11.9.1.2 on page 428.

1.21.4 The use_defaults Algorithm

The algorithm used by rs_attr_get_effective( ) (which is not useful for queries on the policy object
itself) for a single-valued attribute type is:

• Query the named object for an attribute instance of the requested type. If an instance exists,
return it. If an instance is not found, proceed.

• If the object is one of the following,

• a principal without an account,

• a group, or

• an organization

proceed. Otherwise (Else), if the object is a principal with an account, query the organisation
specified in the principal’s account for an attribute instance of the requested type. If an
instance exists, return it. If an instance is not found, proceed.

• Query the policy object for an attribute of the requested type. If an instance exists, return it.
Otherwise, return ‘‘attribute_not_found’’.

The search algorithm for a default attribute differs slightly for a multi_valued (if this flag is TRUE
(1)) attribute type. When an attribute type is defined with both the use_defaults and the
multi_valued flags set, then the same progression from principal to organisation to policy is
made; however, all attribute instances are collected and returned after the check on the policy
object. Thus, if an attribute instance of the requested type exists on both the principal object and
the policy object, then rs_attr_get_effective( ) will return two attribute instances for that query.

The use_defaults behavior depends upon support for the given attribute type on the
organisation and policy object types. For instance, if the schema entry for a given attribute type
does not include the organisation acl_mgr_type in its acl_mgr_set, then the query on organisation
will be skipped. Likewise, if the attribute type is not supported on the policy object, the query on
the policy object will be skipped.

102 CAE Specification (1997)



Introduction to Security Services Extended Registry Attribute Facility

1.21.5 The intercell_action Algorithm

The intercell_action field of the schema entry specifies the action that should be taken by the
Privilege Server when reading attributes from a foreign cell. This field can contain one of three
values:

sec_attr_intercell_act_accept Accept the foreign attribute instance.

sec_attr_intercell_act_reject Reject the foreign attribute instance.

sec_attr_intercell_act_evaluate Call a remote trigger server to determine how the attribute
instance should be handled.

When the Privilege Server is generating a PTGT for a foreign principal, it:

• retrieves the list of attributes from the foreign principal’s EPAC,

Note: The attribute instances may be attached to the principal object itself or attached to
the group or organisation object associated with the principal object.

• passes the list to the Privilege Server through the * prv_attr_check_intercell_attrs ( ) call which
retains, discards, or maps the attributes in the list, producing an output list of attributes, and

• includes the output list of acceptable attributes in the EPAC it generates for the object, for the
PTGT for the foreign principal.

The Privilege Server then checks the local attribute schema for the attribute types with UUIDs
that match the UUIDs of the attribute instances from the foreign cell that are contained in the
foreign principal’s EPAC. At this point, the Privilege Server does one of two things, as follows:

1. If the Privilege Server cannot find a matching attribute type in the local attribute schema, it
checks the unknown_intercell_action attribute on the policy object. If this attribute is set to:

• sec_attr_intercell_act_accept:

The foreign attribute instance is retained and included in the EPAC generated for the
object by the Privilege Server.

• sec_attr_intercell_act_reject:

The foreign attribute is discarded.

Note: The unknown_intercell_action attribute must be created by the system
administrator and attaached to the policy object. The attribute type, which
takes the same values as the intercell_action flag (field), is defined in Section
1.21.12.1 on page 108.

2. If the Privilege Server finds a matching attribute type in the local attribute schema, it
retrieves the attribute. The action it now takes depends upon the setting of the attribute
type’s intercell action field and unique flag, as follows:

• If the intercell action field (intercell_action) is set to the value
sec_attr_intercell_act_accept and:

• The unique flag (field) is set to FALSE (0), the Privilege Server includes the foreign
attribute instance in the principal’s EPAC

• The unique flag (field) is set to TRUE (1), the Privilege Server includes the foreign
attribute instance in the principal’s EPAC only if the attribute instance value is
unique among all instances of the attribute type within the local cell.

Note: If the unique attribute type flag is set to TRUE (1) and a query trigger
exists for a given attribute type, the intercell action field cannot be set to

Part 1 Introduction 103



Extended Registry Attribute Facility Introduction to Security Services

the value sec_attr_intercell_act_accept because, in this case, only the
query trigger server can reasonably perform a uniqueness check.

• If the intercell action (intercell_action) field is set to the value
sec_attr_intercell_act_reject, the Privilege Server unconditionally discards the foreign
attribute instance.

• If the intercell action (intercell_action) field is set to the value
sec_attr_intercell_act_evaluate, the Privilege Server makes a remote
sec_attr_trig_intercell_avail ( ) call to an attribute trigger using the binding information in
the local attribute type schema entry. The remote attribute trigger determines whether
to retain, discard, or map the attribute instance to another value or values. The
Privilege Server includes the values returned by the attribute trigger in the ( )
sec_attr_trig_query call output array in the principal’s EPAC. Section 11.9.1.4 on page
429 defines the types and values for schema entry types.

1.21.6 Attribute Scope

The scope field (defined in Section 11.9.1.6 on page 431) controls the objects to which an attribute
type can be attached. If scope is defined, the attribute can be attached only to objects defined by
the scope. If the scope for a given attribute is defined as some directory name, instances of that
attribute type can be attached only to objects in that directory. If the scope is narrowed by fully
specifying an object in that directory, for instance, /directory_name/another_directory_name,
then the attribute can only be attached to the another_directory_name principal.

1.21.7 Attribute Encodings

Attribute encoding defines the legal encoding for instances of the attribute type. The encoding
controls the format of the attribute instance values, such as whether the attribute value is an
integer, string, a UUID, or vector of UUIDs that define an attribute set.

Attribute encodings are defined by the sec_attr_encoding_t data type which can be found in
Section 11.8.1.16 on page 418.

1.21.8 Attribute Triggers

Some extended registry attributes require the support of an outside server either to verify input
attribute values before storing them (in the Registry Store) or to supply output values when the
data are stored in an external database. Such a server could be the connection to a legacy
registry system or could be part of a new security application. The attribute trigger facility
privides for automatic calls (triggers) to outside DCE servers for certain attribute operations.
More specifically, triggers will automatically be invoked by the sec_rgy_attr_client agent
whenever an rs_attr_*( ) call indicates that a trigger is required for the operation to complete. The
attribute trigger facility is discussed in the next section.

1.21.8.1 Attribute Trigger Facility

The attribute trigger facility consists of three components, specified as follows:

• The attribute schema trigger fields (trig_types and trig_binding), defined in Section 11.9.1.6 on
page 431, which enable the association of a trigger and binding information with an attribute
type. These fields are part of a ‘‘standard’’ schema entry that defines an attribute type.

• The sec_attr_trig interface, which defines the query and update trigger operations. The
interface functions are defined in the sec_rgy_attr_*( ) functions in Chapter 16. (For instance,
for the query operation, the sec_rgy_attr_*( ) function specifies the sec_attr_t attr_value field

104 CAE Specification (1997)



Introduction to Security Services Extended Registry Attribute Facility

is used to pass in optional information required by the attribute trigger query.)

• The trigger servers (implemented as DCE servers), independent of the DCE security server,
that implement the trigger operations for the attribute types configured with their bindings.

The first two components are described in this specificaion, and are provided as part of the DCE
1.1 extended registry attribute support. Trigger servers are written by security application
developers.

A trigger may be configured for any attribute type of any encoding type by filling in the
trig_types and trig_binding fields of the schema entry.

1.21.8.2 Trigger Binding

When an attribute is created with the sec_rgy_attr_update ( ) call (defined in sec_rgy_attr_update ( )
on page 609 ), the association between the attribute type and an attribute trigger is defined by
specifying the following:

• Trigger Type - (Schema entry trig_types)

Defines the trigger as a query server, for query operations; or an update server, for update
operations.

Notes:

1. If one of these flags (query or update) is set, then schema field trig_binding
must also be set.

2. For DCE 1.1, the ‘‘query’’ and ‘‘update’’ flags are mutually exclusive.

• Trigger Binding - (Schema entry trig_binding)

Defines the server binding handle for the attribute trigger. The details of the trigger binding
are defined by a number of data types. The trig_binding field contains an array of bindings,
each of which may be a server directory entry name, a string binding, or an RPC protocol
tower set. It also contains optional authentication and authorisation information for making
authenticated RPC calls.

It is recommended that the trig_binding specify the directory entry name for the trigger server
and that actual address information be stored in the directory service (Prototype applications
may want to specify a string binding or protocol tower for convenience.).

When a server name is retrieved from the trig_binding field, the rpc_ns_binding_import_begin ( )
function may be called specifying the server name, the rpc_c_ns_syntax_dce( ) entry name
syntax, and the sec_attr_trig interface handle to establish a context for importing RPC
binding handles from the name service database.

When a string binding is retrieved, the rpc_ns_binding_import_begin ( ) function may be used
to generate an RPC binding handle. Once a binding handle is obtained, the
rpc_binding_set_auth_info ( ) function may be called with the binding handle and the
authentication information from the trig_binding field to set authentication and authorisation
information for this handle to the trigger server. See Section 11.8.1.3 on page 413 for more
information on authentication information to be used.

Refer to Section 11.9.1.6 on page 431, the definition of the sec_attr_schema_entry_t data type, for
more information on these two schema fields. Only if both of the above fields are specified will
the association between the attribute type and attribute trigger be created. An association can be
defined to any attribute type encoding except an attribute set. Attribute sets are described in
Section 1.21.9 on page 106.

Part 1 Introduction 105



Extended Registry Attribute Facility Introduction to Security Services

1.21.8.3 Query Triggers

If an attribute type is configured with a query trigger and a sec_rgy_attr_lookup_* ( ) of an
attribute of that type is performed, the client side attribute lookup code will:

• bind to the triger server (using a binding from the attribute type’s schema entry),

• make the remote sec_attr_trig_query( ) call, passing in the attribute keys (there can be optional
information in the attr_value field) provided by the caller in the lookup, and

• if successful, return the output attribute(s) to the caller.

If a sec_rgy_attr_update ( ) function is called for an attribute type with a query trigger, the input
attrubute value is ignored and a ‘‘stub’’ attribute instance is created on the named object. This
serves to mark the existence of this attribute on the object (nothing else is done). Modifications to
the real attribute value must occur at the trigger server.

1.21.8.4 Update Triggers

If an attribut type is configured with an update trigger and a sec_rgy_attr_update ( ) function is
called, the server-side update code will:

• bind to the triger server (using a binding from the attribute type’s schema entry),

• make the remote sec_attr_trig_query( ) call, passing in the attributes specified by the caller in
the write, and

• if successful, store the output attribute(s) in the (ERA) database and return the output
attribute(s) to the caller.

1.21.9 Attribute Sets

Attribute sets provide a flexible method of grouping related attributes on an object (for easier
search and retrieval of related attributes — For instance, a query on an attribute set expands to a
query on its members). The members of a set are defined in an instance of the attribute set,
whose value is a vector of attribute type UUIDs. Different sets of members may be defined in
each attribute set instance in order to tailor a set for the object to which it is attached.

Note: Attribute sets may not be nested. A member UUID of an attribute set may not itself
identify an attribute set. This limitation may be removed in a future version of DCE
(newer than DCD 1.1).

The attribute type UUIDss referenced in an attribute set instance must correspond to existing
attribute schema entries. It is possible to create an attribute set instance on an object, however,
before creating member attribute instances on that object (which might be advisable).

Attribute sets are defined by the sec_attr_enc_attr_set_t data type in Section 11.8.1.15 on page
418.

1.21.10 Access Control for Attribute Types

The definition of an attribute type in the schema enables the creation of attribute instances of the
same type with a consistent format. In general, access to an attribute instance is controlled by the
ACL on the object to which the attribute is attached. ACLs are not attached to attributes
themselves. An attribute is ‘‘just another data field’’ on the Registry object to which it is
attached. Access to that data field is controlled by permission bits on the Registry object’s ACL.
In other words, access to an attribute instance is controlled by the ACL on the object to which
the attribute instance is attached, whereas access to a schema entry is controlled by the ACL on
the xattrschema object.

106 CAE Specification (1997)



Introduction to Security Services Extended Registry Attribute Facility

For instance, consider an attribute, A. Suppose it is attached to a Principal object, P. Then, access
to the A attribute on the P Principal object is controlled by the ACL on the P object.

Access control for a given attribute type is specified in the acl_mgr_set (acl_mgr_type and
permset fields) of its schema entry. If a given ACL Manager type is not specified in the
acl_mgr_set, then it is not possible to attach the attribute to Registry objects that use that ACL
Manager type. (The ACL Manager types and the permissions they support are shown in Section
11.1 on page 358. )

1.21.10.1 Additional Attribute Permission Bits

The RS ACL Managers have been enhanced to support additional (generic) attribute type
permissions that administrators may assign for access control for attribute types of their choice.
The set of new permission bits {O, P, Q, ..., X, Y, Z} are supported by each ACL Manager for each
Registry object type that supports ERAs. Thus, the list of valid permissions for each ACL
Manager shown in Section 11.1 on page 358 has been extended with the ‘‘O’’ through ‘‘Z’’
permission bits. All uses of these additional (O-Z) attribute permission bits

• in the Access Permsets fields of schema entries,

• on ACLS, and

• in policies regarding their use,

will be controlled by the cell administrator. The DCE security services will not interpret or assign
meaning to these bits other than what is implied by their inclusion in a schema entry.

1.21.11 Access Control on Attributes with Triggers

Access to information maintained by a trigger server is controlled entirely by that trigger server.
The trigger server may choose to implement any authorisation mechanism (including none). A
query operation on an attribute associated with a query trigger will undergo the following
authorisation checks (the process for an update trigger is very similar):

• The sec_rgy_attr_lookup_by_id ( ) or other sec_rgy_attr_*( ) query function performs the
rs_attr_*( ) query remote call to the security server.

• The rs_attr_lookup_by_id ( ) (or other rs_attr_*( ) query function) will check the ACL of the
named object to see if the client has the required permissions (specified in the query_permset
field of the (acl_mgr_set) field of the schema entry). If access is granted, the operation returns
the trigger binding information required to perform the sec_attr_trig_query( ). If access is not
granted, the operation fails (see the specific function in Chapter 16) for specific information
about the failure status codes returned.

• If sec_attr_trig_query( ) rs_attr_*( ) query succeeds, the sec_attr_query*( ) function creates an
authenticated (with the client’s login context) binding handle to the trigger server and
performs the sec_attr_trig_query( ).

Upon receiving the sec_attr_trig_query( ) call, the trigger server may inquire of the RPC the
client’s identity, perform name-based authentication, perform ACL checks if it
implements an ACL manager, or execute any other access control mechanism it has in
place for the information being accessed.

The trigger server may choose to query the Registry attribute schema for the
query_permset configured for this attribute type, and use that information in an ACL
check (it is however, under no obligation to so do).

Essentially, the implementation of access controls on attribute information stored outside
of the Registry database is left to the designers of those applications. This specification

Part 1 Introduction 107



Extended Registry Attribute Facility Introduction to Security Services

does not describe, nor does it recommend the inforcement of, an authorisation
mechanism for (use by) attribute trigger servers.

1.21.12 Well-Known Attribute Types

Certain definitions, known as ‘‘well-known’’ attribute types, are required for DCE 1.1 security
services. These are definitions of architectural attribute types that will be used by the DCE
security service to make security policy decisions. Well-known attributes ahve documented,
well-known attribute type UUIDs (The type UUID is the authoritative key by which such
attributes are known).

Although a standard DCE 1.1 installation may create the schema entries for well-known
attributes as well as instances of those attributes, nothing can prevent an administrator from
deleting them. Security policy will be affected by the absence of any given well-known attribute
as described by the specification for that attribute. A cell administrator can easily recreate a
schema entry for a well-known attribute if the type UUID and other characteristics for it are
known.

The DCE 1.1 Extended Registry Attribute facility requires the well-known ‘‘unknown intercell
action attribute’’ for determining policy that is defined in the next section. Refer to Section 1.21.5
on page 103 for implications of its absence upon the Privilege Server (PS), PSZ, when reading
attributes from a foreign cell.

1.21.12.1 Unknown Intercell Action Attribute

The DCE 1.1 Extended Registry Attributes facility requires the creation of the following well-
known attribute type for the policy object:

• attr_name: unknown_intercell_action

• attr_id: 71e0ef2c-d12e-11cc-bb7b-080009353559

(This is the ACL Manager type for the attr_schema Registry Object.)

• attr_encoding: sec_attr_encoding_integer

• acl_mgr_type: policy_acl_mgr

• unique: FALSE

• multi-valued: FALSE

• reserved: TRUE

• comment: Flag indicating whether to accept or reject foreign attributes for which no schema
entry exists

Section 1.21.5 on page 103 provides information on the security policy implications of this
attribute.

108 CAE Specification (1997)



Introduction to Security Services Extended Login and Password Management Overview

1.22 Extended Login and Password Management Overview
For DCE 1.1, login and password management have been improved to enhance several areas;
pre-authentication, login denial, and password management.

The improvements to login and password management for DCE 1.1 and newer versions include
the following:

• Pre-authentication

• Login denial through environmental parameters

• Login denial based upon registry attributes

• Detection and limitation of invalid login attempts

• Password strength control

1.22.1 Pre-authentication

Passive attacks on user passwords occur when the initial request for validation sends the login
name of the user in the request and this verifiable plaintext data is returned from the Key
Distribution Service (KDS) encrypted in the user’s key in addition to a TGT. An attacker is able to
make an initial request for validation using the user’s name and then proceed to attack the
response by using additional resources to derive the key and obtain the TGT by trying all
combinations until the decryption yields the verifiable plaintext data sent in the original request.

Pre-authentication, in the generic sense, is a method of authenticating login attempts that
attempts to thwart passive attacks on the KDS. It requires access to the derived key of a user to
generate the initial request and does not send verifiable plaintext in the request. If the server is
unable to decrypt the request, the login attempt fails and no credentials are returned.

Prior to DCE 1.1, authentication is particularly vulnerable to off-line password guessing attacks
when users have ‘‘weak passwords’’ (derived from words). For DCE 1.1 (and newer versions),
there are three protocols used by DCE Security clients and servers to perform this first part
(pre-authentication) of the user-authentication process. They are as follows:

• The third-party protocol, which provides the highest level of security.

• The timestamps protocol, which is less secure (but still more secure than the DCE 1.0
protocol).

• The DCE 1.0 protocol, which is the least secure, and is provided solely to enable DCE 1.1
Security Servers to process requests from pre-DCE 1.1 clients.

1.22.1.1 Login Denial

This consists of two aspects — the Client and the Server.

1.22.2 Server

With the addition of pre-authentication, checks which were previously provided by the client
can now be enforced by the server. Before pre-authentication, the only way a login was known
to be successful was if the client could use the user’s derived key to decrypt the TGT returned
from the KDS. Utilising Extended Registry Attributes (new for DCE 1.1), administrators can now
limit the number of failed login attempts for a principal and also lock an account if that number
is exceeded.

Prior to DCE 1.1, checks for expired passwords were optional. They were enforced by the client.
As of DCE 1.1, the TGT returned from the KDS is marked as expired if the password expiration

Part 1 Introduction 109



Extended Login and Password Management Overview Introduction to Security Services

time has been reached or will be reached for the time the ticket is valid and the rejection of
‘‘expired TGT’s" will be enforced by the KDS.

1.22.2.1 Client

Prior to DCE 1.1, the inability of applications to specify additional criteria for controlling
authentication of users was a weakness in the authentication mechanism. The presence of ERAs
in DCE 1.1 (and newer versions) permits the specification of additional application specific checks
for authentication. An application may define a ‘‘server’’ function and specify the binding to this
function in an ERA which will be invoked AFTER authentication but BEFORE returning to the
client. Section 1.21.8.2 on page 105 specifies details on this topic.

1.22.3 Password Management

User passwords are often cited as the weakest links in any security system. Control of
passwords has been limited prior to DCE 1.1 to checks performed by the password program on
the host machine before the calls to update the Registry. The only check enforced then was
minimum password length.

Using DCE 1.1 ERAs, additional password controls may be specified and enforced in the server.
In particular, ‘‘well-known’’ ERAs have been defined to permit application specific server
functions for password strength checking and password generation. Administrators must
specify the binding for these functions in the ERA and the presence of these ERAs will be
checked by the server on password updates. In addition, ERAs are used to specify control
parameters for the enforcement of limited password reuse. These ‘‘well-known’’ ERAs are
defined in Section 1.23.6 on page 117.

110 CAE Specification (1997)



Introduction to Security Services Pre-authentication and Obtaining a TGT

1.23 Pre-authentication and Obtaining a TGT
The protocol used by the Security client when it makes a login request to the AS is determined as
follows:

• Pre-DCE 1.1 clients always use the DCE 1.0 protocol.

• DCE 1.1 clients use the third-party protocol, unless the host machine’s session key (which the
client uses to construct the request) is unavailable. It then uses the timestamps protocol.
These protocols will be explained in the descriptions that follow.

The protocol used by the AS to respond to the client is determined by the following:

• The protocol used by the client making the login request.

• The value of a pre_auth_req Extended Registry Attribute (ERA) attached to the requesting
principal.

This can be summarised as follows:

The Authentication Service alsaays attempts to reply using the same protocol used by the client making
the request, unless the value of the ERA ‘‘forbids’’ it to do so.

1.23.1 The Timestamps (AS + TGS) Protocol

Note: This pre-authentication protocol is also known as PADATA-ENC-TIMESTAMPS.

The timestamps protocol is identical to the DCE 1.0 protocol in Figure 1-2 on page 21 with the
following additions:

• In step 1 (AS Reguest: Ask for ticket to KDS), Client A sends to the AS, in addition to the user’s
name (UUID) (as one of its arguments (to sec_login_setup_identity ( ) ), a timestamp encrypted
in the user’s derived (secret) key.

• In step 1 ⁄1
2 (AS Response: Receive ticket to KDS), the AS, before preparing the user’s TGT,

verifies the user as follows:

1. It decrypts the timestamp using the copy of the user’s key it obtained from the Registry.

2. If the decryption succeeeds, and the timestamp is within 5 minutes of the current time,
the user is verified, and the AS proceeds to prepare the TGT. If the decryption fails, or
if the timestamp is not within 5 minutes of the current time, the Authentication Service
rejects the login request.

With this protocol the AS can verify that the client login request is timely and that the
requesting client knows the user’s password. It is thus aware of, and can manage, persistent
login failures for a given user, eliminating passive password-guessing attacks. Details about
this will be given later in this discussion.

Note, however, that with this protocol, since the timestamp is identifiable text and the key
for encryption is the user’s derived key, it is still vulnerable to off-line attacks by processes
monitoring network requests (although it eliminates the passive attacks made by sending
bogus initial requests for validation).

Part 1 Introduction 111



Pre-authentication and Obtaining a TGT Introduction to Security Services

1.23.2 The Third-Party (AS + TGS) Protocol

Note: This pre-authentication protocol is also known as PADATA-ENC-THIRD-PARTY.

The third-party protocol addresses both types of attacks mentioned previously — passive
attacks made by sending bogus initial requests for validation (iteratively), and off-line attacks by
processes (monitoring network requests).

This protocol uses a strong ‘‘third party’’ key to encrypt the padata in the request. (Thus, since it
is a pre-authentication mechanism and it uses a ‘‘strong session key’’ (instead of the user’s secret
key) for encryption, it addresses the previously mentioned attacks.) The strong key is provided
each machine running as a DCE client. They thus have access to a strong 56-bit DES key which is
shared with the KDS.

1.23.2.1 Client Side

When a client principal is about to initiate a KRB_AS_REQ (initial authentication exchange with
the KDS), it must first obtain the information it needs to compose the request. This information
is as follows:

1. First, the client (A) must obtain the TGT for the machine principal on which it is executing.
Client A’s process must have special privileges (usually termed, a ‘‘privileged’’ process) in
order to obtain the machine principal TGT. ‘‘Privileged’’ in the sense meant here refers to,
say, a program in a standard UNIX operating system that runs as a setuid to the root
process. ‘‘Privileged’’ in terms of nonIX systems is beyond the scope of this document.

Note: If the login application itself is ‘‘privileged’’, it has access to the machine
principal TGT and construct this part of the request itself. If not, it obtains the
following from ‘‘sec_clientd’’:

1. The TGT

2. A random key encrypted in the Machine Session Key (a strong key)
otherwise known as the user’s derived key.

3. A random key to be shared between itself and the KDS.

If sec_clientd is not available, which is the case when initially configuring a cell,
then a third-party request cannot be generated and the protocol defaluts to the
timestamps protocol.

2. Second, the user’s derived key must be constructed using the user’s supplied password
and a ‘‘salt’’. The password is known by Client A and the ‘‘salt’’ is, in most cases a default
value.

Note: To reduce the number of RPC’s necessary in the usual case, Client A will
attempt to generate the user’s derived key using the default salt. On a login
failure, the server (KDS) will check to see if Client A uses a non-default salt, and
if so, will return this ‘‘non-default’’ salt with the error. Client A will detect the
presence of this salt and retry the login using the ‘‘non-default’’ salt.

3. Third, the client (Client A) generates a random key to use as a shared key between itself
and the KDS for the reply (called the ‘‘reply random key’’).

Now that the required information is obtained, Client A must compose the padata block. To do
this, Client A takes the current time and the ‘‘reply random key’’ and encrypts this data using the
user’s derived key. It then takes the random key and encrypts the data a second time.

The padata now consists of the machine TGT, the random key encrypted in the Machine Session
Key and an encrypted data block. The machine TGT identifies the third party sponsor for the

112 CAE Specification (1997)



Introduction to Security Services Pre-authentication and Obtaining a TGT

exchange and the reply random key established a shared key between the login application
(referred to herin as Client A) and the KDS.

1.23.2.2 Signature of padata Field

The padata field constructed as described in the preceeding section, has the signature below. For
items denoted as ‘‘Xy’’ the meaning is to be interpereted as ‘‘X’’ is encrypted using ‘‘y’’ as a key.
Also, ‘‘msk’’ is shorthand for ‘‘machine session key’’, and ‘‘uk’’ is shorthand for ‘‘user’s derived
key’’. Lastly, ‘‘rk’’ is shorthand for ‘‘random key’’.

[[machine-TGT][(random-key) msk][(([timestamp][reply-random-key]) uk) rk ]]

Figure 1-15  Signature of the KDS padata Field

1.23.2.3 Server Side

On the KDS, the principal database is extended with an Extended Registry Attribute pre_auth_req
that determines if that principal must use pre-authentication. This is a ‘‘well-known’’ ERA,
defined in Section 1.23.6 on page 117,
whose allowable values are (relating to if the principal must use pre-authentication):

• 0 — NONE — (Denotes no pre-authentication)

• 1 — PADATA-ENC-TIMESTAMPS — (Denotes timestamps protocol)

• 1 — PADATA-ENC-THIRD-PARTY — (Denotes third-party protocol)

When processing a request, the KDS server examines the pre_auth_req ERA for the selected
principal. If the request satisfies the restriction, then the server will provide the corresponding
reply. There is an implicit hierarchy in the ERA values for pre-aauthentication.

The KDS will only reject requests if the ERA contains a value more restrictive than the actual request.

Thus, if Client A initiates a KRB_AS_REQ in the third-party protocol form and the the client
principal has an ERA with a value of PADATA-ENC-THIRD-PARTY, the restriction is satisfied
and the login is successful (all other things being equal), so the reply will be a TGT encrypted in
the random-reply-key.

If however, a DCE 1.1 KDS servr receives a DCE 1.0 (no pre-authentication) KRF_AS_REQ from
Client A whose principal has an ERA with the value of PADATA-ENC-THIRD-PARTY, the
restriction is not satisfied and the request will be denied.

If the ERA for a principal contains the value NONE, but the principal logs in from a DCE 1.1
client, this client (Client A for reference purposes), Client A will generate a pre-authentication
request (KRB_AS_REQ) specifying PADATA-ENC-THIRD-PARTY, and send it to the KDS. The
KDS will accept this request because PADATA-ENC-THIRD-PARTY is a stronger authentication
mechanism than specified in the ERA (pre_auth_req).

On the other hand, if the scenario were reversed and the ERA value was PADATA-ENC-
THIRD-PARTY, and the request came from a DCE 1.0 client with no pre-authentication support,
the login attempt would fail since the authentication mechanism is less secure than that
specified in the ERA.

Note that if an initial KRB_AS_REQ is denied, it may be because a salt other than the default was
used to generate the user’s derived key. The KDS (server) can determine if the default salt was
used and if a non-default salt was used and the decryption of the request fails, the KDS will issue

Part 1 Introduction 113



Pre-authentication and Obtaining a TGT Introduction to Security Services

a KRB_ERROR reply containing the correct salt retrieved from the Registry. Client A can then
repeat the construction of the padata and retry the KRB_AS_REQ. (The KRB_ERROR has the
status KDC_PREAUTH_FAILED.)

Thus, there are two reasons Client A’s initial KRB_AS_REQ can fail. They are as follows:

• The salt used to derive the user’s key is a value other than the default.

• The ERA on the client principal has a protocol more restrictive than that used in the request.

1.23.3 Third-party Pre-authentication Protocol

Figure 1-16 on page 115 illustrates the steps in the sec_login_*( ) functions that support
pre-authentication using the third-party protocol. ( Section 1.23.1 on page 111 describes the
timestamps protocol.)

In the figure, step 1 is shown simply to note that while previously, sec_login_setup_identity ( )
initiated the KRB_AS_REQ to the (AS function of the) KDS, this functionality is now (in DCE 1.1
and newer versions) being accomplished by the two functions sec_login_validate_identity ( ) and
sec_login_valid_and_cert_ident ( ).

Step 2 is also initiated by a DCE 1.1 Client, Client A, in terms of the terminology of Figure 1-2 on
page 21 (Basic KDS (AS+TGS) Protocol).

In step 3, the AS portion of the KDS will check for the existence of a pre_auth_req ERA and return
the value of the ERA along with the ‘‘salt’’ (used for encryption of the user’s password).

In step 4, Client A uses the returned information in order to perform step 5. This (step 5) step
corresponds to the bullet item A → AS: A, KDS, LA,KDS, NA,AS in Figure 1-2 on page 21 where step
1 (AS Request: Ask for ticket to KDS) is performed.

In step 6 (which corresponds to bullet item A ← AS: A, {KDS, KA,KDS, LA,KDS, NA,AS}KA, TktA,KDS of
Figure 1-2 where in step 1 ⁄1

2 (AS Response: Receive ticket to KDS) a response is sent to Client A for
the KRB_AS_REQ it sent to the KDS), the KDS attemptss to decrypt the request. If successful, the
KRB_AS_REP returned to Client A will contain a TGT. If the decryption fails, a KRB_ERROR
(KDC_PREAUTH_FAILED) is returned and the login attempt is terminated.

If the decryption is successful, the login sequence contines (at step 2 (TGS Request: Ask for ticket to
server) in Figure 1-2 on page 21 ).

114 CAE Specification (1997)



Introduction to Security Services Pre-authentication and Obtaining a TGT

Client Login Process

1). sec_login_setup_identity()

2). sec_login_valid_and_cert_ident()

sec_login_validate_identity()

Privileged Process

3). access machine session key
generate random key and
encrypt in machine session key

[machine TGT[random-keymachine-sessionkey]][random-key]

4). generate user’s derived key

5). compose KRB_AS_REQ

name[padata]
Authentication Service

6). decrypt KRB_AS_REQ,
setup reply

6a). successful decryption

KRB_AS_REP

6b). failure to decrypt

KRB_ERROR, salt

7). decrypt KRB_AS_REP

7a). continue login sequence

7b). if salt differs from current salt

go to 4).

Figure 1-16  Pre-authentication Protocol for KDS

1.23.4 Environmental Parameters and Registry Attributes

Authentication checks performed by application servers may require additional information
about the application user to determine whether or not the user is authorised to use the
application. Examples of such information might include items such as the following:

• physical location

• user’s timezone

• ID of user’s machine (where logged on)

• type of connection from user to Client machine

New features for DCE 1.1, delegation and Extended Registry Attributes, provide an underlying
mechanism to provide for additional application specific information being securely attached to
a client principal’s credentials. Along with this, changes made in the sec_login_*( ) functions
support pre-authentication. These include changes to sec_login_validate_identity ( ) and
sec_login_valid_and_cert_identity ( ). These changes are discussed in Section 1.23.3 on page 114.
The mentioned functions are in Chapter 19.

Part 1 Introduction 115



Pre-authentication and Obtaining a TGT Introduction to Security Services

Several ‘‘well-known’’ Extended Registry Attribute sets called:

• environment_set,

• login_set and

• policy_check_set
are provided in DCE 1.1 to assist in pre-authentication. In addition, when it has been
determined that an invalid login attempt has occurred (has been detected by the Security
Server), two ‘‘well-known’’ ERAs are defined to limit the impact of password attacks. They
permit an administrator to control two aspects of the user’s authentication by:

• setting a maximum number of consecutive bad attempts allowed before an account is locked
(the max_invalid_attempts ERA). This is an integer that reflects the number (minus one) of
login attempts allowed before a principal is disabled from login attempts. A single successful
login to an account resets the number of bad attempts.

• specifying a time to disable an account once the maximum number of attempts (at login) has
been reached. This ERA is known as the disable_time_interval ERA. The time is specified in
seconds. It can also be specified as FOREVER if manual administrative action is the desired
policy.

These ‘‘well known’’ ERAs are defined in Section 1.23.6 on page 117.

1.23.5 Password Management

Prior to DCE 1.1, the following password strength policies were supported:

• Minimum password length (default 0)

• Whether a password can be all spaces (default YES)

• Whether a password can be all alphanumeric (default YES)

As of DCE 1.1, known deficiencies with user-defined passwords such as common names, reuse,
and so forth, have been restricted by password management options that include the following:

• Non-trivial password strength checking

The pwd_val_type ERA has been provided to assist in this. It contains the following values:

• NONE

No password checking is necessary.

• USER_SELECT

A user must supply a password.

• USER_CAN_SELECT

A user can supply a password or an ‘‘*’’ to indicate they would like the system to
generate a password for them.

• GENERATION_REQUIRED

User input will be ignored. See next item.

(For USER_SELECT and USER_CAN_SELECT values, individual sites can specify a binding
for the server exporting the interface as described in Section 1.21.8.2 on page 105, ‘‘Trigger
Binding’’.)

• Password generation

116 CAE Specification (1997)



Introduction to Security Services Pre-authentication and Obtaining a TGT

If the value of the pwd_val_type ERA is GENERATION_REQUIRED, a strong password will
be generated. As with the USER_* values, individual sites can replace the supplied password
generation server with one of their own.

• Password reuse checking

To assist in this, two ‘‘well-known’’ ERAs are defined — minimum_password_cycle_time (the
time in minutes before passwords can be reused) and passwords_per_cycle (the limit on the
number of previous passwords).

Users are not permitted to change their passwords more often than the passwords_per_cycle
times during minimum_password_cycle_time.

1.23.5.1 Password Expiration

Previously (prior to DCE 1.1), whenever a password expired, the Client determined whether or
not to allow logins. With the advent of DCE 1.1, the KDS will terminate a login attempt if the
password is expired.

The ‘‘well-known’’ passwd_override ERA has been defined in DCE 1.1 to permit a principal
assigned the ERA to login even if their password has expired. This ERA should be configured by
default on the administrator principal so that an administrator will not be locked out from
getting tickets.

It is recommended by this specification that user principal accounts use the default action which
enforces the password expiration.

1.23.6 Schemas for Well-known Attributes

The following prototype schema entries illustrate the ‘‘well-known’’ ERAs mentioned in this
document. They are all of the sec_attr_schema_entry_t data type defined in Section 11.9.1.6 on
page 431.

These ‘‘well-known’’ ERAs share certain characteristics. The axl_mgr_set, for instance, identifies
princ, org and policy. It is intended that ‘‘well-known’’ ERAs are set on different objects in order
to permit either fine or rough granularity of enforcement. For instance, regular users might have
a disable_time_interval ERA of 1 day, since it is conceivable they could have a bad day and exceed
their 2max_invalid_attempts allocation. Thus, instances of the disable_time_interval ERA with a
value of ‘‘1’’ might be created on the org and policy object. But, if an attack is made on the admin
principal, installations would want to know about it. This can be handled by creating a
f2disable_time_interval value of ‘‘forever’’ on this principal (forcing a manual intervention if
max_invalid_attempts is exceeded).

To permit this granularity, the apply_defaults field (of the ERA) must be set to ‘‘TRUE’’. It is
important to specify how access is controlled to attribute instances, and this is done by the ACL
on the object to which the attribute is attached. Access control is specified in the acl_mgr_set,
which consists of an acl_mgr_type (say principal) and permset (say m) of a schema entry. The
intent is that ‘‘principals’’ should not be able to change or delete these ‘‘well-known’’ ERAs.
Only those that possess the ‘‘m’’ permission should be permitted to access the ERAs.

The syntax of the acl_mgr_set schema (entry) is as follows:

acl_mgr_type:Query/Update/Test/Delete

Part 1 Introduction 117



Pre-authentication and Obtaining a TGT Introduction to Security Services

1.23.6.1 disable_time_interval ERA

attr_name: ‘‘disable_time_interval’’
attr_uuid: 63005af0-dd2d-11cc-946f-080009353559
attr_encoding: INTEGER
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "amount of time in minutes to disable account"

1.23.6.2 max_invalid_attempts ERA

attr_name: ‘‘max_invalid_attempts’’
attr_uuid: 657eb68c-dd2d-11cc-8990-080009353559
attr_encoding: INTEGER
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "number of invalid attempts allowed before locking account"

118 CAE Specification (1997)



Introduction to Security Services Pre-authentication and Obtaining a TGT

1.23.6.3 minimum_password_cycle_time ERA

attr_name: ‘‘minimum_password_cycle_time’’
attr_uuid: 66513166-dd2d-11cc-9db5-080009353559
attr_encoding: INTEGER
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "minutes before password can be reused"

1.23.6.4 passwords_per_cycle ERA

attr_name: ‘‘passwords_per_cycle’’
attr_uuid: 67090868-dd2d-11cc-a84d-080009353559
attr_encoding: INTEGER
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "limit on number of previous passwords within minimum password cycle time"

Part 1 Introduction 119



Pre-authentication and Obtaining a TGT Introduction to Security Services

1.23.6.5 pwd_val_type ERA

attr_name: ‘‘pwd_val_type’’
attr_uuid: 689843ce-dd2d-11cc-a3e1-080009353559
attr_encoding: INTEGER
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "{0=NONE, 1=USER_SELECT, 2=USER_CAN_SELECT, 3=GENERATION_REQUIRED}"

1.23.6.6 password_generation ERA

attr_name: ‘‘password_generation’’
attr_uuid: 69b421a6-dd2d-11cc-bac5-080009353559
attr_encoding: BINDING
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "binding to server exporting the sec_login_password_generate interface"

120 CAE Specification (1997)



Introduction to Security Services Pre-authentication and Obtaining a TGT

1.23.6.7 pwd_mgmt_binding ERA

attr_name: ‘‘pwd_mgmt_binding’’
attr_uuid: 6a93b8f2-dd2d-11cc-9be7-080009353559
attr_encoding: BINDING
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "binding to server exporting the sec_pwd_mgmt_binding interface"

1.23.6.8 pre_auth_req ERA

attr_name: ‘‘pre_auth_req’’
attr_uuid: 6c9d0ec8-dd2d-11cc-abdd-080009353559
attr_encoding: INTEGER
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "{0=NONE, 1=PADATA-ENC-TIMESTAMPS, 2=PADATA-ENC-THIRD-PARTY}"

Part 1 Introduction 121



Pre-authentication and Obtaining a TGT Introduction to Security Services

1.23.6.9 passwd_override ERA

attr_name: ‘‘passwd_override’’
attr_uuid: bc51691e-dd2d-11cc-9866-080009353559
attr_encoding: INTEGER
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "{0=NONE, 1=OVERRIDE}"

1.23.6.10 login_set ERA

attr_name: ‘‘login_set’’
attr_uuid: 6d8d97bc-dd2d-11cc-b1cc-080009353559
attr_encoding: attr_set
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "standard set of attributes to be returned on login"

122 CAE Specification (1997)



Introduction to Security Services Pre-authentication and Obtaining a TGT

1.23.6.11 environment_set ERA

attr_name: ‘‘environment_set’’
attr_uuid: ba4a5824-dd2d-11cc-a9f3-080009353559
attr_encoding: attr_set
acl_mgr_set:

princ:m/m/m/m
org:m/m/m/m
policy:m/m/m/m

unique:FALSE
multi-valued: FALSE
reserved:TRUE
apply_defaults: TRUE
intercell_action:
trig_types:
trig_binding:
comment: "attached to machine principals; standard set of environment attributes"

Part 1 Introduction 123



Introduction to Security Services

124 CAE Specification (1997)



CAE Specification

Part 2

Security Services and Protocols

The Open Group

Part 2 Security Services and Protocols 125



126 CAE Specification (1997)



Chapter 2

Checksum Mechanisms

Section 2.1 is devoted to general terminology, notation and conventions that are used
throughout this specification.

Subsequent sections of this chapter specify the (cryptographic and non-cryptographic)
checksum mechanisms supported by DCE. The following list specifies all currently supported
checksum mechanisms, and this chapter is therefore restricted to these checksums only:

• Non-cryptographic checksums

The CRC-32 Cyclic Redundancy Checksum.

• Cryptographic checksums

The MD4 and MD5 Message Digest Algorithms, of RSA Data Security, Inc.

2.1 Terminology, Notation and Conventions
This section introduces terminology, notation and conventions, including low-level formatting
details, used throughout this specification.

2.1.1 Use of Pseudocode

Pseudocode is employed in this and the following chapters. It has the expository purpose of
explaining observable external behaviour only, and does not impose internal requirements on conforming
implementations. The pseudocode notation is mostly ‘‘C-like’’, augmented by some other
elements of standard scientific exposition (for example, ‘‘f(x) = y’’ to define the value of a function f
at an argument x to be y). Anything expressed in pseudocode is intended to be readily
understandable by the intended audience of this specification, but if confusion can possibly
result the pseudocode is also expressed in words.

2.1.2 Sequences

A (finite) sequence (or string or vector or n-tuple) V of length λ(V) = n ≥ 0 will be denoted in order of
increasing ‘‘address’’ (or ‘‘name’’ or ‘‘subscript’’) notation; that is, in the form V = <v0, ⋅⋅⋅, vn−1>; if
n = 0, this notation degenerates to V = <>, the empty string. The n-tuple V is said to begin, at the
left, with initial element v0, and to end, at the right, with final element vn−1. If 0 ≤ n´ < n´´ ≤ n−1,
then vn´ is said to precede or occur before (or earlier than or to the left of) vn´´ in V, and vn´´ is said to
follow or occur after (or later than or to the right of) vn´. The natural identification of a 1-tuple is
always made with ‘‘the thing itself’’: <V> = V. Similarly, the concatenation of an m-tuple and an
n-tuple are also identified with an (m+n)-tuple via <U, V> = <<u0, ⋅⋅⋅, um−1>, <v0, ⋅⋅⋅, vn−1>> = <u0,
⋅⋅⋅, um−1, v0, ⋅⋅⋅, vn−1>. In particular, <V, <>> = <<>, V> = <V> = V (via natural identifications). The
terminology prepend to V refers to concatenating another vector to the beginning of V; append to
V refers to concatenation to the end of V.

Part 2 Security Services and Protocols 127



Terminology, Notation and Conventions Checksum Mechanisms

2.1.3 Bits, Bytes, Words, etc.

A bit is a boolean (binary) quantity that can take either of the values T (true) or F (false). A byte
(or octet) is a sequence of 8 bits. A shortword is a sequence of 2 bytes, a word is a sequence of 4
bytes, a longword is a sequence of 8 bytes, and a quadword is a sequence of 16 bytes. By
concatenation, a sequence of bits of length congruent to 0 modulo 8, 16, 32, 64 or 128,
respectively, can be identified with a sequence of bytes, shortwords, words, longwords or
quadwords (of the appropriate shorter length). Similarly, a sequence of bytes of length divisible
by 4 can be identified with a sequence of words, and so forth.

Notes:

1. Some other terms exist in the literature that won’t be used in this specification;
for example, ‘‘nibble’’ for a sequence of 4 bits. Also, the definitions of some of
the terms above vary throughout the literature; for example, in some quarters
(‘‘16-bit architectures’’), ‘‘word’’ means a sequence of 2 bytes, with
corresponding redefinitions of ‘‘longword’’ and ‘‘quadword’’.

2. Bits can be naturally identified with the elements of the finite field of 2 elements
(integers modulo 2), F2 = {0, 1} (called the bit field in this context), via the
mapping (or correspondence) defined by: F ↔ 0, T ↔ 1. And then, n-tuples of
bits can be viewed as elements of the vector space Fn

2 of dimension n over F2.
This point of view is standard in mathematical treatments of cryptography, but
it is not insisted upon here.

2.1.4 Integer Representations (Endianness)

The notion of ‘‘endianness’’ arises when one maps bit- and/or byte-sequences to (non-negative)
integers. Namely, the question is whether the left (∼ ‘‘big’’) or right (∼ ‘‘little’’) end of the
sequence is mapped to the higher value (that is, is ‘‘more significant’’).

First recall that any non-negative integer i has a natural 2-adic expansion (which is unique if it is
the minimal 2-adic expansion; that is, if one does not allow superfluous ‘‘leading zeroes’’): i =
2k−1ik−1 + ⋅⋅⋅ + 20i0 with each coefficient ij (0 ≤ j ≤ k−1, k ≥ 0) equal to 0 or 1 (and 2k−1 = 1). The
question of endianness arises when one imposes an order on the collection of coefficients i0, ⋅⋅⋅,
ik−1; that is, when one realises this collection of coefficients as a sequence. Given a mapping
between coefficients and sequences, bits, bytes, shortwords, words, longwords and quadwords
(or, for that matter, bit- or byte-sequences of any length) can be interpreted as non-negative
(‘‘unsigned’’) integers, in the ranges [0, 2k−1] where k = 1, 8, 16, 32, 64 or 128, respectively, as
described below.

See Figure 2-1 on page 129 for an illustration of the endianness concepts defined below. As
shown there, ‘‘addresses’’ (names or subscripts of sequence elements) are always visualised as
increasing (with respect to a fixed ordering on addresses themselves) from left to right. The
meaning of big- (respectively, little-) endianness is then determined by whether sequence
elements are mapped to integer power-of-2 values (‘‘significance’’) in a decreasing (respectively,
increasing) manner from left to right, respectively.

128 CAE Specification (1997)



Checksum Mechanisms Terminology, Notation and Conventions

a1a2a3a4a5a6a7a0

a = 27a7 + ⋅⋅⋅ + 20a0

bytes:

bits:

words:

‘‘addresses’’

increasing

— little-endian byte
— big-endian byte

a b c d

w

w = (28)3a + (28)2b + (28)1c + (28)0d
w = (28)3d + (28)2c + (28)1b + (28)0a

— big-endian word
— little-endian word

a = 27a0 + ⋅⋅⋅ + 20a7

Figure 2-1  Endianness

2.1.4.1 Mapping Bit Sequences to Integers

In all mappings of bit-sequences to integers that are considered, single bits are mapped to
integers via the mapping F ↔ 0 and T ↔ 1 (and these mappings are always treated as
identifications, even notationally); that is, for bit-sequences of length 1 the mapping/identification
are always made between bit-sequences and integers:

<0> ↔ 0 — that is, ‘‘<0> = 0’’

<1> ↔ 1 — that is, ‘‘<1> = 1’’

Bytes (and more generally, any bit-sequences) can be interpreted as integers via either the big-
endian (or most-significant-first) mapping, or the little-endian (or least-significant-first) mapping,
which are now defined. (Other mappings of bit-sequences to integers are also possible, but not
of interest.)

In big-endian mapping, the bits of the byte are considered to be ordered in decreasing
significance, from the high-order or most significant bit (MSb) (on the left) to the low-order or least
significant bit (LSb) (on the right). That is, for bytes (for example, bit-sequences of other lengths
are similar):

<a0, a1, ⋅⋅⋅, a7> ↔ 27a0 + 26a1 + ⋅⋅⋅ + 20a7

And in little-endian mapping, the ordering goes the opposite way:

<a0, a1, ⋅⋅⋅, a7> ↔ 27a7 + 26a6 + ⋅⋅⋅ + 20a0

When one of these mappings has been chosen and fixed in a given context, it will usually be
considered to be an ‘‘identification’’ instead of a ‘‘mapping’’, and the symbol ‘‘=’’ instead of ‘‘↔’’
will be used (by a common abuse of notation).

Part 2 Security Services and Protocols 129



Terminology, Notation and Conventions Checksum Mechanisms

2.1.4.2 Mapping Byte-sequences to Integers

Similarly, bytes, shortwords, words, longwords and quadwords (and more generally, any bit-
sequence of length a multiple of 8 that is considered as a byte-sequence) can be interpreted, once a
mapping of bytes to integers has been chosen and fixed, as integers via either big-endian or little-
endian mapping (for single bytes, the two mappings coincide of course), which are now defined.

In big-endian mapping, the bytes of the byte-sequence are considered to be ordered in
decreasing significance, from the high-order or most significant byte (MSB) to the low-order or
least significant byte (LSB). That is, for words (for example, byte-sequences of other lengths are
similar):

<a, b, c, d> ↔ (28)3a + (28)2b + (28)1c + (28)0d

And in little-endian mapping, the ordering goes the opposite way:

<a, b, c, d> ↔ (28)3d + (28)2c + (28)1b + (28)0a

2.1.4.3 Mapping Mixed Bit/Byte-sequences to Integers

Since bit-sequences of length a multiple of 8 can also be viewed as byte-sequences, for such
sequences the above mappings can be mixed to arrive at the following taxonomy of endianness for
‘‘byte/bit’’-sequences.

Let W be, say, a (‘‘word-sized’’) integer in the range [0, 232−1] (similar remarks hold for integers
of other sizes), with 2-adic expansion:

W = 231w31 + ⋅⋅⋅ + 20w0 =
(28)3(27w31 + ⋅⋅⋅ + 20w24) + (28)2(27w23 + ⋅⋅⋅ + 20w16) +
(28)1(27w15 + ⋅⋅⋅ + 20w8) + (28)0(27w7 + ⋅⋅⋅ + 20w0)

There are then the following four bit-representations of W. Here, the terminology ‘‘X/Y-endian’’
(for X, Y ∈ {‘‘big’’, ‘‘little’’}) means: ‘‘X-endian with respect to bytes, the bytes being Y-endian
with respect to bits’’. (See also Figure 2-1 on page 129.)

• Big/big-endian mapping:

W ↔ <<w31, ⋅⋅⋅, w24>, <w23, ⋅⋅⋅, w16>, <w15, ⋅⋅⋅, w8>, <w7, ⋅⋅⋅, w0>>

• Little/big-endian mapping:

W ↔ <<w7, ⋅⋅⋅, w0>, <w15, ⋅⋅⋅, w8>, <w23, ⋅⋅⋅, w16>, <w31, ⋅⋅⋅, w24>>

• Little/little-endian mapping:

W ↔ <<w0, ⋅⋅⋅, w7>, <w8, ⋅⋅⋅, w15>, <w16, ⋅⋅⋅, w23>, <w24, ⋅⋅⋅, w31>>

• Big/little-endian mapping:

W ↔ <<w24, ⋅⋅⋅, w31>, <w16, ⋅⋅⋅, w23>, <w8, ⋅⋅⋅, w15>, <w0, ⋅⋅⋅, w7>>

Of the four mappings listed above, the first two are the most important in this specification,
because bytes in computer memories are invariably considered to represent integers (in the
range [0, 28−1]) via the big-endian mapping. (On the other hand, bytes are variously transmitted
over different serial networks in big-endian or little-endian order: the most or least significant
bit may be transmitted first.) Clearly, one could extend the above ideas about endianness to
include such higher-level constructs as shortword-sequences, word-sequences, and so on — the
ideas are straightforward, and there is no need to elaborate on them here.

130 CAE Specification (1997)



Checksum Mechanisms Terminology, Notation and Conventions

2.1.5 Modular Arithmetic

The usual convention is adopted that modular arithmetic on integers is denoted by ‘‘(mod n)’’
where n > 0 is the modulus, and the modular equivalence class of any integer N is identified with
its representative in the interval [0, n−1]. That is, for any integer N (positive, negative or zero):

0 ≤ N(mod n) ≤ n−1

2.1.6 Bitwise Operations and Rotations

The following notations for four bitwise operations will be used, all operating on bit-sequences
(usually words) U, V, W of the same length:

• ˜ U

Bitwise boolean NOT (or binary complement). On bits, it is defined by:

˜ 0 = 1

˜ 1 = 0

• U | V

Bitwise boolean OR. On bits, it is defined by:

0 | 0 = 0

0 | 1 = 1

1 | 0 = 1

1 | 1 = 1

• U & V

Bitwise boolean AND. On bits, it is defined by:

0 & 0 = 0

0 & 1 = 0

1 & 0 = 0

1 & 1 = 1

• U ˆ V

Bitwise boolean XOR (‘‘exclusive or’’; that is, bitwise binary (mod 2) addition of integers). On
bits, it is defined by:

0 ˆ 0 = 0

0 ˆ 1 = 1

1 ˆ 0 = 1

1 ˆ 1 = 0

Also, the following notation for two kinds of rotations will be used (the first is used in this
chapter, the second is used in Chapter 3):

• i <<< s

Left numerical rotation (or left numerical circular shift) by s, operating on the value of an integer i
(not any of its bit-representations), is defined as follows. If i = 2k−1ik−1 + ⋅⋅⋅ + 20i0 is a 2-adic
expansion of i in powers of 2 (not necessarily the minimal 2-adic expansion of i; that is,

Part 2 Security Services and Protocols 131



Terminology, Notation and Conventions Checksum Mechanisms

leading zeroes are permitted), then for any integer s:

i <<< s = 2k−1i(k−1+s)(mod k) + ⋅⋅⋅ + 20i(0+s)(mod k)

(Even though this definition is valid for all s, it will only be used for 0 ≤ s ≤ k−1.)

• V <<<< s

Left bitwise rotation (or left bitwise circular shift) by s, operating on the bit-vector V (not its value
with respect to either endianness), is defined as follows. If V = <v0, ⋅⋅⋅, vn−1>, then for any
integer s:

V <<<< s = <v(0+s)(mod n), ⋅⋅⋅, v(n−1+s)(mod n)>

(Even though this definition is valid for all s, it will only be used for 0 ≤ s ≤ n−1.)

Notes:

1. Note that the two kinds of rotations agree for, say, words (k = n = 32) if and
only if words are identified with integers via the big/big-endian mapping — but
we’re using the little/big-endian mapping in the remainder of this chapter.

2. The notations ‘‘<<<’’ and ‘‘<<<<’’ for the two left circular shift operators
defined above have been adopted in analogy with the C-language ‘‘<<’’
operator. (The C ‘‘<<’’ operator is a left non-circular numerical shift operator,
despite the fact that it is usually spoken of as a ‘‘bitwise’’ operator.)

2.1.7 (IDL/NDR) Pickles

By a pickle is meant an encoded/marshalled (or ‘‘linearised’’ or ‘‘flattened’’) bit-vector
representation of a (value of a) data type specified in some computer language, suitable for
application-level storage purposes in the absence of a communications context (hence the use of
the word ‘‘pickle’’, meaning ‘‘preserved substance’’). Pickles appear in several places in this
specification.

In the case of the present revision of DCE, the only language currently supported for pickles is
IDL, and the only encoding/marshalling currently supported for IDL pickles is NDR (for the
specifications of the IDL language and its NDR marshalling/encoding, see the referenced
X/Open DCE RPC Specification). Therefore, for the purposes of this revision of DCE, ‘‘pickle’’
always means IDL/NDR pickle (specified in detail below). In essence, then, a pickle for the
purposes of this specification is an in-memory representation of RPC input/output data that
‘‘normally’’ exists only ‘‘on-the-wire’’ (and hence is normally only interpreted by the RPC
runtime), in a form that can be interpreted at application level.

Pickles as specified in this specification are bit-vectors (actually, byte-vectors — see below)
having a common structure, which will be denoted:

PKL = <H, B>

where:

• H is the pickle’s header. It is metadata, describing the actual data carried by the (body of the)
pickle. It is always non-empty.

• B is the pickle’s body. It embodies the actual data carried by the pickle. It consists of IDL-
defined NDR-marshalled data. (Actually, as will be seen below, B itself also contains some
second-level metadata.) It is always non-empty.

Each of H and B is actually a byte-sequence (that is, has bit-length a non-negative integral
multiple of 8); they will henceforth always be regarded as byte-sequences, not bit-sequences. In
particular, the length of such a (byte-)vector M henceforth in this section will always mean its

132 CAE Specification (1997)



Checksum Mechanisms Terminology, Notation and Conventions

length in bytes.

PKL’s header H is specified as an IDL data type (but whose encoding is not NDR) as follows (for
the IDL definition of the data types not defined here, see Appendix N, IDL Data Type
Declarations, of the referenced X/Open DCE RPC Specification):

typedef struct {
uuid_t stx_id;

unsigned32 stx_version;
} rpc_syntax_id_t;

typedef struct {
unsigned8 pkl_version;
unsigned8 pkl_length_hi;
unsigned16 pkl_length_low;
rpc_syntax_id_t pkl_syntax;

uuid_t pkl_type;
} idl_pkl_header_t;

The fields of these data types are the following:

• stx_id

RPC (‘‘transfer’’) syntax identifier (16-byte IDL-defined UUID (uuid_t), encoded in big/big-
endian format — see below). Since this field represents a UUID, it can also be specified as a
string (see Appendix A, Universal Unique Identifier, of the referenced X/Open DCE RPC
Specification). Its registered values are specified in Appendix I, Protocol Identifiers, of the
referenced X/Open DCE RPC Specification (the only currently supported syntax is NDR).

• stx_version

RPC syntax version number (4-byte integer, big/big-endian encoded). This field specifies the
version number of the syntax identified in the stx_id field. Its registered values are specified
in Appendix I, Protocol Identifiers, of the referenced X/Open DCE RPC Specification (the
only currently supported version number of NDR is version 1).

• pkl_version

Pickle header version number (1-byte integer, big-endian encoded). The only currently
supported value is 0.

• pkl_length_hi and pkl_length_low

The length (3-byte integer, big/big-endian encoded), in bytes, of the pickle body B. Its value
is in the range [0, 224−1].

• pkl_syntax

RPC syntax (20-byte rpc_syntax_id_t) of the encoded/marshalled data in the pickle body B.
In the case of NDR version 1 (the only currently supported value), the pickle body B includes
some metadata in addition to its actual encoded/marshalled data (this is specified in detail
below).

• pkl_type

Pickle type identifier (16-byte IDL-defined UUID (uuid_t), encoded in big/big endian format
— see below). Since this field represents a UUID, it can also be specified as a string (see

Part 2 Security Services and Protocols 133



Terminology, Notation and Conventions Checksum Mechanisms

Appendix A, Universal Unique Identifier, of the referenced X/Open DCE RPC Specification).
This field specifies the semantics of the data in the pickle body B.

Here, ‘‘encoding a UUID in big/big-endian format’’ means that the UUID’s string representation
(see Appendix A, Universal Unique Identifier, of the referenced X/Open DCE RPC Specification)
is to have its hyphens removed, and the resulting 32-character string interpreted as a
hexadecimal integer, which is then encoded in big/big-endian format. Thus, for example, the
UUID (in string representation) 01234567-89ab-cdef-0123-456789abcdef is mapped to the byte
vector <0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd,
0xef> (where ‘‘0x’’ is the usual C-language hexadecimal prefix notation, and where each byte is
bit-encoded in big-endian format). (This definition can also be formulated equivalently in terms
of big/big-endian encodings of the individual fields of a uuid_t — see Appendix N, IDL Data
Type Declarations, of the referenced X/Open DCE RPC Specification — but this is not done
here.)

Note that the encoding/marshalling of the fields of rpc_syntax_id_t and of idl_pkl_header_t is
included in their specifications above (namely, it is always big/big-endian, not NDR). It is
further specified that the encoded order of the fields of rpc_syntax_id_t and of idl_pkl_header_t
is the same order as the syntactic listing of the fields in their IDL structure definitions, above;
and there are no ‘‘padding’’ bits. Thus, according to this encoding specification, the
encoded/marshalled length of idl_pkl_header_t is 40 bytes, formatted as follows (using C-like
‘‘dot notation’’ for structure fields, and using subscripts for sizes in bytes):

<pkl_version 1,
<pkl_length_hi 1, pkl_length_low 2>,
<pkl_syntax.stx_id 16, pkl_syntax.stx_version 4>,
pkl_type 16>

PKL’s body B depends on PKL’s syntax (that is, PKL’s syntax field, H.pkl_syntax). The pickle
bodies for the currently supported pickle syntaxes are specified as follows:

• NDR version 1 (the only currently supported syntax)

B has the form:

B = <L, 04, D>

where (note that L and 04 are second-level metadata — only D is really application-level
data):

— L is a 4-byte NDR format label (IDL-defined and NDR-marshalled value of the
ndr_format_t data type, as specified in Appendix N, IDL Data Type Declarations, of the
referenced X/Open DCE RPC Specification). It is initialised to the appropriate system-
specific values at pickle generation time.

Note: The NDR format label (ndr_format_t data type, as defined in Appendix N,
IDL Data Type Declarations, of the referenced X/Open DCE RPC
Specification) is not to be confused with the actual (‘‘on-the-wire’’) NDR
encoding information that flows in RPC calls (as specified in Section 14.1, Data
Representations Format Label, of the referenced X/Open DCE RPC
Specification). Both have the same semantics, but they have different syntaxes
(format or ‘‘physical’’ layout). In particular, the endianness and character
format fields of on-the-wire NDR encoding information occupy only 4 bits
each, while in ndr_format_t they occupy 8 bits each.

— 04 is a 4-byte zero vector (padding).

134 CAE Specification (1997)



Checksum Mechanisms Terminology, Notation and Conventions

— D is an NDR-marshalled datastream (byte-vector), as specified in Chapter 14, Transfer
Syntax NDR, of the referenced X/Open DCE RPC Specification, formatted according to
the NDR format label L. The application-level semantics of this field are indicated by the
pickle’s type (H.pkl_type). It is normally an NDR-marshalled value of an IDL data type
(though potentially it could be directly defined in terms of NDR, bypassing an IDL
definition).

Note: Fully-fledged support for pickling (or ‘‘encoding services’’), as opposed to the
‘‘hand-rolled’’ pickles described in this section, is anticipated in a future revision of
DCE.

Part 2 Security Services and Protocols 135



CRC-32 Checksum Mechanisms

2.2 CRC-32
This section specifies the ‘‘non-cryptographic’’ checksum mechanisms employed in this
specification. Only one such type of mechanism, CRC-32, is currently supported, so this whole
section is devoted to that.

Notes:

1. This section is based on, and (unless stated otherwise) is technically aligned
with, CCITT V.42. However, for editorial reasons, this section stands
independently, and no familiarity with that document is required. (Thus, the
part of this chapter that duplicates information in the cited document is
intended to be technically equivalent to that document, rewritten for the
expository purposes of this document, and any technical discrepancies between
the two are inadvertent and to be reconciled.)

2. CRC-32 is used in this specification primarily in Chapter 4 on page 159
(Kerberos, see Section 4.3.5.1 on page 188 ), and in Chapter 9 on page 3291
(Protected RPC). It also makes a minor appearance in Section 11.6.1.21 on page
400.

2.2.1 Cyclic Redundancy Checksums

Cyclic redundancy checksums (CRCs) are defined abstractly in terms of polynomials with
modulus-2 coefficients (that is, in terms of the polynomial ring F2[X] in the indeterminate X), as
follows. (Note that in this abstract definition there is no need to specify any conventions
regarding identifications (endianness) of bit-sequences with integers.)

For purposes of this definition, identify arbitrary non-empty bit-vectors V of length k > 0 with
polynomials V(X) regarded as having highest power k−1 via the following big-endian
correspondence:

V = <v0, ⋅⋅⋅, vk−1> ←→ V(X) = v0X
k−1 + ⋅⋅⋅ + vk−1X

0

Here, V(X) is regarded as having ‘‘highest power’’ k−1, though not necessarily ‘‘degree’’ k−1,
since some of its leading coefficients v0, v1, ⋅⋅⋅, may be 0.

Now fix an integer N > 0 (for the purposes of DCE, N will always be 32), and fix a polynomial
G(X) ∈ F2[X] of degree exactly N (that is, the coefficient of XN in G is non-zero). Then, for any
S(X) = s0X

N−1 + ⋅⋅⋅ + sN−1X
0 regarded as having highest power N−1, and any M(X) = m0X

K−1 + ⋅⋅⋅ +
mK−1X

0 regarded as having highest power K−1 (K > 0), there exist unique polynomials Q(X) and
R(X) (depending on K, S(X), G(X) and M(X)), such that:

• XKS(X) + M(X) = G(X)Q(X) + R(X)

• degree(R(X)) < N

This follows from the elementary technique of polynomial long division (using modular
arithmetic with modulus 2 on the coefficients); that is, Q(X) is the quotient and R(X) is the
remainder of the division of XKS(X) + M(X) by G(X). Note that under the (big-endian)
identification of bit-vectors with polynomials, the correspondence is as follows:

XKS(X) + M(X) = s0X
K+N−1 + ⋅⋅⋅ + sN−1X

K + m0X
K−1 ⋅⋅⋅ + mK−1X

0 ←→
<s0, ⋅⋅⋅, sN−1, m0, ⋅⋅⋅, mK−1>

(That is, in terms of bit-vectors, the polynomial XKS(X) + M(X) corresponds to prepending (the
bits of) S(X) to (the bits of) M(X).)

Now by definition, the N-bit CRC of an arbitrary non-empty ‘‘bit-message’’ M, with respect to
the generator G and the seed (or initialisation vector) S (identifying bit-vectors and polynomials as

136 CAE Specification (1997)



Checksum Mechanisms CRC-32

above, of course), is the N-bit vector <r0, ⋅⋅⋅, rN−1> identified with the remainder polynomial R(X)
as described above. The notation for this CRC is:

CRCG(S, M)

In the common case of the seed S being 0 (that is, a 0-vector or 0-polynomial), the notation
CRCG(0, M) is sometimes simplified to:

CRCG(M)

With this notation, the following CRC composition law (or chaining property) is immediately seen
to hold:

CRCG(S, <M, M´>) = CRCG(CRCG(S, M), M´)

Now suppose further that the generator G(X) is irreducible (that is, G(X) cannot be expressed as a
product of two polynomials of positive degree). Then N-bit CRCs based on G(X) have the error-
detecting property that any two distinct messages differing in at most a subsequence of N bits
have distinct CRCs (it also detects ‘‘most’’ other errors, in a sense not described here). That
property, while important for the data communications heritage of CRCs, is not significant for
this chapter. Instead, for the purposes of this specification, the significant property met for
CRCs based on irreducible generators is the ‘‘probabilistic collision-resistance’’ property
mentioned previously. (Note that any given message can easily be modified — by appending a
single 32-bit word to it — to yield any given CRCG-checksum value, so that CRCs are not
‘‘cryptographically collision-resistant’’.)

Finally, a ‘‘twisted’’ version of CRCs is defined as follows. Let ‘‘†’’ denote the bit-reflection (or
bit-reversal) operation, which is defined on arbitrary bit-vectors V = <v0, ⋅⋅⋅, vk−1> by:

V† =
<v0, ⋅⋅⋅, vk−1>

† =
<vk−1, ⋅⋅⋅, v0>

Likewise, let ‘‘‡’’ denote the per-byte bit-reflection operation, which is defined on bit-vectors M as
follows. First, if M is not a byte-vector; that is, if the bit-length of M is not a positive multiple of
8, append the minimal number of zero-bits to it such that the resulting bit-vector (still denoted
M, by abuse of notation) does have bit-length a positive multiple of 8. Then, define the per-byte
bit-reflection of the resulting byte-vector M by:

M‡ =
<<m0⋅⋅⋅, m7>, ⋅⋅⋅, <m8l+0, ⋅⋅⋅, m8l+7>>‡ =
<<m0, ⋅⋅⋅, m7>

†, ⋅⋅⋅, <m8l+0, ⋅⋅⋅, m8l+7>
†> =

<<m7, ⋅⋅⋅, m0>, ⋅⋅⋅, <m8l+7, ⋅⋅⋅, m8l+0>>

Then with these notations, the twisted CRC corresponding to CRCG, denoted CRC§
G, is defined for

bit-vectors M as follows:

CRC§
G(S, M) = (CRCG(S†, M‡))†

If the seed S is 0, the notation CRC§
G(0, M) is sometimes simplified to:

CRC§
G(M)

Note that twisted CRCs still satisfy the CRC chaining property (for byte-vectors M, M´):

CRC§
G(S, <M, M´>) = CRC§

G(CRC§
G(S, M), M´)

Note: The twisting convention is related to the data communications heritage of CRCs:
bytes in computer memories are often communicated across serial data lines least-
significant-bit-first. That is, while ‘‘in-core’’ bytes are invariably interpreted as big-
endian, they are often (but not always) twisted to become little-endian bytes ‘‘on-

Part 2 Security Services and Protocols 137



CRC-32 Checksum Mechanisms

the-wire’’.

The specific irreducible generating polynomials, G(X), currently registered in DCE are collected
in Section 2.2.1.1.

2.2.1.1 Registered CRCs

The only CRC currently used in DCE arises by taking G(X) to be the following specific choice of
irreducible generating polynomial (of degree N = 32), said to be the CCITT-32 (or ITU-T, OSI/IEC,
Autodin-II, Ethernet, FDDI, PKZip, and so on) polynomial:

GCCITT-32(X) =

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + X0

If the X32-term is ignored (or rather, considered to be implicitly present, since the X32-term of a
32-degree generating polynomial must always be present), this polynomial corresponds,
according to the (big-endian) identification of polynomials with bit-vectors, to the bit-vector:

GCCITT-32(X) =

<0,0,0,0, 0,1,0,0, 1,1,0,0, 0,0,0,1, 0,0,0,1, 1,1,0,1, 1,0,1,1, 0,1,1,1>

Note: This bit-vector in turn corresponds to various integers under the various
identifications of bit-vectors with integers. For example, under the big/big-endian
identification it corresponds to the integer 0x04c11db7 = 79764919, and under the
little/little-endian identification it corresponds to 0xedb88320 = 3988292384. These
integer representations are of no interest for the purposes of this specification,
though they may be of some use for particular implementations.

This CCITT-32 CRC, being the only CRC used in DCE, will henceforth be denoted simply,
without fear of confusion: (‘‘the’’) CRC-32 (this is perhaps a slight abuse of terminology, though a
commonly accepted one, because ‘‘CRC-32’’ is sometimes also used as a generic term meaning
‘‘an N-bit CRC where N = 32’’). Accordingly, this CCITT-32 CRC and its twisted version (which
is the version actually used in Chapter 9) will henceforth be denoted simply:

CRC32(S, M)

CRC§
32(S, M)

If S = 0, the notation is sometimes simplified to:

CRC32(M)

CRC§
32(M)

138 CAE Specification (1997)



Checksum Mechanisms MD4

2.3 MD4
This section specifies MD4, one of the ‘‘cryptographic’’ checksum mechanisms employed in this
specification.

Note: This section is based on, and (unless stated otherwise) is technically aligned with, the
Internet document RFC 1320, by R. Rivest, dated April 1992. However, for editorial
reasons, this section stands independently, and no familiarity with that document is
required. (Thus, the part of this section that duplicates information in the cited
document is intended to be technically equivalent to that document, rewritten for the
expository purposes of this document, and any technical discrepancies between the
two are inadvertent and to be reconciled.)

MD4 is described by an algorithm that takes as input a bit-message M of arbitrary length and
produces as output a 128-bit message digest (or hash, checksum, checksumtext, fingerprint) of M.
MD4 is a non-invertible (‘‘one-way’’) function, and it is claimed that it has the cryptographic
property of being collision-resistant (or collision-‘‘proof’’): it is computationally infeasible to
exhibit (that is, to produce, generate or construct) two distinct messages having the same
message digest as one another, or to exhibit a single message having a given prespecified
message digest. More precisely, it is claimed that the ‘‘difficulty’’ (computational complexity) of
exhibiting two distinct messages having the same message digest has average order O( ⁄1

2⋅264),
and that the difficulty of exhibiting a single message having a given message digest has average
order O( ⁄1

2⋅2128).

Let M = <m0, ⋅⋅⋅, mn−1> be an arbitrarily given bit-message (sequence) of length n bits. Here n is
an arbitrary non-negative integer (it may be 0, it need not be congruent to 0 (mod 8), and it may
be arbitrarily large). Then the algorithm below is performed to compute the message digest of
the message M, which is denoted by MD4(M).

For the remainder of this section, the little/big-endian identification of integers and 32-bit vectors is used
(as defined in Section 2.1.4.3 on page 130).

2.3.1 Some Special Functions

The following four special functions are defined for use in the MD4 algorithm. Let U, V, W be
32-bit vectors (or, what amounts to the same given the fixing of the little/big endian
correspondence in the remainder of this section, integers in the range [0, 232−1]).

• F(U, V, W) = (U & V) | ((˜ U) & W)

• G(U, V, W) = (U & V) | (V & W) | (W & U)

• H(U, V, W) = U ˆ V ˆ W

Note: It is interesting (from a cryptographic design perspective) to note that various
observations can be made about these functions (even though these observations are
quite unnecessary from a DCE conformance point of view). For example, it may be
noted that F acts as the conditional: ‘‘if U then V else W’’ (or in C-language notation,
‘‘U?V:W’’). The function F could have been defined using ‘‘addition (mod 232)’’
instead of ‘‘|’’, since ‘‘U & V’’ and ‘‘(˜U) & W’’ will never have 1s in the same bit
position. In each bit position, G acts as the majority function: if at least two of (the
bits of) U, V, and W are set, then the corresponding bit of G(U, V, W) is set, otherwise
it is reset. If the bits of U, V and W are independent and unbiased in the statistical
sense, then each bit of F(U, V, W) will be independent and unbiased. The functions G
and H are similar to the function F, in that they act in ‘‘bitwise parallel’’ to produce
their output from the bits of U, V and W, in such a manner that if the corresponding
bits of U, V and W are independent and unbiased, then each bit of G(U, V, W) and

Part 2 Security Services and Protocols 139



MD4 Checksum Mechanisms

H(U, V, W) will be independent and unbiased. The function H is just the parity
function of its inputs (that is, each bit position of its output is the bit sum (mod 2) of
its inputs).

2.3.2 Append Padding Bits

The message M is padded (appended to), to produce a new bit-message of bit-length n´ = λ(M´) >
n and n´ ≡ 448 (mod 512) (the meaning of the ‘‘magic number’’ 448 is merely that 448 + 64 = 512
— see Section 2.3.3 on the significance of the number 64):

M’ = <M, 1, <0, ⋅⋅⋅, 0>>;

Padding is always performed, even if the length of the original message M is already congruent
to 448 (mod 512). It is performed as follows: a single ‘‘1’’ bit is appended to the message (on the
right), and then a 0-vector (one consisting entirely of (zero or more) ‘‘0’’ bits) is appended, so that
the length in bits of the padded message becomes congruent to 448 (mod 512). In all, at least 1
bit and at most 512 bits are appended.

2.3.3 Append Length

The padded message M´ is appended with the 64-bit representation of n (mod 264), to produce
the new bit-message of bit-length n´´ = λ(M´´) = n´ + 64:

M’’ = <M’, n(mod 2 64)>;

Namely, write n (mod 264) as an integer, as described above, and then append the 8 bytes of this
longword (in little/big-endian order) to the end of the padded message M´ from the previous
step.

The result is now n´´ ≡ 0 (mod 512). As described above, M´´ can also be viewed as a sequence of
words: let M´´[0], ⋅⋅⋅, M´´[N−1] denote these words, where N = n´´/32 ≡ 0 (mod 16).

Note: This step has the theoretical limitation that it does not distinguish between messages
that differ in length by multiples of 264. In practice this is not a significant limitation
(in particular, it does not pose a significant security threat), for two reasons:

1. ‘‘For all practical purposes’’, it may be assumed that all messages have length
less than 264. This is because the length of time it would take to merely
transmit (over RPC or any other medium) a message of length 264 bits (much
less compute its MD4 checksum) is impractically large. Indeed, at a
transmission rate of one gigabit (109 bits) per second, it would take ∼584 ⁄1

2 years
just to transmit such a message. Adding to this transmission time any actual
local processing time on the data (such as ‘‘generating’’ it on the sending side,
or ‘‘interpreting’’ it on the receiving side) reduces to insignificance the practical
uses of such very large messages (in the present era of computing).

2. In the actual usage of MD4 as specified in DCE (namely, in Protected RPC), all
messages actually protected with MD4 have length < 264 (see Chapter 9, and
the referenced X/Open DCE RPC Specification).

140 CAE Specification (1997)



Checksum Mechanisms MD4

2.3.4 Initialise State Buffer and Trigonometric Vector

A quadword (= 128 bits) (external) state buffer, denoted <A´, B´, C´, D´>, is used to describe the
pseudocode computation below. Here, each of A´, B´, C´, D´ is a word-sized variable. These
variables are initialised to the following initialisation values or seeds (expressed as integers in C-
like hexadecimal notation, with the corresponding little/big-endian byte-sequences in
comments):

A’ = 0x67452301; /* = <0x01,0x23,0x45,0x67> */
B’ = 0xefcdab89; /* = <0x89,0xab,0xcd,0xef> */
C’ = 0x98badcfe; /* = <0xfe,0xdc,0xba,0x98> */
D’ = 0x10325476; /* = <0x76,0x54,0x32,0x10> */

The following array of 2 ‘‘quadratic’’ (unsigned) words, Q[2] and Q[3] is further initialised:

Q[2] = 0x5a827999;
Q[3] = 0x6ed9eba1;

Note: The origin of the name ‘‘quadratic’’ comes from the fact that Q[i] = [232⋅sqrt(i)], where
on the right hand side ‘‘[⋅⋅⋅]’’ denotes the integral part of a real number, and ‘‘sqrt’’ is
the usual square root function. The values Q[2] and Q[3] are chosen for use in the
MD4 algorithm because the bits of these 2 values are statistically well-distributed for
this application.

2.3.5 Compress Message in 16-word Chunks

Perform the following algorithm (expressed in pseudocode).

Its outer loop processes the padded, appended message M´´ in chunks of 16 words (= 512 bits) as
follows:

for (i = 0; i <= N/16 - 1; i += 1) {
<A’,B’,C’,D’> =

COMPRESS(A’,B’,C’,D’,M’’[16*i+0], ⋅⋅⋅,M’’[16*i+15]);
}

Its inner compression function, denoted COMPRESS(A´, B´, C´, D´, R[0], ⋅⋅⋅, R[15]), takes as input a
128-bit state vector <A´, B´, C´, D´> and a 512-bit message chunk <R[0], ⋅⋅⋅, R[15]>, and produces
as output a 128-bit state vector, say <A´´, B´´, C´´, D´´>. It is defined by the following algorithm
(consisting of 3 rounds of 16 compression operations each), where ‘‘+’’ denotes (‘‘unsigned’’)
addition (mod 232), and where F, G and H are the special functions defined in Section 2.3.1 on
page 139:

Part 2 Security Services and Protocols 141



MD4 Checksum Mechanisms

/* Initialise internal state buffer <A,B,C,D> = <A’,B’,C’,D’>. */
A = A’; B = B’; C = C’; D = D’;

/* Round 1 -- Let "FF{abcd,r,s}" denote the F-compression statement
a = (a + F(b,c,d) + R[r] <<< s

and invoke it 16 times as follows: */
FF{ABCD, 0, 3}; FF{DABC, 1, 7}; FF{CDAB, 2,11}; FF{BCDA, 3,19};
FF{ABCD, 4, 3}; FF{DABC, 5, 7}; FF{CDAB, 6,11}; FF{BCDA, 7,19};
FF{ABCD, 8, 3}; FF{DABC, 9, 7}; FF{CDAB,10,11}; FF{BCDA,11,19};
FF{ABCD,12, 3}; FF{DABC,13, 7}; FF{CDAB,14,11}; FF{BCDA,15,19};

/* Round 2 -- Let "GG{abcd,r,s}" denote the G-compression statement
a = (a + G(b,c,d) + R[r] + Q[2]) <<< s

and invoke it 16 times as follows: */
GG{ABCD, 0, 3}; GG{DABC, 4, 5}; GG{CDAB, 8, 9}; GG{BCDA,12,13};
GG{ABCD, 1, 3}; GG{DABC, 5, 5}; GG{CDAB, 9, 9}; GG{BCDA,13,13};
GG{ABCD, 2, 3}; GG{DABC, 6, 5}; GG{CDAB,10, 9}; GG{BCDA,14,13};
GG{ABCD, 3, 3}; GG{DABC, 7, 5}; GG{CDAB,11, 9}; GG{BCDA,15,13};

/* Round 3 -- Let "HH{abcd,r,s,t}" denote the H-compression statement
a = (a + H(b,c,d) + R[r] + Q[3]) <<< s

and invoke it 16 times as follows: */
HH{ABCD, 0, 3}; HH{DABC, 8, 9}; HH{CDAB, 4,11}; HH{BCDA,12,15};
HH{ABCD, 2, 3}; HH{DABC,10, 9}; HH{CDAB, 6,11}; HH{BCDA,14,15};
HH{ABCD, 1, 3}; HH{DABC, 9, 9}; HH{CDAB, 5,11}; HH{BCDA,13,15};
HH{ABCD, 3, 3}; HH{DABC,11, 9}; HH{CDAB, 7,11}; HH{BCDA,15,15};

/* Output state <A’’,B’’,C’’,D’’> = <A’,B’,C’,D’> + <A,B,C,D>. */
A’’ = A’+A; B’’ = B’+B; C’’ = C’+C; D’’ = D’+D;

2.3.6 Output

Finally, the message digest, MD4(M), is defined to be the final quadword state resulting from the
above algorithm, after the outer loop completes (it begins with the low-order byte of A´, and
ends with the high-order byte of D´):

MD4(M) = <A’, B’, C’, D’>;

This completes the description of MD4.

142 CAE Specification (1997)



Checksum Mechanisms MD5

2.4 MD5
This section specifies MD5, one of the ‘‘cryptographic’’ checksum mechanisms employed in this
specification.

Note: This section is based on, and (unless stated otherwise) is technically aligned with, the
Internet document RFC 1321, by R. Rivest, dated April 1992. However, for editorial
reasons, this section stands independently, and no familiarity with that document is
required. (Thus, the part of this section that duplicates information in the cited
document is intended to be technically equivalent to that document, rewritten for the
expository purposes of this document, and any technical discrepancies between the
two are inadvertent and to be reconciled.)

MD5 is described by an algorithm that takes as input a bit-message M of arbitrary length and
produces as output a 128-bit message digest (or hash, checksum, checksumtext, fingerprint) of M.
MD5 is a non-invertible (‘‘one-way’’) function, and it is claimed that it has the cryptographic
property of being collision-resistant (or collision-‘‘proof’’): it is computationally infeasible to
exhibit (that is, to produce, generate or construct) two distinct messages having the same
message digest as one another, or to exhibit a single message having a given prespecified
message digest. More precisely, it is claimed that the ‘‘difficulty’’ (computational complexity) of
exhibiting two distinct messages having the same message digest has average order O( ⁄1

2⋅264),
and that the difficulty of exhibiting a single message having a given message digest has average
order O( ⁄1

2⋅2128).

Let M = <m0, ⋅⋅⋅, mn−1> be an arbitrarily given bit-message (sequence) of length n bits. Here n is
an arbitrary non-negative integer (it may be 0, it need not be congruent to 0 (mod 8), and it may
be arbitrarily large). Then the algorithm below is performed to compute the message digest of
the message M, which is denoted by MD5(M).

For the remainder of this section, the little/big-endian identification of integers and 32-bit vectors is used
(as defined in Section 2.1.4.3 on page 130).

2.4.1 Some Special Functions

The following four special functions are defined for use in the MD5 algorithm. Let U, V, W be
32-bit vectors (or, what amounts to the same given the fixing of the little/big endian
correspondence in the remainder of this section, integers in the range [0, 232−1]).

• F(U, V, W): as defined in Section 2.3.1 on page 139.

• G(U, V, W) = (U & W) | (V & (˜ W))

• H(U, V, W): as defined in Section 2.3.1 on page 139.

• I(U, V, W) = V ˆ (U | (˜ W))

Note: As with the functions E and H (see Section 2.3.1 on page 139 ), the functions G and I
act in ‘‘bitwise parallel’’.

Part 2 Security Services and Protocols 143



MD5 Checksum Mechanisms

2.4.2 Append Padding Bits

The message M is padded (appended to), to produce a new bit-message of bit-length n´ = λ(M´) >
n and n´ ≡ 448 (mod 512) . This is performed as described in Section 2.3.2 on page 140.

2.4.3 Append Length

The padded message M´ is appended with the 64-bit representation of n (mod 264), to produce
the new bit-message of bit-length n´´ = λ(M´´) = n´ + 64. This is performed as described in
Section 2.3.3 on page 140.

Note: In the actual usage of MD5 as specified in DCE (namely, in Protected RPC), all
messages actually protected with MD5 have length < 264 (see Chapter 9, and the
referenced X/Open DCE RPC Specification).

2.4.4 Initialise State Buffer and Trigonometric Vector

A quadword (= 128 bits) (external) state buffer, denoted <A´, B´, C´, D´>, is used to describe the
pseudocode computation below. Here, each of A´, B´, C´, D´ is a word-sized variable. These
variables are initialised to the same initialisation values or seeds as described in Section 2.3.4 on
page 141.

The following array of 64 ‘‘trigonometric’’ (unsigned) words, T[0], ⋅⋅⋅, T[63] is further initialised:

T[] = {0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391};

Note: The origin of the name ‘‘trigonometric’’ comes from the fact that T[i] =
[232|sin(i+1)|], where on the right hand side ‘‘[⋅⋅⋅]’’ denotes the integral part of a real
number, ‘‘|⋅⋅⋅|’’ denotes absolute value, and ‘‘sin’’ is the usual trigonometric sine
function, whose arguments (‘‘angles’’) i+1 are measured in radians. The values T[0],
⋅⋅⋅, T[63] are chosen for use in the MD5 algorithm because the bits of these 64 values
are statistically well-distributed for this application.

144 CAE Specification (1997)



Checksum Mechanisms MD5

2.4.5 Compress Message in 16-word Chunks

Perform the following algorithm (expressed in pseudocode).

Its outer loop processes the padded, appended message M´´ in chunks of 16 words (= 512 bits) as
follows:

for (i = 0; i <= N/16 - 1; i += 1) {
<A’,B’,C’,D’> =

COMPRESS(A’,B’,C’,D’,M’’[16*i+0], ⋅⋅⋅,M’’[16*i+15]);
}

Its inner compression function, denoted COMPRESS(A´, B´, C´, D´, R[0], ⋅⋅⋅, R[15]), takes as input a
128-bit state vector <A´, B´, C´, D´> and a 512-bit message chunk <R[0], ⋅⋅⋅, R[15]>, and produces
as output a 128-bit state vector, say <A´´, B´´, C´´, D´´>. It is defined by the following algorithm
(consisting of 4 rounds of 16 compression operations each), where ‘‘+’’ denotes (‘‘unsigned’’)
addition (mod 232), and where F, G, H and I are the special functions defined in Section 2.4.1 on
page 143:

/* Initialise internal state buffer <A,B,C,D> = <A’,B’,C’,D’>. */
A = A’; B = B’; C = C’; D = D’;

/* Round 1 -- Let "FF{abcd,r,s,t}" denote the F-compression statement
a = b + ((a + F(b,c,d) + R[r] + T[t]) <<< s)

and invoke it 16 times as follows: */
FF{ABCD, 0, 7, 0}; FF{DABC, 1,12, 1}; FF{CDAB, 2,17, 2}; FF{BCDA, 3,22, 3};
FF{ABCD, 4, 7, 4}; FF{DABC, 5,12, 5}; FF{CDAB, 6,17, 6}; FF{BCDA, 7,22, 7};
FF{ABCD, 8, 7, 8}; FF{DABC, 9,12, 9}; FF{CDAB,10,17,10}; FF{BCDA,11,22,11};
FF{ABCD,12, 7,12}; FF{DABC,13,12,13}; FF{CDAB,14,17,14}; FF{BCDA,15,22,15};

/* Round 2 -- Let "GG{abcd,r,s,t}" denote the G-compression statement
a = b + ((a + G(b,c,d) + R[r] + T[t]) <<< s)

and invoke it 16 times as follows: */
GG{ABCD, 1, 5,16}; GG{DABC, 6, 9,17}; GG{CDAB,11,14,18}; GG{BCDA, 0,20,19};
GG{ABCD, 5, 5,20}; GG{DABC,10, 9,21}; GG{CDAB,15,14,22}; GG{BCDA, 4,20,23};
GG{ABCD, 9, 5,24}; GG{DABC,14, 9,25}; GG{CDAB, 3,14,26}; GG{BCDA, 8,20,27};
GG{ABCD,13, 5,28}; GG{DABC, 2, 9,29}; GG{CDAB, 7,14,30}; GG{BCDA,12,20,31};

/* Round 3 -- Let "HH{abcd,r,s,t}" denote the H-compression statement
a = b + ((a + H(b,c,d) + R[r] + T[t]) <<< s)

and invoke it 16 times as follows: */
HH{ABCD, 5, 4,32}; HH{DABC, 8,11,33}; HH{CDAB,11,16,34}; HH{BCDA,14,23,35};
HH{ABCD, 1, 4,36}; HH{DABC, 4,11,37}; HH{CDAB, 7,16,38}; HH{BCDA,10,23,39};
HH{ABCD,13, 4,40}; HH{DABC, 0,11,41}; HH{CDAB, 3,16,42}; HH{BCDA, 6,23,43};
HH{ABCD, 9, 4,44}; HH{DABC,12,11,45}; HH{CDAB,15,16,46}; HH{BCDA, 2,23,47};

/* Round 4 -- Let "II{abcd,r,s,t}" denote the I-compression statement
a = b + ((a + I(b,c,d) + R[r] + T[t]) <<< s)

and invoke it 16 times as follows: */
II{ABCD, 0, 6,48}; II{DABC, 7,10,49}; II{CDAB,14,15,50}; II{BCDA, 5,21,51};
II{ABCD,12, 6,52}; II{DABC, 3,10,53}; II{CDAB,10,15,54}; II{BCDA, 1,21,55};
II{ABCD, 8, 6,56}; II{DABC,15,10,57}; II{CDAB, 6,15,58}; II{BCDA,13,21,59};
II{ABCD, 4, 6,60}; II{DABC,11,10,61}; II{CDAB, 2,15,62}; II{BCDA, 9,21,63};

/* Output state <A’’,B’’,C’’,D’’> = <A’,B’,C’,D’> + <A,B,C,D>. */
A’’ = A’+A; B’’ = B’+B; C’’ = C’+C; D’’ = D’+D;

Part 2 Security Services and Protocols 145



MD5 Checksum Mechanisms

2.4.6 Output

Finally, the message digest, MD5(M), is defined to be the final quadword state resulting from the
above algorithm, after the outer loop completes (it begins with the low-order byte of A´, and
ends with the high-order byte of D´):

MD5(M) = <A’, B’, C’, D’>;

This completes the description of MD5.

146 CAE Specification (1997)



Chapter 3

Encryption/Decryption Mechanisms

This chapter specifies the (cryptographic) encryption/decryption mechanisms supported by
DCE. Currently, only one such mechanism is supported, namely the Data Encryption Standard
(DES) (or Data Encryption Algorithm (DEA)), and its Cipher Block Chaining (CBC) Mode of
Operation, so this whole chapter is devoted to that.

Note: This chapter is based on, and (unless stated otherwise) is technically aligned with,
ANSI X3.92 and ANSI X3.106. However, for editorial reasons, this chapter stands
independently, and no familiarity with those documents is required. (Thus, the part
of this chapter that duplicates information in the cited documents is intended to be
technically equivalent to those documents, rewritten for the expository purposes of
DCE, and any technical discrepancies between the two are inadvertent and to be
reconciled.)

3.1 Basic DES
In the context of DES, a bit-vector of length 64 to be encrypted or decrypted is called a (DES)
block. For terminology, notation and conventions regarding sequences of bits, see Chapter 2. In
particular, when bit-sequences (especially, bytes) are interpreted as integers in this chapter, the
big-endian mapping is always used. (This chapter does not interpret byte-sequences as integers,
so their endianness should be considered.)

The ‘‘basic DES’’ algorithm (specified in detail in Section 3.5 on page 154) is an encryption
mechanism, parameterised by a 64-bit vector, K, taking single-block plaintext inputs, P, and
producing single-block ciphertext outputs, Q, for which the following notation is adopted:

Q = DES(K, P)

The corresponding (inverse) decryption mechanism is denoted:

P = DES−1(K, Q)

The bit vector K = <k0, ⋅⋅⋅, k63>, while nominally 64 bits long, has only 56 active (that is,
‘‘cryptographically significant’’) bits, in the sense that while the algorithm defining DES makes
sense for an arbitrary 64-bit vector K, the algorithm ignores K’s 8 passive bits kj, j ≡ 7 (mod 8),
which are the low-order bits (not the high-order bits, notably) of the 8 bytes of K; similarly for the
algorithm defining DES−1. In other words, the DES algorithm makes active use of only 56 of K’s
bits, namely the 56 bits kj for j /≡ 7 (mod 8). By definition, a 64-bit vector K is said to be a DES key
if it has odd parity; that is, if every byte of K, <k8j+0, ⋅⋅⋅, k8j+7> (0 ≤ k ≤ 7), has odd bit sum (mod 2)
— k8j+0 + ⋅⋅⋅ + k8j+7 ≡ 1 (mod 2). Obviously, the 8 passive bits of an arbitrary 64-bit vector K can
always be uniquely chosen such that the resulting 64-bit vector, K´ say, has odd parity (in this
context, K’s passive bits are also called its parity bits); of course, as observed above, DES(K, P) =
DES(K´, P) for all plaintexts P. K´ is then called the (unique) (odd-parity) normal form of K. When
explicit DES keys are written down in DCE, they are always expressed as 8-byte vectors (never
as integers) in their odd-parity normal form.

Note: As a practical matter, note that even though the DES algorithm itself defining DES(K,
P) makes sense for an arbitrary 64-bit vector K, some implementations check for
parity, rejecting any key that is not a DES key (that is, does not have odd parity).

Part 2 Security Services and Protocols 147



CBC Mode Encryption/Decryption Mechanisms

3.2 CBC Mode
The CBC mode of DES (specified in detail in Section 3.6 on page 158) is an extension of the basic
DES algorithm, for the purpose of encrypting and decrypting bit-sequences of length a (strictly)
positive multiple of 64 (that is, a positive number of blocks). It is parameterised not only by the
key K, but also by a 64-bit initialisation vector (or seed), IV (all of whose bits are ‘‘active’’). DES
CBC encryption is denoted by:

Q = DES-CBC(K, IV, P)

and its corresponding decryption by:

P = DES-CBC−1(K, IV, Q)

The length of Q is the same as that of P.

Note: As seen in Section 3.6 on page 158, the role of the initialisation vector is to ‘‘initialise’’
the CBC algorithm, by using it to ‘‘scramble’’ the first block of plaintext. There are
two common ways to use initialisation vectors, both of which are actually used in
this specification:

1. The first common usage is as confounders. In this usage, initialisation vectors
are chosen randomly, so that knowledge of common patterns that are present
in the first blocks of many plaintexts (that is, ‘‘known plaintexts’’, such as occur
in standard headers of protocol data units) cannot potentially be used in a
cryptanalytic attack. Thus, in this usage, the initialisation vector improves the
CBC algorithm’s ‘‘ergodicity’’ (but does not increase the size of the DES key
space). For examples of the usage of initialisation vectors as confounders, see
Section 4.3.4.1 on page 185 and Section 4.3.5.1 on page 188.

2. The second common usage is as links of chains, whereby complex messages can
be encrypted in pieces, yet the end result is the same as if the whole message
had been encrypted monolithically, as a consequence of the chaining property
stated in Section 3.3.1 on page 150. For examples of the usage of initialisation
vectors as links in chains, see Section 9.2.2.3 on page 336 and Section 9.3.2.3 on
page 342.

X3.106 itself does not specify any standard way to encrypt/decrypt plaintext/ciphertext of
length other than a positive multiple of 64 (bits), merely stating that ‘‘the final partial data block
should be encrypted in a manner specified for the application’’. Accordingly, DCE adopts the
following convention. The meaning of (DES) padding is a bit-vector R of minimal length
appended to a given bit vector M in order to bring the total bit-length of <M, R> up to a positive
multiple of 64. Note that the bit-length of R, λ(R), is either 64 (in the case λ(M) = 0) or
(−λ(M))(mod 64) (in the case λ(M) > 0). In DCE, the DES padding required in a given situation
will usually be explicitly specified. Nevertheless, it is convenient to also specify a default
padding vector. Therefore, unless stated otherwise, DCE takes the (DES) padding vector R be a 0-
vector of the appropriate length. Notationally, if P is a plaintext (or Q is a ciphertext) of length
other than a positive multiple of 64, the following is defined:

• DES-CBC(K, IV, P) = DES-CBC(K, IV, <P, <0, ⋅⋅⋅, 0>>)

• DES-CBC−1(K, IV, Q) = DES-CBC−1(K, IV, <Q, <0, ⋅⋅⋅, 0>>)

When the initialisation vector IV is the (64-bit) 0-vector <0, ⋅⋅⋅, 0> (consisting entirely of ‘‘0’’ bits),
the term IV is sometimes omitted from the above notations:

• DES-CBC(K, P) = DES-CBC(K, <0, ⋅⋅⋅, 0>, P)

148 CAE Specification (1997)



Encryption/Decryption Mechanisms CBC Mode

• DES-CBC−1(K, Q) = DES-CBC−1(K, <0, ⋅⋅⋅, 0>, Q)

Part 2 Security Services and Protocols 149



DES-CBC Checksum Encryption/Decryption Mechanisms

3.3 DES-CBC Checksum
The DES-CBC checksum of a plaintext P, with respect to a key K and an initialisation vector IV, is
by definition the final block of DES-CBC(K, IV, P). It is denoted:

DES-CBC-CKSUM(K, IV, P)

It differs from MD4 and MD5(P) in being key- (and initialisation vector-)based, and in being only
8 bytes long instead of 16. When IV is a 0-vector, it is sometimes omitted from the notation:

DES-CBC-CKSUM(K, P)

3.3.1 Composition Laws (Chaining Properties)

The following DES composition laws or chaining properties are immediately seen to follow from the
detailed description of the CBC mode algorithm given in Section 3.6 on page 158. For vectors of
blocks P and P´ of positive length:

• DES-CBC(K, IV, <P, P´>) =
<DES-CBC(K, IV, P), DES-CBC(K, DES-CBC-CKSUM(K, IV, P), P´)>

• DES-CBC-CKSUM(K, IV, <P, P´>) =
DES-CBC-CKSUM(K, DES-CBC-CKSUM(K, IV, P), P´)

150 CAE Specification (1997)



Encryption/Decryption Mechanisms Keys to be Avoided

3.4 Keys to be Avoided
There are certain DES keys (64 of them, in normal form) that ‘‘should be’’ avoided in any use of
DES encryption, because they have poor cryptographic characteristics. Some of these are called
weak keys, some are called semi-weak keys, and there are some others with no generally accepted
moniker but which are called here possibly weak keys (rigorous definitions are given below). The
complete list of such keys are listed below.

Note: To say that the keys in question ‘‘should be’’ avoided means, for the purposes of
DCE, that it is recommended (though not required) that implementations not generate
these keys as session, conversation or long-term keys; in particular, implementations
should reject passwords that map to these keys (via the password-to-key mappings
specified in Section 4.3.6.1 on page 190). However, all implementations are required
to accept all keys generated by other implementations (for interoperability with
implementations that do generate the keys that should be avoided).

There is no mention of these keys in ANSI X3.92 (though they have been noted elsewhere in the
literature).

The rigorous definition of key weakness is as follows. As seen in the remainder of this chapter,
the cryptographic strength of DES depends on the ‘‘complexity’’ (measured by the involvement
of the S-boxes — see Section 3.5.3 on page 155) of the algorithm defining it. That algorithm
involves, among other things, manipulating the key, K, via the key schedule subalgorithm, to
generate 16 48-bit subkeys, K0, ⋅⋅⋅, K15. Define the strength of K, denoted σ(K), to be the cardinality
(number of elements) of this set of subkeys. If σ(K) ≥ σ(K´), then the DES algorithm for K is more
complex than that for K´, so K is said to be stronger than K´. Obviously 1 ≤ σ(K) ≤ 16, and the
strongest keys are those for which σ(K) = 16; that is, those for which the subkeys Ki are all distinct,
because that maximises the overall complexity of the DES algorithm. Using this measure of
strength, the rigorous definitions of weak, semi-weak and possibly weak keys are that σ(K) = 1, 2
and 4, respectively.

Note that the weak and semi-weak keys have the following characteristics. The weak keys K are
those for which encryption is the same as decryption: DES(K, B) = DES−1(K, B) for every block B.
The semi-weak keys K are those for which there exists another key K´ ≠ K which gives identical
encryption and decryption: DES(K, B) = DES(K´, B) and DES−1(K, B) = DES−1(K´, B) for all blocks
B — hence, K´ can decrypt any message encrypted by K, and vice versa.

3.4.1 Weak Keys

The following are the 4 (normal form) weak keys:

<0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01>
<0x1f,0x1f,0x1f,0x1f,0x0e,0x0e,0x0e,0x0e>
<0xe0,0xe0,0xe0,0xe0,0xf1,0xf1,0xf1,0xf1>
<0xfe,0xfe,0xfe,0xfe,0xfe,0xfe,0xfe,0xfe>

Part 2 Security Services and Protocols 151



Keys to be Avoided Encryption/Decryption Mechanisms

3.4.2 Semi-weak Keys

The following are the 12 (normal form) semi-weak keys:

<0x01,0x1f,0x01,0x1f,0x01,0x0e,0x01,0x0e>
<0x01,0xe0,0x01,0xe0,0x01,0xf1,0x01,0xf1>
<0x01,0xfe,0x01,0xfe,0x01,0xfe,0x01,0xfe>
<0x1f,0x01,0x1f,0x01,0x0e,0x01,0x0e,0x01>
<0x1f,0xe0,0x1f,0xe0,0x0e,0xf1,0x0e,0xf1>
<0x1f,0xfe,0x1f,0xfe,0x0e,0xfe,0x0e,0xfe>
<0xe0,0x01,0xe0,0x01,0xf1,0x01,0xf1,0x01>
<0xe0,0x1f,0xe0,0x1f,0xf1,0x0e,0xf1,0x0e>
<0xe0,0xfe,0xe0,0xfe,0xf1,0xfe,0xf1,0xfe>
<0xfe,0x01,0xfe,0x01,0xfe,0x01,0xfe,0x01>
<0xfe,0x1f,0xfe,0x1f,0xfe,0x0e,0xfe,0x0e>
<0xfe,0xe0,0xfe,0xe0,0xfe,0xf1,0xfe,0xf1>

3.4.3 Possibly Weak Keys

The following are the 48 (normal form) possibly weak keys:

<0x01,0x01,0x1f,0x1f,0x01,0x01,0x0e,0x0e>
<0x01,0x01,0xe0,0xe0,0x01,0x01,0xf1,0xf1>
<0x01,0x01,0xfe,0xfe,0x01,0x01,0xfe,0xfe>
<0x01,0x1f,0x1f,0x01,0x01,0x0e,0x0e,0x01>
<0x01,0x1f,0xe0,0xfe,0x01,0x0e,0xf1,0xfe>
<0x01,0x1f,0xfe,0xe0,0x01,0x0e,0xfe,0xf1>
<0x01,0xe0,0x1f,0xfe,0x01,0xf1,0x0e,0xfe>
<0x01,0xe0,0xe0,0x01,0x01,0xf1,0xf1,0x01>
<0x01,0xe0,0xfe,0x1f,0x01,0xf1,0xfe,0x0e>
<0x01,0xfe,0x1f,0xe0,0x01,0xfe,0x0e,0xf1>
<0x01,0xfe,0xe0,0x1f,0x01,0xfe,0xf1,0x0e>
<0x01,0xfe,0xfe,0x01,0x01,0xfe,0xfe,0x01>
<0x1f,0x01,0x01,0x1f,0x0e,0x01,0x01,0x0e>
<0x1f,0x01,0xe0,0xfe,0x0e,0x01,0xf1,0xfe>
<0x1f,0x01,0xfe,0xe0,0x0e,0x01,0xfe,0xf1>
<0x1f,0x1f,0x01,0x01,0x0e,0x0e,0x01,0x01>
<0x1f,0x1f,0xe0,0xe0,0x0e,0x0e,0xf1,0xf1>
<0x1f,0x1f,0xfe,0xfe,0x0e,0x0e,0xfe,0xfe>
<0x1f,0xe0,0x01,0xfe,0x0e,0xf1,0x01,0xfe>
<0x1f,0xe0,0xe0,0x1f,0x0e,0xf1,0xf1,0x0e>
<0x1f,0xe0,0xfe,0x01,0x0e,0xf1,0xfe,0x01>
<0x1f,0xfe,0x01,0xe0,0x0e,0xfe,0x01,0xf1>
<0x1f,0xfe,0xe0,0x01,0x0e,0xfe,0xf1,0x01>
<0x1f,0xfe,0xfe,0x1f,0x0e,0xfe,0xfe,0x0e>
<0xe0,0x01,0x01,0xe0,0xf1,0x01,0x01,0xf1>
<0xe0,0x01,0x1f,0xfe,0xf1,0x01,0x0e,0xfe>
<0xe0,0x01,0xfe,0x1f,0xf1,0x01,0xfe,0x0e>
<0xe0,0x1f,0x01,0xfe,0xf1,0x0e,0x01,0xfe>
<0xe0,0x1f,0x1f,0xe0,0xf1,0x0e,0x0e,0xf1>
<0xe0,0x1f,0xfe,0x01,0xf1,0x0e,0xfe,0x01>
<0xe0,0xe0,0x01,0x01,0xf1,0xf1,0x01,0x01>
<0xe0,0xe0,0x1f,0x1f,0xf1,0xf1,0x0e,0x0e>
<0xe0,0xe0,0xfe,0xfe,0xf1,0xf1,0xfe,0xfe>

152 CAE Specification (1997)



Encryption/Decryption Mechanisms Keys to be Avoided

<0xe0,0xfe,0x01,0x1f,0xf1,0xfe,0x01,0x0e>
<0xe0,0xfe,0x1f,0x01,0xf1,0xfe,0x0e,0x01>
<0xe0,0xfe,0xfe,0xe0,0xf1,0xfe,0xfe,0xf1>
<0xfe,0x01,0x01,0xfe,0xfe,0x01,0x01,0xfe>
<0xfe,0x01,0x1f,0xe0,0xfe,0x01,0x0e,0xf1>
<0xfe,0x01,0xe0,0x1f,0xfe,0x01,0xf1,0x0e>
<0xfe,0x1f,0x01,0xe0,0xfe,0x0e,0x01,0xf1>
<0xfe,0x1f,0x1f,0xfe,0xfe,0x0e,0x0e,0xfe>
<0xfe,0x1f,0xe0,0x01,0xfe,0x0e,0xf1,0x01>
<0xfe,0xe0,0x01,0x1f,0xfe,0xf1,0x01,0x0e>
<0xfe,0xe0,0x1f,0x01,0xfe,0xf1,0x0e,0x01>
<0xfe,0xe0,0xe0,0xfe,0xfe,0xf1,0xf1,0xfe>
<0xfe,0xfe,0x01,0x01,0xfe,0xfe,0x01,0x01>
<0xfe,0xfe,0x1f,0x1f,0xfe,0xfe,0x0e,0x0e>
<0xfe,0xfe,0xe0,0xe0,0xfe,0xfe,0xf1,0xf1>

Part 2 Security Services and Protocols 153



Details of Basic DES Algorithm Encryption/Decryption Mechanisms

3.5 Details of Basic DES Algorithm
Let K = <k0, ⋅⋅⋅, k63> be a DES key, and let P = <p0, ⋅⋅⋅, p63> be a plaintext DES block. The value of
DES(K, P) will now be described as a functional composition of 33 (invertible) transformations
from blocks to blocks, as follows:

DES(K, P) = (FP ° TK,15 ° θ14 ° TK,14 ° θ13 ° ⋅⋅⋅ ° TK,1 ° θ0 ° TK,0 ° IP)(P)

Of these 33 transformations, 15 of them are equal to the simple cyclic permutation (or
transposition), θi = θ (0 ≤ i ≤ 14), which interchanges the left and right halfblocks of a block: if B =
<LB, RB> where LB and RB are 32-bit vectors, then:

θ(B) = <RB, LB>

That is:

θ(<b0, ⋅⋅⋅, b63>) =
<b32, ⋅⋅⋅, b63, b0, ⋅⋅⋅, b31>

3.5.1 Initial Permutation (IP) and Final Permutation (FP)

The initial permutation, IP, mapping blocks to blocks, is defined as follows:

IP(<p0, ⋅⋅⋅, p63>) =
<p57, p49, p41, p33, p25, p17, p9, p1, p59, p51, p43, p35, p27, p19, p11, p3,
p61, p53, p45, p37, p29, p21, p13, p5, p63, p55, p47, p39, p31, p23, p15, p7,
p56, p48, p40, p32, p24, p16, p8, p0, p58, p50, p42, p34, p26, p18, p10, p2,
p60, p52, p44, p36, p28, p20, p12, p4, p62, p54, p46, p38, p30, p22, p14, p6>

The final permutation (or inverse initial permutation), FP, is defined to be the inverse of IP, FP = IP−1,
and is therefore given by:

FP(<q0, ⋅⋅⋅, q63>) =
<q39, q7, q47, q15, q55, q23, q63, q31, q38, q6, q46, q14, q54, q22, q62, q30,
q37, q5, q45, q13, q53, q21, q61, q29, q36, q4, q44, q12, q52, q20, q60, q28,
q35, q3, q43, q11, q51, q19, q59, q27, q34, q2, q42, q10, q50, q18, q58, q26,
q33, q1, q41, q9, q49, q17, q57, q25, q32, q0, q40, q8, q48, q16, q56, q24>

Note: As seen in Section 3.5.4 on page 157, IP and FP are the only two transformations
among DES’s 33 component transformations that are not self-inverse. This fact
highlights the functional significance of IP and FP, but it does not explain the
cryptographic significance of IP and FP — and indeed they appear to have no known
cryptographic significance.

3.5.2 Key Schedule (KS): Permuted Choices (PC1, PC2) and Left Shift (LS)

The remaining transformations TK,i depend on a key schedule of 16 48-bit subkeys Ki = KK,i = KS(K,
i) (0 ≤ i ≤ 15), which are defined as follows.

First, two 28-bit auxiliary vectors, CK,−1 and DK,−1, are defined by:

<CK,−1, DK,−1> = PC1(K)

where PC1 is the first permuted choice mapping from 64-bit (key) vectors to 56-bit (auxiliary)
vectors, defined as follows:

154 CAE Specification (1997)



Encryption/Decryption Mechanisms Details of Basic DES Algorithm

PC1(<k0, ⋅⋅⋅, k63>) =
<k56, k48, k40, k32, k24, k16, k8, k0, k57, k49, k41, k33, k25, k17,
k9, k1, k58, k50, k42, k34, k26, k18, k10, k2, k59, k51, k43, k35,
k62, k54, k46, k38, k30, k22, k14, k6, k61, k53, k45, k37, k29, k21,
k13, k5, k60, k52, k44, k36, k28, k20, k12, k4, k27, k19, k11, k3>

Note, in particular, that PC1 ‘‘destroys’’ the passive bits of K (and this shows why they do not
figure into the cryptographic properties of DES).

Now, the remaining 28-bit auxiliary vectors, CK,i and DK,i, and the subkeys Ki = KK,i = KS(K, i), are
defined by:

• CK,i = LSi(CK,i−1)

• DK,i = LSi(DK,i−1)

• Ki = KK,i = KS(K, i) = PC2(<CK,i, DK,i>)

where LSi is the (circular bitwise) left shift (or bitwise left rotation) mapping 28-bit vectors to 28-bit
vectors:

LSi(<e0, ⋅⋅⋅, e27>) = <e0, ⋅⋅⋅, e27> <<<< si

according to the shift schedule:

<s0, ⋅⋅⋅, s15> = <1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1>

and where PC2 is the second permuted choice mapping from 56-bit (auxiliary) vectors to 48-bit
(subkey) vectors, defined as follows:

PC2(<l0, ⋅⋅⋅, l55>) =
<l13, l16, l10, l23, l0, l4, l2, l27, l14, l5, l20, l9,
l22, l18, l11, l3, l25, l7, l15, l6, l26, l19, l12, l1,
l40, l51, l30, l36, l46, l54, l29, l39, l50, l44, l32, l47,
l43, l48, l38, l55, l33, l52, l45, l41, l49, l35, l28, l31>

3.5.3 Rounds (T): Cipher Function (F), Expansion (E), Permutation (P) and
Selection/Substitution (S)

With the subkeys Ki in hand, the rounds TK,i, which map blocks to blocks, can now be defined as
follows. Let B be a block, then by definition for 0 ≤ i ≤ 15 (‘‘ˆ’’ denoting bitwise boolean XOR of
bit-vectors):

TK,i(B) = <LB ˆ FK,i(RB), RB>

where the cipher functions FK,i (0 ≤ i ≤ 15) map 32-bit (halfblock) vectors to 32-bit (halfblock)
vectors, and are defined by the formula (note this is the only place the subkeys Ki are used):

FK,i(R) = P(S(Ki ˆ E(R)))

with E, P and S defined immediately below.

E is the expansion mapping from 32-bit (halfblock) vectors to 48-bit (subkey) vectors given by:

E(<r0, ⋅⋅⋅, r31>) =
<r31, r0, r1, r2, r3, r4, r3, r4, r5, r6, r7, r8,
r7, r8, r9, r10, r11, r12, r11, r12, r13, r14, r15, r16,
r15, r16, r17, r18, r19, r20, r19, r20, r21, r22, r23, r24,
r23, r24, r25, r26, r27, r28, r27, r28, r29, r30, r31, r0>

Part 2 Security Services and Protocols 155



Details of Basic DES Algorithm Encryption/Decryption Mechanisms

P is the permutation mapping from 32-bit (halfblock) vectors to 32-bit (halfblock) vectors given
by:

P(<t0, ⋅⋅⋅, t31>) =
<t15, t6, t19, t20, t28, t11, t27, t16,
t0, t14, t22, t25, t4, t17, t30, t9,
t1, t7, t23, t13, t31, t26, t2, t8,
t18, t12, t29, t5, t21, t10, t3, t24>

S is the selection/substitution mapping from 48-bit (subkey) vectors to 32-bit (halfblock) vectors
defined as follows:

S(<z0, ⋅⋅⋅, z47>) =
<S0(<z0, ⋅⋅⋅, z5>), S1(<z6, ⋅⋅⋅, z11>), S2(<z12, ⋅⋅⋅, z17>), S3(<z18, ⋅⋅⋅, z23>),
S4(<z24, ⋅⋅⋅, z29>), S5(<z30, ⋅⋅⋅, z35>), S6(<z36, ⋅⋅⋅, z41>), S7(<z42, ⋅⋅⋅, z47>)>

In this expression, each submapping Sh (0 ≤ h ≤ 7) is a mapping of 6-bit vectors to 4-bit vectors,
defined in terms of a 4×16 matrix, Sh (whose entry in its f th row and gth column, Sh[f,g] (0 ≤ f ≤ 3,
0 ≤ g ≤ 15), is a 4-bit vector (or, equivalently, an integer in the range [0, 15])), given by the rule:

Sh(<y0, ⋅⋅⋅, y5>) = Sh[<y0, y5>, <y1, y2, y3, y4>]

In this rule, the identification of 2-bit and of 4-bit vectors with integers is made via the big-endian
mappings (namely, f = <u0, u1> = 21u0 + 20u1 and g = <v0, v1, v2, v3> = 23v0 + 22v1 + 21v2 + 20v3).

The matrices Sh (0 ≤ h ≤ 7) are called S-boxes. They lie at the very heart of DES, in the sense of
being the major source of its complexity — besides greatly adding to the egodicity of DES, they
comprise its only component of non-linearity (with respect to block space, the 64-dimensional
vector space F2

64 over the bit field F2). The S-boxes have the following values (in pseudocode):

S0 = {{14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7},
{ 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8},
{ 4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0},
{15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13}};

S1 = {{15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10},
{ 3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5},
{ 0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15},
{13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9}};

S2 = {{10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8},
{13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1},
{13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7},
{ 1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12}};

S3 = {{ 7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15},
{13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9},
{10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4},
{ 3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14}};

S4 = {{ 2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9},
{14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6},
{ 4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14},
{11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3}};

S5 = {{12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11},

156 CAE Specification (1997)



Encryption/Decryption Mechanisms Details of Basic DES Algorithm

{10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8},
{ 9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6},
{ 4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13}};

S6 = {{ 4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1},
{13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6},
{ 1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2},
{ 6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12}};

S7 = {{13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7},
{ 1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2},
{ 7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8},
{ 2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11}};

3.5.4 DES Decryption

It is true, but not quite obvious, that the DES transformation described above is invertible — nor
is it obvious, assuming that it is invertible, how to compute its inverse. It will be proved that:

DES−1(K, Q) = (FP ° TK,0 ° θ ° TK,1 ° θ ° ⋅⋅⋅ ° TK,14 ° θ ° TK,15 ° IP)(Q)

Comparing this formula for DES−1 to the formula defining DES, the situation can be paraphrased
by saying: ‘‘DES−1 is the ‘same’ as DES, except that the schedule of subkeys is visited in reverse
order’’.

To prove the formula for DES−1, one notes first that:

DES−1(K, Q) =

(FP ° TK,15 ° θ ° TK,14 ° θ ° ⋅⋅⋅ ° TK,1 ° θ ° TK,0 ° IP)−1(Q) =

(IP−1 ° T−1
K,0 ° θ−1 ° T−1

K,1 ° θ−1 ° ⋅⋅⋅ ° T−1
K,14 ° θ−1 ° T−1

K,15 ° FP−1)(Q)

Therefore, to prove the claimed formula, it suffices to observe the following inversion equalities:

• IP−1 = FP

• FP−1 = IP

• θ−1 = θ

• T−1
K,i = TK,i

The first three of these equalities are straightforward, and the fourth holds because for any block
B:

TK,i(TK,i(B)) =

TK,i(<LB ˆ FK,i(RB), RB>) =

<(LB ˆ FK,i(RB)) ˆ FK,i(RB), RB> =

<LB, RB> =

B

assuming that U ˆ U is a 0-vector for any bit-vector U, and U ˆ V = U for any 0-vector V.

Part 2 Security Services and Protocols 157



Details of CBC Mode Algorithm Encryption/Decryption Mechanisms

3.6 Details of CBC Mode Algorithm
Let P = <P0, ⋅⋅⋅, Pn−1>, n ≥ 1, be a plaintext which has bit-length a positive multiple of 64, where
each Pi is a block. Then the CBC mode encryption of P, Q = DES-CBC(K, IV, P), is defined as
follows:

Q = <Q0, ⋅⋅⋅, Qn−1>

where:

• Q0 = DES(K, IV ˆ P0)

• Qi = DES(K, Qi−1 ˆ Pi) for 1 ≤ i ≤ n−1

The decryption, P = DES-CBC−1(K, IV, Q) is given by:

• P0 = IV ˆ DES−1(K, Q0)

• Pi = Qi−1 ˆ DES−1(K, Qi) for 1 ≤ i ≤ n−1

These transformations are easily seen to be inverses of one another.

158 CAE Specification (1997)



Chapter 4

Key Distribution (Authentication) Services

This chapter specifies the key distribution, or authentication, services supported by DCE,
together with the protocols associated with them. Currently, only one such service is supported,
namely the Kerberos Key Distribution Service (KDS), so this whole chapter is devoted to that. The
KDS is comprised of two specialised (sub-)services, the Authentication (Sub-)Service (AS) (not to
be confused with the generic terminology ‘‘authentication service’’) and the Ticket-granting
(Sub-)Service (TGS) — and for that reason the KDS is sometimes also referred to as the AS/TGS.

For an overview of this chapter, see Section 1.5 on page 18 through Section 1.7 on page 32 —
which are considered a prerequisite for this whole chapter.

Notes:

1. This chapter is based on, and (unless stated otherwise) is technically aligned
with, (a subset of) RFC 1510. However, for editorial reasons, this chapter
stands independently, and no familiarity with RFC 1510 is required. (Thus, the
part of this chapter that duplicates information in RFC 1510 is intended to be
technically equivalent to that document, rewritten for the expository purposes
of this document, and any technical discrepancies between the two are
inadvertent and to be reconciled.) Differences between the two documents are
minor and are readily justified, but the reader should note in particular the
following changes:

a. What is called ‘‘cell’’ in DCE is called ‘‘realm’’ in RFC 1510.

b. The service called Key Distribution Service (KDS) here is called Key
Distribution Center (KDC) there (the difference in terminology merely
indicating their preferred communications medium, RPC or raw UDP).

c. The data type identifiers in the two documents are conservatively
different, in an attempt to improve clarity and consistency (instead of, for
example, using a mixture of ASN.1, C and other identifiers, such as ‘‘AP-
REQ’’, ‘‘KRB_AP_REQ’’ and ‘‘authentication header’’ all referring to the
same object in RFC 1510, Section 5.5.1), without affecting interoperability
or placing conformance requirements on implementations.

For the convenience of the reader, cross-references between this document and
RFC 1510 are explicitly indicated generously throughout this chapter, using
notation of the form ‘‘[RFC 1510: x.y.z]’’ as a reference to RFC 1510, Section
x.y.z.

2. Extensive use is made in this chapter of natural-language algorithmic
descriptions. In them, it is the mainline ‘‘success’’ (non-error) case that is
emphasised — in particular, this document permits different implementations
to encounter errors (exceptions) in different orders, and so report different
errors under the same external conditions. This is indicated by marking error
conditions in algorithms by ‘‘{errStatusCode-NAME-OF-ERROR}’’ (perhaps
with some explanatory material), leaving to implementations the decision at
what point to abort a failed algorithm, and which error to report.

3. [RFC 1510: 5.1]

This chapter employs the ‘‘ASN.1/BER/DER’’ standards for data
description/representation (IDL is used only in Section 4.1.1 on page 161),

Part 2 Security Services and Protocols 159



Key Distribution (Authentication) Services

which are defined in three CCITT (now ITU-T) Recommendations. The data
description language used is Abstract Syntax Notation One (ASN.1), which is
defined in CCITT X.208. The data representation (encoding) used for data
described by ASN.1 is the Basic Encoding Rules (BER), which are defined in
CCITT X.209. Familiarity with those documents, including the data types
defined in them, is required for this chapter.

Additionally, the following Distinguished Encoding Restrictions (DER) to BER, as
specified in CCITT X.509, Section 8.7 — (only) the ones actually used in this
chapter are repeated here, in order that this chapter can stand independently of
CCITT X.509 — are in effect:

a. The definite form of length encoding shall be used, encoded in the
minimum number of octets.

b. For string types, the constructed form of encoding shall not be used.

c. Each unused bit in the final octet of the encoding of a BIT STRING value,
if there are any, shall be reset (to 0).

Furthermore, implementations that transmit any currently unspecified bits of
BIT STRING must reset them, for reasons of future extensibility and
compatibility. (Note that some existing implementations emit full BER, not just
the DER subset — new implementations that want to interoperate with those
old implementations should therefore accept full BER, but in order to be
conformant to this document they must generate DER.)

Finally, when ASN.1 descriptions are referenced during the course of
pseudocode expositions, ASN.1 is augmented with the familiar (but non-ASN.1-
standard) pseudocode dot notation for field elements. For SEQUENCEs, this
takes the form illustrated by the example: if seq is a value of type SeqType ::=
SEQUENCE {int [0] INTEGER, oct [1] OCTET}, then the values of the fields of
seq are denoted seq.int and seq.oct, respectively. For BIT STRINGs, it takes a
similar form: for example, if bits is a value of type Bits ::= BIT STRING {bit0
(0), bit1 (1), bit2 (2)}, then the values of the bits of bits are denoted bits.bit0,
bits.bit1 and bits.bit2, respectively. If the value in question (for example, seq or
bits) is implicitly understood from context, it (and the dot immediately
following it) may even be omitted if no confusion will result. For SEQUENCE
OFs, ASN.1 is further augmented with the familiar pseudocode bracket notation
for arrays: if seqof is a value of type, say, SeqOfType ::= SEQUENCE OF
{SeqType}, having 2 entries, then its entries are denoted seqof[0] and seqof[1].

160 CAE Specification (1997)



Key Distribution (Authentication) Services Fundamental Concepts

4.1 Fundamental Concepts
[RFC 1510: 1]

This chapter deals with the authentication of (RPC) clients and servers, in the context of cells.
The following general notational conventions will be used for these concepts. Recall that the
home cell of a principal is the cell whose RS datastore holds the security information for the
principal. (More precisely, ‘‘a’’ home cell of a principal should be spoken of, since some
principals may be registered in multiple cells — though this is not to be recommended in
general. DCE specifies just one, very specific, kind of multiply registered principal, namely
cross-cell surrogate KDS server principals (see below), and in that case care should be taken to
indicate which cell is being considered its home cell in a given situation. For non-KDS
principals, continue to speak of ‘‘the’’ home cell, leaving to the reader the (easy) translation to
the case of multiple-registration.)

• X, Y, Z, W, X´, ⋅⋅⋅, are reserved for cells.

• A, A´, ⋅⋅⋅, are reserved for clients, with home cells X, X´, ⋅⋅⋅, respectively.

• B, B´, ⋅⋅⋅, are reserved for servers, with home cells Y, Y´, ⋅⋅⋅, respectively.

• C, C´, ⋅⋅⋅, denote clients or servers, in arbitrary cells.

These (especially cells) often appear as subscripts (for example, KDSZ, KDSX,Y), but in order to
improve legibility of embedded subscripts they will upgraded when they themselves appear in
subscripts (for example, KKDSZ, KKDSXY instead of KKDSZ

, KKDSX,Y
).

The KDS is a distributed, partitioned RPC service, instantiated by a (conceptually unitary, but
potentially replicated) RPC server in each cell Z, denoted KDSZ. If the name of cell Z is, say,
/.../cellZ, then the RPC service name of KDSZ (used for RPC binding purposes) is determined from
/.../cellZ/cell-profile via the krb5rpc interface UUID and version number (specified in Section
4.1.1) — typically, the name associated with this profile element will be /.../cellZ/sec, which will
be an RPC server group pointing to the individual (replicated) KDSZ server(s). (See Section 1.18.1
on page 86 for more details on binding models.) (The principal names of KDS servers (used for
security purposes) — as opposed to their RPC server names (used for communications
purposes) — are introduced in Section 4.2.6 on page 172 and Section 4.2.7 on page 174.)

4.1.1 The krb5rpc RPC Interface

[RFC 1510: 8.2]

Each KDS server, KDSZ, supports the following RPC interface (data types not defined in this
specification are defined in the referenced X/Open DCE RPC Specification):

Part 2 Security Services and Protocols 161



Fundamental Concepts Key Distribution (Authentication) Services

[uuid(8f73de50-768c-11ca-bffc-08001e039431), version(1.0)]
interface krb5rpc
{ /* begin running listing of krb5rpc interface */

[idempotent] void
kds_request (

[in] handle_t rpc_handle,
[in] unsigned32 request_count,
[in, size_is(request_count)] byte request[],
[in] unsigned32 response_count_max,
[out] unsigned32 *response_count,
[out, size_is(response_count_max), length_is(*response_count)]

byte response[],
[out] error_status_t *status );

} /* end running listing of krb5rpc interface */

The semantics of kds_request( ) are that a client, C, invokes kds_request( ) to ‘‘send a KDS Request
message’’ to a KDS server, KDSZ; C receives a KDS Response message from KDSZ when
kds_request( ) returns. Its parameters are the following:

• rpc_handle

RPC binding handle, bound by the client C to a KDS server KDSZ.

• request_count

Length, in bytes, of KDS Request.

• request

(Array) value (that is, data bytes, or ‘‘contents octets’’) of KDS Request.

• response_count_max

Length of buffer supplied (response[]) to receive KDS Response.

• response_count

(Pointer to) length, in bytes, of KDS Response.

• response

(Array) value of KDS Response.

• status

(Pointer to) status code. The currently registered values for status (returnable by
kds_request( )) are the following:

— error_status_ok

Success in the communications sense; that is, a (purported) KDS has successfully received,
processed and responded to the request — hence, there is a well-formed response in the
response[] output parameter. Whether or not the request was successful in the security
sense must be determined by the examination of response[], as specified in Section 4.1.2 on
page 163 (and the remainder of this chapter).

— Status codes other than error_status_ok may indicate some transient or permanent failure
of the KDS, such as inability to allocate memory; an application should retry the remote
call with a different replica if one is available.

The contents, formats and semantics of request[] and response[] (including their lengths,
request_count and response_count) are defined below (beginning in Section 4.1.2 on page 163, but

162 CAE Specification (1997)



Key Distribution (Authentication) Services Fundamental Concepts

their full elaboration consumes this entire chapter).

Note: RFC 1510 specifies security protocols that can be supported (with the same security
guarantees) over various communications mechanisms. Typical non-DCE
implementations use UDP (port 88) as the communications mechanism (in
conformance with RFC 1510). The krb5rpc interface as specified in this document
uses RPC as the communications mechanism.

4.1.2 AS and TGS Services

[RFC 1510: 1]

There is no single service known as ‘‘the KDS service’’ supported by KDS servers. Instead, KDS
servers support two services, each of which is associated with a specific kind of corresponding
pair of request/response messages, as follows (for definitions of ‘‘initial’’ and ‘‘subsequent’’
tickets, see Section 4.1.3):

• Authentication Service (AS)

AS Request/AS Response message pair (that is, request[] is a value of data type ASRequest, and
response[] is a value of data type ASResponse). This is the service by which clients acquire
new initial tickets.

• Ticket-granting Service (TGS)

TGS Request/TGS Response message pair (that is, request[] is a value of data type
TGSRequest, and response[] is a value of data type TGSResponse). This is the service by
which clients either acquire new subsequent tickets, or manipulate old (initial or subsequent)
tickets.

Thus, a KDS Request message is either an AS Request or TGS Request message, and a KDS
Response message is either an AS Response or TGS Response message. The KDS supports one
additional kind of response message, for reporting errors:

• KDS Error message (that is, response[] is a value of data type KDSError). This is used, in lieu
of a KDS Response, to return to the client status information from a failed KDS Request.

4.1.3 Tickets, Keys and Cross-registration

[RFC 1510: 1, 1.1, 2.1]

(Kerberos) tickets are the (trusted) information objects that the KDS manages (and which are
returned by kds_request( ), as will be seen in this chapter). Tickets have three kinds of identities
associated with them:

• Issuing cell TCBs, or what amounts to the same thing, issuing KDS server(s), say KDSZ´, ⋅⋅⋅,
KDSZ´´

The KDS server(s) (which are trusted third parties) that (cooperatively) issued this ticket, also
said to be the issuing authorities for the ticket.

• Named client, say A (in cell X)

The client that this ticket authenticates to the targeted server (called B in next item). The
ticket is also said to be issued in the name of A.

• Targeted server, say B (in cell Y)

The server that this ticket authenticates to the named client (called A in previous item).

Part 2 Security Services and Protocols 163



Fundamental Concepts Key Distribution (Authentication) Services

As will be seen below, there are relationships amongst A, B, X, Y and Z´, ⋅⋅⋅, Z´´ that must be
satisfied for a ticket to be valid, namely a trust chain must be established:

A → TCBX → TCBZ´ → ⋅⋅⋅ → TCBZ´´ → TCBY → B

Here, the arrows denote links in the trust chain, not communicated messages; more precisely (as
discussed below), the above trust chain notation is actually shorthand for the trust chain of
principals:

A → KDSX,X → KDSX,Z´ → ⋅⋅⋅ → KDSZ´´,Y → KDSY,Y → B

The following notation can be used:

TktA,X,Z´,⋅⋅⋅,Z´´,Y,B or TktA,Z´,⋅⋅⋅,Z´´,B

for a ticket as described above. The home cells X and Y can be omitted from the notation
because they are implicitly known from knowledge of A and B, but it is convenient to include
them for information. All the issuing authorities can even be omitted from the notation if they
are implicitly understood or are uninteresting in a given context:

TktA,⋅⋅⋅,B or TktA,B

The simple special case of intra-cell tickets can be abbreviated:

TktA,X,B (instead of TktA,X,X,B)

As described in Section 1.1.8 on page 9, encryption keys are the a priori trusted objects upon which
the DCE trusted environment in general is leveraged (in accordance with Kerckhoffs’ Doctrine),
and in particular are the means by which tickets are protected. These keys come in 2 ‘‘flavours’’
(actually, as discussed below, encryption keys in general depend also on a selected encryption
type and optionally a key version number, but these can be mostly omitted from the discussion and
notation):

• Long-term (or initial) key of a principal C, denoted KC

It is stored in the RSZ datastore of C’s home cell Z, and it is considered to be secure if and
only if it is known only by C and TCBZ (or other TCB components; for example, on the local
host). Long-term keys are primarily used to protect internal protocol meta-data (tickets).

• Short-term (subsequent, session, conversation, ‘‘true session’’; see Chapter 1, especially the
description of the TGS Response message in Section 1.5 on page 18) key shared by a client A
and server B, denoted KA,B

It is not stored in any RS datastore, but rather is generated dynamically for transmittal by a
ticket or an authentication header or reverse-authentication header (these are defined later).
It is considered to be secure if and only if it is known only by A and B, and by third parties
they (implicitly or explicitly) trust: TCBX, TCBZ´, ⋅⋅⋅, TCBZ´´, TCBY (or other TCB
components). Short-term keys are primarily used to protect application-level data (though
they are also used in internal protocols).

Tickets carry a short-term key in them, called a session key, and are protected by the long-term
key of their targeted server. It is this session key that is the concrete manifestation of the abstract
notion of ‘‘authentication’’ between a client and server. As will be seen, a client C can successfully
use a ticket to authenticate to the targeted server only if C knows the ticket’s session key (though
C need not be the ticket’s named client). That is, ‘‘stolen’’ tickets (obtained, say, by
‘‘wiretapping’’) are useless (assuming the keys involved are not compromised). Application
data communicated between client and server is protected by a session key (transmitted by a
ticket) or by a negotiated conversation key (transmitted by an authentication header or reverse-
authentication header).

164 CAE Specification (1997)



Key Distribution (Authentication) Services Fundamental Concepts

Tickets are further classified into two broad kinds of category:

• Ticket-granting-ticket (TGT) versus service-ticket

Targeted to (that is, protected with the long-term key of) a KDS server or to a non-KDS
server, respectively. (In general, the distinction between ticket-granting-tickets and service-tickets
is to be avoided, unless it is absolutely necessary.)

• Initial ticket versus subsequent ticket

Issued on the basis of, respectively, an unauthenticated (or merely preauthenticated) request,
or an authenticated request. That is, the issuing authority(ies) are, respectively, uncertain or
certain (in the sense of ‘‘certainty’’ afforded by a ticket-granting-ticket naming the client) that
the identity of the requesting client (a communications concept), C, is the same as that of the
ticket’s named client or ‘‘claimed identity’’ (a security concept). Equivalently, initial tickets
are those issued on the basis of the AS Request/Response message exchange, while
subsequent tickets are those issued on the basis of the TGS Request/Response exchange.
(See the definition of the tkt-Initial flag in Section 4.4.2 on page 198.)

This categorisation divides tickets into 4 classes (initial ticket-granting-tickets, subsequent
ticket-granting-tickets, initial service-tickets and subsequent service-tickets), all of which can
and do actually occur in practice. However, the category of initial service-tickets is rather rare.
(An example would be a ‘‘password-changing’’ program that insisted on an initial ticket to
guarantee that the user changing his/her password has ‘‘recent knowledge’’ of the old password
(as opposed to an intruder requesting a password change via an unattended seat or hijacked
session); if the password-changing program is running under an identity other than the KDS,
this initial ticket will be an initial service ticket.)

In order for the definition of ticket to make sense, KDS servers must in fact ‘‘be principals’’, in
the sense of being registered in the RS datastores in their cells, and this is always assumed to be
the case. The principal corresponding to the KDS server in cell X is denoted by the same
notation, KDSX, if no confusion will result, or by the expanded notation KDSX,X if emphasis is
needed. (Strictly speaking, the notation KDSX should be reserved for the KDS server ‘‘as for TCB
component (communicating entity)’’, and KDSX,X should be reserved to denote the KDS server
‘‘as for principal’’.)

More generally, it is possible for a KDS server, KDSX, to issue a ticket targeted to a KDS server,
KDSY, other than itself. In order for this to happen, KDSY must know the key of a principal
registered in RSX — that principal is denoted by KDSX,Y. This arrangement is called a cross-cell
registration of KDS servers; KDSX,Y is called a surrogate (principal) of KDSY in cell X, and its long-
term key stored in RSX, KKDSXY, is called a cross-cell key. At the same time, this same principal
KDSX,Y is also registered in RSY, with a different principal stringname (because it’s in a different
cell) but with the same cross-cell key, KKDSXY — and principal (in RSY) is also called a surrogate
(principal) of KDSY. Thus, in this terminology, ‘‘surrogate’’ refers to the principal KDSX,Y
registered in both RSX and in RSY (with the same key KKDSXY), the only distinction between the
two being their principal names (which reflects the cells they are being considered in; that is,
which RS datastore their principal information is held in) — and for that reason, the combined
terminology cross-cell surrogate (double principal) is sometimes used; and this principal is also said
to mediate the X → Y trust link. Finally, cross-cell registration also always entails the
symmetrically defined surrogate registration of KDSX in RSY: thus, KDSY,X is the surrogate of
KDSX in cell Y (and in cell X), both with the same long-term key KKDSYX, mediating the Y → X
trust link. (See Section 1.7 on page 32 for more discussion.)

Part 2 Security Services and Protocols 165



Some Basic Data Types Key Distribution (Authentication) Services

4.2 Some Basic Data Types
A number of common, non-security-specific data types are defined in this section. Note that the
descriptions of the semantics of the data types in this section through Section 4.10 on page 215
are supported by descriptions of the KDS services in Section 4.12 on page 220 through Section
4.15 on page 258, giving the rationale by which applications can evaluate the trust to be placed in
the KDS’s support of these semantics.

4.2.1 Protocol Version Numbers

[RFC 1510: 8.3]

Protocol version numbers are represented by the ProtocolVersionNumber data type, which is
defined as follows:

ProtocolVersionNumber ::= INTEGER

Its semantics are that it identifies the KDS protocol version in use. Values for protocol version
numbers are centrally registered. Currently registered values are collected in Section 4.2.1.1.

4.2.1.1 Registered Protocol Version Numbers

[RFC 1510: 8.3]

The currently registered values for ProtocolVersionNumber are the following:

• protoVersNum-KRB5 = 5 — Kerberos version 5.

4.2.2 Protocol Message Types

[RFC 1510: 8.3]

Protocol message types are represented by the ProtocolMessageType data type, which is defined
as follows:

ProtocolMessageType ::= INTEGER

Its semantics are that it identifies KDS protocol messages. Values for protocol message types are
centrally registered. Currently registered values are collected in Section 4.2.2.1.

4.2.2.1 Registered Protocol Message Types

[RFC 1510: 8.3]

The currently registered values for ProtocolMessageType are the following (the format and
semantics of these messages are defined in Section 4.6 through Section 4.10 on page 215).

• protoMsgType-AS-REQUEST = 10 — AS Request.

• protoMsgType-AS-RESPONSE = 11 — AS Response.

• protoMsgType-TGS-REQUEST = 12 — TGS Request.

• protoMsgType-TGS-RESPONSE = 13 — TGS Response.

• protoMsgType-AUTHN-HEADER = 14 — Authentication Header.

• protoMsgType-REVAUTHN-HEADER = 15 — Reverse-authentication Header.

• protoMsgType-KDS-ERROR = 30 — KDS Error.

(Note that the other protocol message types defined in RFC 1510 are not defined or used in
DCE.)

166 CAE Specification (1997)



Key Distribution (Authentication) Services Some Basic Data Types

4.2.3 Timestamps, Microseconds and Clock Skew

[RFC 1510: 5.2, 5.3.2]

Timestamps are represented by the TimeStamp data type, which is defined as follows:

TimeStamp ::= GeneralizedTime -- X.208 32.3b

Its semantics are that it indicates the generating system clock’s UTC time (see the referenced
X/Open DCE Time Services Specification), in the syntax of CCITT X.208, Section 32.3b,
measured to the granularity of seconds. This syntax is a string of 15 characters, the first 14 of
which are the first 14 decimal digits of a DTS string format timestamp, and the 15th of which is
the character ‘‘Z’’. Thus, if this syntax is denoted by ‘‘CCYYMMDDhhmmssZ’’, then CCYY
indicates the (century and) year, MM the month, DD the day, hh the hour, mm the minute, and ss
the second. For example, the TimeStamp ‘‘19950825163947Z’’ indicates the UTC time: ‘‘AD
August 25, 1995, at 4:39:47 PM’’.

Note: The appearance of the character ‘‘Z’’ is historical. It is a reference to the ‘‘Z’’ (usually
verbalised as ‘‘Zulu’’) time zone. See the referenced X/Open DCE Time Services
Specification for more information.

Note that although the TimeStamp data type is a string type on which no ordering is defined a
priori, there is an obvious sense (of ‘‘earlier’’ and ‘‘later’’) in which timestamps can be compared
(see also the referenced X/Open DCE Time Services Specification), and this ordering of
TimeStamps will be assumed throughout this chapter. Similarly, there is an obvious sense in
which arithmetic operations can be applied to TimeStamps. Namely, the ordering and
arithmetic operations are those resulting from regarding the 14 digits of a TimeStamp as
representing an integer, instead of merely a character string.

One particular timestamp is singled out for special attention (see Section 4.8.1 on page 208); this
is the ‘‘end-of-time’’ timestamp, which is defined as follows (midnight, January 1, 1970):

endOfTimeStamp TimeStamp ::= "197001010000Z"

Furthermore, endOfTimeStamp is considered to occur ‘‘later’’ than any other timestamp, in the
order mentioned above.

Finally, some protocol elements require, in addition to a timestamp, a microsecondstamp (that is,
‘‘microsecond-granularity timestamp’’). This is represented by the MicroSecond data type,
which is defined as follows:

MicroSecond ::= INTEGER -- 0..999999

The only allowable values of this data type are in the range [0, 999999]. Nominally, the semantic
of this data type is to indicate the number of microseconds past an accompanying (second-
granularity) timestamp. However, the real security semantic of this data type is to function as a
per-second nonce (see Section 4.3.1 on page 183 below).

Note: Thus, implementations of the DCE security services on systems that do not have
hardware clocks supporting microsecond granularity can finesse the MicroSecond
data type by simply supporting its security semantic. This can be accomplished, for
example, by a ‘‘pseudo-microsecond register’’, which merely increments by one (mod
1,000,000) after each request for a microsecondstamp (resetting the register to 0 every
second is unnecessary). (In order to preserve the semantics of nonces, this assumes
the hardware is incapable of servicing more than 1,000,000 such requests per second.)

Part 2 Security Services and Protocols 167



Some Basic Data Types Key Distribution (Authentication) Services

4.2.3.1 Maximum Allowable Clock Skew

[RFC 1510: 1.2]

No two clocks in a distributed environment can be synchronised perfectly. In a DCE
environment, the DTS service keeps clocks closely synchronised, and even maintains a measure
of their inaccuracy (distance from UTC). The KDS’s use of timestamps depends also on near-
synchronisation with UTC, but further requires only, instead of the fine-grained DTS
inaccuracies, a very coarse measure of clock skew (distance between the clock producing a
timestamp and the clock interpreting it, independently of UTC). Namely, the KDS protocols
require that clocks are synchronised with one another (and hence, because of DTS, with UTC) to
within a maximum allowable clock skew, denoted maxClockSkew — which is not a single, fixed
quantity, but is maintained separately for each clock (and can even be variable (for example,
time-dependent or session-dependent) per clock, depending on local policy).

The maxClockSkew takes into consideration not only the non-perfect synchronisation of distinct
clocks, but also the various expected (and, to some extent, the unexpected) delays due to
communications transmission (‘‘networking’’) and other processing. Typically, the values of
maxClockSkew are on the order of 5 minutes — a figure that is much less than the typical
lifetime of tickets, and is chosen so as not to introduce unwarranted security risks into the
protocols described below. (Five minutes is so much greater than the typical inaccuracies
guaranteed by DTS clock synchronisation that the granularity of seconds in TimeStamps
(without including the DTS inaccuracies) is quite sufficient.)

All timestamp interpretations in this chapter are to be understood ‘‘modulo maxClockSkew’’ (where the
word ‘‘modulo’’ is here used in its common English sense, not in its technical mathematical sense, for
which the short form ‘‘mod’’ is reserved). For example, to say that two timestamps, T0 and T1, are
‘‘equal’’ means that 1T0 − T1| ≤ maxClockSkew (where maxClockSkew is the maximum allowable
clock skew appropriate to the interpreting clock). Similarly, the ‘‘lifetime’’ of a ticket (introduced below),
which is nominally the (closed) time interval [tkt-StartTime, tkt-ExpireTime], is in actuality to be
interpreted as [tkt-StartTime − maxClockSkew, tkt-ExpireTime + maxClockSkew] (where
maxClockSkew is the one appropriate to the interpreting clock).

Note: In accordance with the actual semantic of the MicroSecond data type as a nonce
instead of its nominal semantic as a microsecond, maxClockSkew is applied only to
timestamps T, not to pairs <T, M> of timestamps and microsecondstamps. See the
discussion of server ‘‘replay caches’’ (which is the only place that the semantics
MicroSeconds are actually used), in Section 4.5 on page 200.

4.2.4 Cell Names

[RFC 1510: 5.2]

Cell (or, equivalently, realm) names are represented by the CellName data type, which is
defined as follows:

CellName ::= GeneralString -- X.208 31.2; ISO 2022, 2375

Its semantics are that it provides references to cells by means of a ‘‘global naming/directory
service’’ (see the referenced X/Open DCE Directory Services Specification), which is ‘‘external’’
to security services (contrast this with RS names, below). Cell names themselves carry enough
syntactic information to distinguish amongst different global naming services (hence a separate
‘‘-Type’’ field is not necessary for cell names, as it is for RS names). Acceptable syntaxes for cell
names are centrally registered. Currently registered syntaxes are collected in Section 4.2.4.1 on
page 169.

168 CAE Specification (1997)



Key Distribution (Authentication) Services Some Basic Data Types

Note that global naming services are typically hierarchically organised, and interpret certain
syntactic metacharacters (such as ‘‘/’’) as separators of hierarchical naming components.
However, for the purposes of the security services provided by the KDS, cell names are
uninterpreted (‘‘opaque’’) (that is, not manipulated or processed, such as decomposing them into
hierarchical components), except for testing for equality.

4.2.4.1 Registered Syntaxes for Cell Names

[RFC 1510: 7.1]

The currently registered syntaxes for CellNames are the following. Note that these syntaxes do
not begin with an initial ‘‘/.../’’; when these syntaxes are considered in conjunction with the fully
qualified DCE syntax, an initial ‘‘/.../’’ is to be prepended, as specified in the referenced X/Open
DCE Directory Services Specification.

• Internet DNS name type

The Internet Domain Naming System (DNS) syntax is specified in the referenced X/Open
DCE Directory Services Specification. It provides a hierarchical (little-endian) namespace,
with ‘‘.’’ as (non-escapable) component-separating metacharacter, and the characters ‘‘/’’, ‘‘:’’
are not permitted in names; for example, abc.def.com (or /.../abc.def.com in the fully qualified
DCE syntax).

• DCE X.500 name type

The DCE X.500 syntax is specified in the referenced X/Open DCE Directory Services
Specification. It provides a hierarchical (big-endian) namespace, with ‘‘/’’ as (escapable)
component-separating metacharacter (other metacharacters ‘‘=’’, ‘‘,’’, ‘‘\’’ are used for other
purposes), and the character ‘‘:’’ cannot occur in any component before the ‘‘=’’
(meta)character; for example, c=xy/o=fed/ou=cba (or /.../c=xy/o=fed/ou=cba in the fully
qualified DCE syntax).

• Prefixed name type(s)

The prefixed name type has the syntax:

NAMETYPE:rest-of-name

where NAMETYPE is a centrally registered prefix that contains no ‘‘.’’, ‘‘/’’ or ‘‘:’’, and where
rest-of-name is a string whose syntax is determined by the value of NAMETYPE. Currently,
there are no registered NAMETYPE prefixes.

• Other name type(s)

All other cell naming syntaxes are reserved for future extensibility.

4.2.5 Transit Paths

[RFC 1510: 5.3.1]

Transit paths are represented by the TransitPath data type, which is defined as follows:

TransitPathType ::= INTEGER
TransitPathValue ::= OCTET STRING

TransitPath ::= SEQUENCE {
transitPath-Type [0] TransitPathType,
transitPath-Value [1] TransitPathValue

}

Part 2 Security Services and Protocols 169



Some Basic Data Types Key Distribution (Authentication) Services

Its semantics are that it indicates the trust chain of KDS servers that have participated in a cross-
cell authentication. Its fields are the following:

• transitPath-Type

The kind of transit path that transitPath-Value represents, including its syntax.

• transitPath-Value

The transited path information itself, to be interpreted according to the value of transitPath-
Type.

Values of TransitPathType are reserved for centrally registered transit path data types. The
currently registered values are collected in Section 4.2.5.1.

Note: Negative values of TransitPathType do not appear to be specified as unreserved (and
therefore available for local assignment) by [RFC 1510: 5.3.1].

4.2.5.1 Registered Transit Path Types

[RFC 1510: 8.3, 3.3.3.1]

The currently registered values for TransitPathType are as follows:

• transitPathType-DNS-X500 = 1

This transit path type is used for transit paths through cells with DNS and X.500 cell names,
with an (optional) compression technique (where ‘‘optional’’ means that implementations need
not employ compression on output, though they must accept it on input). It is defined as
follows.

The transit paths (values of type transitPath-Value) of this transit path type represent the
(underlying OCTET STRINGs of the) cell names (that is, CellName GeneralStrings) of the
successive transited cells, treated as an unordered set (in other words, not necessarily in the
order in which they were visited), expressed in a syntax that supports lexical compression (to
conserve communications bandwidth), as specified below. This transit path type depends on
the Internet DNS and DCE X.500 syntaxes being the only cell name types in effect; transit paths
of this type typically contain no upper-case letters (since the ‘‘canonicalised’’ forms of names in
these syntaxes contain no upper-case letters), though implementations must accept both cases
on input.

Note: It must be emphasised that the ‘‘compression’’ component of this syntax is of a lexical
nature only. TransitPaths must always faithfully represent every cell that has
actually participated in a cross-cell authentication, and never short-circuit transit
paths (for example, by recording only ‘‘third legs of trust triangles’’). That is, transit
paths are intended to give a complete secure record only of the sequence of individual
links of cross-cell trust chains — the global evaluation of transit path trust (that is, of the
‘‘overall shape of the trust chain’’) is a higher-level function. In the DCE
environment, this function is carried out by the PS, not the KDS (see Chapter 5).

In the transitPathType-DNS-X500 syntax, the initial ‘‘/.../’’ of the DCE naming syntax is always
omitted (that is, it is implicitly present). Also for this syntax, the following characters are
metacharacters; that is, they have special properties discussed in this section (and are to be
distinguished from the metacharacters for the DNS and X.500 syntaxes — for those, see the
referenced X/Open DCE Directory Services Specification):

‘‘,’’ This metacharacter separates the (potentially compressed) representations of successive cell
names of a transit path. These are called the components of the transit path, and they can be
empty (that is, two ‘‘,’’1s can occur successively, and ‘‘,’’ can occur at the beginning and/or

170 CAE Specification (1997)



Key Distribution (Authentication) Services Some Basic Data Types

at the end of a transit path).

‘‘\’’ An ‘‘escape’’ metacharacter. Any metacharacter (including ‘‘\’’ itself) can be escaped by
(immediately) preceding it with a ‘‘\’’ (with the semantic that the escaped metacharacter is
no longer considered to be a metacharacter; that is, it no longer has the special properties
discussed here). Unless explicitly indicated otherwise, metacharacters appearing in this
specification are assumed to be unescaped (that is, the character immediately preceding
them, if any, is not a ‘‘\’’ character).

‘‘/’’ When it occurs at the beginning of a component (otherwise, it’s a non-metacharacter).

‘‘ ’’ (This notation is used in this section to denote a ‘‘space’’ character, for visual clarity.) When
it occurs at the beginning of a component (otherwise, it’s a non-metacharacter).

‘‘.’’ When it occurs at the end of a component (otherwise, it’s a non-metacharcter).

In the transitPathType-DNS-X500 syntax, no component can both begin with a ‘‘/’’ and end with
a ‘‘.’’. A component that is empty, or begins with ‘‘/’’, or ends with ‘‘.’’ is said to be compressed;
otherwise, it is said to be expanded. A transit path that contains one or more compressed
components, or which begins or ends with a ‘‘,’’, is said to be compressed; otherwise, it is said to
be expanded.

In any application of the transitPathType-DNS-X500 syntax, two cells will be singled out for
special treatment: a ‘‘client’’ and a ‘‘server’’ cell (relative to a posited ‘‘client-server
relationship’’, which will always be clear from context). Conceptually, the client cell always
occurs at the beginning of a transit path, and the server cell always occurs at the end; however,
these occurrences of these cells are always implicit, and are never indicated explicitly in a transit
path (either compressed or expanded).

An empty transit path (one having no components) is represented by a character string of length
0; it indicates either a trust chain of length 0 (that is, an intra-cell trust path), or of length 1 (that
is, a cross-cell trust path with a direct cross-cell registration between the client’s cell and the
server’s cell, with no intermediaries). A non-empty expanded component ‘‘stands for itself’’
(that is, directly represents a cell name, in the DNS or X.500 naming syntax). A non-empty
compressed component must consist of a non-empty string of non-metacharacters, prepended
with an initial ‘‘/’’ or ‘‘ ’’, or appended with a terminal ‘‘.’’, but not both.

Compressed transit paths represent expanded transit paths, by expanding their compressed
components one at a time, left to right, according to the following rules (examples are given
below):

• A compressed component with an initial ‘‘/’’ represents the expanded component that results
from appending the part of the compressed component following the initial ‘‘/’’ to the
(expansion of the) preceding component, both of them representing cell names in the X.500
syntax.

• A compressed component with an initial ‘‘ ’’ must actually begin with the two-character
sequence ‘‘ /’’, with the meaning that ‘‘ ’’ escapes ‘‘/’’.

• A compressed component with a terminal ‘‘.’’ represents the expanded component that
results from prepending the part of the compressed component preceding the terminal ‘‘.’’ to
the (expansion of the) preceding component, both of them representing cell names in the
DNS syntax.

• An empty component indicates that all the cells ‘‘between’’ the (expansion of the) component
preceding it and the (expansion of the) component following it are to be interpolated. In the
case of a ‘‘,’’ occurring at the beginning or end of a transit path, this applies to the implicit
initial (client) cell or final (server) cell, respectively. Here, ‘‘between’’ means ‘‘up to the least

Part 2 Security Services and Protocols 171



Some Basic Data Types Key Distribution (Authentication) Services

common ancestor with respect to (distinguished names of the) DNS and X.500 naming
hierarchies’’. The (virtual) ‘‘global root’’ (denoted ‘‘/...’’ in the DCE naming syntax) is
considered to be the (virtual) least common ancestor of all first-level DNS and first-level
X.500 nodes, though it doesn’t actually occur in expanded transit paths, of course.

Here are some examples of some compressed transit paths, and their expansions (where, for
clarity in the expansions, the client and server cells are shown explicitly, and the symbol ‘‘→’’ is
used with them and also in place of the ‘‘,’’ metacharacter). (Recall that the initial ‘‘/.../’’ of the
DCE naming syntax is only implicitly, not explicitly, present.)

• com,def.,abc.,jkl.org,ghi.

Expands to:

client’s cell → com → def.com → abc.def.com → jkl.org → ghi.jkl.org → server’s cell

• c=xy,/o=fed,/ou=cba,c=zw/o=lkj,/ou=ihg

Expands to:

client’s cell → c=xy → c=xy/o=fed → c=xy/o=fed/ou=cba → c=zw/o=lkj →
c=zw/o=lkj/ou=ihg → server’s cell

• c=uv/o=fed/ou=cba,,c=uv/o=lkj/ou=ihg

Expands to:

client’s cell → c=uv/o=fed/ou=cba → c=uv/o=fed → c=uv → c=uv/o=lkj →
c=uv/o=lkj/ou=ihg → server’s cell

• c=uv, /o=fed

Expands to (since it is not compressed to begin with):

client’s cell → c=uv → /o=fed → server’s cell

• ,com,c=uv,

Expands to:

client’s cell (assumed to be abc.def.com) → def.com → com → c=uv → c=uv/o=lkj →
server’s cell (assumed to be c=uv/o=lkj/ou=ihg)

• ,

Expands to the same thing as in the preceding example, assuming the client and server cells
are the same as in that example.

4.2.6 RS Names

[RFC 1510: 5.2]

Registry Service (RS) names are represented by the RSName data type, which is defined as
follows:

RSNameType ::= INTEGER
RSNameValue ::= SEQUENCE OF GeneralString

RSName ::= SEQUENCE {
rsName-Type [0] RSNameType,
rsName-Value [1] RSNameValue

}

172 CAE Specification (1997)



Key Distribution (Authentication) Services Some Basic Data Types

Its semantics are that it indicates the per-cell hierarchical names supported by the RS datastores.
Its fields are the following:

• rsName-Type

The kind of name that rsName-Value represents, including its syntax.

• rsName-Value

The name information itself, to be interpreted according to the value of rsName-Type. The
entries rsName-Value[0], rsName-Value[1], ⋅⋅⋅, are called the components of the RS name.

Values of RSNameType are reserved for centrally registered principal names types.

Note: Negative values of RSNameType do not appear to be specified as unreserved (and
therefore available for local assignment) by [RFC 1510: 5.2].

The currently registered values are collected in Section 4.2.6.1.

4.2.6.1 Registered RS Name Types

[RFC 1510: 7.2, 8.2.3]

The currently registered values for RSNameType are the following:

• rsNameType-PRINCIPAL = 1

Identifies principals registered in the RS datastore.

• rsNameType-SERVER-INSTANCE = 2

The first component (rsName-Value[0]) of the RS name identifies an abstract service, and the
remaining components (rsName-Value[i], i ≥ 1) identify various concrete instances; that is,
principal identities under which this service renders its services.

Note: The RS datastore contains various named items other than principals (for example,
groups and organisations), however these are irrelevant to the Kerberos
authentication architecture specified in this chapter, so they do not rate an
RSNameType. In particular, there is no architectural relationship between server
instances (as defined here) and RS groups.

As discussed in Chapter 11, the RS identifies principals via a hierarchical (‘‘/’’-separated) string-
based namespace whose syntax is identical to the CDS naming syntax (which is specified in the
referenced X/Open DCE Directory Services Specification). The sequence of components of those
string-names map canonically to the sequence of (underlying GeneralStrings of the)
components of rsName-Value of type rsNameType-PRINCIPAL.

The main use of the RS name type rsNameType-SERVER-INSTANCE is for the KDS itself,
especially in cross-cell registrations. In that application, rsName-Value[0] is krbtgt (a name which
is reserved for this use), and (the underlying GeneralString of) rsName-Value[1] is identical to
the string-name of the cross-registered cell’s KDS. This is illustrated by the following examples,
assuming X and Y are cells with names cellX and cellY, respectively (actually, ‘‘cellX’’ and
‘‘cellY’’ denote cell names with an internal syntactic structure (for example, Internet DNS syntax
or DCE X.500 syntax), but that is irrelevant for this example):

• krbtgt/cellX

The RS name of KDSX,X, which is the principal of the KDS server, KDSX, for cell X. It is held
as a datastore item in RSX’s datastore.

• krbtgt/cellY

Part 2 Security Services and Protocols 173



Some Basic Data Types Key Distribution (Authentication) Services

The RS name of KDSX,Y, which is the surrogate principal of KDSY in cell X (held in RSX’s
datastore); it is the same principal as the surrogate KDSX,Y in cell Y (held in RSY’s datastore),
in the sense that these two principals have the same long-term key, KKDSXY.

Unless stated otherwise, all RS names in this chapter identifying KDSs (including their surrogates) are
assumed to have type rsNameType-SERVER-INSTANCE, and all non-KDSs are assumed to have type
rsNameType-PRINCIPAL.

Note: There are no security mechanisms in place to enforce adherence to these conventions.
In particular, the mere occurrence in an RS name of a type indicator, such as
rsNameType-SERVER-INSTANCE (indicating, according to the convention just
articulated, a KDS surrogate), does not in itself imply any degree of trust in the RS
name: all parts of the KDS protocol treat RS names of all types exactly the same. See
also the uniqueness requirement in Section 4.2.7. (This is sometimes expressed by
saying that the RS name’s type is ‘‘merely a hint’’.)

4.2.7 Principal Names

[RFC 1510: 5.2]

Principal names are represented by the CellAndRSName data type, which is defined as follows:

CellAndRSName ::= SEQUENCE {
cellName [0] CellName,
rsName [1] RSName

}

Its semantics are that it represents a ‘‘fully qualified’’ (in the semantic sense, not the syntactic
sense) principal name, consisting of a cell name and an RS name.

The relationship between the semantic CellAndRSName data type and the DCE syntactic string
forms of principal names (or just stringnames, for short) is as follows: if cellAndRSName is a value
of type CellAndRSName, whose underlying cellName is, say, cellX, and whose underlying
rsName-Values (that is, their underlying GeneralStrings, disregarding their rsName-Types) are,
say, <rsName0, ⋅⋅⋅, rsNamer−1>, then the corresponding string form of cellAndRSName is:

/.../cellX/rsName0/⋅⋅⋅/ rsNamer−1

Implementations of the DCE security services must guarantee that these stringnames are unique
or unambiguous, in the sense that every such stringname refers to at most one principal. Users,
including administrators, trust the implementation to guarantee this. In particular, in cross-cell
operations, a cell’s security administrator must not establish a trust link (that is, exchange KDS
registrations) with multiple foreign cells having the same cell name, or whose RS namespace is
not trusted to guarantee this uniqueness.

Note that the CellAndRSName data type doesn’t occur directly in the remaining data types and
protocols defined in the remainder of this chapter: the concept of principal name is used
throughout, though its two component fields (cellName and rsName) appear separately, not
bound together in a CellAndRSName data type.

Note: It would make sense to use the identifier ‘‘PrincipalName’’ instead of
‘‘CellAndRSName’’ for the data type defined above. However, that would conflict
with the terminology of RFC 1510, which uses the identifier ‘‘PrincipalName’’ to
denote the data type called ‘‘RSName’’ in DCE. Unfortunately, RFC 1510’s definition
of ‘‘PrincipalName’’ conflicts with the commonsense notion of ‘‘principal name’’
(and with RFC 1510’s own expository use of the notion of ‘‘principal name’’), which
connotes global uniqueness, not the mere per-cell-context local uniqueness of RSNames.
Hence, to avoid confusion, the identifier ‘‘PrincipalName’’ is avoided altogether in

174 CAE Specification (1997)



Key Distribution (Authentication) Services Some Basic Data Types

DCE.

4.2.8 Host Addresses

[RFC 1510: 5.2]

Note: The notion of ‘‘(transport-level) host addresses’’ properly belongs to the realm of
communications (see the referenced X/Open DCE RPC Specification), as opposed to
that of security, and arguably should play no role in a security specification.
Nevertheless, RFC 1510 does specify usages of host addresses for security purposes,
namely that servers may (depending on policy) deny service to clients on the basis of
the client’s host address, unless such clients exhibit the appropriate ‘‘proxied’’ or
‘‘forwarded’’ credentials. In order to support coexistence of RFC 1510 environments
and DCE environments, host addresses are therefore supported by DCE. However,
KDS servers conformant to DCE must not issue initial tickets (to AS Requests) to clients that
do not supply at least one host address, and non-KDS servers conformant to DCE must not
deny service to clients on the basis of the client’s host address(es) (these requirements could
change in future revisions of DCE). Thus, host addresses do not currently figure into
the DCE security model with nearly the significance they have in RFC 1510. See
Section 4.4.1 on page 195.

Host addresses are represented by the HostAddresses data type, which is defined as follows:

HostAddressType ::= INTEGER
HostAddressValue ::= OCTET STRING

HostAddresses ::= SEQUENCE OF SEQUENCE {
hostAddr-Type [0] HostAddressType,
hostAddr-Value [1] HostAddressValue

}

Its semantics are that it represents the host (that is, computer) address(es) (zero or more of them)
at which a host is connected to a communications (network) substrate. Its fields are the
following:

• hostAddr-Type

The kind of address that hostAddr-Value represents, including its syntax.

• hostAddr-Value

The address information itself, to be interpreted according to the value of hostAddr-Type.

Non-negative values of HostAddressType are reserved for centrally registered host address
types; negative values are unreserved (and may, therefore, be assigned locally). The currently
registered values are collected in Section 4.2.8.1.

4.2.8.1 Registered Host Address Types

[RFC 1510: 8.1]

Note: In order for this specification to be complete, it should supply references to definitive
specifications for the host address types listed below. However, that is not done in
RFC 1510 (and therefore, in order not to preempt RFC 1510 on this point, it is not
done here). Furthermore, it is not necessary to do so in DCE, because this
information is insignificant in DCE environments (as explained in the Note in Section
4.2.8; see also Section 4.4.1 on page 195). Therefore, such references are not given
here, and so for the purposes of this specification the following list is supplied only

Part 2 Security Services and Protocols 175



Some Basic Data Types Key Distribution (Authentication) Services

because it is ‘‘suggestive’’.

The currently registered values for HostAddressType are the following:

• hostAddrType-INTERNET = 2

Internet address (corresponding HostAddressValue is 4 octets long).

• hostAddrType-CHAOSNET = 5

CHAOSnet address (corresponding HostAddressValue is 2 octets long).

• hostAddrType-XNS = 6

XNS address (corresponding HostAddressValue is 6 octets long).

• hostAddrType-ISO = 7

ISO address (corresponding HostAddressValue has variable length).

• hostAddrType-DECNET-IV = 12

DECnet Phase IV address (corresponding HostAddressValue is 2 octets long).

• hostAddrType-DDP = 16

AppleTalk DDP address (corresponding HostAddressValue is 3 octets long).

4.2.9 Sequence Numbers

[RFC 1510: 3.2.2, 5.3.2]

Sequence numbers are represented by the SequenceNumber data type, which is defined as
follows:

SequenceNumber ::= INTEGER

Its semantics are that it indicates the sequence number of a message in a multi-message
sequence (for example, the (potentially) several fragments of a fragmented message). The
detailed use of sequence numbers is application-specific. Typically, the initial sequence number
is chosen randomly (see below for ‘‘random’’ numbers), and subsequent sequence numbers are
unit increments from the initial one. For security purposes, the individual messages (fragments)
and the sequence numbers themselves must be bound together and protected in an appropriate
application-specific way. (In the case of DCE RPC applications, the use of sequence numbers is
specified as part of the RPC protocol specifications — see Chapter 9.)

4.2.10 Last Requests

[RFC 1510: 5.2]

Last requests are represented by the LastRequests data type, which is defined as follows:

LastRequestType ::= INTEGER
LastRequestValue ::= TimeStamp

LastRequests ::= SEQUENCE OF SEQUENCE {
lastReq-Type [0] LastRequestType,
lastReq-Value [1] LastRequestValue

}

Its semantics are that it indicates information maintained by a principal’s home KDS of the
principal’s most recent KDS service requests. Its fields are the following:

176 CAE Specification (1997)



Key Distribution (Authentication) Services Some Basic Data Types

• lastReq-Type

The kind of last request that lastReq-Value represents.

• lastReq-Value

The time of the request, to be interpreted according to the value of lastReq-Type.

All values of LastRequestType are reserved for centrally registered last request types. The
currently registered values are collected in Section 4.2.10.1.

4.2.10.1 Registered Last Request Types

[RFC 1510: 5.2]

The currently registered values for LastRequestType are the following, together with the
interpretation of corresponding values of LastRequestValue. Positive values pertain to the
whole cell of the responding KDS server (which cell may contain multiple instances or replicas
of KDS servers); negative values pertain only to the individual responding KDS server itself.

• lastReqType-NONE = 0

No information is conveyed by lastReq-Value.

• lastReqType-AS-TGT-ALL = 1; lastReqType-AS-TGT-ONE = −1

Time of most recent previous AS Request by this principal for an (initial) ticket-granting-
ticket.

• lastReqType-AS-REQ-ALL = 2; lastReqType-AS-REQ-ONE = −2

Time of most recent previous AS Request by this principal (for an initial ticket, whether a
ticket-granting-ticket or a service-ticket).

• lastReqType-TGT-PRESENTED-ALL = 3; lastReqType-TGT-PRESENTED-ONE = −3

Authentication time (see Section 4.4.1 on page 195) of the most recent ticket-granting-ticket
presented by (in the sense of Section 4.14.1 on page 240) this principal in a previous
successful TGS Request. (Note that a principal can have multiple outstanding valid ticket-
granting-tickets issued to it.)

• lastReqType-RENEWAL-ALL = 4; lastReqType-RENEWAL-ONE = −4

Time of most recent previous successful renewal by this principal.

• lastReqType-KDS-REQ-ALL = 5; lastReqType-KDS-REQ-ONE = −5

Time of most recent previous KDS Request (AS Request or TGS Request) by this principal, of
any type, successful or not.

4.2.11 Error Status Codes/Text/Data

[RFC 1510: 5.9.1]

Error status codes are represented by the ErrorStatusCode data type; error status text is
represented by the ErrorStatusText data type; error status data is represented by the
ErrorStatusData data type. These are defined as follows:

ErrorStatusCode ::= INTEGER
ErrorStatusText ::= GeneralString
ErrorStatusData ::= OCTET STRING

Part 2 Security Services and Protocols 177



Some Basic Data Types Key Distribution (Authentication) Services

Their semantics are that they indicate error conditions of a failed KDS Request. Values of these
three data types always occur as a triple consisting of an ErrorStatusCode, an ErrorStatusText
(optionally) and an ErrorStatusData (optionally). The value of ErrorStatusCode identifies an
error that occurred; ErrorStatusText is a character string accompanying ErrorStatusCode
explaining the error in a human-readable fashion, and ErrorStatusData is supplementary
information further explaining the error in machine-readable fashion. Note that since
ErrorStatusData is merely an ‘‘opaque’’ OCTET STRING, its interpretation must be implicit
from the corresponding ErrorStatusCode.

Values of error status codes (with associated error text and data) are centrally registered. The
currently registered values are collected in Section 4.2.11.1.

Notes:

1. Negative values of ErrorStatusCode do not appear to be specified as
unreserved (and therefore available for local assignment) by [RFC 1510: 5.9.1].

2. In addition to reporting error codes not specified here, implementations are
also permitted to report errors at algorithmic execution points other than those
specified in this chapter. For example, a server’s failure to allocate memory for
a data structure may be reported to the client.

4.2.11.1 Registered Error Status Codes/Text/Data

[RFC 1510: 8.3]

The currently registered values for error codes/text/data are the following. The notational
convention is used where NAME-OF-ERROR denotes a string specific to each error condition:

• errStatusCode-NAME-OF-ERROR

Values of ErrorStatusCode data type.

• errStatusText-NAME-OF-ERROR

Values of ErrorStatusText data type.

• errStatusData-NAME-OF-ERROR

Values of ErrorStatusData data type.

Registered status codes without accompanying registered status text and/or status data
indicates that the latter are not currently specified (but may be in a later revision of this
document). (Some terminology is used in these descriptions that won’t be formally introduced
until later.)

• errStatusCode-NONE = 0

No error (that is, success).

• errStatusCode-CLIENT-ENTRY-EXPIRED = 1

Client entry in RS datastore has expired.

• errStatusCode-SERVER-ENTRY-EXPIRED = 2

Server entry in RS datastore has expired.

• errStatusCode-BAD-PROTO-VERS-NUM = 3

Protocol version number not supported.

178 CAE Specification (1997)



Key Distribution (Authentication) Services Some Basic Data Types

• errStatusCode-CLIENT-OLD-MASTER-KEY-VERS-NUM = 4

Client’s key encrypted in an old (expired) master key, in the following sense. It is
recommended that implementations of DCE protect all copies of the RS datastore other than
those actually in use (in the address spaces of trusted programs) at any given moment (such
as on-disk files, tape backups, and so on) by encrypting them (or at least the sensitive data
contained in them, especially accounts’ long-term keys), using some policy-dependent or
implementation-dependent trusted encryption mechanism. An encryption key used for this
purpose is known as a master key. A master key is said to be ‘‘old’’ if it is expired or
unavailable (for whatever reason — it may just have been lost). In such a case, accounts’
keys are unavailable; that is, accounts are ‘‘locked out’’ until a new key is established by the
security administrator. (Typical implementations use different master keys for different
datastore entries, disambiguating them with version numbers, so that the datastore can be
incrementally upgraded from one master key to another.) Thus, the master key plays no
direct part in the protocol, but surfaces only in this failure code.

• errStatusCode-SERVER-OLD-MASTER-KEY-VERS-NUM = 5

Server’s key encrypted in old master key. (For explanation, see preceding error code.)

• errStatusCode-CLIENT-UNKNOWN = 6

Client entry not found in RS datastore.

• errStatusCode-SERVER-UNKNOWN = 7

Server entry not found in RS datastore.

• errStatusCode-PRINCIPAL-NOT-UNIQUE = 8

Multiple entries for principal found in RS datastore.

• errStatusCode-NULL-KEY = 9

Principal has NULL long-term key in RS datastore.

• errStatusCode-CANNOT-POSTDATE = 10

Ticket not eligible for postdating.

• errStatusCode-NEVER-VALID = 11

Requested ticket lifetime is too short (for example, this is always the case if the requested
start time is later than the requested expiration time).

• errStatusCode-POLICY = 12

Request not supported by local cell policy (as held in RS).

• errStatusCode-BAD-OPTION = 13

Cannot accommodate requested option.

• errStatusCode-ENCRYPTION-TYPE-NOT-SUPPORTED = 14

Encryption type(s) not supported.

• errStatusCode-CHECKSUM-TYPE-NOT-SUPPORTED = 15

Checksum type not supported.

• errStatusCode-AUTHN-DATA-TYPE-NOT-SUPPORTED = 16

Authentication data type not supported.

Part 2 Security Services and Protocols 179



Some Basic Data Types Key Distribution (Authentication) Services

• errStatusCode-TRANSIT-PATH-TYPE-NOT-SUPPORTED = 17

Transit path type not supported.

• errStatusCode-CLIENT-REVOKED = 18

Credentials for client have been revoked.

• errStatusCode-SERVER-REVOKED = 19

Credentials for server have been revoked.

• errStatusCode-TKT-REVOKED = 20

Ticket has been revoked.

• errStatusCode-CLIENT-NOT-VALID = 21

Client not (yet) valid, perhaps due to a transitory condition (‘‘try again later’’).

• errStatusCode-SERVER-NOT-VALID = 22

Server not (yet) valid, perhaps due to a transitory condition (‘‘try again later’’).

• errStatusCode-BAD-DECRYPTION = 31

Unsuccessful decryption (detected by the ‘‘built-in integrity’’ feature of DCE encryption
types — see Section 4.3.5 on page 187).

• errStatusCode-TKT-EXPIRED = 32

Ticket expired (that is, server’s system time is later than ticket’s expiration time (modulo
maxClockSkew)).

• errStatusCode-TKT-INVALID = 33

Ticket is invalid (that is, its invalid option is selected).

• errStatusCode-REPLAY = 34

Request is a repeat of an earlier one.

• errStatusCode-NOT-US = 35

Request intended for another server, not this one.

• errStatusCode-BAD-MATCH = 36

Ticket and authenticator don’t match.

• errStatusCode-CLOCK-SKEW = 37

Clock skew is (apparently) greater than maxClockSkew.

• errStatusCode-BAD-ADDRESS = 38

Bad host address.

• errStatusCode-PROTO-VERS-NUM-MISMATCH = 39

Protocol version number mismatch.

• errStatusCode-BAD-PROTO-MSG-TYPE = 40

Invalid protocol message type.

• errStatusCode-BAD-CHECKSUM = 41

180 CAE Specification (1997)



Key Distribution (Authentication) Services Some Basic Data Types

Bad checksum. (Unless the checksum was incorrectly generated, this means that message
stream modification has been detected.)

• errStatusCode-BAD-MSG-ORDER = 42

Message is out of order (that is, doesn’t conform to the protocol).

• errStatusCode-BAD-KEY-VERS-NUM = 44

Bad key version number.

• errStatusCode-SERVER-NO-KEY = 45

Server’s key not available.

• errStatusCode-BAD-MUTUAL-AUTHN = 46

Mutual authentication failure.

• errStatusCode-BAD-DIRECTION = 47

Bad message direction (client ←→ server direction reversed).

• errStatusCode-BAD-AUTHN-METHOD = 48

Alternative authentication method is required.

— errStatusData-BAD-AUTHN-METHOD

It is (the underlying OCTET STRING of) a value of the data type AuthnMethodData,
defined by:

AuthnMethodType ::= INTEGER
AuthnMethodValue ::= OCTET STRING

AuthnMethodData ::= {
authnMethod-Type [0] AuthnMethodType,
authnMethod-Value [1] AuthnMethodValue OPTIONAL

}

Its semantics are that it indicates the alternative authentication method required. Its
fields are the following:

— authnMethod-Type

The kind of authentication method required.

— authnMethod-Value

Any additional information required, to be interpreted according to the value of
authnMethod-Type.

Non-negative values of AuthnMethodType are reserved for centrally registered
authentication data types; negative values are unreserved (and may, therefore, be
assigned locally). There are no currently registered values.

• errStatusCode-BAD-SEQ-NUM = 49

Bad sequence number (that is, message fragment is out of order).

• errStatusCode-BAD-CHECKSUM-TYPE = 50

Bad type of checksum being used (for example, one which has been found to be insecure).

Part 2 Security Services and Protocols 181



Some Basic Data Types Key Distribution (Authentication) Services

• errStatusCode-GENERIC = 60

Generic, catch-all error code.

• errStatusCode-FIELD-TOO-LONG = 61

Field is too long for this implementation.

182 CAE Specification (1997)



Key Distribution (Authentication) Services Cryptography- and Security-related Data Types

4.3 Cryptography- and Security-related Data Types
The data types defined in this section are specifically related to cryptography and security.

4.3.1 Nonces

[RFC 1510: 5.4.1, 5.8.1]

Nonces are represented by the Nonce data type, which is defined as follows:

Nonce ::= INTEGER

Its semantics are that it indicates a per-context unique (or distinct, or ‘‘one-time’’) number; that is, a
number which is always distinguishable from any other when used in a given context (where an
appropriate notion of ‘‘context’’ must be specified whenever nonces are used). In the particular
application of nonces in this chapter (Section 4.12.3 on page 227 and Section 4.14.3 on page 254),
they are used to distinguish a client’s KDS Requests from one another (to help thwart ‘‘replay
attacks’’). Therefore, the security semantics of nonces in this chapter are that client principals
need to believe (to a degree compatible with the security policies in effect) that the nonces
associated with distinct KDS Requests from the same client principal will always be distinct.
Implementations must, for example, take into consideration that ‘‘instances’’ of the same client
principal may be active in different login sessions, perhaps even simultaneously (but that is an
implementation-specific consideration not discussed further here).

Notes:

1. Even though a nonce generator of ‘‘cryptographically high quality’’ is
necessary for security, this notion is not further specified in DCE. In particular,
no specific nonce algorithm is (currently) specified. (This lack of specification
does not affect interoperability.)

2. In Section 9.2.1.1 on page 332, nonces are introduced that are byte-vectors,
instead of integers. However, the same principles as described above apply
with appropriate modification of detail to that case, and need not be elaborated
here.

4.3.2 Random Numbers

[RFC 1510: 3.1.3, 3.2.6]

Random ‘‘numbers’’ (actually, byte vectors) are represented by the Random data type, which is
defined as follows:

Random ::= OCTET STRING

Its semantics are that it indicates a number which is unpredictable. That is, it is required that
random number generators used in any implementation of the DCE Security Services are of
cryptographic high-quality; that is, it must be computationally infeasible to predict the next
random number to be generated, even if the sequence of all previously generated random
numbers are known. In essence, this means that every possible value has equal probability of
being generated as every other value, at every invocation of the random number generator, but
there may be occasions when slight modifications of this idea are warranted (for example, when
keys are ‘‘changed’’, the ‘‘new’’ key should be guaranteed to be different than the ‘‘old’’ key).

Notes:

1. Even though a random number generator of ‘‘cryptographically high quality’’
is necessary for security, this notion is not further specified in DCE. In
particular, no specific random algorithm is (currently) specified. (This lack of

Part 2 Security Services and Protocols 183



Cryptography- and Security-related Data Types Key Distribution (Authentication) Services

specification does not affect interoperability.)

2. The BER encoding respects the (big-endian) identification that has been made
between bit-sequences of length a multiple of 8 and byte sequences. Therefore,
random ‘‘numbers’’ can be spoken of equivalently either as byte-vectors or as
bit-vectors (but not as integers), without possibility of confusion.

4.3.3 Encryption Keys

[RFC 1510: 6.2]

Encryption keys are represented by the EncryptionKey data type, which is defined as follows:

EncryptionKeyType ::= INTEGER
EncryptionKeyValue ::= Random

EncryptionKey ::= SEQUENCE {
encKey-Type [0] EncryptionKeyType,
encKey-Value [1] EncryptionKeyValue

}

Its semantics are that it indicates the key for (one or more) encryption mechanism(s) and/or
checksum mechanisms (see below). Its fields are the following:

• encKey-Type

The encKey-Type’s key type; that is, the kind of encryption key that encKey-Value
represents.

• encKey-Value

The encKey-Type’s encryption key information itself, to be interpreted according to the value
of encKey-Type.

Non-negative values of EncryptionKeyType are reserved for centrally registered encryption key
types; negative values are unreserved (and may, therefore, be assigned locally). The currently
registered values are collected in Section 4.3.3.1.

4.3.3.1 Registered Encryption Key Types

[RFC 1510: 6.3.1, 8.3]

The currently registered values for EncryptionKeyType are the following:

• encKeyType-TRIVIAL = 0

K has type encKeyType-TRIVIAL if and only if K is the trivial key; that is, it is the empty
OCTET STRING, of length 0.

• encKeyType-DES = 1

K has type encKeyType-DES if and only if K is a DES key (64 bits long, though with only 56
‘‘active’’ bits, and of odd parity — see Chapter 3). It is furthermore required (compare
Section 3.4 on page 151) that implementations must avoid DES keys K that are weak or semi-
weak, or for which the variant key K ˆ Kf0 is weak or semi-weak; and they should avoid
generating keys for which K or K ˆ Kf0 is possibly weak (though they should accept such keys
from foreign sources). (The reason for the conditions concerning the variant key is because
of the use of variant keys in the algorithm of Section 4.3.4.1 on page 185.) Here, Kf0 denotes
the 64-bit vector (of even parity):

184 CAE Specification (1997)



Key Distribution (Authentication) Services Cryptography- and Security-related Data Types

<0xf0,0xf0,0xf0,0xf0,0xf0,0xf0,0xf0,0xf0>

4.3.4 Checksums

[RFC 1510: 6.4]

Checksums are represented by the CheckSum data type, which is defined as follows:

CheckSumType ::= INTEGER
CheckSumValue ::= OCTET STRING

CheckSum ::= SEQUENCE {
cksum-Type [0] CheckSumType,
cksum-Value [1] CheckSumValue

}

Its semantics are that it indicates a (non-invertible) checksum (or message digest, or one-way
function) of some plaintext (which must be specified in context). Its fields are the following:

• cksum-Type

The CheckSum’s checksum type; that is, the kind of checksum mechanism used to generate
the cksum-Value.

• cksum-Value

The CheckSum’s checksumtext; that is, the actual cryptographic information conveyed by
this data structure, to be interpreted according to the value of cksum-Type. It is the
checksumtext, of checksum type cksum-Type, of (the underlying byte string of) an
application-specific data value.

Non-negative values of CheckSumType are reserved for centrally registered checksum
mechanism types; negative values are unreserved (and may, therefore, be assigned locally). The
currently registered values are collected in Section 4.3.4.1.

4.3.4.1 Registered Checksum Types

[RFC 1510: 6.4.5, 8.3, 9.1]

The currently registered values for CheckSumType are the following.

Notes:

1. The DES-CBC checksum was defined in Section 3.3 on page 150, but it does not
occur in the following list.)

2. DCE does not specify a trivial checksum, say ‘‘cksumType-TRIVIAL’’,
paralleling the encKeyType-TRIVIAL of Section 4.3.3.1 on page 184. It would
be possible to specify such a trivial checksum (having, say cksumType-
TRIVIAL = 0, and whose corresponding checksumtext, cksum-Value is always
the bit-vector of length 0), but it is unnecessary to do so. The reason is that the
only place the checkSum data type occurs in DCE is as the authnr-Cksum field
of authenticators (see Section 4.5 on page 200), which is an optional field.
Therefore, any application that wants to ‘‘transmit a checksum of type
cksumType-TRIVIAL’’ needs merely to omit this field.

[RFC 1510: 6.3.1]

• cksumType-MD4-DES = 3

Part 2 Security Services and Protocols 185



Cryptography- and Security-related Data Types Key Distribution (Authentication) Services

Let K be an encryption key of type encKeyType-DES, and let P be a plaintext bit-message.
Then the corresponding cksum-Value, denoted:

MD4-DES(K, P)

is defined by the following pseudocode algorithm:

R64 = RANDOM64(1);
P’ = <R 64, P>;
C128 = MD4(P’);
P’’ = <R 64, C 128>;
K’ = K ˆ K f0 ;
MD4-DES(K, P) = DES-CBC(K’, P’’);

In words: First generate a random 64-bit vector, R64 (called a confounder when used in this
context — see Section 3.2 on page 148). Let P´ denote P prepended with R64, and let C128
denote the 128-bit checksum MD4(P´). Let P´´ denote the concatenation of R64 and C128, and
let K´ denote the variant key K ˆ Kf0 (see Section 4.3.3.1 on page 184). Then the checksum
MD4-DES(K, P) is equal to DES-CBC(K´, P´´) (which is 192 bits long).

• cksumType-MD5-DES = 8

Let K be an encryption key of type encKeyType-DES, and let P be a plaintext bit-message.
Then the corresponding cksum-Value, denoted:

MD5-DES(K, P)

is defined by the following pseudocode algorithm:

R64 = RANDOM64(1);
P’ = <R 64, P>;
C128 = MD5(P’);
P’’ = <R 64, C 128>;
K’ = K ˆ K f0 ;
MD5-DES(K, P) = DES-CBC(K’, P’’);

In words: First generate a random 64-bit vector, R64 (called a confounder when used in this
context — see Section 3.2 on page 148). Let P´ denote P prepended with R64, and let C128
denote the 128-bit checksum MD5(P´). Let P´´ denote the concatenation of R64 and C128, and
let K´ denote the variant key K ˆ Kf0 (see Section 4.3.3.1 on page 184). Then the checksum
MD5-DES(K, P) is equal to DES-CBC(K´, P´´) (which is 192 bits long).

• cksumType-CL-RPC = −32767

Checksum used in the CL-RPC Conversation Manager protocol — see Section 9.2.1.2 on page
332 for details.

Note: This checksum type is, strictly speaking, ‘‘unregistered’’ according to the
convention stated in Section 4.3.4 on page 185 concerning negative values of
CheckSumType. Note also that the value −32767 may be represented as the
hexadecimal value 0x8001 in a 16-bit two’s complement signed data type (for
example, C short on typical implementations).

• cksumType-CO-RPC = −32766

Checksum used in the CO-RPC protocol — see Section 9.3.1.3 on page 340 for details.

Note: This checksum type is, strictly speaking, ‘‘unregistered’’ according to the
convention stated in Section 4.3.4 on page 185 concerning negative values of
CheckSumType. Note also that the value −32766 may be represented as the

186 CAE Specification (1997)



Key Distribution (Authentication) Services Cryptography- and Security-related Data Types

hexadecimal value 0x8002 in a 16-bit two’s complement signed data type (for
example, C short on typical implementations).

4.3.5 Encrypted Data

[RFC 1510: 6.1]

Note: This section and its subsection give the detailed definition of the notation ‘‘{M}K’’
introduced in Section 1.5.

Encrypted data is represented (after it has been encrypted) by the EncryptedData data type,
which is defined as follows:

EncryptionType ::= INTEGER
EncKeyVersionNumber ::= INTEGER
CipherText ::= OCTET STRING

EncryptedData ::= SEQUENCE {
encData-EncType [0] EncryptionType,
encData-KeyVersNum [1] EncKeyVersionNumber OPTIONAL,
encData-CipherText [2] CipherText

}

Its semantics are that it indicates an (invertible) encryption of some plaintext (which must be
specified in context). Its fields are the following:

• encData-EncType

The EncryptedData’s encryption type; that is, the kind of encryption mechanism used to
generate the encData-CipherText. Encryption mechanisms depend on encryption keys, so
the encData-EncType implicitly declares an associated EncryptionKey encKey-Type (though
a given encKey-Type may be associated with multiple encData-EncTypes). Once it has been
negotiated (that is, agreed upon, in an application-specific manner), it remains constant
throughout a given client-server conversation, until it is renegotiated or the conversation
ends. As used in DCE, the key version number is (using notation and terminology
introduced later in this chapter):

— Present, in the context of long-term keys KA associated with principals A. (These are the
keys stored in RS datastores.)

— Absent, in the context of short-term session keys KA,B shared between principals A and B.
(These are the keys transmitted in tickets; they are generated by KDS and PS servers.)

— Optionally present (application-specific choice), in the context of short-term conversation
keys KÂ,B and Kˆˆ A,B shared between principals A and B. (These are the negotiated
‘‘conversation keys’’ transmitted in authentication headers and reverse-authentication
headers; they are generated by A and B, respectively.)

The key version number is generally omitted from the notations of this chapter, and usually
speaks of ‘‘the’’ encryption type in a given context (this will never cause confusion).

• encData-KeyVersNum

The EncryptedData’s encryption key version number; that is, a number selecting the precise
encryption key (value of type EncryptionKey, appropriate to encryption type encData-
EncType) used to generate the encData-CipherText. It need only be present under
conditions where multiple keys may be outstanding. It is generally omitted from the
notations of this chapter, preferring to speak of ‘‘the’’ key (modulo its version number) in a
given context (this will never cause confusion).

Part 2 Security Services and Protocols 187



Cryptography- and Security-related Data Types Key Distribution (Authentication) Services

• encData-CipherText

The EncryptedData’s ciphertext; that is, the actual cryptographic information (the encryption
of some plaintext bit-string) conveyed by this data structure, to be interpreted according to
the values of encData-EncType and encData-KeyVersNum. It is the ciphertext, of
encryption type encData-EncType and key version number encData-KeyVersNum (if
present), of (the underlying bit-string of) an application-specific data value.

Non-negative values of EncryptionType are reserved for centrally registered encryption types;
negative values are unreserved (and may, therefore, be assigned locally). The currently
registered values are collected in Section 4.3.5.1.

4.3.5.1 Registered Encryption Types

[RFC 1510: 6.1, 6.3.1, 6.3.2, 6.3.3, 6.3.4, 8.3, 9.1]

The currently registered values for EncryptionType are the following:

• encType-TRIVIAL = 0

Let K be an encryption key of type encKeyType-TRIVIAL, and let P be a plaintext bit-
message. Then the corresponding encData-CipherText is simply the plaintext P itself, 0-
padded if necessary to have length a non-negative multiple of 8 bits (because it must be an
OCTET STRING). This encryption type does not afford an adequate basis for security in a
potentially hostile (‘‘open’’) environment.

• encType-DES-CBC-CRC = 1

Let K be an encryption key of type encKeyType-DES, and let P be a plaintext bit-message.
Then the corresponding encData-CipherText, denoted:

DES-CBC-CRC(K, P)

is defined by the following pseudocode algorithm:

R64 = RANDOM64(1);
P’ = <R 64, 0 32, P>;
C32 = CRC§

32(0 32, P’);
P’’ = <R 64, C 32, P>;
DES-CBC-CRC(K, P) = DES-CBC(K, P’’);

In words: First generate a random 64-bit vector, R64 (called a confounder when used in this
context — see Section 3.2 on page 148). Let P´ denote P prepended with R64 and with a 32-bit
0-vector (032), and let C32 denote the 32-bit (twisted) checksum CRC§

32(0, P´) with seed 0 (for
padding, see Section 2.2.1 on page 136). Let P´´ denote P prepended with R64 and C32. Then
the ciphertext DES-CBC-CRC(K, P) is equal to DES-CBC(K, P´´) (for initialisation vector and
padding, see Section 3.2 on page 148).

• encType-DES-CBC-MD4 = 2

Let K be an encryption key of type encKeyType-DES, and let P be a plaintext bit-message.
Then the corresponding encData-CipherText, denoted:

DES-CBC-MD4(K, P)

is defined by the following pseudocode algorithm:

188 CAE Specification (1997)



Key Distribution (Authentication) Services Cryptography- and Security-related Data Types

R64 = RANDOM64(1);
P’ = <R 64, 0 128, P>;
C128 = MD4(P’);
P’’ = <R 64, C 128, P>;
DES-CBC-MD4(K, P) = DES-CBC(K, P’’);

In words: First generate a random 64-bit vector, R64 (called a confounder when used in this
context — see Section 3.2 on page 148). Let P´ denote P prepended with R64 and with a 128-
bit 0-vector (0128), and let C128 denote the 128-bit checksum MD4(P´) (no padding is used
here). Let P´´ denote P prepended with R64 and C128. Then the ciphertext DES-CBC-MD4(K,
P) is equal to DES-CBC(K, P´´) (for initialisation vector and padding, see Section 3.2 on page
148).

• encType-DES-CBC-MD5 = 3

Let K be an encryption key of type encKeyType-DES, and let P be a plaintext bit-message.
Then the corresponding encData-CipherText, denoted:

DES-CBC-MD5(K, P)

is defined by the following pseudocode algorithm:

R64 = RANDOM64(1);
P’ = <R 64, 0 128, P>;
C128 = MD5(P’);
P’’ = <R 64, C 128, P>;
DES-CBC-MD5(K, P) = DES-CBC(K, P’’);

In words: First generate a random 64-bit vector, R64 (called a confounder when used in this
context — see Section 3.2 on page 148). Let P´ denote P prepended with R64 and with a 128-
bit 0-vector (0128), and let C128 denote the 128-bit checksum MD5(P´) (no padding is used
here). Let P´´ denote P prepended with R64 and C128. Then the ciphertext DES-CBC-MD5(K,
P) is equal to DES-CBC(K, P´´) (for initialisation vector and padding, see Section 3.2 on page
148).

Note that, by including a checksum in the ciphertext itself, the DES-CBC-CRC DES-CBC-MD4
and DES-CBC-MD5 ciphertexts exhibit built-in integrity; that is, correct decryption can be
determined solely by inspecting the internal consistency of the resulting plaintext itself, without
relying on information external to it. Said another way: ‘‘integrity (at this level) is the concern of
the cryptography layer itself, not of the consumer of cryptographic services’’. In particular, the
length of the plaintext need not be conveyed explicitly (at ‘‘application level’’; that is, by the
consumer of cryptographic services) for the purposes of integrity. (However, if the plaintext P is
derived from an ‘‘original’’ application-level message M which has been padded to an integral
number of DES blocks, then conveying the number of padding bytes is usually a convenient
thing to do, and conveying the length of M is a common way to do that.)

Note: It is intended that all encryption mechanisms (except for encType-TRIVIAL) registered
in this document shall incorporate built-in integrity similar to that of encType-DES-
CBC-CRC, encType-DES-CBC-MD4 and encType-DES-CBC-MD5.

Note that the degree of assurance of this built-in integrity depends upon the strength
of the cryptographic algorithms involved. In particular, non-collision-proof
checksums (such as CRC-32) may be susceptible to attacks (such as truncation
attacks) that render some assertions invalid (such as the one in the preceding
paragraph about not needing to explicitly convey the length of the plaintext).

Part 2 Security Services and Protocols 189



Cryptography- and Security-related Data Types Key Distribution (Authentication) Services

4.3.6 Passwords

[RFC 1510: 1.2, 6]

Passwords are represented by the PassWord data type, which is defined here to be merely a
byte-string.

Its semantics are that it indicates a (byte string representation of a) character string (typically a
‘‘memorisable but unguessable’’ one, relative to some natural language) associated with a
principal, C, from which the long-term encryption key KC for C (relative to a specified encryption
type encType), held in the RS datastore, is derived. The notion of passwords exists because
there is a need for humans to be able to securely store a secret, and the best way to do that is to
memorise it (‘‘store it in their brain’’), which is within normal human capabilities for passwords
but not for random (‘‘strong’’) encryption keys. DCE specifies one or more password-to-
encryption-key mapping for each supported encryption key type, and these mappings are
centrally registered. The currently registered ones are collected in Section 4.3.6.1.

Note: Passwords per se are irrelevant to the KDS (because they do not appear in
kds_request( )); they are relevant only to the Login Facility. However, password-to-
key mappings do have security significance and depend on cryptography, so it is
appropriate to define them in this chapter. Note furthermore that implementations
may further restrict (on an implementation-specific basis) the passwords they accept
(for example, to avoid easily guessable passwords, or passwords that map into
possibly weak keys, and so on — such things are presently beyond the scope of this
specification).

4.3.6.1 Registered Password-to-key Mappings

[RFC 1510: 6.3.4]

The password-to-key mappings supported by DCE return as an output parameter an encryption
key of an appropriate type, and take as input parameters the following two data items:

• passWord

The password itself. It is a value of type PassWord; that is, a byte string. Typically it is
derived from the character string password input parameter to sec_login_validate_identity ( ) or
sec_login_valid_and_cert_ident ( ). The mapping of character string to byte string by those
routines is specified as follows (see Section 4.3.6.2 on page 192): they take as input PCS
character strings, and map them to byte strings by mapping each character to a byte value
according to the US ASCII mapping (or equivalently, for PCS characters, ISO 8859-1). (In
particular, of course, upper-case letters are considered to be distinct from lower-case letters.)

• salt

An initialising string (also called seed, pepper, mix-in string, and so on). Its value is a byte
string. If no salt is explicitly specified, it defaults to the default salt, which consists (in a
manner specified below) of:

— cellName

The (home) cell of the principal whose password is to be mapped; that is, the name of the
cell in whose RS datastore the principal is registered. It is a value of type CellName,
which is a GeneralString.

— rsName

The RS name of the principal whose password is to be mapped. It is a value of type
RSName, which consists of an rsName-Type and of an rsName-Value which is a

190 CAE Specification (1997)



Key Distribution (Authentication) Services Cryptography- and Security-related Data Types

sequence of GeneralStrings — call the components of this sequence rsName0, ⋅⋅⋅,
rsNamer−1.

Corresponding to the input parameters cellName and rsName (which are GeneralStrings), the
underlying BER string of ‘‘contents octets’’ of their GeneralStrings is denoted (that is, the BER
encoding stripped of its ‘‘identifier octets’’ and ‘‘length octets’’ — no ‘‘end-of-contents octets’’
are present because of the DER in force), which are strings of octets, by respectively:

• CN

• RSN, with components RSN0, ⋅⋅⋅, RSNr−1

The default salt, mentioned above but not yet specified explicitly, is now defined to be:

DEFAULTSALT = <CN, RSN0, ⋅⋅⋅, RSNr−1>

In words: DEFAULTSALT is the concatenation of (the underlying strings of octets of) CN and of
the components of RSN.

With the above notations, the currently registered password-to-key mappings, corresponding to
the currently registered encryption key types, are defined as follows.

• encKeyType-TRIVIAL

All passWords, cellNames and rsNames map to the unique (trivial) key of type encKeyType-
TRIVIAL.

• encKeyType-DES

The mapping of a passWord and salt (the latter, unless explicitly indicated otherwise, defaults
to DEFAULTSALT) to a key K of type encKeyType-DES is defined by the following
algorithm.

First, pad the password and salt:

PWS = <passWord, salt, 0, ⋅⋅⋅, 0>

In words: PWS (‘‘password-with-salt’’) is the concatenation of (the byte strings) passWord and
of salt, appended with 0-bits to a (positive) multiple of 64 bits. PWS is considered to be a
(pseudocode) array of 64-bit blocks, denoted:

PWS = <PWS[0], ⋅⋅⋅, PWS[p−1]>

where each PWS[j] has length 64 bits. The key K is then defined by the following
pseudocode:

Part 2 Security Services and Protocols 191



Cryptography- and Security-related Data Types Key Distribution (Authentication) Services

K = <0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00>;
for (j = 0; j <= p-1; j += 1) {

if (j is even) {
K ˆ= PWS[j];

} else {
K ˆ= REVERSE(PWS[j]);

}
}

FIX-PARITY(K);
K’ = DES-CBC-CKSUM(K, PWS);
FIX-PARITY(K’);

if (K’ is weak or semi-weak) {
K’ ˆ= <0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xf0>;
FIX-PARITY(K’);

}

In words: First, initialise a 64-bit vector K by ‘‘fan-folding’’ PWS, as specified in the
pseudocode above, where REVERSE( ) is the transformation that maps any bit-vector <b0, ⋅⋅⋅,
bk−1> to its reversal, <bk−1, ⋅⋅⋅, b0>. This K may not be a DES key, because it may not have odd
parity, so next adjust the parity bits of K so that it has odd parity (that’s the definition of FIX-
PARITY( )). Then, apply the indicated DES-CBC checksum to K and PWS (thereby
‘‘uniformly distributing the password and salt over DES key space’’), calling the result K´.
Again, adjust the parity of K´. Finally, if K´ is a weak or semi-weak DES key, XOR it with the
indicated constant (and adjust the parity again). The final output of this algorithm (the
desired result of the password-to-key mapping), is the resulting K´.

Note: Since this is a ‘‘public algorithm’’, it is not permissible to modify it to avoid the
possibly-weak DES keys mentioned in Section 3.4.3 on page 152, or other DES
keys that may in the future be discovered to hold weaknesses. However, at a
higher level, implementations are permitted (even encouraged) to reject
passwords that would result in all DES keys that are weak in all known senses.

4.3.6.2 Minimum Implementation Requirements

All implementations must support passwords and salts consisting of characters drawn from the
DCE Portable Character Set (PCS) (see Appendix A, Universal Unique Identifier, of the referenced
X/Open DCE Directory Services Specification).

Note: Some implementations may support passwords consisting of characters beyond the
PCS. Users should be aware, however, that there are practical limitations on the
makeup of passwords, associated with ‘‘seat portability’’. Namely, ‘‘input methods’’
for all GeneralStrings do not necessarily exist at all ‘‘seats’’ from which the user may
want to login. Therefore, users must restrict the choice of characters in their
passwords to the characters they know will be supported at all the seats from which
they will want to login. For universal seat portability, users must restrict their
passwords to the DCE PCS (because of the PCS minimal implementation
requirement for all implementations of DCE stated in this section).

192 CAE Specification (1997)



Key Distribution (Authentication) Services Cryptography- and Security-related Data Types

4.3.7 Authentication Data

[RFC 1510: 5.4.1]

Authentication data is represented by the AuthnData data type, which is defined as follows:

AuthnDataType ::= INTEGER
AuthnDataValue ::= OCTET STRING

AuthnData ::= SEQUENCE {
authnData-Type [1] AuthnDataType,
authnData-Value [2] AuthnDataValue

}

Its semantics are that it indicates information that is exchanged between clients and KDS servers
(in KDS Request/Response exchanges), which may be required before KDS services (that is,
ticket issuance) can be accessed. (Note that the KDS does not support ACLs for access control to
its AS/TGS services — just the opposite: tickets are required before PACs can be obtained, on
which ACLs are based.) In the case of AS Request/Responses (as opposed to TGS
Request/Responses), this information is usually referred to as pre-authentication data, because
AS Request/Responses are, in fact, ‘‘unauthenticated’’ (in the sense of not containing an
‘‘authentication header’’ as defined in Section 4.6 on page 202). Its fields are the following:

• authnData-Type

The kind of authentication data that AuthnData-Value represents, including its format.

• authnData-Value

The authentication data information itself, to be interpreted according to the value of
authnData-Type.

Non-negative values of AuthnDataType are reserved for centrally registered authentication data
types; negative values are unreserved (and may, therefore, be assigned locally). The currently
registered values are collected in Section 4.3.7.1.

4.3.7.1 Registered Authentication Data Types

[RFC 1510: 8.3]

The currently registered values for AuthnDataType are the following:

• authnDataType-TGS-REQ = 1

authnData-Value contains (the underlying OCTET STRING of) an authentication header
(defined in Section 4.6 on page 202), for use in a TGS Request.

Note: (Reverse-)Authentication data does not occur in a TGS Response — see Section
4.14.2 on page 245.

• authnDataType-PW-SALT = 3

authnData-Value contains (encoded as an OCTET STRING) a ‘‘salt’’ (whose underlying
contents octets are to be used in computing the principal’s key from its password — see
Section 4.3.6.1 on page 190). (A zero-length salt is a valid value — in particular, it does not
mean ‘‘use default salt’’.) See Section 4.12.3 on page 227.

Part 2 Security Services and Protocols 193



Cryptography- and Security-related Data Types Key Distribution (Authentication) Services

4.3.8 Authorisation Data

[RFC 1510: 5.2]

Authorisation data is represented by the AuthzData data type, which is defined as follows:

AuthzDataType ::= INTEGER
AuthzDataValue ::= OCTET STRING

AuthzData ::= SEQUENCE OF SEQUENCE {
authzData-Type [0] AuthzDataType,
authzData-Value [1] AuthzDataValue

}

Its semantics are that it indicates information that may be (depending on application-specific
authorisation policy) needed by a server in order to determine a client’s access to the server’s
services. Its fields are the following:

• authzData-Type

The kind of authorisation data that authzData-Value represents, including its format.

• authzData-Value

The authorisation data information itself, to be interpreted according to the value of
authzData-Type.

Non-negative values of AuthzDataType are reserved for centrally registered authorisation data
types; negative values are unreserved (and may, therefore, be assigned locally). The currently
registered values are collected in Section 4.3.8.1.

Note: The usage semantics to be attached to authorisation data is application-specific, but
typically a value authzData of data type AuthzData is used for access based on the
so-called ‘‘AND model’’; that is, the elements of the array, authzData[0], ⋅⋅⋅,
authzData[n−1], all ‘‘further restrict’’ one another. That is to say, it is typically used
to determine access in the following manner:

if (authzData[0], ⋅⋅⋅, authzData[n-1] all grant access) {
GRANT access;

} else {
DENY access;

}

4.3.8.1 Registered Authorisation Data Types

[RFC 1510: 8.3]

The currently registered values for AuthzDataType are the following:

• authzDataType-PAC = 64

Pickled PACs, as specified in Section 5.2.6 on page 281.

194 CAE Specification (1997)



Key Distribution (Authentication) Services Tickets

4.4 Tickets
[RFC 1510: 5.3.1]

Tickets are represented by the Ticket data type, which is defined as follows:

Ticket ::= [APPLICATION 1] SEQUENCE {
tkt-ProtoVersNum [0] ProtocolVersionNumber,
tkt-ServerCell [1] CellName,
tkt-ServerName [2] RSName,
tkt-EncryptedPart [3] EncryptedData

}

Its semantics have been described in Section 4.1.3 on page 163, where the notation TktA,B for a
ticket with named client A in cell X and targeted server B in cell Y are introduced (eliding, here,
any issuing authority(ies), KDSZ´, ⋅⋅⋅, KDSZ´´ from the notation). In terms of this notation, its
fields are the following:

• tkt-ProtoVersNum

The protocol version number of the Ticket data type. Its value is protoVersNum-KRB5.

• tkt-ServerCell

B’s home cell, Y.

• tkt-ServerName

B’s RS name in RSY.

• tkt-EncryptedPart

The encryption type (encData-EncType), key version number (encData-KeyVersNum) and
ciphertext (encData-CipherText) encryption of (the underlying BER-encoded bit-string of) a
value of type TicketEncryptPart, which is defined in Section 4.4.1. The ‘‘pre-encrypted’’
plaintext of this field (which is a value of the data type TicketEncryptPart) is denoted by tkt-
EncryptPart.

4.4.1 Part of Ticket to be Encrypted

[RFC 1510: 5.3.1]

The encrypted data carried in a ticket is represented (before it is encrypted) by the
TicketEncryptPart data type, which is defined as follows:

TicketEncryptPart ::= [APPLICATION 3] SEQUENCE {
tkt-Flags [ 0] TicketFlags,
tkt-SessionKey [ 1] EncryptionKey,
tkt-ClientCell [ 2] CellName,
tkt-ClientName [ 3] RSName,
tkt-TransitPath [ 4] TransitPath,
tkt-AuthnTime [ 5] TimeStamp,
tkt-StartTime [ 6] TimeStamp OPTIONAL,
tkt-ExpireTime [ 7] TimeStamp,
tkt-MaxExpireTime [ 8] TimeStamp OPTIONAL,
tkt-ClientAddrs [ 9] HostAddresses OPTIONAL,
tkt-AuthzData [10] AuthzData OPTIONAL

}

Part 2 Security Services and Protocols 195



Tickets Key Distribution (Authentication) Services

Its fields are the following:

• tkt-Flags

Options (represented by flag bits) selected by this ticket. The TicketFlags data type is
defined in detail in Section 4.4.2 on page 198. (In Section 4.12.2 on page 222 and Section 4.14.2
on page 245, when a KDS server creates a ticket its options are considered to be deselected by
default unless they are explicitly selected.)

• tkt-SessionKey

The session key, KA,B, associated with this ticket; that is, the actual data item that represents
the ensuing client-server session. (Either it or a subsequently negotiated conversation (‘‘true
session’’) key can be used to protect client-server communications.) Any principal that
knows this session key is considered to be ‘‘the same principal (relative to this ticket)’’ as the
principal A.

• tkt-ClientCell

A’s home cell, X.

• tkt-ClientName

A’s RS name in RSX.

• tkt-TransitPath

The transit path of this ticket.

• tkt-AuthnTime

The authentication time of this ticket; that is, the time of A’s original (AS) authentication (the
time at which A’s home KDS server, KDSX, issued the original initial ticket-granting-ticket,
TktA,KDSX, on which TktA,B is ultimately based, by a sequence of TGS Requests).

• tkt-StartTime

The start time of this ticket; that is, the time before which TktA,B is not to be honoured
(accepted as evidence of authentication by B). Together with the expiration time of this ticket
(tkt-ExpireTime), this field determines the lifetime of the ticket, namely, the time interval
[tkt-StartTime, tkt-ExpireTime] (modulo maxClockSkew). This field must be present if
TktA,B is postdated (tkt-Postdated flag is set), and it may be present at other (depending on
local policy); in its absence, the start time of this ticket defaults to the ticket’s authentication
time (tkt-AuthnTime).

• tkt-ExpireTime

The (relative) expiration time of this ticket; that is, the time after which TktA,B is not to be
honoured by B. Thus, the (relative) lifetime of the ticket is the time interval [tkt-StartTime,
tkt-ExpireTime] (modulo maxClockSkew).

Note: Individual servers may decline to honour certain tickets which have not yet
expired, depending on local policy.

• tkt-MaxExpireTime

The absolute (or maximum) expiration time of this ticket; that is, the time beyond which KDS
servers will not issue a renewed ticket based on TktA,B. Thus, the absolute (or maximum)
lifetime of the ticket is the time interval [tkt-StartTime, tkt-MaxExpireTime] (modulo
maxClockSkew). This field is present if and only if TktA,B’s tkt-Renewable flag is set, in
which case it must indicate a time later than tkt-ExpireTime; in its absence, the absolute
expiration time of this ticket defaults to the ticket’s expiration time (tkt-ExpireTime).

196 CAE Specification (1997)



Key Distribution (Authentication) Services Tickets

• tkt-ClientAddrs

Zero (if absent) or more (if present) client host addresses. In the zero-address case, the ticket
can be used from any ‘‘location’’ (that is, transport address — this is discussed further
shortly); in the non-zero-address case, these are the addresses from which the ticket is
‘‘supposed’’ to be used (depending on server policy). In the RFC 1510 environment (as
opposed to the DCE environment), this means the following:

— A server B must never deny service to a client A presenting a TktA,B on the basis of A’s
‘‘location’’ (that is, the transport address of the host from which A is communicating, as
reported to B by its local host’s operating system’s implementation of the transport
provider), provided that A’s location is among the addresses indicated by TktA,B’s tkt-
ClientAddrs (and, if applicable, TktA,B has been properly proxied or forwarded — see
Section 4.4.2 on page 198).

— On the other hand, if A’s location is not among the addresses indicated by TktA,B’s tkt-
ClientAddrs, then B may deny service, depending on B’s policy.

Thus, in the RFC 1510 environment, the decision by the target server B to honour such
address restrictions is an optional server policy decision; that is, B may, depending on policy,
choose to enforce or ignore the tkt-ClientAddrs field (possibly even on a per-client per-call
basis). In the current DCE environment (that is, in environments conformant to DCE), this
optionality has been removed, and the policy decision has been taken that the tkt-
ClientAddrs field is never used to deny service: all servers B (including all system servers
such as KDS and PS, and all application servers conforming to DCE) must always honour
tickets TktA,B having arbitrary host address fields tkt-ClientAddrs (provided they are
otherwise acceptable), regardless of the location of the client A — with the sole exception that
the KDS’s AS service always requires clients to supply at least one host address in every AS
Request (see the Note in Section 4.2.8 on page 175). (This policy decision could conceivably
change in future revisions of DCE, though there is no current intent to do so. Therefore, in
order to support an orderly transition to such a possible future environment, clients are
encouraged to use the tkt-ClientAddrs field as specified herein with this in mind.)

In particular, the HostAddressType field(s) of the HostAddresses data type (see Section 4.2.8
on page 175) are always ignored in the DCE environment. (This is the reason that references
need not be supplied in DCE for the registered host address types listed in Section 4.2.8.1 on
page 175.)

• tkt-AuthzData

The authorisation data associated with this ticket. If it is not present, no authorisation data is
associated with the ticket (and therefore a server relying on the presence of such data for its
access decisions must deny access).

Note that tickets are not in general interpretable (in the sense of being decryptable) by their
named clients (except in the case where the named client also happens to be the targeted server).
Nevertheless, the information in them is otherwise (securely) available to the named client.
Namely (as seen in Section 4.12.3 on page 227 and Section 4.14.3 on page 254), all the fields
except tkt-TransitPath and tkt-AuthzData are available in the KDS Response that delivers the
ticket to the client. The client knows tkt-TransitPath because it is itself involved in passing this
ticket to the corresponding issuing authorities identified by the transit path. The tkt-AuthzData
field is not dealt with in this chapter, but as seen in Chapter 5, this information is communicated
to the client by the PS in a DCE environment.

Part 2 Security Services and Protocols 197



Tickets Key Distribution (Authentication) Services

4.4.2 Ticket Flags

[RFC 1510: 2, 5.2, 5.3.1]

The options that may be selected by a ticket, TktA,B (that is, requested by the named client A,
specified by issuing authority(ies), or interpreted by the targeted server B), are represented by
the TicketFlags data type, which is defined as follows:

TicketFlags ::= BIT STRING {
tkt-Forwardable (1),
tkt-Forwarded (2),
tkt-Proxiable (3),
tkt-Proxied (4),
tkt-Postdatable (5),
tkt-Postdated (6),
tkt-Invalid (7),
tkt-Renewable (8),
tkt-Initial (9)

}

The semantics of these bits are that if a value of type TicketFlags has the corresponding bit set
(to 1) then the option is selected; if the bit is reset (to 0), the option is deselected. The bits
indicate the following options (bits not currently specified are reserved for future usage):

• tkt-Forwardable

This TktA,B is forwardable; that is, this flag grants KDS servers the right to issue a forwarded
Tkt*A,B (which may even be a ticket-granting-ticket) based on TktA,B. By a forwarded Tkt*A,B is
meant a ticket that is used by the (same) client A from a (potentially) different ‘‘location’’
(host address, tkt-ClientAddrs) than A’s ‘‘location’’ when TktA,B was originally issued.
(Here, the notion of ‘‘same client A’’ is relative to a ticket, and it means any client that knows
the session key carried in the ticket.)

• tkt-Forwarded

This TktA,B has either itself been forwarded (see just above), or has been issued based on a
ticket that had previously been forwarded.

• tkt-Proxiable

This TktA,B is proxiable; that is, this flag grants KDS servers the right to issue a proxied Tkt*A,B
(but not a ticket-granting-ticket — this is the only difference between forwarding and
proxying from the point of view of the KDS, though applications may opt to distinguish
between them for other purposes) based on TktA,B. By a proxied Tkt*A,B is meant a ticket that is
used by the (same) client A from a (potentially) different host address (tkt-ClientAddrs) than
that to which TktA,B was originally issued. (Here, the notion of ‘‘same client A’’ is relative to
a ticket, and it means any client that knows the session key carried in the ticket.)

• tkt-Proxied

This TktA,B has either itself been proxied (see just above), or has been issued based on a ticket
that had previously been proxied.

• tkt-Postdatable

This TktA,B is postdatable; that is, this flag grants KDS servers the right to issue a postdated
Tkt*A,B based on TktA,B. By a postdated Tkt*A,B is meant a ticket that has substantially the same
information in it as TktA,B but with a new start time (tkt-StartTime).

198 CAE Specification (1997)



Key Distribution (Authentication) Services Tickets

• tkt-Postdated

This TktA,B has been postdated.

• tkt-Invalid

This TktA,B is invalid; that is, this flag grants KDS servers the right to issue a valid Tkt*A,B
based on TktA,B. By a valid (or validated) Tkt*A,B is meant a ticket that has substantially the
same information in it as TktA,B but with its invalid option (tkt-Invalid) deselected, with the
semantic that target (non-KDS) end-servers B are to honour only valid tickets. This flag is
used in conjunction with the tkt-Postdated flag.

Note: This flag is supported for security purposes — it does not introduce any new
functionality that is not otherwise available. In order to be used effectively, it
needs to be used with a ‘‘revocation’’ (or ‘‘hotlist’’) mechanism, which is not
specified in this revision of DCE. Namely, use of this flag forces the KDS to be
‘‘visited’’ in order for a postdated ticket (which is always originally issued in an
invalid state) to be rendered valid, thereby giving the KDS a timely opportunity
to revoke tickets by checking them against the hotlist.

• tkt-Renewable

This TktA,B is renewable; that is, this flag grants KDS servers the right to issue a renewed Tkt*A,B
based on TktA,B. By a renewed Tkt*A,B is meant a ticket that has substantially the same
information in it as TktA,B but with a new (later) expiration time (tkt-ExpireTime).

Note: This flag is supported for security purposes — it does not introduce any new
functionality that is not otherwise available. In order to be used effectively, it
needs to be used with a ‘‘revocation’’ (or ‘‘hotlist’’) mechanism, which is not
specified in this revision of DCE. Namely, use of this flag forces the KDS to be
‘‘visited’’ before the absolute expiration time of tickets, thereby giving the KDS a
timely opportunity to revoke tickets by checking them against the hotlist.

• tkt-Initial

This TktA,B is an initial ticket; that is, it was issued in response to an AS Request to A’s home
KDSX. If tkt-Initial is reset, the ticket is said to be a subsequent ticket; that is, it was issued in
response to a TGS Request to some KDS server.

Note that the above descriptions do not give complete details. For that, see that detailed
descriptions of these flags, in Section 4.12 on page 220 and Section 4.14 on page 240.

Part 2 Security Services and Protocols 199



Authenticators Key Distribution (Authentication) Services

4.5 Authenticators
[RFC 1510: 3.2.3, 5.3.2]

Authenticators are represented by the Authenticator data type, which is defined as follows:

Authenticator ::= [APPLICATION 2] SEQUENCE {
authnr-ProtoVersNum [0] ProtocolVersionNumber,
authnr-ClientCell [1] CellName,
authnr-ClientName [2] RSName,
authnr-Cksum [3] CheckSum OPTIONAL,
authnr-ClientMicroSec [4] MicroSecond,
authnr-ClientTime [5] TimeStamp,
authnr-ConversationKey [6] EncryptionKey OPTIONAL,
authnr-SeqNum [7] SequenceNumber OPTIONAL,
authnr-AuthzData [8] AuthzData OPTIONAL

}

Its semantics are that it accompanies TktA,B in a client-server service request, and proves to B
that this request is ‘‘really from A’’, in the sense that it was sent from A ‘‘now’’ (modulo
maxClockSkew). Its fields are the following:

• authnr-ProtoVersNum

The protocol version number of the Authenticator data type. Its value is protoVersNum-
KRB5.

• authnr-ClientCell

A’s home cell.

• authnr-ClientName

A’s RS name in its cell.

• authnr-Cksum

The checksum of the (application-specific) message that this authenticator accompanies.
(This is used internally in the KDS protocol itself in the KDS Request ‘‘application’’, as
specified below.)

• authnr-ClientMicroSec

A’s microsecondstamp, interpreted in conjunction with A’s timestamp (authnr-ClientTime,
below). The timestamp and microsecond timestamp pair, <T, M> (= <authnr-ClientTime,
authnr-ClientMicroSec>), is used (differently) by clients and servers as a nonce. It is used by
clients as a nonce to match up request/reply (authentication header/reverse-authentication
header) pairs (see, for example, Section 9.3.1.3 on page 340). It is the client’s responsibility to
store the timestamp and microsecond pairs <T, M> of all outstanding requests for which it
remains interested in replies. It is also used by servers as a nonce to ensure they do not
accept duplicate authenticators from the same client, because to do so risks a faked
authentication due to ‘‘replay attacks’’ (which, incidentally, threaten authenticity only, not
integrity or confidentiality, because they do not involve the compromise of a key). It is the
server’s responsibility to maintain a replay cache for this purpose, storing the timestamp and
microsecondstamp pairs <T, M> from all authenticators it receives from all clients over the
time interval 1T − S| ≤ maxClockSkew, where S is the server’s system timestamp.

Note: This timestamp-based technique for replay detection is not the only possible
technique; for example, random-number-based ‘‘challenge/response’’ techniques
for environments that don’t want to rely on a time service. Such techniques are

200 CAE Specification (1997)



Key Distribution (Authentication) Services Authenticators

supported elsewhere in DCE.

• authnr-ClientTime

A’s timestamp when it generated this authenticator. This timestamp (modulo
maxClockSkew) has the semantics of convincing the receiving server B that the
communication it is having with client A (securely identified in the accompanying TktA,B) is
happening in real-time. In colloquial terms: ‘‘A is ‘online’ and is communicating with B
‘now’.’’

• authnr-ConversationKey

A’s choice of a conversation (or subsession or ‘‘true session’’) key, KÂ,B, indicating that A prefers
this key to be used to protect client-server communications. If absent, the session key KA,B in
TktA,B (tkt-SessionKey) is to be used as the conversation key. This is part of conversation key
negotiation between A and B.

• authnr-SeqNum

A’s choice of sequence number. If absent, this application is not using sequence numbers, or
no sequence number is applicable to this message (for example, it might be a non-fragmented
message).

• authnr-AuthzData

Additional authorisation data included by A. This is authorisation data additional to that
specified in the accompanying TktA,B (tkt-AuthzData). Note that its contents are completely
up to A’s discretion, unlike the tkt-AuthzData which is sealed in the ticket by the KDS server.
Therefore, even though its use depends on application-specific authorisation policy, it is
typically used only to ‘‘further restrict’’ A’s access rights at B; that is, it is typically used to
determine access in the manner paraphrased as: ‘‘If both tkt-AuthzData and authnr-
AuthzData grant access, then access is granted, otherwise it is denied’’. Or in pseudocode:

if ((this application does not require tkt-AuthzData)
1| (tkt-AuthzData is present and grants access)) {

if ((this application does not require authnr-AuthzData)
1| (authnr-AuthzData is present and grants access)) {

GRANT access;
}

} else {
DENY access;

}

This can be used to support ‘‘least privilege’’ access policies.

Part 2 Security Services and Protocols 201



Authentication Headers Key Distribution (Authentication) Services

4.6 Authentication Headers
[RFC 1510: 5.5.1]

Authentication headers are represented by the AuthnHeader data type, which is defined as
follows (where APPLICATION 14 indicates protoMsgType-AUTHN-HEADER — see Section
4.2.2.1 on page 166):

AuthnHeader ::= [APPLICATION 14] SEQUENCE {
authnHdr-ProtoVersNum [0] ProtocolVersionNumber,
authnHdr-ProtoMsgType [1] ProtocolMessageType,
authnHdr-Flags [2] AuthnHeaderFlags,
authnHdr-Tkt [3] Ticket,
authnHdr-EncryptedAuthnr [4] EncryptedData

}

Its semantics are that it supplies the forward authentication information that actually
‘‘authenticates a client A to a server B’’, by binding together an authenticator and a ticket, TktA,B
(naming A and targeted to B), associated with one another. Its fields are the following:

• authnHdr-ProtoVersNum

The protocol version number of the AuthnHeader data type. Its value is protoVersNum-
KRB5.

• authnHdr-ProtoMsgType

The kind of protocol message this AuthnHeader represents. Its value is protoMsgType-
AUTHN-HEADER.

• authnHdr-Flags

Selected authentication header options. The AuthnHeaderFlags data type is defined in
Section 4.6.1 on page 203. In Section 4.13.1 on page 232, when a client creates an
authentication header its options are considered to be deselected by default unless they are
explicitly selected.

• authnHdr-Tkt

The ticket, TktA,B, associated with the client-server session that this authentication header is
authenticating.

• authnHdr-EncryptedAuthnr

The encryption type (encData-EncType), key version number (encData-KeyVersNum) and
ciphertext (encData-CipherText) encryption of (the underlying BER-encoded bit-string of)
the authenticator (of type Authenticator) associated with the client-server session that this
authentication header is authenticating. The ‘‘pre-encrypted’’ plaintext of this field (which is
a value of the data type Authenticator) is denoted by authnHdr-EncryptAuthnr.

Of course, it is the final two fields that are the most significant — and for that reason, an
authentication header is sometimes referred to as a ‘‘ticket and authenticator’’ (both of which are
cryptographically protected).

202 CAE Specification (1997)



Key Distribution (Authentication) Services Authentication Headers

4.6.1 Authentication Header Flags

[RFC 1510: 5.2, 5.5.1]

The options that may be selected by an authentication header (that is, specified by the client A
named by TktA,B (authnHdr-Tkt), or interpreted by the targeted server B) are represented by the
AuthnHeaderFlags data type, which is defined as follows:

AuthnHeaderFlags ::= BIT STRING {
authnHdr-UseSessionKey (1),
authnHdr-MutualRequired (2)

}

The semantics of these bits are that if a value of type AuthnHeaderFlags has the corresponding
bit set then the option is selected; if the bit is reset, the option is deselected. The bits represent
the following options (bits not currently specified are reserved for future usage):

• authnHdr-UseSessionKey

Usually (that is, if this option is deselected), TktA,B is protected with B’s long-term key, KB.
But if this option is selected, then the TktA,B (authnHdr-Tkt) in this authentication header is
protected with a session key, K•, carried in an auxiliary (ticket-granting-)ticket targeted to B,
Tkt•. For more explanation, see Section 4.6.2 (however, the explanation there is slight, since
the use-session-key option is not used in the internal KDS protocol).

• authnHdr-MutualRequired

A expects B to return a reverse-authentication header (of data type RevAuthnHeader),
thereby completing mutual authentication by ‘‘authenticating the server to the client’’ (see
Section 4.7 on page 205).

4.6.2 The Use-session-key Option

[RFC 1510: 3.2.3]

The use-session-key option is not used anywhere in DCE. therefore a detailed explanation of it
would lead too far afield and is not appropriate here. However, a rough explanation of how it
might be used at application level is given in this section, as an indication of its potential. Such
an application-level usage is said to be a ‘‘user-to-user authentication protocol’’. (In this section
a shorthand notation is used; for example, omitting ticket fields that are unnecessary for the
purposes here.)

Recall (see Section 1.5 on page 18) that the basic Kerberos protocol for a client A to authenticate
to a server B begins by having the client A obtain a session key KA,KDS and a ticket, TktA,KDS, from
the AS, and then proceeds with the following series of exchanges (retaining here only those terms
that are critical to the discussion at hand):

• A → TGS: B, TktA,KDS

• A ← TGS: {B, KA,B} K[ˆ]
A,KDS, TktA,B

• A → B: TktA,B

• ⋅⋅⋅ and so on, ⋅⋅⋅

where TktA,B = {A, KA,B}KB. The main point to focus on for the purposes of this discussion is that
TktA,B is protected with the long-term key KB of B. This requires, in order for B to be able to
decrypt TktA,B, that B ‘‘knows’’ (has access to) its long-term key. But the requirement of having its
long-term key readily accessible could be a risk for B, especially if the machine on which B runs
is not physically secured (for example, a ‘‘public workstation’’).

Part 2 Security Services and Protocols 203



Authentication Headers Key Distribution (Authentication) Services

The above protocol can be modified so that TktA,B is replaced by another ticket, Tkt•
A,B, which is

protected with a short-term (session) key (whose compromise represents a much smaller risk), K•

= KB,KDS, as follows. Suppose that A has obtained a copy of B’s (ticket-granting-)ticket, TktB,KDS,
(= {B, KB,KDS}KKDS); note this is not a security risk to A or B, and the manner of A’s obtaining B’s
ticket need not be secure — for example, B might have sent a copy of TktB,KDS to A, or B might
have ‘‘published’’ its TktB,KDS in a public place (such as in a directory service datastore) and A
retrieved a copy of it. Then the required protocol can be achieved by:

• A → TGS: B, TktA,KDS, TktB,KDS

• A ← TGS: {KA,B} K[ˆ]
A,KDS, Tkt•

A,B

• A → B: Tkt•
A,B

• ⋅⋅⋅ and so on, ⋅⋅⋅

where TktB,KDS (also denoted ‘‘Tkt•’’, without subscripts, in this context) is an ‘‘additional ticket’’
(trusted by B) that conveys to the KDS (via the use-session-key option) the session key KB,KDS
(also denoted ‘‘K•’’, without subscripts, in this context) that is used to protect Tkt•

A,B; that is,
Tkt•

A,B = {A, KA,B}K•.

As presented in this brief discussion, the advantage of using Tkt•
A,B instead of TktA,B is by no

means apparent. But it becomes a powerful tool when embedded in an overall architecture of
so-called secret-key certificates (as opposed to public-key certificates), here implemented as tickets
used in new ways, because it permits many of the advantages of public-key protocols to be
implemented using secret-key encryption. The deeper exploration of this is, however, beyond the
scope of this specification.

204 CAE Specification (1997)



Key Distribution (Authentication) Services Reverse-authentication Headers

4.7 Reverse-authentication Headers
[RFC 1510: 5.5.2]

Reverse-authenticator headers are represented by the RevAuthnHeader data type, which is
defined as follows (where APPLICATION 15 indicates protoMsgType-REVAUTHN-HEADER
— see Section 4.2.2.1 on page 166):

RevAuthnHeader ::= [APPLICATION 15] SEQUENCE {
revAuthnHdr-ProtoVersNum [0] ProtocolVersionNumber,
revAuthnHdr-ProtoMsgType [1] ProtocolMessageType,
revAuthnHdr-EncryptedPart [2] EncryptedData

}

Its semantics are that it supplies the reverse authentication information that actually ‘‘authenticates
a server B to a client A’’, by extracting certain information from a corresponding authentication
header (that the client trusts is only accessible by the legitimate server) and returning it
(securely) to the client. Its fields are the following:

• revAuthnHdr-ProtoVersNum

The protocol version number of the RevAuthnHeader data type. Its value is
protoVersNum-KRB5.

• revAuthnHdr-ProtoMsgType

The kind of protocol message this RevAuthnHeader represents. Its value is protoMsgType-
REVAUTHN-HEADER.

• revAuthnHdr-EncryptedPart

The encryption type (encData-EncType), key version number (encData-KeyVersNum) and
ciphertext (encData-CipherText) encryption of (the underlying BER-encoded bit-string of) a
value of type RevAuthnHeaderEncryptPart, which is defined in Section 4.7.1. The ‘‘pre-
encrypted’’ plaintext of this field (which is a value of the data type
RevAuthnHeaderEncryptPart) is denoted by revAuthnHdr-EncryptPart.

4.7.1 Part of Reverse-authentication Header to be Encrypted

[RFC 1510: 5.5.2]

The part of a reverse-authentication header to be encrypted is represented (before it is
encrypted) by the RevAuthnHeaderEncryptPart data type, which is defined as follows:

RevAuthnHeaderEncryptPart ::= [APPLICATION 27] SEQUENCE {
revAuthnHdr-ClientTime [0] TimeStamp,
revAuthnHdr-ClientMicroSec [1] MicroSecond,
revAuthnHdr-ConversationKey [2] EncryptionKey OPTIONAL,
revAuthnHdr-SeqNum [3] SequenceNumber OPTIONAL

}

Its fields are the following:

• revAuthnHdr-ClientTime

The corresponding authentication header’s client timestamp (authnr-ClientTime).

• revAuthnHdr-ClientMicroSec

The corresponding authentication header’s client microsecondstamp (authnr-
ClientMicroSec).

Part 2 Security Services and Protocols 205



Reverse-authentication Headers Key Distribution (Authentication) Services

• revAuthnHdr-ConversationKey

B’s choice of a conversation key, Kˆˆ A,B, indicating that B prefers this key to be used to
protect client-server communications instead of either the session key KA,B in the
corresponding authentication header’s TktA,B (tkt-SessionKey), or the client’s choice of
conversation key KÂ,B (authnr-ConversationKey) if present, as part of conversation key
negotiation between A and B.

• revAuthnHdr-SeqNum

B’s indication of sequence number. It is equal to the authnr-SeqNum field of the
corresponding authentication header (or is absent if that field was omitted).

206 CAE Specification (1997)



Key Distribution (Authentication) Services KDS (AS and TGS) Requests

4.8 KDS (AS and TGS) Requests
[RFC 1510: 5.4.1]

AS Requests are represented by the ASRequest data type, and TGS Requests are represented by
the TGSRequest data type. These are defined in terms of a common underlying data type,
KDSRequest, as follows (where APPLICATION 10 indicates protoMsgType-AS-REQUEST,
and APPLICATION 12 indicates protoMsgType-AS-RESPONSE — see Section 4.2.2.1 on page
166):

ASRequest ::= [APPLICATION 10] KDSRequest
TGSRequest ::= [APPLICATION 12] KDSRequest

KDSRequest ::= SEQUENCE {
req-ProtoVersNum [1] ProtocolVersionNumber,
req-ProtoMsgType [2] ProtocolMessageType,
req-AuthnData [3] SEQUENCE OF AuthnData OPTIONAL,
req-Body [4] KDSRequestBody

}

Its semantics are to indicate a calling client A’s request to a KDS server KDSZ to return a TktA,B
targeted to a server B (where B may be another KDS server, KDSZ´). KDS servers (such as KDSZ)
support requests for the following two distinct kinds of services:

• Request for a ‘‘(manipulated) old’’ Tkt

(Re-)issue a ticket that has substantially previously existed, by manipulating a presented
ticket (in req-AuthnData). (A rigorous definition is given in Section 4.14.1 on page 240.) The
old ticket may be of almost any type (the exception being that ticket-granting-tickets cannot
be proxied), and the manipulation may be any one of the following:

— Validation

Validate an (invalid) ticket.

— Renewal

Renew a (renewable) ticket.

— Forwarding

Forward a (forwardable) (ticket-granting- or service-)ticket.

— Proxying

Proxy a (proxiable) (non-ticket-granting-)service-ticket.

Note: Some implementations may support the simultaneous combination of proxying
and fowarding, because these do not really conflict with one another, but other
combinations are more problematic (validation conflicts with
forwarding/proxying, renewal conflicts with validation/fowarding/proxying), so
an implementation that supported those combinations would have to specify
their semantics (in an implementation-specific manner).

• Request for a ‘‘new’’ ticket

Issue a ticket that hasn’t substantially previously existed. (A rigorous definition is given in
Section 4.14.1 on page 240.) The new ticket may of any type (initial or subsequent, ticket-
granting-ticket or service-ticket).

Part 2 Security Services and Protocols 207



KDS (AS and TGS) Requests Key Distribution (Authentication) Services

The fields of KDSRequest are the following:

• req-ProtoVersNum

The protocol version number of the KDSRequest data type. Its value is protoVersNum-
KRB5.

• req-ProtoMsgType

The kind of protocol message this KDSRequest represents. If this is an AS Request, its value
is protoMsgType-AS-REQUEST; if a TGS Request, it is protoMsgType-TGS-REQUEST.

• req-AuthnData

This KDS Request’s authentication data — it has different semantics depending on exactly
what kind of KDS Request this is:

1. If this is an AS Request, this field is not present (currently — if it were present, it would
be called ‘‘pre-authentication’’ data).

2. If this is a TGS Request for a new ticket, this field authenticates the calling client A to
the KDS server KDSZ, by containing one element of authentication data of type
(authnData-Type) authnData-TGS-REQ, whose value (authnData-Value) contains
(therefore) a ticket and an authentication header (value of type AuthnHeader) whose
checksum (authnr-Cksum) contains the checksum of req-Body (see Section 4.14.1 on
page 240).

3. If this is a TGS Request for an old ticket, this field contains the old ticket that is to be
manipulated.

• req-Body

The body of this KDSRequest, of type KDSRequestBody, which is defined in Section 4.8.1.

4.8.1 KDS Request Body

[RFC 1510: 5.4.1]

KDS Request message bodies are represented by the KDSRequestBody data type, which is
defined as follows:

KDSRequestBody ::= SEQUENCE {
req-Flags [ 0] KDSRequestFlags,
req-ClientName [ 1] RSName OPTIONAL,
req-ServerCell [ 2] CellName,
req-ServerName [ 3] RSName,
req-StartTime [ 4] TimeStamp OPTIONAL,
req-ExpireTime [ 5] TimeStamp,
req-MaxExpireTime [ 6] TimeStamp OPTIONAL,
req-Nonce [ 7] Nonce,
req-EncTypes [ 8] SEQUENCE OF EncryptionType,
req-ClientAddrs [ 9] HostAddresses OPTIONAL,
req-EncryptedAuthzData [10] EncryptedData OPTIONAL,
req-AdditionalTkts [11] SEQUENCE OF Ticket OPTIONAL

}

Its fields are the following:

• req-Flags

208 CAE Specification (1997)



Key Distribution (Authentication) Services KDS (AS and TGS) Requests

KDS options selected by this KDS Request (requested by the calling client A, or interpreted
by the KDS server KDSZ). The KDSRequestFlags data type is defined in Section 4.8.2 on
page 210. (In Section 4.12.1 on page 220 and Section 4.14.1 on page 240, when a client creates
a KDS request its options are considered to be deselected by default unless they are explicitly
selected.)

• req-ClientName

A’s RS name in its cell.

Note: There is no field in KDSRequestBody for A’s cell name — it is unnecessary
according to the AS and TGS Request/Response protocols.)

• req-ServerCell

B’s cell.

• req-ServerName

B’s RS name in its cell.

• req-StartTime

A’s desired start time for a new postdated ticket.

• req-ExpireTime

A’s desired expiration time for a new ticket. The particular value endOfTimeStamp (see
Section 4.2.3 on page 167) is interpreted specially by the KDS server, namely as a request for a
ticket with the largest expiration time it will issue, according to its policy.

Note: This interpretation of endOfTimeStamp is not in RFC 1510.)

• req-MaxExpireTime

A’s desired absolute expiration time for a new renewable ticket.

Note: For this field, endOfTimeStamp does not have a special interpretation.)

• req-Nonce

Nonce generated by A (to be returned in KDS Response, defined in Section 4.9 on page 212).

• req-EncTypes

A list of A’s preferences of encryption types to be used to protect a new ticket.

• req-ClientAddrs

A’s desired client host addresses for a new (potentially proxiable and/or forwardable) ticket.

• req-EncryptedAuthzData

The encryption type (encData-EncType), key version number (encData-KeyVersNum) and
ciphertext (encData-CipherText) encryption of (the underlying BER-encoded bit-string of) a
value of type AuthzData. It is used to indicate A’s request for authorisation data. If this is an
AS Request, it is not present. (See Section 4.14.1 on page 240 and Section 5.4.1 on page 292 for
its use with the PS.) The ‘‘pre-encrypted’’ plaintext of this field (a value of the data type
AuthzData) is denoted by req-EncryptAuthzData.

• req-AdditionalTkts

Additional tickets, to be used in conjunction with this KDS Request’s selected KDS options
(req-Flags) which require such additional tickets. Each option that requires an additional
ticket requires exactly one such additional ticket, and the list req-AdditionalTkts is in one-

Part 2 Security Services and Protocols 209



KDS (AS and TGS) Requests Key Distribution (Authentication) Services

to-one correspondence with such selected option(s), in the same order as the ordinal
number(s) of such selected option(s). Currently, there is only one option that requires an
additional ticket: the use-session-key option (req-UseSessionKey), which requires a Tkt• to
carry the session key K• indicated by the option (see Section 4.6.1 on page 203). (Additional
tickets are not used in the internal KDS protocol.)

4.8.2 KDS Request Flags

[RFC 1510: 5.2, 5.4.1]

The options that may be requested in a KDS Request are represented by the KDSRequestFlags
data type, which is defined as follows:

KDSRequestFlags ::= BIT STRING {
req-Forwardable ( 1),
req-Forward ( 2),
req-Proxiable ( 3),
req-Proxy ( 4),
req-Postdatable ( 5),
req-Postdate ( 6),
req-Renewable ( 8),
req-RenewableOK (27),
req-UseSessionKey (28),
req-Renew (30),
req-Validate (31)

}

The semantics of these bits are that if a value of type KDSRequestFlags has the corresponding
bit set then the option is selected; if the bit is reset, the option is deselected. The bits represent
the following options (bits not currently specified are reserved for future usage):

• req-Forwardable

New ticket is to be forwardable.

• req-Forward

Old ticket is to be forwarded.

• req-Proxiable

New ticket is to be proxiable.

• req-Proxy

Old ticket is to be proxied.

• req-Postdatable

New ticket is to be postdatable.

• req-Postdate

New ticket is to be postdated.

• req-Renewable

New ticket is to be renewable.

• req-RenewableOK

210 CAE Specification (1997)



Key Distribution (Authentication) Services KDS (AS and TGS) Requests

New ticket is preferred to be non-renewable and have A’s desired maximum lifetime, but if
KDSZ declines to issue such a ticket then A will accept a renewable ticket whose maximum
lifetime is as close as possible to (but not exceeding) the desired maximum lifetime.

• req-UseSessionKey

New ticket is to be protected with the session key (tkt-SessionKey) of a presented additional
ticket (req-AdditionalTkts), instead of with B’s long-term key. In order to use this option, A
must somehow acquire possession of an appropriate additional ticket. Internally (in the KDS
protocols), this option is not used.

• req-Renew

Old ticket is to be renewed.

• req-Validate

Old ticket is to be validated.

Part 2 Security Services and Protocols 211



KDS (AS and TGS) Responses Key Distribution (Authentication) Services

4.9 KDS (AS and TGS) Responses
[RFC 1510: 5.4.2]

AS Responses are represented by the ASResponse data type, and TGS Responses are
represented by the TGSResponse data type. These are defined in terms of a common
underlying data type, KDSResponse, which is defined as follows (where APPLICATION 11
indicates protoMsgType-TGS-REQUEST, and APPLICATION 13 indicates protoMsgType-
TGS-RESPONSE — see Section 4.2.2.1 on page 166):

ASResponse ::= [APPLICATION 11] KDSResponse
TGSResponse ::= [APPLICATION 13] KDSResponse

KDSResponse ::= SEQUENCE {
resp-ProtoVersNum [0] ProtocolVersionNumber,
resp-ProtoMsgType [1] ProtocolMessageType,
resp-AuthnData [2] AuthnData OPTIONAL,
resp-ClientCell [3] CellName,
resp-ClientName [4] RSName,
resp-Tkt [5] Ticket,
resp-EncryptedPart [6] EncryptedData

}

Its semantics are to indicate the called KDSZ’s response to a client A’s request for a ticket. Its
fields are the following:

• resp-ProtoVersNum

The protocol version number of the KDSResponse data type. Its value is protoVersNum-
KRB5.

• resp-ProtoMsgType

The kind of protocol message this KDSResponse represents. If this is an AS Response, its
value is protoMsgType-AS-RESPONSE; if a TGS Response, it is protoMsgType-TGS-
RESPONSE.

• resp-AuthnData

This KDS Response’s authentication data. It is used to return information to A. (See Section
5.4.2 on page 293 for its use with the PS, where it is actually used to return authorisation data,
not ‘‘authentication data’’.)

• resp-ClientCell

A’s cell.

• resp-ClientName

A’s RS name in its cell.

• resp-Tkt

The issued ticket. If this is an AS Response, it is an initial ticket. If this is a TGS Response, it
is a subsequent ticket, and it is a new or old ticket depending on the TGS Request options
selected. A KDS server KDSZ always returns a ticket whose named client is the requested
one (however in the case of an AS Request, which is unauthenticated, the message itself
could be modified in transit, so the message A sends may not be the message KDSZ receives).
It also usually returns a ticket whose targeted server B is the requested one, the only
exception being in the case that B’s home cell is not Z, in which KDSZ returns a special cross-

212 CAE Specification (1997)



Key Distribution (Authentication) Services KDS (AS and TGS) Responses

cell referral ticket (see Section 4.14.1 on page 240 and Section 4.14.2 on page 245).

• resp-EncryptedPart

The encryption type (encData-EncType), key version number (encData-KeyVersNum) and
ciphertext (encData-CipherText) encryption of (the underlying BER-encoded bit-string of) a
value of type KDSResponseEncryptPart, which is defined in Section 4.9.1. The ‘‘pre-
encrypted’’ plaintext of this field (a value of the data type KDSResponseEncryptPart) is
denoted by resp-EncryptPart.

4.9.1 Part of KDS Response to be Encrypted

[RFC 1510: 5.4.2]

The encrypted data carried in a KDS Response is represented (before it is encrypted) by the
KDSResponseEncryptPart data type, which is defined as follows:

ASResponseEncryptPart ::= [APPLICATION 25] KDSResponseEncryptPart
TGSResponseEncryptPart ::= [APPLICATION 26] KDSResponseEncryptPart

KDSResponseEncryptPart ::= SEQUENCE {
resp-SessionKey [ 0] EncryptionKey,
resp-LastRequests [ 1] LastRequests,
resp-Nonce [ 2] Nonce,
resp-KeyExpireDate [ 3] TimeStamp OPTIONAL,
resp-Flags [ 4] TicketFlags,
resp-AuthnTime [ 5] TimeStamp,
resp-StartTime [ 6] TimeStamp OPTIONAL,
resp-ExpireTime [ 7] TimeStamp,
resp-MaxExpireTime [ 8] TimeStamp OPTIONAL,
resp-ServerCell [ 9] CellName,
resp-ServerName [10] RSName,
resp-ClientAddrs [11] HostAddresses OPTIONAL

}

Its fields are the following. Note that most of this duplicates information that is present in the
enclosed TktA,B (resp-Tkt), so that A can check its conformance to what it had requested in the
corresponding KDS Request (A cannot actually decrypt TktA,B itself, unless A happens to know
the long-term key of the targeted server B). (The only information in TktA,B that is not repeated
in KDSResponseEncryptPart are its transit path and authorisation data.)

• resp-SessionKey

Duplicate of resp-Tkt’s session key (tkt-SessionKey).

• resp-LastRequests

Last request information that KDSX (A’s home KDS server) has pertaining to client A.
Typically only usefully present in an AS Response. It is legal in a TGS Response (in fact, it’s
not an optional field, though implementations typically support a policy of returning only an
empty array of resp-LastRequests in TGS Responses), and some implementations may indeed
return last request information in TGS Responses, but it’s not normally useful there — the
last request information is normally intended to be displayed to the user, for example, at
login-time, but most service-level applications don’t do that.

• resp-Nonce

Part 2 Security Services and Protocols 213



KDS (AS and TGS) Responses Key Distribution (Authentication) Services

Copy of the corresponding KDS Request’s nonce (req-Nonce).

• resp-KeyExpireDate

The time at which A’s long-term key KA (of the selected encryption type, held in RSX) is
scheduled to expire; that is, later than which (modulo maxClockSkew) KDSX (A’s home KDS
server) will not use it for protecting AS Responses and tickets targeted to A (which are the
only data KDS servers protect with long-term keys). This supports principal long-term key
management (subject to local policy). Typically only present in AS Responses, not TGS
Responses.

• resp-Flags

Duplicate of resp-Tkt’s ticket flags (tkt-Flags).

• resp-AuthnTime

Duplicate of resp-Tkt’s authentication time (tkt-AuthnTime).

• resp-StartTime

Duplicate of resp-Tkt’s start time, if present (tkt-StartTime).

• resp-ExpireTime

Duplicate of resp-Tkt’s expiration time (tkt-ExpireTime).

• resp-MaxExpireTime

Duplicate of resp-Tkt’s absolute expiration time, if present (tkt-MaxExpireTime).

• resp-ServerCell

B’s cell.

• resp-ServerName

B’s RS name in its cell.

• resp-ClientAddrs

Duplicate of resp-Tkt’s client host addresses, if present (tkt-ClientAddrs).

214 CAE Specification (1997)



Key Distribution (Authentication) Services KDS Errors

4.10 KDS Errors
[RFC 1510: 5.9.1]

KDS Errors are represented by the KDSError data type, which is defined as follows (where
APPLICATION 30 indicates protoMsgType-KDS-ERROR — see Section 4.2.2.1 on page 166):

KDSError ::= [APPLICATION 30] SEQUENCE {
err-ProtoVersNum [ 0] ProtocolVersionNumber,
err-ProtoMsgType [ 1] ProtocolMessageType,
err-ClientTime [ 2] TimeStamp OPTIONAL,
err-ClientMicroSec [ 3] MicroSecond OPTIONAL,
err-ServerTime [ 4] TimeStamp,
err-ServerMicroSec [ 5] MicroSecond,
err-StatusCode [ 6] ErrorStatusCode,
err-ClientCell [ 7] CellName OPTIONAL,
err-ClientName [ 8] RSName OPTIONAL,
err-ServerCell [ 9] CellName,
err-ServerName [10] RSName,
err-StatusText [11] ErrorStatusText OPTIONAL,
err-StatusData [12] ErrorStatusData OPTIONAL

}

Its semantics are that it indicates diagnostic information returned from a server C to a calling
client A concerning a failed (in the security sense) service request. The primary usage is when C
is a KDS server KDSZ, but it can also be used by applications if they so desire. In any case, KDS
Error messages are unprotected, therefore the information carried in them must be viewed with
suspicion in a hostile environment. Its fields are the following:

• err-ProtoVersNum

The protocol version number of this KDSError data type. Its value is protoVersNum-KRB5.

• err-ProtoMsgType

The kind of protocol message this KDSError represents. Its value is protoMsgType-KDS-
ERROR.

• err-ClientTime

A’s timestamp from accompanying authenticator (authnHdr-EncryptAuthnr.authnr-
ClientTime), if present. Otherwise, it is absent.

• err-ClientMicroSec

A’s microsecondstamp from accompanying authenticator (authnHdr-
EncryptAuthnr.authnr-ClientMicroSec), if present. Otherwise, it is absent.

• err-ServerTime

C’s system time at which the error occurred.

• err-ServerMicroSec

C’s system microsecond time at which the error occurred.

• err-StatusCode

Status code identifying the kind of error that occurred.

Part 2 Security Services and Protocols 215



KDS Errors Key Distribution (Authentication) Services

• err-ClientCell

A’s cell from accompanying ticket (tkt-EncryptPart.tkt-ClientCell), if present (not from
accompanying authenticator, authnHdr-EncryptAuthnr.authnr-ClientCell, if present).
Otherwise, it is absent.

• err-ClientName

A’s RS name from accompanying ticket (tkt-EncryptPart.tkt-ClientName, if present (not
from accompanying authenticator, authnHdr-EncryptAuthnr.authnr-ClientName, if
present). Otherwise, it is absent.

• err-ServerCell

C’s cell.

• err-ServerName

C’s RS name in its cell.

• err-StatusText

Status text associated to err-StatusCode.

• err-StatusData

Status data associated to err-StatusCode.

216 CAE Specification (1997)



Key Distribution (Authentication) Services RS Information

4.11 RS Information
[RFC 1510: 4]

Every KDSZ requires access to certain (non-volatile) information. Such information is held in the
RSZ datastore, not in the KDSZ itself. RSZ maintains local cell-wide property and policy
information, as well as information pertaining to individual principals, relevant to KDSZ’s
processing of KDS Requests (below). These information items, together with the KDS Error
status code values associated with them, are the following:

• Cell name

This cell’s name.

• KDS server’s RS name

RS name of the KDS server in this cell. If the cell name of this cell Z is, say, cellZ, then the
RSZ name of KDSZ is krbtgt/cellZ.

• Supported protocol version numbers

The protocol version numbers supported by KDSZ {errStatusCode-BAD-PROTO-VERS-
NUM}.

• Supported authentication methods

The authentication methods supported by KDSZ {errStatusCode-BAD-AUTHN-METHOD}.

• Supported authentication data types

The authentication data types supported by KDSZ {errStatusCode-AUTHN-DATA-TYPE-
NOT-SUPPORTED}.

• Supported transit path types

The transit path types supported by KDSZ {errStatusCode-TRANSIT-PATH-TYPE-NOT-
SUPPORTED}.

• Supported encryption key types

The encryption key types supported by KDSZ.

• Supported encryption types

The encryption types supported by KDSZ.

• Supported checksum types

The checksum types supported by KDSZ {errStatusCode-CHECKSUM-TYPE-NOT-
SUPPORTED, errStatusCode-BAD-CHECKSUM-TYPE}.

• Per-end-principal RS names

Entries for end-principals (that is, non-KDS-principals) stored in RSZ’s datastore.

• Per-foreign-KDS RS names

Entries for KDS principals KDSZ,Z´ from foreign cells Z´ cross-registered with cell Z. If the
cell name of foreign cell Z´ is, say, cellZ´, then the RSZ name of KDSZ,Z´ is krbtgt/cellZ´
{errStatusCode-NOT-US}.

• Per-principal long-term key(s), with version numbers

One (or more, as distinguished by their key version numbers) key(s) for each encryption type
supported. ‘‘The’’ key (modulo its version number, and eliding the encryption type from the

Part 2 Security Services and Protocols 217



RS Information Key Distribution (Authentication) Services

notation) for principal C and is denoted KC {errStatusCode-CLIENT-OLD-MASTER-KEY-
VERS-NUM, errStatusCode-SERVER-OLD-MASTER-KEY-VERS-NUM, errStatusCode-
NULL-KEY, errStatusCode-SERVER-NO-KEY, errStatusCode-BAD-KEY-VERS-NUM}.

• Per-principal ‘‘salt’’

Information used by principals to use in combination with their passwords (which are not, in
general, stored in the RS datastore), in order to derive their long-term keys (see Section 4.3.6.1
on page 190).

• Conversation key negotiation

Boolean indicating whether KDSZ will accept client-supplied (in authentication headers,
authnHdr-EncryptAuthnr.authnr-ConversationKey) conversation keys be used to protect
client-KDS sessions, or KDSZ will insist on supplying them itself (in reverse-authentication
headers, revAuthnHdr-ConversationKey).

• Maximum clock skew

Value(s) (certainly a cell-value one, though potentially also per-principal values) of
maxClockSkew (see Section 4.2.3 on page 167), such that the authentication protocols
specified herein fail if the KDS (or PS) encounter a timestamp from a principal whose clock
skew compared to the KDS’s (or PS’s) clock exceeds maxClockSkew {errStatusCode-
CLOCK-SKEW}.

• Per-principal long-term key(s) expiration dates(s)

The time later than which (modulo maxClockSkew) KDSZ will not use a principal’s long-
term key for protecting AS Responses and tickets targeted to C (which are the only data KDS
servers protect with long-term keys).

• Postdatability permitted

Boolean indicating whether or not KDSZ will issue new postdatable or postdated tickets
{errStatusCode-CANNOT-POSTDATE}.

• Renewability permitted

Boolean indicating whether or not KDSZ will issue new renewable tickets.

• Proxiability permitted

Boolean indicating whether or not KDSZ will issue new proxiable tickets.

• Forwardability permitted

Boolean indicating whether or not KDSZ will issue new forwardable tickets.

• Cell-wide minimum ticket lifetime

Minimum lifetime for which KDSZ will issue a new ticket. (A ticket request that would result
in a ticket with a lifetime less than this minimum will be rejected by the KDS.)
{errStatusCode-NEVER-VALID}.

• Cell-wide default ticket-granting-ticket lifetime

Default lifetime for which KDSZ will issue a new ticket-granting-ticket.

• Cell-wide maximum ticket lifetime

Maximum lifetime for which KDSZ will issue a new ticket.

• Per-principal maximum ticket lifetime

218 CAE Specification (1997)



Key Distribution (Authentication) Services RS Information

Maximum lifetime for which KDSZ will issue a new ticket naming or targeting a principal C.

• Cell-wide postdate maximum

Furthest date in the future for which KDSZ will issue a postdatable ticket naming or targeting
a principal C.

• Per-principal postdate maximum

Furthest date in the future for which KDSZ will issue a postdatable ticket.

• Cell-wide maximum renewable ticket lifetime

Maximum lifetime for which KDSZ will issue a new renewable ticket (if it issues new
renewable tickets at all).

• Per-principal maximum renewable ticket lifetime

Maximum lifetime for which KDSZ will issue a new renewable ticket naming or targeting a
principal C (if it issues new renewable tickets at all).

• Client addresses

Boolean indicating whether KDSZ requires client addresses (tkt-ClientAddrs) to be present in
all tickets.

• Per-principal last request(s)

Last request(s) information maintained for C, per local policy.

• Replay cache

Replay cache used by KDSZ (see Section 4.5 on page 200) {errStatusCode-REPLAY}.

• Hot list (revocation) information

Information about (potentially) compromised entities (clients, servers, tickets, and so on),
which have therefore been revoked (no longer supported by the security services). These
entities comprise RSZ’s hot list. For example, whenever a hot-listed (revoked) ticket is
presented to KDSZ in (the req-AuthnData field of) a TGS Request, KDSZ will refuse to
honour it. (Note that when a ticket’s maximum expiration time has passed, KDSZ will not
honour it under any circumstances, so there is no need to keep such tickets on the hot list.)
{errStatusCode-CLIENT-REVOKED, errStatusCode-SERVER-REVOKED, errStatusCode-
TKT-REVOKED}.

• Next hops

Information about what cell a client should visit next (among those cross-registered with Z)
if the server requested by the client in a TGS Request is not registered in RSZ. There are
various (policy-dependent) strategies for determining next hops. For example, some links
may be more trusted than others, hence more suitable for some purposes than others.

A common next hop strategy is the following up-over-down algorithm. If the server requested
by a client is not registered in Z, then the next hop is:

1. the server’s cell, if Z holds a direct cross-registration to the server’s cell, otherwise

2. the first ancestor cell (in the namespace sense) of the server’s cell which is cross-
registered with Z, if Z holds such a cross-registration, otherwise

3. the parent cell of Z, if Z holds a cross-registration with it.

Part 2 Security Services and Protocols 219



AS Request/Response Processing Key Distribution (Authentication) Services

4.12 AS Request/Response Processing
[RFC 1510: 1, 3.1]

This section specifies in detail the processing that occurs during an AS Request/Response
exchange; that is, this section specifies the issuing of new initial tickets. There are three steps
involved:

1. A client prepares an AS Request and sends it to a KDS server.

2. A KDS server receives the AS Request from a client, processes it, prepares an AS Response
(success case) or KDS Error (failure case), and returns that to the client.

3. A client receives an AS Response or KDS Error.

The details of the three steps of the success case are specified next. (For the failure case, see
Section 4.15 on page 258.)

4.12.1 Client Sends AS Request to KDS

[RFC 1510: 3.1.1, A.1]

Consider a client A that wants to obtain an initial ticket, TktA,B, from KDSX, where X is A’s home
cell. (Usually, though not necessarily, an initial ticket is a ticket-granting-ticket; that is, the target
server B will usually be KDSX itself. In any case, B must be in cell X, or the AS Request will fail.)
Then A prepares an AS Request, asReq (a value of the data type ASRequest), and ‘‘sends it’’ (that
is, calls kds_request( )) to KDSX, according to the following algorithm. Note that it is A’s
responsibility to know (or to securely determine) all the information necessary to correctly
formulate the AS Request message — especially, KDSX’s cell name and RS name (that’s why
‘‘well-known principal names’’ (involving the component krbtgt) are used for KDS servers), as
well as the RS names of A itself and of B. Since the AS Request is unauthenticated, KDSX cannot
know with certainty the principal identity of this calling client, A — in particular, A may request
(or its request may be modified in transit) that the initial ticket in question be issued ‘‘in the
name of’’ (that is, name) a client A´ other than A itself (though in that case the resulting
TktA´,KDSX will be unusable by A, unless A knows A´’s long-term key — except perhaps for
cryptanalysis; for example, for an ‘‘offline dictionary attack’’).

• Protocol version number

The protocol version number (asReq.req-ProtoVersNum) is set to protoVersNum-KRB5.

• Protocol message type

The protocol message type (asReq.req-ProtoMsgType) is set to protoMsgType-AS-
REQUEST.

• Client name

The client name (asReq.req-Body.req-ClientName) is set to A’s RS name in RSX.

• Server cell

The server cell (asReq.req-Body.req-ServerCell) is set to KDSX’s cell name; that is, to the
name of the cell X, say cellX. This is also A’s cell name — a KDS server can issue initial
tickets naming only clients in its own cell, and targeted only to servers in its own cell.

• Server name

The server name (asReq.req-Body.req-ServerName) is set to B’s RS name in its cell. (In the
usual case of an AS Request for an initial ticket-granting-ticket; that is, B = KDSX, this RS
name will be krbtgt/cellX, assuming that the cell name is cellX).

220 CAE Specification (1997)



Key Distribution (Authentication) Services AS Request/Response Processing

• Options

— Forwardable

If A desires that TktA,B be forwardable, the forwardable option (asReq.req-Body.req-
Flags.req-Forwardable) is selected.

— Proxiable

If A desires that TktA,B be proxiable, the proxiable option (asReq.req-Body.req-Flags.req-
Proxiable) is selected.

— Postdatable

If A desires that TktA,B be postdatable, the postdatable option (asReq.req-Body.req-
Flags.req-Postdatable) is selected.

— Postdate

If A desires that TktA,B be postdated, the postdate option (asReq.req-Body.req-Flags.req-
Postdate) is selected.

— Renewable

If A desires that TktA,B be renewable, the renewable option (asReq.req-Body.req-
Flags.req-Renewable) is selected.

— Renewable-okay

If A does not desire that TktA,B be renewable, but A will nevertheless accept a renewable
TktA,B with a shorter lifetime than desired in lieu of no TktA,B at all, then the renewable-
okay option (asReq.req-Body.req-Flags.req-RenewableOK) is selected.

— Other; use-session-key, validate, renew, proxy, forward

All of asReq’s options that have not been selected by any of the above steps are deselected.
Currently, these include the use-session-key (asReq.req-Body.req-Flags.req-
UseSessionKey), validate (asReq.req-Body.req-Flags.req-Validate), renew (asReq.req-
Body.req-Flags.req-Renew), proxy (asReq.req-Body.req-Flags.req-Proxy) and forward
(asReq.req-Body.req-Flags.req-Forward) options.

• Start time

If the postdate option for TktA,B has been selected, then the start time (asReq.req-Body.req-
StartTime) is set to the desired starting time. Otherwise, the start time is omitted.

• Expiration time

The expiration time (asReq.req-Body.req-ExpireTime) is set to the desired expiration time for
TktA,B.

• Maximum expiration time

If the renewable option has been selected, then the maximum expiration time (asReq.req-
Body.req-MaxExpireTime) is set to the desired maximum expiration time for TktA,B.
Otherwise, the maximum expiration time is omitted.

• Additional tickets

The additional tickets field (asReq.req-Body.req-AdditionalTkts) is omitted.

Part 2 Security Services and Protocols 221



AS Request/Response Processing Key Distribution (Authentication) Services

• Nonce

The nonce field (asReq.req-Body.req-Nonce) is set to a nonce value.

• Encryption types

The encryption types field (asReq.req-Body.req-EncTypes) is set to the list of encryption
types acceptable to A for protecting TktA,B. A arranges this list in priority order of desirability
(from A’s point of view), beginning with the most desirable and ending with the least
desirable. (For maximum interoperability, the client A should send a list consisting of a
single entry, indicating encryption type encType-DES-CBC-CRC, since all KDS servers are
required to support clients requesting that single encryption type — at least for the present
revision of this document.)

• Client addresses

If A desires that TktA,B contain client host addresses, then the client address field (asReq.req-
Body.req-ClientAddrs) is set to the desired addresses. Otherwise, the client address field is
omitted. In the present revision of DCE, clients must supply at least one address, or else the
KDS will reject the AS Request.

• Authorisation data

The authorisation data field (asReq.req-Body.req-EncryptedAuthzData) is omitted.

• Authentication data

The (pre-)authentication data (asReq.req-AuthnData) is (currently) omitted.

At this point, the asReq message is well-formed, and A sends it to KDSX.

4.12.2 KDS Server Receives AS Request and Sends AS Response

[RFC 1510: 2.1, 3.1.2, 3.1.3, A.2]

Consider an AS Request, asReq, received by KDSX. That is, asReq is a value of type ASRequest,
with protocol version number (asReq.req-ProtoVersNum) protoVersNum-KRB5 and protocol
message type (asReq.req-ProtoMsgType) protoMsgType-AS-REQUEST. Denote by A the client
requested (asReq.req-Body.req-ClientName) to be named in the to-be-issued initial TktA,B. Then
KDSX executes the algorithm below. If the algorithm executes successfully, KDSX prepares an
AS Response (asResp, of type ASResponse) containing the newly issued initial TktA,B
(asResp.resp-Tkt) and ‘‘returns’’ it (that is, returns from the kds_request( ) invocation) to the
calling client (which may be different from the requested client, A). If unsuccessful, KDSX
prepares a KDS Error (kdsErr, of type KDSError) and returns it to the calling client.

The following algorithm first discusses how KDSX constructs TktA,B — also denoted asTkt when
the emphasis is on the details of AS Request processing — and then how it constructs the rest of
the AS Response, asResp.

• Authentication data processing

The (pre-)authentication data (asReq.req-AuthnData) is processed according to local policy
(typically, it is absent).

• Protocol version number

The new initial ticket’s protocol version number (asTkt.tkt-ProtoVersNum) is set to
protoVersNum-KRB5.

• Server cell

222 CAE Specification (1997)



Key Distribution (Authentication) Services AS Request/Response Processing

The requested server cell name (asReq.req-Body.req-ServerCell) is checked to be X’s cell
name. (This is because KDSX can issue initial tickets naming only clients in its own cell, since
it must have access to their long-term key, with which it will protect asResp.)

• Server name

The requested server name (asReq.req-Body.req-ServerName) is checked to be KDSX’s RS
name. KDSX copies this into the new initial ticket’s server name (asTkt.tkt-ServerName).
KDSX also checks that it itself has a datastore entry in RSX {errStatusCode-SERVER-
UNKNOWN}.

• Client cell

The client cell (asTkt.tkt-EncryptPart.tkt-ClientCell) is set to X’s cell name (which must be
A’s cell name, too).

• Client name

The requested client name (asReq.req-Body.req-ClientName) (that is, A’s RS name) is
checked to have a datastore entry in RSX {errStatusCode-CLIENT-UNKNOWN}. KDSX
copies A’s RS name into the new initial ticket’s client name (asTkt.tkt-EncryptPart.tkt-
ClientName). A thereby becomes the client named by the new initial ticket TktA,B.

• Encryption types

KDSX selects from the list of requested encryption types (asReq.req-Body.req-EncTypes) the
earliest one on the list that it is willing to accommodate (according to local policy) — call this
encType. (Recall that the list had been generated in priority order of desirability, from A’s
point of view. For guaranteed interoperability, all KDS servers are required to support
clients requesting the single encryption type enctype-DES-CBC-CRC — at least for the
present revision of this document.) {errStatusCode-ENCRYPTION-TYPE-NOT-
SUPPORTED}.

• Long-term key retrieval

KDSX retrieves A’s most recent long-term key KA (and its key version number, for the
selected encryption type encType) from RSX.

• Session key generation

KDSX generates a new (random) session key (of the selected encryption type, encType),
KA,KDSX, and copies it into TktA,B’s session key field (asTkt.tkt-EncryptPart.tkt-SessionKey).

• Authentication time

TktA,B’s authentication time (asTkt.tkt-EncryptPart.tkt-AuthnTime) is set to KDSX’s system
time.

• Start time

If the requested start time (asReq.req-Body.req-StartTime) is absent, or if it indicates a time
earlier than TktA,B’s authentication time (asTkt.tkt-EncryptPart.tkt-AuthnTime), then TktA,B’s
start time (asTkt.tkt-EncryptPart.tkt-StartTime) is omitted (indicating a default to the
authentication time). Otherwise (that is, a requested start time is present and indicates a time
later than or equal to the authentication time), if the postdate option (asReq.req-Body.req-
Flags.req-Postdate) is selected, then TktA,B’s start time is set to the requested start time; if the
postdate option is deselected, TktA,B’s start time is omitted (indicating a default to the
authentication time) or is set to KDSX’s system time (see also the postdated and invalid
options, below) {errStatusCode-POLICY}.

Part 2 Security Services and Protocols 223



AS Request/Response Processing Key Distribution (Authentication) Services

• Expiration time

KDSX sets TktA,B’s expiration time (asTkt.tkt-EncryptPart.tkt-ExpireTime) to the earliest of
the following:

— The requested expiration time (asReq.req-Body.req-ExpireTime).

— TktA,B’s start time (or authentication time, if the start time is absent) plus the maximum
ticket lifetime associated with the named client A.

— TktA,B’s start time (or authentication time, if the start time is absent) plus the maximum
ticket lifetime associated with the target server KDSX.

— TktA,B’s start time (or authentication time, if the start time is absent) plus the cell-wide
maximum ticket lifetime associated with the issuing authority KDSX.

KDSX checks that the resulting lifetime of TktA,B is greater than or equal to the cell-wide
minimum ticket lifetime associated with the issuing authority KDSX {errStatusCode-
NEVER-VALID}.

• Maximum expiration time

If either the renewable option (asReq.req-Body.req-Flags.req-Renewable) has been selected,
or if the renewable-okay option (asReq.req-Body.req-Flags.req-RenewableOK) has been
selected and TktA,B’s expiration time is earlier than the requested expiration time, then
TktA,B’s maximum expiration time (asTkt.tkt-EncryptPart.tkt-MaxExpireTime) is present
(otherwise it is omitted) and is set to the earliest of:

— The requested maximum expiration time (asReq.req-Body.req-MaxExpireTime), if
present; otherwise, the requested expiration time (asReq.req-Body.req-ExpireTime).

— TktA,B’s start time (or authentication time, if the start time is absent) plus the maximum
renewable ticket lifetime associated with the named client A.

— TktA,B’s start time (or authentication time, if the start time is absent) plus the maximum
renewable ticket lifetime associated with the target server KDSX.

— TktA,B’s start time (or authentication time, if the start time is absent) plus the cell-wide
maximum renewable ticket lifetime associated with the issuing authority KDSX.

• Transit path

TktA,B’s transit path (asTkt.tkt-EncryptPart.tkt-TransitPath) is omitted.

• Client addresses

TktA,B’s client address field (asTkt.tkt-EncryptPart.tkt-ClientAddrs) is set to the requested
client addresses (asReq.req-Body.req-ClientAddrs), if present. (In particular, no attempt is
made to check that this AS Request originated from one of the requested client addresses, if
present.) Otherwise, it is omitted. In the present revision of DCE, at least one client address
must be supplied by the client, otherwise the KDS will fail the AS Request.

• Authorisation data

KDSX checks that the requested authorisation data asReq.req-Body.req-
EncryptedAuthzData) is omitted. (Since the AS Request is unauthenticated, KDSX cannot
vouch for such authorisation data.) TktA,B’s authorisation data field (asTkt.tkt-
EncryptPart.tkt-AuthzData) is omitted.

• Additional tickets

224 CAE Specification (1997)



Key Distribution (Authentication) Services AS Request/Response Processing

KDSX checks that no additional tickets (asReq.req-Body.req-AdditionalTkts) are present.

• Options

— Forwardable

If the forwardable option (asReq.req-Body.req-Flags.req-Forwardable) has been
requested and if forwardability is permitted by KDSX, then TktA,B’s forwardable option
(asTkt.tkt-EncryptPart.tkt-Flags.tkt-Forwardable) is selected.

— Proxiable

If the Proxiable option (asReq.req-Body.req-Flags.req-Proxiable) has been requested and
if proxiability is permitted by KDSX, and if B ≠ KDSX, then TktA,B’s proxiable option
(asTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxiable) is selected. (If B = KDSX, then this AS
request is denied, because ticket-granting-tickets are not proxiable.)

— Postdatable

If the postdatable option (asReq.req-Body.req-Flags.req-Postdatable) has been requested
and if postdatability is permitted by KDSX, then TktA,B’s postdatable option (asTkt.tkt-
EncryptPart.tkt-Flags.tkt-Postdatable) is selected.

— Postdated

If TktA,B’s start time is present, then TktA,B’s postdated option (asTkt.tkt-EncryptPart.tkt-
Flags.tkt-Postdated) is selected.

— Invalid

If TktA,B’s postdated option is selected (above), then TktA,B’s invalid option (asTkt.tkt-
EncryptPart.tkt-Flags.tkt-Invalid) is selected.

— Renewable, renewable-okay

If TktA,B’s maximum expiration time is present and if renewability is permitted by KDSX,
then TktA,B’s renewable option (asTkt.tkt-EncryptPart.tkt-Flags.tkt-Renewable) is
selected.

— Other; use-session-key, validate, renew, proxy, forward

KDSX checks that no other KDS options have been requested. Currently, these are the
use-session-key (asReq.req-Body.req-Flags.req-UseSessionKey), validate (asReq.req-
Body.req-Flags.req-Validate), renew (asReq.req-Body.req-Flags.req-Renew), proxy
(asReq.req-Body.req-Flags.req-Proxy) and forward (asReq.req-Body.req-Flags.req-
Forward) options {errStatusCode-BAD-OPTION}.

— Initial

TktA,B’s initial option (asTkt.tkt-EncryptPart.tkt-Flags.tkt-Initial) is selected. (This marks
TktA,B as an initial ticket.)

— Other; proxied, forwarded

All of TktA,B’s options that have not been selected by any of the above steps are
deselected. Additionally, the forwarded (asTkt.tkt-EncryptPart.tkt-Flags.tkt-Forwarded)
and proxied (asTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxied) options are deselected.

• Encryption

KDSX encrypts asTkt.tkt-EncryptPart using KDSX’s long-term key KKDSX (of the chosen
encryption type encType, and key version number). This is the ciphertext portion of TktA,B
(asTkt.tkt-EncryptedPart.encData-CipherText). KDSX also sets the encryption type

Part 2 Security Services and Protocols 225



AS Request/Response Processing Key Distribution (Authentication) Services

(asTkt.tkt-EncryptedPart.encData-EncType) to encType and the key version number
(asTkt.tkt-EncryptedPart.encData-KeyVersNum) to KKDSX’s version number.

At this point, TktA,B is well-formed, and KDSX turns its attention to completing the construction
of the AS Response message, asResp.

• Protocol version number

The protocol version number (asResp.resp-ProtoVersNum) is set to protoVersNum-KRB5.

• Protocol message type

The protocol message type (asResp.resp-ProtoMsgType) is set to protoMsgType-AS-
RESPONSE.

• Authentication data

The authentication data (asResp.resp-AuthnData) is either omitted, or it consists of a single
element (asResp.resp-AuthnData[0]); in the latter case, the type (asResp.resp-
AuthnData[0].authnData-Type) is authnDataType-PW-SALT and the value (asResp.resp-
AuthnData[0].authnData-Value) is the salt to be used by the client to derive its long-term
key (via the algorithm of Section 4.3.6.1 on page 190).

• Client cell

The client cell (asResp.resp-ClientCell) is set to TktA,B’s client cell (asTkt.tkt-EncryptPart.tkt-
ClientCell).

• Client name

The client name (asResp.resp-ClientName) is set to TktA,B’s client name (asTkt.tkt-
EncryptPart.tkt-ClientName).

• Ticket

The ticket (asResp.resp-Tkt) is set to the newly created TktA,B (asTkt).

• Session key

The session key (asResp.resp-EncryptPart.resp-SessionKey) is set to TktA,B’s session key,
KA,KDSX (asTkt.tkt-EncryptPart.tkt-SessionKey).

• Nonce

The nonce (asResp.resp-EncryptPart.resp-Nonce) is set to the nonce that the calling client sent
(asReq.req-Body.req-Nonce).

• Client addresses

The client address field (asResp.resp-EncryptPart.resp-ClientAddrs) is set to TktA,B’s client
address field (asTkt.tkt-EncryptPart.tkt-ClientAddrs), if present. Otherwise, it is omitted.

• Server cell

The server cell (asResp.resp-EncryptPart.resp-ServerCell) is set to TktA,B’s server cell
(asTkt.tkt-ServerCell).

• Server name

The server name (asResp.resp-EncryptPart.resp-ServerName) is set to TktA,B’s server name
(asTkt.tkt-ServerName).

• Authentication time

226 CAE Specification (1997)



Key Distribution (Authentication) Services AS Request/Response Processing

The authentication time (asResp.resp-EncryptPart.resp-AuthnTime) is set to TktA,B’s
authentication time (asTkt.tkt-EncryptPart.tkt-AuthnTime).

• Start time

The start time (asResp.resp-EncryptPart.resp-StartTime) is set to TktA,B’s start time
(asTkt.tkt-EncryptPart.tkt-StartTime), if present. Otherwise, it is omitted.

• Expiration time

The expiration time (asResp.resp-EncryptPart.resp-ExpireTime) is set to TktA,B’s expiration
time (asTkt.tkt-EncryptPart.tkt-ExpireTime).

• Maximum expiration time

The maximum expiration time (asResp.resp-EncryptPart.resp-MaxExpireTime) is set to
TktA,B’s maximum expiration time (asTkt.tkt-EncryptPart.tkt-MaxExpireTime), if present.
Otherwise, it is omitted.

• Key expiration date

The key expiration date (asResp.resp-EncryptPart.resp-KeyExpireDate) is set to the
expiration date of A’s long-term key (of the selected encryption type and key version
number), KA.

• Last requests

The last requests field (asResp.resp-EncryptPart.resp-LastRequests) is set to A’s last requests
information.

• Options

The options (asResp.resp-EncryptPart.resp-Flags) are set to TktA,B’s options (asTkt.tkt-
EncryptPart.tkt-Flags).

• Encryption

KDSX encrypts asResp.resp-EncryptPart using A’s long-term key KA (using the chosen
encryption type encType). This is the ciphertext portion of the AS Response (asResp.resp-
EncryptedPart.encData-CipherText). KDSX also sets the encryption type (asResp.resp-
EncryptedPart.encData-EncType) to encType and the key version number (asResp.resp-
EncryptedPart.encData-KeyVersNum) to the version number of the client’s long-term key.

At this point, the KDS Response is well-formed, and KDSX returns it to the calling client.

4.12.3 Client Receives AS Response

[RFC 1510: 3.1.5, A.3, A.4]

Consider a client A that receives an AS Response, asResp (that is, asResp is a value of type
ASResponse, with protocol version number (asResp.resp-ProtoVersNum) protoVersNum-KRB5
and protocol message type (asResp.resp-ProtoMsgType) protoMsgType-AS-RESPONSE), in
response to an AS Request, asReq (as the result of calling kds_request( )) to KDSX. Then A
processes asResp according to the following algorithm. In the case this algorithm completes
successfully, A is justified in believing that the returned TktA,B (or asTkt; that is, asResp.resp-Tkt)
is correctly and securely targeted to KDSX, and that it contains the values returned elsewhere in
asResp (in particular, that A is the client named by TktA,B), and using it (especially, its session
key, KA,KDSX) in subsequent TGS Requests and Authentication Headers it sends to KDSX. In the
case the algorithm fails, A takes (application-specific) recovery action.

Part 2 Security Services and Protocols 227



AS Request/Response Processing Key Distribution (Authentication) Services

Here, the notions of ‘‘success’’ or ‘‘failure’’ of this algorithm are taken to mean ‘‘conforming to
A’s request (asReq)’’, where the criteria of ‘‘conformance’’ are application-specific. Typically, but
not necessarily, A will be satisfied only if KDSX formulates TktA,B exactly as A requested. For
example, A may have requested a very long maximum expiration time but KDSX issued only a
somewhat shorter one — whether A views that as a success or failure is an application-specific
determination. (Note that A cannot inspect TktA,B directly, because A cannot decrypt it — A has
to rely on the other, unencrypted, fields of the AS Response message.)

• Client cell

The named client’s cell (asResp.resp-ClientCell) is checked for conformance to A’s cell name
(which A had implicitly sent (asReq.req-Body.req-ServerCell), by sending its AS Request to
KDSX).

• Client name

The client name (asResp.resp-ClientName) is checked for conformance to what A requested
(asReq.req-Body.req-ClientName); that is, to A’s RS name.

• Authentication data

The authentication data (asResp.resp-AuthnData), if present, is scanned for its least element
(that is, the minimal i) for which the type (asResp.resp-AuthnData[i].authnData-Type) is
authnDataType-PW-SALT, and then the client derives its long-term key, KA, from its
password and the included salt (asResp.resp-AuthnData[i].authnData-Value) (see Section
4.3.6.1 on page 190). If the authentication data is absent, then the client derives its long-term
key from its password and the default salt (see Section 4.3.6.1 on page 190).

• Ticket

TktA,B (asTkt, asResp.resp-Tkt) is not directly interpretable (in the sense of being decryptable)
by A, but the information in it is largely available elsewhere in asResp.

• Decryption

The encryption type, encType (asResp.resp-EncryptedPart.encData-EncType), is checked for
conformance to what A had requested (asReq.req-Body.req-EncTypes). If it is acceptable,
then A attempts to decrypt the ciphertext portion of the AS Response (asResp.resp-
EncryptedPart.encData-CipherText), using its long-term key KA (which A must know or
derive; for example, from its password and salt as described above), of encryption type
encType and the indicated key version number (asResp.resp-EncryptedPart.encData-
KeyVersNum). A successful decryption is recognised by the built-in integrity afforded by the
ciphertext itself. In this way, A learns the information carried in asResp.resp-EncryptPart. If
A encounters an unsuccessful decryption, it takes application-specific action — this
presumably includes rejection of asResp as untrustworthy (the ability to successfully decrypt
asResp.resp-EncryptedPart proves to A that it was encrypted by the legitimate KDSX (since A
trusts its long-term key KA to be secure), and that it is not being spoofed by a counterfeit
KDSX). In particular, if A is not the client requested in asResp (and named in asTkt), in the
sense of not knowing the correct long-term key of that client, then A will not be able to
successfully decrypt asResp, and consequently will not be able to gain access to the
information in asResp.resp-EncryptPart (in particular, its session key, KA,KDSX (asResp.resp-
EncryptPart.resp-SessionKey)).

Note: This assumes (as stated) that A trusts its long-term key KA. In the terminology of
the Login Facility (see Section 1.15 on page 71), the successful decryption of
asResp.resp-EncryptedPart.encData-CipherText amounts to ‘‘validation of
TktA,B’’. In order for arbitrary other parties (other than A) to become convinced of
the genuineness of TktA,B, the subtler protocols involved in ‘‘certification of

228 CAE Specification (1997)



Key Distribution (Authentication) Services AS Request/Response Processing

TktA,B’’ (see Section 1.15.2 on page 77) must be employed.

• Nonce

The nonce (asResp.resp-EncryptPart.resp-Nonce) is checked for equality with the requested
nonce (asReq.req-Body.req-Nonce). If it is not equal, then this asResp does not correspond to
asReq, and a ‘‘replay attack’’ may be suspected, and A takes application-specific action.

• Last requests

The last requests (asResp.resp-EncryptPart.resp-LastRequests) are inspected. If they do not
match A’s own knowledge of its previous requests, then a potential breach of security may be
suspected, and A typically invokes recovery measures consistent with local policy.

• Key expiration date

The key expiration date (asResp.resp-EncryptPart.resp-KeyExpireDate) is inspected if
present. If it indicates a date in the ‘‘near’’ future, then A should invoke key update
procedures according to local policy (see Chapter 11). Typically, this will involve A’s
‘‘changing its password’’ — a comparatively ‘‘cheap’’ undertaking. Failure to do so risks A’s
long-term key KA, and hence its password, actually expiring, which would require A to re-
register itself with RSX (for encryption type encType) — a comparatively ‘‘expensive’’
undertaking in itself, in addition to the lost opportunities for service access while the long-
term key is expired.

• Server cell

The server cell (asResp.resp-EncryptPart.resp-ServerCell) is checked for conformance to what
A requested (asReq.req-Body.req-ServerCell); that is, to KDSX’s cell name, or to X’s cell name.

• Server name

The server name (asResp.resp-EncryptPart.resp-ServerName) is checked for conformance to
what A requested (asReq.req-Body.req-ServerName); that is, to KDSX’s RS name.

• Session key

The session key (which A trusts is secure), KA,KDSX (asResp.resp-EncryptPart.resp-
SessionKey), is saved for later use in protecting communications with KDSX; that is,
subsequent TGS Requests.

• Authentication time

The authentication time (asResp.resp-EncryptPart.resp-AuthnTime) is checked for
conformance to what A expects (typically, it should be equal to A’s system time (modulo
maxClockSkew)).

• Start time

The start time (asResp.resp-EncryptPart.resp-StartTime) is checked for conformance to what
A requested. Namely, if A requested TktA,B to be postdated, then the start time is checked to
be present and checked for conformance to the start time A requested (asReq.req-Body.req-
StartTime); otherwise, the start time should be absent.

• Expiration time

The expiration time (asResp.resp-EncryptPart.resp-ExpireTime) is checked for conformance
to what A requested (asReq.req-Body.req-ExpireTime).

• Maximum expiration time

Part 2 Security Services and Protocols 229



AS Request/Response Processing Key Distribution (Authentication) Services

The maximum expiration time (asResp.resp-EncryptPart.resp-MaxExpireTime) is checked for
conformance to what A requested. It should be only present (at most) if A had selected the
renewable option (asReq.req-Body.req-Flags.req-Renewable) and supplied a requested
maximum expiration time (asReq.req-Body.req-MaxExpireTime), or if A had selected the
renewable-okay option (asReq.req-Body.req-Flags.req-RenewableOK).

• Client addresses

If A requested that TktA,B contain client host addresses, then the client address field
(asResp.resp-EncryptPart.resp-ClientAddrs) is checked to be present and checked for
conformance to what A requested (asReq.req-Body.req-ClientAddrs). Otherwise, the client
addresses should be absent.

• Options

The options field (asResp.resp-EncryptPart.resp-Flags) is inspected for conformance to what
A requested (asReq.req-Body.req-Flags).

This completes the specification of the AS Request/Response exchange.

230 CAE Specification (1997)



Key Distribution (Authentication) Services (Reverse-)Authentication Header Processing

4.13 (Reverse-)Authentication Header Processing
[RFC 1510: 1, 3.2.1]

This section specifies in detail the processing that occurs during an authentication/reverse-
authentication header exchange. There are three steps involved:

1. A client prepares an authentication header and sends it to a target server as part of an
‘‘authenticated request for (RPC) service’’ (for example, this could be a TGS Request, in
which case the target server is a KDS server). Typically, this authentication header will be
merely a part of the whole message sent from client to server, and the rest of the message
will contain RPC protocol information and the input parameters for the RPC service
request.

2. A server receives an authentication header from a client, processes it, prepares a reverse-
authentication header (in the case of a successful client-to-server authentication, and the
client has requested the mutual authentication option) or an error message (in the case of a
failed client-to-server authentication), and returns that to the client (though some servers
may not return errors depending on their policy). Typically, in the success case, the server
will also proceed to perform the requested service (subject to authorisation constraints)
and return the output RPC parameters to the client in addition to the reverse-
authentication header.

3. A client receives a reverse-authentication header (success case, if it had requested mutual
authentication in its authentication header) or an error (failure case). Typically, in the
success case, it also receives the results of its RPC service request, which it will then decide
to accept or reject (on the basis of the reverse-authentication header).

The details of the three steps of the success case are specified next.

Note that it is A’s responsibility to know (or to securely determine) all the information necessary
to correctly formulate its message to B — especially, B’s cell name and RS name.

Finally, note that not every RPC request/response needs to carry an authentication/reverse-
authentication header; only those that need to establish a session or conversation (either initial
or re-established) key need do so. Once such a key has been established (and trusted by both
client and server), it can be used to protect numerous subsequent RPCs — see Chapter 9 for
details.

Notes:

1. It should be noted that the descriptions here are ‘‘typical’’ of
authentication/reverse-authentication header processing. But since the
interpreters (A and B) of the authentication/reverse-authentication headers are
in general application-specific, this whole discussion should be understood to
implicitly accommodate some such wording as ‘‘⋅⋅⋅ or other such processing as the
application requires or allows ⋅⋅⋅’’. For example, an especially cautious server may
refuse to accept proxied tickets, or an especially lenient one may provide a
‘‘grace period’’ during which it will accept tickets that expire during a session.
Another example is that a password-changing program might demand an
initial ticket, to guard against the possibility of a miscreant’s hijacking a user
session by simply sitting down at an unattended seat. See also Section 4.14 on
page 240, which is the only place authentication/reverse-authentication
headers are used internally in the KDS protocol ‘‘application’’.

2. The presentation of Section 4.13.1 on page 232 through Section 4.13.3 on page
238 is cast in terms of: ‘‘client A using TktA,B (with session key KA,B) to
authenticate to server B’’. It will be observed, though, that a third principal A´

Part 2 Security Services and Protocols 231



(Reverse-)Authentication Header Processing Key Distribution (Authentication) Services

could be injected into the discussion, and the whole presentation recast as:
‘‘client A using TktA´,B (with session key KA´,B) to authenticate to server B,
provided that A knows the session key KA´,B’’. This notation becomes
burdensome to the exposition, so it won’t be employed here. Far from being a
minor consequence of the authentication architecture, systematic use of this
idea is central to the privilege architecture (with A´ = PS, the Privilege Server —
see Chapter 1 and Chapter 5).

4.13.1 Client Sends Authentication Header

[RFC 1510: 3.2.2, A.9]

Consider a client A in cell X which has successfully executed a KDS Request (kds_request( )), that
is, whose KDS Response it accepts (in the sense of Section 4.12.3 on page 227 and/or Section
4.14.3 on page 254). Thus, A is in possession of a TktA,B received from KDSY, kdsTkt, whose
contents it knows, especially its session key KA,B (and its encryption type encType), and now A
wants to use TktA,B to ‘‘authenticate to’’ (that is, engage in protected communications with)
server B in cell Y. The following algorithm specifies how A prepares an authentication header,
authnHdr (a value of the AuthnHeader data type) containing TktA,B (authnHdr.authnHdr-Tkt),
and a newly generated authenticator authnr (authnHdr.authnHdr-EncryptAuthnr, of type
Authenticator), and sends it to B for this purpose.

The following algorithm first discusses how A constructs the newly generated authenticator,
authnr, and then how it constructs the rest of the authentication header, authnHdr.

• Protocol version number

The protocol version number (authnr.authnr-ProtoVersNum) is set to protoVersNum-KRB5.

• Client cell

The client cell (authnr.authnr-ClientCell) is set to A’s cell name; that is, to X’s cell name.

• Client name

The client name (authnr.authnr-ClientName) is set to A’s RS name.

• Client timestamp

The client timestamp (authnr.authnr-ClientTime) is set to A’s system time.

• Client microsecondstamp

The client microsecond stamp (authnr.authnr-ClientMicroSec) is set to A’s system
microsecond time.

• Conversation key

If A desires to use a conversation key of its own choosing, say KÂ,B (of the same encryption
type, encType), instead of the KDSY-generated session key KA,B, to protect this client-server
session, then it sets the conversation key (authnr.authnr-ConversationKey) to KÂ,B.
Otherwise this field is omitted. (The keys KA,B, KÂ,B and
Kˆˆ A,B all have the same
encryption type, encType.)

• Checksum

If this application uses checksums, then A uses an application-specific checksum type
(authnr.authnr-Cksum.cksum-Type) to set the checksum value (authnr.authnr-
Cksum.cksum-Value) to the checksum of some application-specific plaintext (typically, this
will be the checksum of the ‘‘service’’ portion of the message that this authenticator is

232 CAE Specification (1997)



Key Distribution (Authentication) Services (Reverse-)Authentication Header Processing

authenticating). Otherwise the checksum is omitted. (In the case of DCE RPC applications,
the use of checksums is specified as part of the RPC protocol specifications — see Chapter 9.)

• Sequence number

The sequence number (authnr.authnr-SeqNum) is processed in an application-specific
manner (perhaps omitting it).

• Authorisation data

If this application uses additional authorisation data, then A sets the authorisation data field
(authnr.authnr-AuthzData) to application-specific additional authorisation data. Otherwise,
this field is omitted.

• Encryption

A encrypts authnr, using the encryption type encType and the session key KA,B (not the
conversation key KÂ,B, even if present) in the accompanying TktA,B. This is the ciphertext
portion of the authentication header (authnHdr.authnHdr-EncryptedAuthnr.encData-
CipherText). A also sets the encryption type (authnHdr.authnHdr-
EncryptedAuthnr.encData-EncType) to encType and the key version number
(authnHdr.authnHdr-EncryptedAuthnr.encData-KeyVersNum) to an appropriate
application-specific value, if any (usually it is omitted).

At this point, authnr is well-formed and encrypted, and A turns its attention to completing the
construction of the authentication header, authnHdr.

• Protocol version number

The protocol version number (authnHdr.authnHdr-ProtoVersNum) is set to protoVersNum-
KRB5.

• Protocol message type

The protocol message type (authnHdr.authnHdr-ProtoMsgType) is set to protoMsgType-
AUTHN-HEADER.

• Ticket

The ticket (authnHdr.authnHdr-Tkt) is set to TktA,B (kdsTkt).

• Authenticator

The encrypted authenticator (authnHdr.authnHdr-EncryptedAuthnr) is set to the encryption
of authnr as constructed above.

• Options

— Use-session-key

If the accompanying TktA,B (kdsTkt, authnHdr.authnHdr-Tkt), is protected with a session
key, K• (carried in a (ticket-granting-)ticket targeted to B), instead of with B’s long-term
key KB, then the use-session-key option (authnHdr.authnHdr-Flags.authnHdr-
UseSessionKey) is selected (see Section 4.6.2 on page 203).

— Mutual authentication

If A desires that B return a reverse-authentication header with its response, the mutual
authentication option (authnHdr.authnHdr-Flags.authnHdr-MutualRequired) is selected.

— Other

Part 2 Security Services and Protocols 233



(Reverse-)Authentication Header Processing Key Distribution (Authentication) Services

All of authnHdr’s options that have not been selected by any of the above steps are
deselected (unless they are used in application-specific ways). Currently, there are no
other options that haven’t already been mentioned above.

At this point, authnHdr is well-formed, and A sends it to B.

4.13.2 Server Receives Authentication Header and Sends Reverse-authentication Header

[RFC 1510: 3.2.3, 3.2.4, A.10, A.11]

Consider an authentication header, authnHdr, received by a server, B in cell Y, containing a TktA,B
(ahTkt, authnHdr.authnHdr-Tkt) and an authenticator, authnr (authnHdr.authnHdr-
EncryptAuthnr). (For example, KDS servers receive such an authentication header in the first
authentication data field of a TGS Request (tgsReq.req-AuthnData[0].authnData-Value, with
tgsReq.req-AuthnData[0].authnData-Type = authnDataType-TGS-REQ) — see Section 4.14.2 on
page 245.) Thus, authnHdr is a value of type AuthnHeader, with protocol version number
(authnHdr.authnHdr-ProtoVersNum) protoVersNum-KRB5 and protocol message type
(authnHdr.authnHdr-ProtoMsgType) protoMsgType-AUTHN-HEADER. Then B executes the
algorithm below. If the algorithm executes successfully, B is justified in believing that it can at
this time engage in secure communications with the client A named in TktA,B, protecting their
communications with the session key KA,B carried in TktA,B, or with the conversation key KÂ,B
carried in the authentication header itself (authnHdr.authnHdr-EncryptAuthnr.authnr-
ConversationKey) (or with another conversation key, Kˆˆ A,B, of B’s own choosing — see
below). That is, the authentication header ‘‘authenticates the client A to the server B’’.

The following algorithm first discusses how B processes authnHdr, and then, if the mutual
authentication option (authnHdr.authnHdr-Flags.authnHdr-MutualRequired) has been selected,
how B constructs a reverse-authentication header, revAuthnHdr (of type RevAuthnHeader), to
return to A.

• Authentication header options:

— Use-session-key

If the use-session-key option (authnHdr.authnHdr-Flags.authnHdr-UseSessionKey) is
deselected, B knows that ahTkt is protected with its long-term key KB. If it is selected, B
knows that ahTkt is protected with a session key, K• (see Section 4.6.2 on page 203).

— Mutual authentication

If the mutual authentication option (authnHdr.authnHdr-Flags.authnHdr-
MutualRequired) is selected, B knows A expects a reverse-authentication header to be
returned.

• Ticket protocol version number

The protocol version number (ahTkt.tkt-ProtoVersNum) is checked to be protoVersNum-
KRB5.

• Ticket server cell

The server cell (ahTkt.tkt-ServerCell) is checked to be the name of B’s cell; that is, Y’s cell
name.

• Ticket server name

The server name (ahTkt.tkt-ServerName) is checked to be B’s RS name.

• Ticket decryption

234 CAE Specification (1997)



Key Distribution (Authentication) Services (Reverse-)Authentication Header Processing

The encryption type protecting TktA,B, encType (ahTkt.tkt-EncryptedPart.encData-EncType), is
checked for support by B, as is the key version number (ahTkt.tkt-EncryptedPart.encData-
KeyVersNum) if present. If the use-session-key option is deselected, B uses its long-term key
KB to attempt to decrypt TktA,B’s ciphertext (ahTkt.tkt-EncryptedPart.encData-CipherText);
otherwise, B uses the session key, K•. A successful decryption is recognised by the built-in
integrity afforded by the ciphertext itself. In this way, B learns the information carried in
TktA,B, in particular its session key KA,B (ahTkt.tkt-EncryptPart.tkt-SessionKey).

• Authenticator decryption

The encryption type protecting the authenticator (authnHdr.authnHdr-
EncryptedAuthnr.encData-EncType) is checked to be the same as that protecting TktA,B,
namely encType. B decrypts the authenticator’s ciphertext (authnHdr.authnHdr-
EncryptedAuthnr.encData-CipherText) using the session key KA,B (not K•, even if the use-
session-key option is selected). The key version number (authnHdr.authnHdr-
EncryptedAuthnr.encData-KeyVersNum), if present, is processed in an application-specific
way (usually, it is omitted). A successful decryption is recognised by the built-in integrity
afforded by the ciphertext itself — this is what convinces B that A knows the session key KA,B; that
is, this is what actually ‘‘authenticates’’ A to B. In this way, B learns the information carried
in authnr (authnHdr.authnHdr-EncryptAuthnr).

• Authenticator protocol version number

The authenticator’s protocol version number (authnr.authnr-ProtoVersNum) is checked to be
protoVersNum-KRB5.

• Client cell

The client cells from ahTkt (ahTkt.tkt-EncryptPart.tkt-ClientCell) and from authnr
(authnr.authnr-ClientCell) are checked to be the same (namely, to A’s cell name; that is, X’s
cell name).

• Client name

The client names from ahTkt (ahTkt.tkt-EncryptPart.tkt-ClientName) and from authnr
(authnr.authnr-ClientName) are checked to be the same (namely, to A’s RS name).

• Client addresses

If there are client addresses present in ahTkt (ahTkt.tkt-EncryptPart.tkt-ClientAddrs) and if B
requires that client addresses be used, then B checks that A is communicating from one of
them (as reported by B’s operating system, according to the level of trust B places in that);
that is, that authnHdr was received from one of the addresses on the list.

• Client timestamp

A’s timestamp (authnr.authnr-ClientTime) is checked to be equal to B’s system time (modulo
maxClockSkew). It is in this way that B becomes convinced that it is communicating with A
in real-time.

• Client microsecondstamp

A’s microsecondstamp (authnr.authnr-ClientMicroSec), together with its timestamp, are
checked to not be present in B’s replay cache. They are then stored in the replay cache.

• Authentication time

The authentication time (ahTkt.tkt-EncryptPart.tkt-AuthnTime) is typically ignored by
application-level servers (see Section 4.14 on page 240 for the case of KDS servers).

Part 2 Security Services and Protocols 235



(Reverse-)Authentication Header Processing Key Distribution (Authentication) Services

• Start time

The start time (ahTkt.tkt-EncryptPart.tkt-StartTime) is checked to be earlier than or equal to
B’s system time (modulo maxClockSkew).

• Expiration time

The expiration time (ahTkt.tkt-EncryptPart.tkt-ExpireTime) is checked to be later than or
equal to B’s system time (modulo maxClockSkew).

• Maximum expiration time‘

The maximum expiration time (ahTkt.tkt-EncryptPart.tkt-MaxExpireTime) is typically
ignored by application-level servers (see Section 4.14 on page 240 for the case of KDS
servers).

• Sequence number

The sequence number (authnr.authnr-SeqNum) is processed in an application-specific
manner.

• Conversation key

If a conversation key KÂ,B (authnr.authnr-ConversationKey) is present, B decides (in an
application-specific way) whether it will use it to protect this client-server session, or if it will
use ahTkt’s session key KA,B or will generate its own conversation key Kˆˆ A,B for this
purpose (informing A of it in the accompanying revAuthnHdr).

• Transit path

The transit path (ahTkt.tkt-EncryptPart.tkt-TransitPath) is typically ignored by application-
level servers (see Section 4.14 on page 240 for the case of KDS servers, and Section 5.4 on
page 292 for the case of PS servers).

• Checksum

If a checksum (authnr.authnr-Cksum) is present, it is processed in an application-specific
way.

• Ticket options:

— Invalid

The invalid option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Invalid) is typically checked by
application-level servers to be deselected (see Section 4.14 on page 240 for the case of KDS
servers).

— Forwardable, forwarded, proxiable, proxied, postdatable, postdated, renewable, initial

All other options are ignored by application-level servers (see Section 4.14 on page 240 for
the case of KDS servers). Currently, these include forwardable (ahTkt.tkt-
EncryptPart.tkt-Flags.tkt-Forwardable), forwarded (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-
Forwarded), proxiable (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxiable), proxied (ahTkt.tkt-
EncryptPart.tkt-Flags.tkt-Proxied), postdatable (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-
Postdatable), postdated (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Postdated), renewable
(ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Renewable), and initial (ahTkt.tkt-EncryptPart.tkt-
Flags.tkt-Initial).

• Ticket authorisation data

If ticket authorisation data (ahTkt.tkt-EncryptPart.tkt-AuthzData) is present, B uses it (in an
application-specific way) to make authorisation decisions.

236 CAE Specification (1997)



Key Distribution (Authentication) Services (Reverse-)Authentication Header Processing

• Authenticator authorisation data

If additional authenticator authorisation data (authnr.authnr-AuthzData) is present, B uses it
(in an application-specific way) to make authorisation decisions.

At this point, B has completed its processing of authnHdr. If A has not requested mutual
authentication (by the authnHdr.authnHdr-Flags.authnHdr-MutualRequired option), B
proceeds with the application-specific performance of its service (which might include checking
authorisation controls, and sending return parameters (potentially protected with a session or
conversation key) back to A without a reverse-authentication header, and so on). Otherwise, B
turns its attention to constructing a reverse-authentication header, revAuthnHdr, to be sent back
to A, as follows:

• Protocol version number

The protocol version number (revAuthnHdr.revAuthnHdr-ProtoVersNum) is set to
protoVersNum-KRB5.

• Protocol message type

The protocol message type (revAuthnHdr.revAuthnHdr-ProtoMsgType) is set to
protoMsgType-REVAUTHN-HEADER.

• Client timestamp

The client timestamp (revAuthnHdr.revAuthnHdr-EncryptPart.revAuthnHdr-ClientTime) is
set to the timestamp A sent in its authentication header (authnr.authnr-ClientTime).

• Client microsecondstamp

The client microsecondstamp (revAuthnHdr.revAuthnHdr-EncryptPart.revAuthnHdr-
ClientMicroSec) is set to the microsecondstamp A sent in its authentication header
(authnr.authnr-ClientMicroSec).

• Conversation key

If B wants to protect the current client-server session with a key of its own choosing, instead
of either the KDSY-generated session key (KA,B) or the A-generated conversation key (KÂ,B) if
present, then B generates a conversation key Kˆˆ A,B (of the same encryption type,
encType) and returns it in the conversation key field (revAuthnHdr.revAuthnHdr-
EncryptPart.revAuthnHdr-ConversationKey). Otherwise, it is omitted.

• Sequence number

The sequence number (revAuthnHdr.revAuthnHdr-EncryptPart.revAuthnHdr-SeqNum) is
processed in an application-specific manner (perhaps omitting it).

• Encryption

B encrypts revAuthnHdr.revAuthnHdr-EncryptPart, using the encryption type encType and
session key KA,B (not KÂ,B or Kˆˆ A,B, even if they exist) specified by the authentication
header authnHdr. This is the ciphertext portion of the reverse-authentication header
(revAuthnHdr.revAuthnHdr-EncryptedPart.encData-CipherText). B also sets the encryption
type (revAuthnHdr.revAuthnHdr-EncryptedPart.encData-EncType) to encType and the key
version number (revAuthnHdr.revAuthnHdr-EncryptedPart.encData-KeyVersNum) to an
appropriate application-specific value.

At this point, the revAuthnHdr is well-formed, and B returns it to the calling client.

Part 2 Security Services and Protocols 237



(Reverse-)Authentication Header Processing Key Distribution (Authentication) Services

4.13.3 Client Receives Reverse-authentication Header

[RFC 1510: 3.2.5, A.12]

Consider a reverse-authentication header, revAuthnHdr, received by a client A, in response to an
authentication header, authnHdr (with the mutual authentication option selected), that A had
earlier sent to a server B. (This is a purely application-level scenario, not a system-level scenario,
as the KDS rejects TGS Requests that request mutual authentication — see Section 4.14.2 on page
245.) Thus, revAuthnHdr is a value of type RevAuthnHeader, with protocol version number
(revAuthnHdr.revAuthnHdr-ProtoVersNum) protoVersNum-KRB5 and protocol message
number (revAuthnHdr.revAuthnHdr-ProtoMsgType) protoMsgType-REVAUTHN-HEADER.
Then A executes the algorithm below. If the algorithm executes successfully, A is justified in
believing that it can at this time participate in secure communications with the server B targeted
by the TktA,B in the corresponding authentication header (authnHdr.authnHdr-Tkt.tkt-
ServerCell and authnHdr.authnHdr-Tkt.tkt-ServerName), protecting their communications
with the session key KA,B (authnHdr.authnHdr-Tkt.tkt-EncryptPart.tkt-SessionKey), or with a
negotiated conversation key KÂ,B (authnHdrauthnHdr-EncryptPart.authnr-ConversationKey) or
Kˆˆ A,B (revAuthnHdr.revAuthnHdr-EncryptPart.revAuthnHdr-ConversationKey) if these
exist (if multiples of these exist, the choice of which to use is dependent on application-specific
negotiation-resolution policy). That is, the reverse-authentication header ‘‘authenticates the
server B to the client A’’.

• Decryption

The encryption type of the reverse-authentication header, encType
(revAuthnHdr.revAuthnHdr-EncryptedPart.encData-EncType), is checked for conformance
for what A had requested (authnHdr.authnHdr-Tkt.tkt-EncryptedPart.encData-EncType). If
it is acceptable, A then attempts to decrypt the ciphertext portion of the reverse-
authentication header (revAuthnHdr.revAuthnHdr-EncryptedPart.encData-CipherText),
using the session key KA,B (authnHdr.authnHdr-Tkt.tkt-EncryptPart.tkt-SessionKey) of
encryption type encType and key version number authnHdr.authnHdr-
EncryptedPart.encData-KeyVersNum if present (not KÂ,B or Kˆˆ A,B, even if these
exist). A successful decryption is recognised by the built-in integrity afforded by the
ciphertext itself. If A encounters an ‘‘unsuccessful’’ decryption, it takes application-specific
action — this presumably includes rejection of revAuthnHdr as untrustworthy.

• Client timestamp

The client timestamp (revAuthnHdr.revAuthnHdr-EncryptPart.revAuthnHdr-ClientTime) is
checked for conformance with the client timestamp that A had sent B (authnHdr.authnHdr-
EncryptPart.authnr-ClientTime).

• Client microsecondstamp

The client microsecondstamp (revAuthnHdr.revAuthnHdr-EncryptPart.revAuthnHdr-
ClientMicroSec) is checked for conformance with the client microsecondestamp that A had
sent to B (authnHdr.authnHdr-EncryptPart.authnr-ClientMicroSec). It is this step and the
previous one that convince A it is securely communicating with B (‘‘now’’).

• Conversation key

If a conversation key
Kˆˆ A,B
(revAuthnHdr.revAuthnHdr-EncryptPart.revAuthnHdr-ConversationKey) is present, A
processes it in an application-specific way (typically, it is used to protect this client-server
session).

238 CAE Specification (1997)



Key Distribution (Authentication) Services (Reverse-)Authentication Header Processing

• Sequence number

The sequence number (revAuthnHdr.revAuthnHdr-EncryptPart.revAuthnHdr-SeqNum) is
processed in an application-specific manner.

This completes the specification of the Authentication/Reverse-authentication Header
exchange.

Part 2 Security Services and Protocols 239



TGS Request/Response Processing Key Distribution (Authentication) Services

4.14 TGS Request/Response Processing
[RFC 1510: 1, 3.3]

This section specifies in detail the processing that occurs during a TGS Request/Response
exchange. That is, this section specifies the manipulating of old tickets, as well as the issuing of
new tickets (both service-tickets and ticket-granting-tickets which are used in cross-cell
authentication). There are three steps involved:

1. A client prepares a TGS Request and sends it to a KDS server.

2. A KDS server receives the TGS Request from a client, processes it, prepares an TGS
Response (success case) or KDS Error (failure case), and returns that to the client.

3. A client receives a TGS Response or KDS Error.

The details of the three steps of the success case are specified next.

Note: It has been argued by some that there is no compelling security-related reason that
the TGS service needs to be authenticated (in the sense of Section 4.13 on page 231;
that is, an Authentication Header accompanies the TGS Request). (As seen in Section
4.14.2 on page 245, the TGS service is not mutually authenticated; that is, no Reverse-
authentication Header accompanies the TGS Response). Nevertheless, the TGS
service as specified below is indeed authenticated.

4.14.1 Client Sends TGS Request

[RFC 1510: 3.3.1, A.5]

Consider a client A in cell X which has in its possession some ticket, say TktA,⋅⋅⋅,B, naming A and
targeted to some server B in some cell Y (possibly X = Y — this important special case is
included in everything written in this section). When it is necessary in this section to write out
in full the trust chain of this ticket, it will be written as:

TktA,⋅⋅⋅,B = TktA,X,⋅⋅⋅,W,Y,B

As always, TktA,⋅⋅⋅,B is one of two kinds of ticket, depending on the kind of server (B) it is targeted
to:

• TktA,⋅⋅⋅,B may be a service-ticket, in which case B is a non-KDS server.

• TktA,⋅⋅⋅,B may be a ticket-granting-ticket, in which case B is the server KDSY in one of its
guises, KDSW,Y (possibly KDSY,Y), as a principal in Y.

Since TktA,⋅⋅⋅,B names A, A knows the contents of TktA,⋅⋅⋅,B, especially its session key, which is
denoted KA,B (which is of the same encryption type, encType, as is used to protect TktA,⋅⋅⋅,B). Note
that the key KA,B can always be used as a session key between A and KDSY (even though it is
nominally only a session key between A and B, with possibly B ≠ KDSY). This is because TktA,⋅⋅⋅,B
is protected in the long-term key of B, which KDSY knows, so KDSY has access to KA,B too.

What A wants to do is ‘‘present’’ TktA,⋅⋅⋅,B to KDSY, and receive in return another ticket, which is
denoted:

Tkt*A,⋅⋅⋅,B*

which is ‘‘based on TktA,⋅⋅⋅,B’’, naming A, and targeted to another (perhaps the same) server B* in Y.
That is, A wants to send to KDSY a TGS Request tgsReq (a value of the data type TGSRequest)
containing TktA,⋅⋅⋅,B (ahTkt, in its tgsReq.req-AuthnData field, as the authnHdr.authnHdr-Tkt field
of an authentication header authnHdr), and receive in response a TGS Response tgsResp (a value
of data type TGSResponse) containing Tkt*A,⋅⋅⋅,B* (tgsTkt, in its tgsResp.resp-Tkt field). A prepares
tgsReq according to the algorithm below and ‘‘sends it’’ (that is, calls kds_request( )) to KDSY.

240 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

There are two distinct cases to consider throughout, according to what kind of service A
requests:

• Request for a ‘‘manipulated old’’ ticket (that is, targeted to the same server B* as the server B
targeted by the presented ticket) — A wants KDSY to ‘‘manipulate’’ the presented TktA,⋅⋅⋅,B in
some way, and return it as Tkt*A,⋅⋅⋅,B (currently, the manipulations supported are: validation,
renewal, proxying and forwarding; thus, most of the information in Tkt*A,⋅⋅⋅,B was already
‘‘substantially pre-existing’’ in TktA,⋅⋅⋅,B). In this case, TktA,⋅⋅⋅,B can be either a service-ticket or
a ticket-granting-ticket.

• Request for a ‘‘newly issued’’ ticket (that is, targeted to a different server B* than the server B
targeted by the presented ticket) — A wants KDSY to issue a new Tkt*A,⋅⋅⋅,B* ‘‘based on’’ the
presented TktA,⋅⋅⋅,B. In this case, TktA,⋅⋅⋅,B must be a ticket-granting-ticket targeted to B =
KDSW,Y, and the resulting Tkt*A,⋅⋅⋅,B* will be targeted to a server B* other than KDSW,Y
(depending on conditions detailed in the algorithm below):

— Service-ticket (targeted to a non-KDS server B*)

Tkt*A,⋅⋅⋅,B* will be a ‘‘new’’ service-ticket targeted to a non-KDS server B* in Y.

— Cross-cell referral (ticket-granting-)ticket (targeted to a new KDS server B* ≠ B)

Tkt*A,⋅⋅⋅,B* will be a ‘‘new’’ ticket targeted to another KDS server B* = KDSY,Z (Z ≠ W) which
is (cross-)registered with Y.

Clients (such as A) do not typically intentionally request cross-cell referral tickets. Except for
their initial ticket-granting-ticket they only intentionally request ultimate service-tickets. But if
such a request cannot be fulfilled, a cross-cell referral ticket is returned as a by-product of the
algorithm, as described below:

• Protocol version number

The protocol version number (tgsReq.req-ProtoVersNum) is set to protoVersNum-KRB5.

• Protocol message type

The protocol message type (tgsReq.req-ProtoMsgType) is set to protoMsgType-TGS-
REQUEST.

• Client name

The client name (tgsReq.req-Body.req-ClientName) is set to A’s RS name in RSX.

• Server cell

The server cell (tgsReq.req-Body.req-ServerCell) is set to the cell name of the ultimate end-
server that A desires Tkt*A,⋅⋅⋅,B* to be targeted to. (If this is a request for a manipulated old
Tkt*A,⋅⋅⋅,B*, this ultimate server cell name is the same as TktA,⋅⋅⋅,B’s targeted server’s cell name
(ahTkt.tkt-ServerCell); that is, Y’s cell name.)

• Server name

The server name (tgsReq.req-Body.req-ServerName) is set to the RS name of the ultimate
server that A desires Tkt*A,⋅⋅⋅,B* to be targeted to. (If this is a request for a manipulated old
Tkt*A,⋅⋅⋅,B*, this ultimate server RS name is the same as TktA,⋅⋅⋅,B’s targeted server’s RS name
(ahTkt.tkt-ServerName), which must exist in RSY.)

• Options

— Forwardable

Part 2 Security Services and Protocols 241



TGS Request/Response Processing Key Distribution (Authentication) Services

If it is desired that a newly issued ticket be forwardable, the forwardable option
(tgsReq.req-Body.req-Flags.req-Forwardable) is selected.

— Proxiable

If it is desired that a newly issued ticket (which must be a service-ticket, not a ticket-
granting-ticket) be proxiable, the proxiable option (tgsReq.req-Body.req-Flags.req-
Proxiable) is selected.

— Postdatable

If it is desired that a newly issued ticket be postdatable, the postdatable option
(tgsReq.req-Body.req-Flags.req-Postdatable) is selected.

— Postdate

If it is desired that a newly issued ticket be postdated, the postdate option (tgsReq.req-
Body.req-Flags.req-Postdate) is selected.

— Renewable

If it is desired that a newly issued ticket be renewable, the renewable option (tgsReq.req-
Body.req-Flags.req-Renewable) is selected.

— Renewable-okay

If it is not desired that a newly issued ticket be renewable but A will nevertheless accept a
renewable ticket with a shorter lifetime than desired in lieu of no ticket at all, then the
renewable-okay option (tgsReq.req-Body.req-Flags.req-RenewableOK) is selected.

— Use-session-key

The use-session-key option (tgsReq.req-Body.req-Flags.req-UseSessionKey) is
deselected.

— Validate

If it is desired that an old ticket be validated, the validate option (tgsReq.req-Body.req-
Flags.req-Validate) is selected.

— Renew

If it is desired that an old ticket be renewed, the renew option (tgsReq.req-Body.req-
Flags.req-Renew) is selected.

— Proxy

If it is desired that an old ticket (which must be a service-ticket, not a ticket-granting-
ticket) be proxied, the proxy option (tgsReq.req-Body.req-Flags.req-Proxy) is selected.

— Forward

If it is desired that an old ticket be forwarded, the forward option (tgsReq.req-Body.req-
Flags.req-Forward) is selected.

• Start time

If the postdate option has been selected, then the start time (tgsReq.req-Body.req-StartTime)
is set to the desired starting time. Otherwise, the start time is omitted.

• Expiration time

The expiration time (tgsReq.req-Body.req-ExpireTime) is set to the desired expiration time.
(In the case of a request to manipulate an old ticket, this can be used to ‘‘clip’’ the lifetime of

242 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

the manipulated ticket to a shorter time.)

• Maximum expiration time

If the renewable option has been selected, then the maximum expiration time (tgsReq.req-
Body.req-MaxExpireTime) is set to the desired maximum expiration time. (In the case of a
request to manipulate an old ticket, this can be used to ‘‘clip’’ the lifetime of the manipulated
ticket to a shorter maximum time.) Otherwise, the maximum expiration time is omitted.

• Additional tickets

The additional tickets field (tgsReq.req-Body.req-AdditionalTkts) is omitted. (The only
option that currently requires an additional ticket is the use-session-key option, and that
option is deselected in TGS Requests.)

• Nonce

The nonce field (asReq.req-Body.req-Nonce) is set to a nonce value.

• Encryption types

The encryption types field (tgsReq.req-Body.req-EncTypes) is set to the list of encryption
types acceptable to A for protecting a newly issued ticket. The list is arranged in priority
order of desirability, beginning with most desirable and ending with least desirable. (For
maximum interoperability, the client A should send a list consisting of a single entry,
indicating the same encryption type, encType, as that used to protect the presented ticket
TktA,⋅⋅⋅,B. It is to be presumed that if this TGS request is a request for a manipulated old ticket,
the resulting manipulated ticket will be re-encrypted in the newly chosen encryption type if
it is different from encType — however, that is not apparent from RFC 1510.)

• Client addresses

If A desires that a newly issued ticket contain client host addresses, then the client address
field (tgsReq.req-Body.req-ClientAddrs) is set to the desired addresses. Otherwise, the client
address field is omitted. (If this is a request to manipulate an old ticket, these addresses will
only be used in the manipulated ticket if the old ticket is forwarded or proxied; otherwise, the
client addresses in the ticket authenticating this request — see the bullet on authentication
data, below — will be used.)

• Authorisation data

If A desires that a newly issued ticket contain authorisation data supplied by A, such data (a
value of type AuthzData) is encrypted using the encryption type encType and using the
conversation key KÂ,B (authnr.authnr-ConversationKey, see below) if present, otherwise
using the session key KA,B, and the authorisation data field (tgsReq.req-Body.req-
EncryptedAuthzData) is then set to the resulting encrypted value (a value of type
EncryptedData). Otherwise this field is omitted. (Typically, it is omitted, an exception being
where A is a privilege server PSX, requesting a privilege-(ticket-granting-)ticket from KDSX
(in the case where PSX and KDSX are not co-located, so that an message must be transmitted)
— see Section 1.6 on page 25 and Chapter 5.)

• Authentication data

The first entry (tgsReq.req-AuthnData[0]) in the list (tgsReq.req-AuthnData) of authentication
data items is set to have authentication data type (tgsReq.req-AuthnData[0].authnData-Type)
authnDataType-TGS-REQ, and its authentication data value (tgsReq.req-
AuthnData[0].authnData-Value) is set to (the underlying OCTET STRING of) an
authentication header, authnHdr, that A constructs, based on TktA,⋅⋅⋅,B (authnHdr.authnHdr-
Tkt). The construction of authnHdr proceeds as in Section 4.13.1 on page 232, with the

Part 2 Security Services and Protocols 243



TGS Request/Response Processing Key Distribution (Authentication) Services

following supplements (authnr denotes the authenticator authnHdr.authnHdr-
EncryptAuthnr):

— Conversation key

The conversation key field (authnr.authnr-ConversationKey) is set to a newly generated
conversation key, KÂ,B (of the same encryption key type, encType), if A desires such a key
to be used (instead of KA,B) to protect this client-server session (between A and KDSY). (If
authorisation data (tgsReq.req-Body.req-EncryptedAuthzData) and KÂ,B are both present,
note that KÂ,B had to be generated earlier in order to be used to encrypt the authorisation
data — see above.)

— Checksum

A sets the checksum type (authnr.authnr-Cksum.cksum-Type) to a checksum type that
uses the same encryption key type as the encryption type encType (except that if encType =
encKeyType-TRIVIAL, then authnr.authnr-Cksum is omitted altogether), and uses it to
compute the checksum value (authnr.authnr-Cksum.cksum-Value), over the KDS
Request body (tgsReq.req-Body, which is well-formed at this point). (For maximum
interoperability, the client A should use the checksum type cksumType-MD4-DES, since all
KDS servers are required to support clients using that checksum type — at least for the
present revision of this document.)

— Sequence number

The sequence number (authnr.authnr-SeqNum) is omitted.

— Authorisation data

The authorisation data field (authnr.authnr-AuthzData) is omitted.

— Encryption

A encrypts authnr, using the encryption type encType and the session key KA,B (not KÂ,B,
even if present). This is the ciphertext portion of the authentication header
(authnHdr.authnHdr-EncryptedAuthnr.encData-CipherText). A also sets the encryption
type (authnHdr.authnHdr-EncryptedAuthnr.encData-EncType) to encType and the key
version number (authnHdr.authnHdr-EncryptedAuthnr.encData-KeyVersNum) to an
appropriate value depending on local policy, if any (typically, it is omitted).

— Options

— Use-session-key

The use-session-key option (tgsReq.req-Body.req-Flags.req-UseSessionKey) is
deselected.

— Mutual authentication

The mutual authentication option (authnHdr.authnHdr-Flags.authnHdr-
MutualRequired) is deselected. (As seen in Section 4.14.2 on page 245, KDSY rejects
any TGS Request that has this option selected.)

— Other

The other entries (tgsReq.req-AuthnData[i], i ≥ 1) in the list of authentication data are
omitted.

At this point, the tgsReq message is well-formed, and A sends it to KDSY.

244 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

4.14.2 KDS Server Receives TGS Request and Sends TGS Response

[RFC 1510: 3.3.2, 3.3.3, A.6]

Consider a TGS Request, tgsReq, received by KDSY from A. Thus, tgsReq is a value of data type
TGSRequest, with protocol version number (tgsReq.req-ProtoVersNum) protoVersNum-KRB5
and protocol message type (tgsReq.req-ProtoMsgType) protoMsgType-TGS-REQUEST. Then
KDSY executes the algorithm below. If the algorithm executes successfully, KDSY returns a TGS
Response (tgsResp, of type TGSResponse), containing the ‘‘manipulated old’’ or ‘‘newly issued’’
ticket, Tkt*A,⋅⋅⋅,B* (tgsResp.resp-Tkt, also denoted tgsTkt), to A. If unsuccessful, KDSY returns a KDS
Error (kdsErr, of type KDSError).

The following algorithm discusses (in an appropriate order) how KDSY handles the
authentication header authnHdr (and therefore the authenticator authnr and presented ticket,
ahTkt (TktA,⋅⋅⋅,B)) accompanying tgsReq, how it manipulates the old or issues the new ticket
Tkt*A,⋅⋅⋅,B*, and how it constructs the remainder of the TGS Response, tgsResp (which does not
include a reverse-authentication header). (The manner in which KDSY handles the
authentication header is an extension of the ‘‘mainline’’ usage of the authentication header by
not-necessarily-KDS servers as specified in Section 4.13.2 on page 234, but it is all repeated here,
both because its processing is intertwined with the processing of other parts of the TGS Request,
and to indicate error conditions specific to KDS servers.)

• Authentication data

The first entry (tgsReq.req-AuthnData[0]) in the authentication data list (tgsReq.req-
AuthnData) is checked to be present and to be of authentication data type (tgsReq.req-
AuthnData[0].authnData-Type) authnDataType-TGS-REQ. (Other entries (tgsReq.req-
AuthnData[i], i ≥ 1), if present, are ignored.) Thus, the authentication data value (tgsReq.req-
AuthnData[0].authnData-Value) is regarded as (the underlying OCTET STRING of) an
authentication header, authnHdr, containing an authenticator authnr (authnHdr.authnHdr-
EncryptAuthnr) constructed by A, and an ‘‘authenticating ticket’’ TktA,⋅⋅⋅,B (ahTkt,
authnHdr.authnHdr-Tkt) naming A and targeted to some server B in cell Y (which may be
either a non-KDS server or KDSY in one of its guises KDSW,Y) {errStatusCode-AUTHN-
DATA-TYPE-NOT-SUPPORTED}.

• Protocol version number

The protocol version number of TktA,⋅⋅⋅,B (ahTkt.tkt-ProtoVersNum) is checked to be
protoVersNum-KRB5.

• Server cell

The server cell in TktA,⋅⋅⋅,B (ahTkt.tkt-ServerCell) is checked to be KDSY’s cell name; that is, Y’s
cell name.

• Server name

The server name in TktA,⋅⋅⋅,B (ahTkt.tkt-ServerName) is checked to indicate either a non-KDS
server B in Y, or KDSY in one of its guises KDSW,Y.

• Authentication header options:

— Use-session-key

If the use-session-key option (authnHdr.authnHdr-Flags.authnHdr-UseSessionKey) is
selected, then KDSY rejects this TGS Request, returning a KDS Error. Otherwise, KDSY
knows that the ‘‘authenticating’’ ticket, ahTkt (TktA,⋅⋅⋅,B), is protected with the long-term
key KB of the server B it is targeted to (as indicated by ahTkt.tkt-ServerCell and ahTkt.tkt-
ServerName) (KB = KKDSWY if B = KDSW,Y).

Part 2 Security Services and Protocols 245



TGS Request/Response Processing Key Distribution (Authentication) Services

— Mutual authentication

If the mutual authentication option (authnHdr.authnHdr-Flags.authnHdr-
MutualRequired) is selected (so that A expects a reverse-authentication header, to be
returned), then KDSY rejects this TGS Request, returning a KDS Error (see Section 4.15 on
page 258).

• Ticket decryption

KDSY uses the key protecting ahTkt (KB = KKDSWY, determined above), together with the
indicated encryption type encType (ahTkt.tkt-EncryptedPart.encData-EncType) and key
version number (ahTkt.tkt-EncryptedPart.encData-KeyVersNum) if relevant, to decrypt the
ciphertext (ahTkt.tkt-EncryptedPart.encData-CipherText) of the authenticating ticket ahTkt
(TktA,⋅⋅⋅,B). A successful decryption is recognised by the built-in integrity afforded by the
ciphertext itself. In this way, KDSY learns the information carried in ahTkt (TktA,⋅⋅⋅,B),
especially its session key (KA,B, or KA,KDSWY).

• Authenticator decryption

KDSY uses ahTkt’s session key (KA,B, or KA,KDSWY), together with the encryption type encType
(which must be the same as (authnHdr.authnHdr-EncryptedAuthnr.encData-EncType), to
decrypt the authentication header’s ciphertext (authnHdr.authnHdr-
EncryptedAuthnr.encData-CipherText). (The key version number (authnHdr.authnHdr-
EncryptedAuthnr.encData-KeyVersNum) should not be present.) A successful decryption is
recognised by the built-in integrity afforded by the ciphertext itself — this is what convinces
KDSY that A knows ahTkt’s session key; that is, this is what actually ‘‘authenticates’’ A to KDSY
(modulo timestamp considerations, below). In this way, KDSY learns the information carried
in authnr (authnHdr.authnHdr-EncryptAuthnr).

• Authenticator protocol version number

The authenticator’s protocol version number (authnr.authnr-ProtoVersNum) is checked to be
protoVersNum-KRB5.

• Client cell

The client cells from ahTkt (ahTkt.tkt-EncryptPart.tkt-ClientCell) and from authnr
(authnr.authnr-ClientCell) are checked to be the same (namely, to A’s cell name; that is, X’s
cell name).

• Client name

The client names from ahTkt (ahTkt.tkt-EncryptPart.tkt-ClientName) and from authnr
(authnr.authnr-ClientName) are checked to be the same (namely, to A’s RS name).

• Client addresses

If there are client addresses present in ahTkt (ahTkt.tkt-EncryptPart.tkt-ClientAddrs), then
KDSY checks that A is communicating from one of them (as reported by KDSY’s operating
system, according to the level of trust KDSY places in that); that is, that authnHdr was
received from one of the addresses on the list.

• Client timestamp

A’s timestamp (authnr.authnr-ClientTime) is checked to be equal to KDSY’s system time
(modulo maxClockSkew). It is in this way that KDSY becomes convinced that it is
communicating with A in real-time (and this completes the ‘‘authentication’’ of A to KDSY).

246 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

• Client microsecondstamp

A’s microsecondstamp (authnr.authnr-ClientMicroSec), together with its timestamp, are
checked to not be present in KDSY’s replay cache. They are then stored in the replay cache.
(They can be purged from the replay cache later, as discussed in Section 4.5 on page 200.)

• Start time

ahTkt’s start time (ahTkt.tkt-EncryptPart.tkt-StartTime) is checked to be earlier than or equal
to KDSY’s system time (modulo maxClockSkew).

• Expiration time

ahTkt’s expiration time (ahTkt.tkt-EncryptPart.tkt-ExpireTime) is checked to be later than (or
later-than-or-equal-to, on an implementation-dependent basis) KDSY’s system time (modulo
maxClockSkew). (In particular, an expired ahTkt (TktA,⋅⋅⋅,B) cannot be renewed by the renew
option processing step, below.)

• Maximum expiration time

ahTkt’s maximum expiration time (ahTkt.tkt-EncryptPart.tkt-MaxExpireTime) is dealt with
below.

• Sequence number

The sequence number (authnr.authnr-SeqNum) is processed in an application-specific
manner.

• Conversation key

If a conversation key KÂ,B (authnr.authnr-ConversationKey), of encryption type encType is
present, KDSY will use it (instead of ahTkt’s session key KA,B (or KA,KDSWY)) to protect this
client-server session (but it will not generate its own conversation key, Kˆˆ A,B, for this
purpose, because KDSY does not return a reverse-authentication header).

• Transit path

ahTkt’s transit path (ahTkt.tkt-EncryptPart.tkt-TransitPath) is dealt with below.

• Checksum

The checksum (authnr.authnr-Cksum) is checked to be present (unless encType = encType-
TRIVIAL, in which case it must be absent), its checksum type (authnr.authnr-
Cksum.cksum-Type) is checked to be supported by and acceptable to KDSY (in particular,
this checksum type must use the same encryption key type as the encryption type encType,
and the checksum value (authnr.authnr-Cksum.cksum-Value) is checked to be the checksum
of the KDS Request body (tgsReq.req-Body). (For guaranteed interoperability, all KDS
servers are required to support the checksum type cksumType-MD4-DES — at least for the
present revision of this document.)

• Ticket options:

— Invalid

If ahTkt’s invalid option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Invalid) is selected, then
KDSY checks that this tgsReq’s validate option (tgsReq.req-Body.req-Flags.req-Validate) is
selected.

— Forwardable, forwarded, proxiable, proxied, postdatable, postdated, renewable, initial

All other ahTkt options are dealt with below. Currently, these include forwardable
(ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Forwardable), forwarded (ahTkt.tkt-EncryptPart.tkt-

Part 2 Security Services and Protocols 247



TGS Request/Response Processing Key Distribution (Authentication) Services

Flags.tkt-Forwarded), proxiable (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxiable), proxied
(ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxied), postdatable (ahTkt.tkt-EncryptPart.tkt-
Flags.tkt-Postdatable), postdated (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Postdated),
renewable (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Renewable), and initial (ahTkt.tkt-
EncryptPart.tkt-Flags.tkt-Initial).

At this point, KDSY has completed its preliminary processing of the authentication header
authnHdr (including authnr and ahTkt (TktA,⋅⋅⋅,B)), and now turns its attention to constructing the
manipulated old or newly-to-be-issued tgsTkt (Tkt*A,⋅⋅⋅,B*).

• Protocol version number

tgsTkt’s protocol version number (tgsTkt.tkt-ProtoVersNum) is set to protoVersNum-KRB5.

• Client cell

tgsTkt’s client cell (tgsTkt.tkt-EncryptPart.tkt-ClientCell) is set to A’s (authenticated) cell
name (that is, to X’s cell name).

• Client name

tgsTkt’s client name (tgsTkt.tkt-EncryptPart.tkt-ClientName) is set to A’s (authenticated) RS
name in RSX.

• Server cell

If the requested server cell name (tgsReq.req-Body.req-ServerCell) is not KDSY’s cell name —
that is, not Y’s cell name (this will be the case if A is requesting a service-ticket to an ultimate
end-server in some cell other than Y) — then KDSY sets tgsTkt’s cell name (tgsTkt.tkt-
ServerCell) to that of a cell, Z, that A is supposed to use as the next hop towards the
requested server cell, if possible — this indicates to A that tgsTkt is to be used as a new cross-
cell referral ticket (see Section 1.7 on page 32), and it is the only instance in which a KDS server
ever issues a ticket which is targeted to a server other than the one requested by the client A
(and this is how A detects that it has received a cross-cell referral ticket). Otherwise, KDSY
copies the requested server cell name (that is, Y’s cell name) into tgsTkt’s cell name.

• Server name

If tgsTkt is a new cross-cell referral ticket (see preceding step), then KDSY sets tgsTkt’s server
name (tgsTkt.tkt-ServerName) to the RS name of the chosen cross-registered surrogate KDS
server, KDSY,Z, in RSZ. Otherwise, the requested server name (tgsReq.req-Body.req-
ServerName) is checked to have a datastore entry in RSY, and KDSY sets tgsTkt’s server name
to the requested server name.

• Encryption types

KDSY selects from the list of requested encryption types (tgsReq.req-Body.req-EncTypes) the
earliest one on the list that it can accommodate, depending on policy — call this encType.
(Typically, encType* = encType. This will happen, for example, in the common case of a client A
sending a list consisting of a single entry, indicating the same encryption type, encType, as
that used to protect the presented ticket TktA,⋅⋅⋅,B.) {errStatusCode-ENCRYPTION-TYPE-
NOT-SUPPORTED}.

• Session key generation

KDSY generates a new (random) session key (of the selected encryption type, encType*), K*A,B*,
and copies it into tgsTkt’s session key field (tgsTkt.tkt-EncryptPart.tkt-SessionKey).

• Authentication time

248 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

tgsTkt’s authentication time (tgsTkt.tkt-EncryptPart.tkt-AuthnTime) is set to ahTkt’s
authentication time (ahTkt.tkt-EncryptPart.tkt-AuthnTime).

• Start time

If the requested start time (tgsReq.req-Body.req-StartTime) is absent, or if it is present and
indicates a time earlier than tgsTkt’s (that is, ahTkt’s) authentication time or KDSY’s system
time, then tgsTkt’s start time (tgsTkt.tkt-EncryptPart.tkt-StartTime) is set to tgsTkt’s
authentication time or KDSY’s system time, whichever is later. Otherwise (that is, a start time
is present and indicates a time later than or equal to both tgsTkt’s authentication time and
KDSY’s system time), if the postdated option (tgsReq.req-Body.req-Flags.req-Postdate) is
selected, KDSY sets tgsTkt’s start time to the requested start time; otherwise, tgsTkt’s start
time is omitted. (See also the postdated and invalid options, below.) {errStatusCode-
CANNOT-POSTDATE}.

• Expiration time

KDSY sets tgsTkt’s expiration time (tgsTkt.tkt-EncryptPart.tkt-ExpireTime) to the minimum
of the following:

— ahTkt’s expiration time (ahTkt.tkt-EncryptPart.tkt-ExpireTime).

— The requested expiration time (tgsReq.req-Body.req-ExpireTime).

— tgsTkt’s start time (or authentication time, if the start time is absent) plus the maximum
ticket lifetime associated with the named client A (or the maximum ticket lifetime
associated with the cross-cell principal KDSW,Y in the case that X ≠ Y, since then KDSY
doesn’t have access to A’s maximum ticket lifetime).

— tgsTkt’s start time (or authentication time, if the start time is absent) plus the maximum
ticket lifetime associated with the server targeted by tgsTkt (tgsTkt.tkt-ServerName).

— tgsTkt’s start time (or authentication time, if the start time is absent) plus the cell-wide
maximum ticket lifetime associated with the issuing authority KDSY.

KDSY checks that the resulting lifetime of tgsTkt is greater than or equal to the cell-wide
minimum ticket lifetime associated with the issuing authority KDSY (see also the renew and
renewable options, below) {errStatusCode-NEVER-VALID}.

• Maximum expiration time

If ahTkt’s renewable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Renewable) is selected, and
if either the renewable option (tgsReq.req-Body.req-Flags.req-Renewable) has been selected,
or if the renewable-okay option (tgsReq.req-Body.req-Flags.req-RenewableOK) has been
selected and ahTkt’s expiration time is earlier than the requested expiration time, then tgsTkt’s
maximum expiration time (tgsTkt.tkt-EncryptPart.tkt-MaxExpireTime) is present (otherwise
it is omitted) and is set to the minimum of:

— ahTkt’s maximum expiration time (ahTkt.tkt-EncryptedPart.tkt-MaxExpireTime).

— The requested maximum expiration time (tgsReq.req-Body.req-MaxExpireTime), if
present; otherwise, the requested expiration time (tgsReq.req-Body.req-ExpireTime).

— tgsTkt’s start time (or authentication time, if the start time is absent) plus the maximum
renewable ticket lifetime associated with the named client A (or the maximum ticket
lifetime associated with the cross-cell principal KDSW,Y in the case that X ≠ Y, since then
KDSY doesn’t have access to A’s maximum ticket lifetime).

— tgsTkt’s start time (or authentication time, if the start time is absent) plus the maximum
renewable ticket lifetime associated with the server targeted by tgsTkt (tgsTkt.tkt-

Part 2 Security Services and Protocols 249



TGS Request/Response Processing Key Distribution (Authentication) Services

ServerName).

— tgsTkt’s start time (or authentication time, if the start time is absent) plus the cell-wide
maximum renewable ticket lifetime associated with the issuing authority KDSY.

(See also the renewable option, below, which may recalculate this maximum expiration
time.)

• Transit path

If ahTkt is itself a cross-cell referral ticket, TktA,X,⋅⋅⋅,W,KDSWY (which KDSY recognises by
decrypting it and inspecting its transit path), then KDSY sets tgsTkt’s transit path (tgsTkt.tkt-
EncryptPart.tkt-TransitPath) to the compression (see Section 4.2.5.1 on page 170) of the
concatenation (in this order) of ahTkt’s transit path with W’s (not Y’s) cell name. Otherwise
(that is, if ahTkt is not a cross-cell referral ticket), tgsTkt’s transit path is set to ahTkt’s transit
path {errStatusCode-TRANSIT-PATH-TYPE-NOT-SUPPORTED}.

• Client addresses

tgsTkt’s client address field (tgsTkt.tkt-EncryptPart.tkt-ClientAddrs) is set to ahTkt’s client
address field (ahTkt.tkt-EncryptPart.tkt-ClientAddrs), if present. Otherwise, it is omitted.
(See also the forward and proxy options, below, which can change this client address field.)

• Authorisation data

tgsTkt’s authorisation data field (tgsTkt.tkt-EncryptPart.tkt-AuthzData) is set to the
concatenation (in this order) of ahTkt’s authorisation data (ahTkt.tkt-EncryptPart.tkt-
AuthzData) if present, with the TGS Request’s authorisation data (tgsReq.req-Body.req-
EncryptAuthzData, obtained by decrypting tgsReq.req-Body.req-EncryptedAuthzData using
the conversation key authnr.authnr-ConversationKey KÂ,Y if present, otherwise using the
session key KA,B, both of encryption type encType), if present. If neither is present, this field is
omitted.

Notes:

1. The server targeted by tgsTkt is thereby guaranteed of the authenticity of
tgsTkt’s authorisation field — see Section 1.6 on page 25 and Chapter 5 on
page 263 for an explanation of how this mechanism is used by the PS.

2. authnr’s additional authenticator authorisation data (authnr.authnr-
AuthzData) is ignored here. Its use is application-specific, and A intends it
to be interpreted only by an ultimate non-KDS end-server B, not KDSY.

3. The authorisation data is uninterpreted by KDSY — see Section 4.3.8 on
page 194 for an indication of its interpretation by end-servers. Even though
it is uninterpreted by KDSY, it must handled in a trusted fashion, for
otherwise a client could potentially insert arbitrary authorisation data and
defeat the integrity of PAC transmission via these authorisation data fields,
and illicitly masquerade as another principal for authorisation purposes.

• Additional tickets

Additional tickets (tgsReq.req-Body.req-AdditionalTkts) are processed as required according
to the options (below) selected that require additional tickets.

• Options

— Forwardable

If the forwardable option (tgsReq.req-Body.req-Flags.req-Forwardable) is requested, and
if ahTkt’s forwardable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Forwardable) is

250 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

selected, then tgsTkt’s forwardable option (tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-
Forwardable) is selected.

— Forward

If the forward option (tgsReq.req-Body.req-Flags.req-Forward) is requested, and if ahTkt’s
forwardable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Forwardable) is selected, then
tgsTkt’s client addresses (tgsTkt.tkt-EncryptPart.tkt-ClientAddrs) are set to the requested
client addresses (tgsReq.req-Body.req-ClientAddrs).

— Forwarded

If the forward option (tgsReq.req-Body.req-Flags.req-Forward) is requested, or if ahTkt’s
forwarded option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Forwarded) is selected, then
tgsTkt’s forwarded option (tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-Forwarded) is selected.

— Proxiable

If the proxiable option (tgsReq.req-Body.req-Flags.req-Proxiable) is requested, and if
ahTkt’s proxiable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxiable) is selected, then
tgsTkt’s proxiable option (tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxiable) is selected.

— Proxy

If the proxy option (tgsReq.req-Body.req-Flags.req-Proxy) is requested, and if ahTkt’s
proxiable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxiable) is selected, then tgsTkt’s
client addresses (tgsTkt.tkt-EncryptPart.tkt-ClientAddrs) are set to the requested client
addresses (tgsReq.req-Body.req-ClientAddrs).

— Proxied

If the proxy option (tgsReq.req-Body.req-Flags.req-Proxy) is requested, or if ahTkt’s
proxied option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxied) is selected, then tgsTkt’s
proxied option (tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-Proxied) is selected.

— Postdatable

If the postdatable option (tgsReq.req-Body.req-Flags.req-Postdatable) is requested, and if
ahTkt’s postdatable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Postdatable) is selected,
then tgsTkt’s postdatable option (tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-Postdatable) is
selected.

— Postdated

If tgsTkt’s start time is present, and if ahTkt’s postdatable option (ahTkt.tkt-
EncryptPart.tkt-Flags.tkt-Postdatable) is selected, then tgsTkt’s postdated option
(tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-Postdated) is selected.

— Invalid

If tgsTkt’s postdated option is selected (above), then tgsTkt’s invalid option (tgsTkt.tkt-
EncryptPart.tkt-Flags.tkt-Invalid) is selected.

— Validate

If the validate option (tgsReq.req-Body.req-Flags.req-Validate) is requested, and if ahTkt’s
invalid option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Invalid) is set, and if ahTkt’s start time
(ahTkt.tkt-EncryptPart.tkt-StartTime) is earlier than or equal to KDSY’s system time
(modulo maxClockSkew), then Tkt*A,⋅⋅⋅,B* is set equal to TktA,⋅⋅⋅,B, except that tgsTkt’s invalid
option (tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-Invalid) is deselected.

Part 2 Security Services and Protocols 251



TGS Request/Response Processing Key Distribution (Authentication) Services

— Renew

If the renew option (tgsReq.req-Body.req-Flags.req-Renew) is requested, and if ahTkt’s
renewable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Renewable) is selected, and if
ahTkt’s maximum expiration time (ahTkt.tkt-EncryptPart.tkt-MaxExpireTime) is later
than or equal to KDSY’s system time (modulo maxClockSkew), then tgsTkt is set equal to
ahTkt, except that tgsTkt’s start time (tgsTkt.tkt-EncryptPart.tkt-StartTime) is set to KDSY’s
system time and tgsTkt’s expiration time (tgsTkt.tkt-EncryptPart.tkt-ExpireTime) is set to
the minimum of:

— ahTkt’s maximum expiration time (ahTkt.tkt-EncryptPart.tkt-MaxExpireTime).

— tgsTkt’s start time (which is KDSY’s system time at this point) plus the lifetime of ahTkt
(ahTkt.tkt-EncryptPart.tkt-ExpireTime − ahTkt.tkt-EncryptPart.tkt-StartTime).

— Renewable-okay

If the renewable-okay option (tgsReq.req-Body.req-Flags.req-RenewableOK) is
requested, and if ahTkt’s renewable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-
Renewable) is selected, and if tgsTkt’s expiration time (tgsTkt.tkt-EncryptPart.tkt-
ExpireTime) is earlier than the requested expiration time (tgsReq.req-Body.req-
ExpireTime), then the renewable option (tgsReq.req-Body.req-Flags.req-Renewable) is
selected (so that the renewable step below is processed) and the requested maximum
expiration time (tgsReq.req-Body.req-MaxExpireTime) is set equal to the minimum of:

— ahTkt’s maximum expiration time (ahTkt.tkt-EncryptPart.tkt-MaxExpireTime).

— The requested expiration time (tgsReq.req-Body.req-ExpireTime).

— Renewable

If the renewable option (tgsReq.req-Body.req-Flags.req-Renewable) option is requested,
and if ahTkt’s renewable option (ahTkt.tkt-EncryptPart.tkt-Flags.tkt-Renewable) is
selected, then tgsTkt’s renewable option (tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-Renewable)
is selected, and tgsTkt’s maximum expiration time (tgsTkt.tkt-EncryptPart.tkt-
MaxExpireTime) is (re)calculated as in the maximum expiration time step, above.

— Use-session-key

If the request’s use-session-key option (tgsReq.req-Body.req-Flags.req-UseSessionKey)
has not been requested, then KDSY knows that A wants tgsTkt to be protected with the
long-term key of its targeted server (see encryption step, below). If the request’s use-
session-key has been requested, then KDSY knows that A wants tgsTkt to be protected
with its targeted server’s ticket-granting-ticket’s session key (see encryption step, below),
accordingly it verifies that the accompanying additional Tkt• (tgsReq.req-Body.req-
AdditionalTkts) is present and is a (valid) ticket-granting-ticket targeted to B; if the use-
session-key has been requested, but Tkt• is not present or if KDSY cannot decrypt it and
verify it is a ticket-granting-ticket targeted to B, the KDSY rejects the request.

— Initial

tgsTkt’s initial option (tgsTkt.tkt-EncryptPart.tkt-Flags.tkt-Initial), is deselected. (This
marks tgsTkt as a subsequent (that is, non-initial) ticket.)

• Encryption

If the use-session-key option (tgsReq.req-Body.req-Flags.req-UseSessionKey) has not been
requested, then the long-term key KB* (of encryption type encType*) of the server B* targeted
by tgsTkt (Tkt*A,⋅⋅⋅,B*) is used to protect it; if the use-session-key option has been requested,
then the session key K• = KB,KDSWY (of encryption type encType*) in the accompanying ticket-

252 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

granting-ticket Tkt• = TktB,KDSWY is used to protect it (see Section 4.6.2 on page 203). KDSY
uses the chosen key to encrypt the encrypted part of tgsTkt (tgsTkt.tkt-EncryptPart). This is
the ciphertext portion of tgsTkt (tgsTkt.tkt-EncryptedPart.encData-CipherText). KDSY also
sets the encryption type (tgsTkt.tkt-EncryptedPart.encData-EncType) to encType*, and the key
version number (tgsTkt.tkt-EncryptedPart.encData-KeyVersNum) is set to its appropriate
value.

At this point, tgsTkt (Tkt*A,⋅⋅⋅,B*) is well-formed, and KDSY turns its attention to completing the
construction of the TGS Response message, tgsResp.

• Protocol version number

The protocol version number (tgsResp.resp-ProtoVersNum) is set to protoVersNum-KRB5.

• Protocol message type

The protocol message type (tgsResp.resp-ProtoMsgType) is set to protoMsgType-TGS-
RESPONSE.

• Authentication data

The authentication data (tgsResp.resp-AuthnData) is omitted. (In particular, no reverse-
authentication header is transmitted back to the client.)

• Client cell

The client cell (tgsResp.resp-ClientCell) is set to tgsTkt’s client cell name (tgsTkt.tkt-
EncryptPart.tkt-ClientCell); that is, A’s cell name to X’s cell name.

• Client name

The client name (tgsResp.resp-ClientName) is set to tgsTkt’s client name (tgsTkt.tkt-
EncryptPart.tkt-ClientName); that is, A’s RS name.

• Ticket

The ticket (tgsResp.resp-Tkt) is set to tgsTkt (Tkt*A,⋅⋅⋅,B*).

• Session key

The session key (tgsResp.resp-EncryptPart.resp-SessionKey) is set to tgsTkt’s (Tkt*A,⋅⋅⋅,B*’s)
session key, K*A,B* (tgsTkt.tkt-EncryptPart.tkt-SessionKey, of encryption type encType*).

• Nonce

The nonce (tgsResp.resp-EncryptPart.resp-Nonce) is set to the nonce that A sent (tgsReq.req-
Body.req-Nonce).

• Client addresses

The client address field (tgsResp.resp-EncryptPart.resp-ClientAddrs) is set to tgsTkt’s client
address field if tgsTkt has been newly forwarded or proxied on this TGS Request (that is, the
forward option (tgsReq.req-Body.req-Flags.req-Forward) is selected, above). Otherwise, it is
omitted.

• Server cell

The server cell (tgsResp.resp-EncryptPart.resp-ServerCell) is set to tgsTkt’s server cell
(tgsTkt.tkt-ServerCell).

• Server name

The server name (tgsResp.resp-EncryptPart.resp-ServerName) is set to tgsTkt’s server name
(tgsTkt.tkt-ServerName).

Part 2 Security Services and Protocols 253



TGS Request/Response Processing Key Distribution (Authentication) Services

• Authentication time

The authentication time (tgsResp.resp-EncryptPart.resp-AuthnTime) is set to tgsTkt’s
authentication time (tgsTkt.tkt-EncryptPart.tkt-AuthnTime).

• Start time

The start time (tgsResp.resp-EncryptPart.resp-StartTime) is set to tgsTkt’s start time
(tgsTkt.tkt-EncryptPart.tkt-StartTime), if present. Otherwise, it is omitted.

• Expiration time

The expiration time (tgsResp.resp-EncryptPart.resp-ExpireTime) is set to tgsTkt’s expiration
time (tgsTkt.tkt-EncryptPart.tkt-ExpireTime).

• Maximum expiration time

The maximum expiration time (tgsResp.resp-EncryptPart.resp-MaxExpireTime) is set to
tgsTkt’s maximum expiration time (tgsTkt.tkt-EncryptPart.tkt-MaxExpireTime), if present.
Otherwise, it is omitted.

• Key expiration date

The key expiration date (tgsResp.resp-EncryptPart.resp-KeyExpireDate) is omitted.

• Last requests

The last requests field (tgsResp.resp-EncryptPart.resp-LastRequests) is set, if policy permits,
to A’s last requests information (see Section 4.2.10 on page 176), if available. (If this is a
cross-cell request, that information wouldn’t be available. Even if the information is
available, KDSY may or may not send it back to the client, according to its policy; normally it
is included only in AS Responses, not TGS Responses — see Section 4.9.1 on page 213.)

• Options

The options (tgsResp.resp-EncryptPart.resp-Flags) are set to tgsTkt’s options (tgsTkt.tkt-
EncryptPart.tkt-Flags).

• Encryption

KDSY encrypts tgsResp.resp-EncryptPart using the encryption type encType and ahTkt’s
(TktA,⋅⋅⋅,B’s) session key KA,B, unless A has requested that a conversation key KÂ,B
(authnr.authnr-ConversationKey) be used, in which case KDSY uses that key instead. This is
the ciphertext portion of the TGS Response (tgsResp.resp-EncryptedPart.encData-
CipherText). KDSY also sets the encryption type (tgsResp.resp-EncryptedPart.encData-
EncType) to encType. The key version number (tgsResp.resp-EncryptedPart.encData-
KeyVersNum) is omitted.

At this point, the KDS Response is well-formed, and the KDS returns it to the calling client.

4.14.3 Client Receives TGS Response

[RFC 1510: 3.3.4, A.4, A.7]

Consider a client A that receives a TGS Response, tgsResp (that is, tgsResp is a value of data type
TGSResponse, with protocol version number (tgsResp.resp-ProtoVersNum) protoVersNum-
KRB5 and protocol message type (tgsResp.resp-ProtoMsgType) protoMsgType-TGS-
RESPONSE), in response to a TGS Request, tgsReq (as the result of calling kds_request( )) to
KDSY. A processes tgsResp according to the algorithm below. In the case this algorithm
completes successfully, A is justified in believing that the returned tgsTkt (or Tkt*A,⋅⋅⋅,B*; that is,
tgsResp.resp-Tkt) is correctly and securely targeted to the server B* specified (tgsResp.resp-

254 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

EncryptPart.resp-ServerCell and tgsResp.resp-EncryptPart.resp-ServerName), and that it
contains the values returned elsewhere in the tgsResp (in particular, that A is the client named by
tgsTkt), and using it (especially, its session key, K*A,B*, of encryption type encType*) in subsequent
Authentication Headers it sends in service requests to the targeted server, or in subsequent TGS
Requests. In the case the algorithm fails, A takes (application-specific) recovery action.

Here, the notions of ‘‘success’’ or ‘‘failure’’ of this algorithm are taken to mean ‘‘conforming to
A’s request (tgsReq)’’, where the criteria of ‘‘conformance’’ are application-specific. Typically, but
not necessarily, A will be satisfied only if KDSY formulates the TGS Response exactly as A
requested. For example, A may have requested a very long maximum expiration time but KDSY
issued only a somewhat shorter one — whether A views that as a success or failure is an
application-specific determination.

• Client cell

The named client’s cell (tgsResp.resp-ClientCell) is checked for conformance to what A
requested in the authenticator to its TGS Request (authnr.authnr.ClientCell, where authnr is
carried in tgsReq.req-AuthnData as described previously).

• Client name

The client name (tgsResp.resp-ClientName) is checked for conformance to what A requested
(tgsReq.req-Body.req-ClientName).

• Authentication data

The authentication data (tgsResp.resp-AuthnData) is ignored.

• Ticket

tgsTkt (tgsResp.resp-Tkt) is not directly interpretable (in the sense of being decryptable) by A
(unless A happens to also be the server targeted by tgsTkt), but the information in it is largely
available elsewhere in tgsResp.

• Decryption

The encryption type, encType (tgsResp.resp-EncryptedPart.encData-EncType), is checked to
be the same as the encryption type protecting the ahTkt (TktA,⋅⋅⋅,B) A had presented to KDSY in
the authentication header of its TGS Request (authnHdr.authnHdr-Tkt). If it is acceptable,
then A attempts to decrypt the ciphertext portion of the TGS Response (tgsResp.resp-
EncryptedPart.encData-CipherText), using the session key KA,B from ahTkt, unless A has
requested that a conversation key KÂ,B (authnr.authnr-ConversationKey) be used, in which
case A uses that key instead. (Note that this differs from the case of an AS Response, which is
protected with A’s long-term key, not a session key.) A successful decryption is recognised
by the built-in integrity afforded by the ciphertext itself. In this way, A learns the information
carried in tgsResp.resp-EncryptPart. If A encounters an ‘‘unsuccessful’’ decryption, it takes
application-specific action — this presumably includes rejection of tgsResp as untrustworthy
(the ability to successfully decrypt tgsResp.resp-EncryptedPart proves to A that it was
encrypted by the legitimate KDSY (since A trusts the key KA,B or KÂ,B to be secure), and that it
is not being spoofed by a counterfeit KDSY. In particular, if A is not the client requested in
tgsReq, in the sense of not knowing the correct session key (KA,B or KÂ,B), then A will not be
able to successfully decrypt tgsResp, and consequently will not be able to gain access to the
information in tgsResp.resp-EncryptPart (in particular, its session key, K*A,B* (tgsResp.resp-
EncryptPart.resp-SessionKey, of encryption type encType* — see below)).

• Nonce

The nonce (tgsResp.resp-EncryptPart.resp-Nonce) is checked for equality with the requested
nonce (tgsReq.req-Body.req-Nonce). If it is not equal, then this tgsResp does not correspond

Part 2 Security Services and Protocols 255



TGS Request/Response Processing Key Distribution (Authentication) Services

to tgsReq, and a ‘‘replay attack’’ may be suspected, to which A takes application-specific
action.

• Last requests

The last requests (tgsResp.resp-EncryptPart.resp-LastRequests) are typically ignored (it may
be inspected if present, but it is typically not present — see Section 4.9.1 on page 213).

• Key expiration date

The key expiration date (tgsResp.resp-EncryptPart.resp-KeyExpireDate) is typically ignored
(it may be inspected if present, but it is typically not present — see Section 4.9.1 on page 213).

• Server cell

The server cell (tgsResp.resp-EncryptPart.resp-ServerCell) is checked for conformance to
what A requested (tgsReq.req-Body.req-ServerCell). (See also next step.)

• Server name

The server name (tgsResp.resp-EncryptPart.resp-ServerName) is checked for conformance to
what A requested (tgsReq.req-Body.req-ServerName). (If the server cell (tgsResp.resp-
EncryptPart.resp-ServerCell) and server name (tgsResp.resp-EncryptPart.resp-ServerName)
do not identify the server that A requested, then A knows tgsTkt is a new cross-cell referral
ticket, and A will normally send a TGS Request to the new cross-cell KDS server it names.)

• Session key

The encryption type, encType* (tgsTkttkt-EncryptedPart.encData-Enctype), of the session key
(which A trusts is secure), K*A,B* (tgsResp.resp-EncryptPart.resp-SessionKey), is checked for
conformance to what A had requested (tgsReqreg-Body.reg-EncTypes), and K*A,B* is saved for
later use (for example, in protecting communications with the server B*).

• Authentication time

The authentication time (tgsResp.resp-EncryptPart.resp-AuthnTime) is checked for
conformance to what A expects (namely, A’s authentication time from ahTkt and from A’s
original initial ticket-granting-ticket on which tgsTkt is ultimately based).

• Start time

The start time (tgsResp.resp-EncryptPart.resp-StartTime) is checked for conformance to what
A requested. Namely, if A requested tgsTkt to be postdated, then the start time is checked to
be present and checked for conformance to the start time A requested (tgsReq.req-Body.req-
StartTime); otherwise, the start time should be absent.

• Expiration time

The expiration time (tgsResp.resp-EncryptPart.resp-ExpireTime) is verified for conformance
to what A requested (tgsReq.req-Body.req-ExpireTime).

• Maximum expiration time

The maximum expiration time (tgsResp.resp-EncryptPart.resp-MaxExpireTime) is checked
for conformance to what A requested. It should only be present (at most) if A had selected
the renewable option (tgsReq.req-Body.req-Flags.req-Renewable) and supplied a requested
maximum expiration time (tgsReq.req-Body.req-MaxExpireTime), or if A had selected the
renewable-okay option (tgsReq.req-Body.req-Flags.req-RenewableOK).

• Client addresses

256 CAE Specification (1997)



Key Distribution (Authentication) Services TGS Request/Response Processing

If A requested that tgsTkt contain client host addresses (as part of a forward or proxy
request), then the client address field (tgsResp.resp-EncryptPart.resp-ClientAddrs) is verified
to be present and checked for conformance to what A requested (tgsReq.req-Body.req-
ClientAddrs). Otherwise, the client addresses are checked for conformance to the client
addresses in the ticket-granting-ticket accompanying the TGS Request (ahTkt.tkt-
EncryptPart.tkt-ClientAddrs), if present.

• Options

The options field (tgsResp.resp-EncryptPart.resp-Flags) is inspected for conformance to what
A requested (tgsReq.req-Body.req-Flags).

This completes the specification of the TGS Request/Response exchange.

Part 2 Security Services and Protocols 257



KDS Error Processing Key Distribution (Authentication) Services

4.15 KDS Error Processing
[RFC 1510: 3.1.6, A.20]

This section specifies in detail the processing that occurs when a KDS server encounters a failure
during its processing of an AS Request or a TGS Request, and returns a KDS Error to the
requesting client. (Actually, KDS Error messages may be of some use to arbitrary application
servers, not just KDS servers. That scenario is not examined in this section, though the
discussion given here can easily be generalised to that situation.)

Consider a KDS Request, kdsReq, received by KDSY from a client A. This KDS Request is either
an AS Request or a TGS Request, and KDSY performs the algorithm specified above accordingly.
If it encounters one or more algorithmic failures, it chooses one (normally, the first one it
encounters dynamically) to return in a KDS Error message. KDSY then proceeds to execute the
algorithm below. This results in KDSY returning a KDS Error kdsErr (of type KDSError) to A.

authnr is written for the authenticator accompanying a KDS Request (carried in kdsReq.req-
AuthnData as described previously), provided it is present and KDSY can decrypt the encrypted
authenticator successfully. In that case, the description is authnr (and the information in it) ‘‘is
available’’.

• Protocol version number

The protocol version number (kdsErr.err-ProtoVersNum) is set to protoVersNum-KRB5.

• Protocol message type

The protocol message type (kdsErr.err-ProtoMsgType) is set to protoMsgType-KDS-ERROR.

• Client cell

The client cell (kdsErr.err-ClientCell) is set to the request’s client cell (authnr.authnr-
ClientCell), if available. Otherwise, it is omitted.

• Client name

The client name (kdsErr.err-ClientName) is set to the request’s client name (authnr.authnr-
ClientName), if available. Otherwise, it is omitted.

• Server cell

The server cell (kdsErr.err-ServerCell) is set to the request’s server cell name (kdsReq.req-
ServerCell), which is KDSY’s cell name; that is, Y’s cell name.

• Server name

The server name (kdsErr.err-ServerName) is set to the request’s server’s RS name
(kdsReq.req-ServerName), which is KDSY’s RS name.

• Client timestamp

The client timestamp (kdsErr.err-ClientTime) is set to the request’s client timestamp
(authnr.authnr-ClientTime), if available. Otherwise, it is omitted.

• Client microsecondstamp

The client microsecondstamp (kdsErr.err-ClientMicroSec) is set to the request’s client
microsecondstamp (authnr.authnr-ClientMicroSec), if available. Otherwise, it is omitted.

• Server timestamp

The server timestamp (kdsErr.err-ServerTime) is set to KDSY’s system time.

258 CAE Specification (1997)



Key Distribution (Authentication) Services KDS Error Processing

• Server microsecondstamp

The server microsecondstamp (kdsErr.err-ServerMicroSec) is set to KDSY’s
microsecondstamp.

• Status code

The status code (kdsErr.err-StatusCode) is set to the status code of the error being reported
by this KDS Error message.

• Status text

The status text (kdsErr.err-StatusText) is set to the status text associated with the status code
being reported, if any. Otherwise it is omitted.

• Status data

The status data (kdsErr.err-StatusData) is set to the status data associated with the status
code being reported, if any. Otherwise it is omitted.

This completes the specification of the KDS Error message processing.

Part 2 Security Services and Protocols 259



Cross-cell Authentication Key Distribution (Authentication) Services

4.16 Cross-cell Authentication
[RFC 1510: 1.1]

As seen in Section 4.12 on page 220 and Section 4.14 on page 240, the authentication of a client A
in cell X to a server B in cell Y is quite straightforward if X = Y. But the case X ≠ Y requires a
sequence of non-obvious cross-cell referrals. The low-level details have already been specified
above (in Section 4.14 on page 240), but without a higher-level understanding of cross-cell
referrals the whole scenario remains obscure and mysterious. This section presents this higher-
level view (see also Section 1.7 on page 32).

Consider a client A in cell X that wants to authenticate to an ultimate non-KDS end-server B in
cell Y, with X ≠ Y. A begins by obtaining an (initial or subsequent) ticket, TktA,KDSX, protected
with KDSX’s long-term key KKDSX.

A then sends a TGS Request to KDSX, presenting TktA,KDSX (in req-AuthnData) to KDSX,
requesting a service-ticket targeted to B in Y. Note that A must know the principal name of B
(comprising the cell name of Y and the RS name of B in Y), but A does not a priori know the
intermediate cells in the trust chain between X and Y — that is, A knows the structure of the
namespace, but only the network of KDS servers knows the structure of the trust graph
(consisting of the cross-cell registrations of KDS servers with one another).

Since B’s home cell is Y (≠ X), KDSX does not know B’s long-term key KB, and so it cannot
construct the requested service-ticket targeted to B. Instead, KDSX chooses a cell Z which is
cross-registered with X to be used as the next hop towards Y, and returns to A a TGS Response
which contains (in resp-Tkt) a cross-cell referral ticket, TktA,X,KDSXZ. This TGS Response and
TktA,X,KDSXZ contain a newly generated session key KA,KDSXZ between A and KDSX,Z, and
TktA,X,KDSXZ is protected with the long-term key KKDSXZ shared between the two surrogate KDS
principals KDSX,Z cross-registered in RSX and in RSZ.

When A receives this TGS Response from KDSX, it recognises that it has received (resp-Tkt) a
cross-cell referral ticket instead of the service-ticket it had requested, because the TGS Response
contains information (in resp-ServerCell and resp-ServerName) telling A that the target of
resp-Tkt is not the server B that A had requested (and a cross-cell referral ticket is the only
instance in which a KDS server ever issues a ticket targeted to a server other than that requested
by the client). Accordingly, A now formulates a new TGS Request, to KDSZ (KDSX,Z) this time,
again requesting a service-ticket targeted to B. The ticket A present (in req-AuthnData) in this
TGS Request to KDSZ is the cross-cell referral ticket, TktA,X,KDSXZ, A just received from KDSX.

When KDSZ receives this TGS Request, it decrypts TktA,X,KDSXZ with the long-term key KKDSXZ,
thereby learning its session key KA,KDSZ (this authenticates A to KDSZ and secures
communications between them, and establishes the A → KDSX → KDSZ trust chain).

Now shift notation slightly (for purposes of an inductive argument) and write Z´ instead of Z. If
Z´ = Y, then KDSZ´ = KDSY can satisfy A’s TGS Request, and can return to A the TktA,X,Y,B A
requested. Otherwise, the above procedure is iterated: KDSZ´ returns (if possible) to A another
new cross-cell referral ticket, TktA,X,Z´,KDSZ´Z´´, to a next-hop cell Z´´ which is even closer to the
desired cell Y. This process continues through a sequence of cross-cell referrals, Z´, Z´´, ⋅⋅⋅, Z´´´,
until it eventually terminates (if no errors are encountered) when the desired cell Z´´´´ = Y is
ultimately reached. For at that point, A’s TGS Request to KDSY (KDSZ´´´Y) for a service-ticket
targeted to B (protected in B’s long-term key KB) will finally be satisfied, and is returned to A in
the TGS Response from KDSY. A recognises that it has finally received a service-ticket targeted
to its desired end-server B, so can then proceed to use this TktA,X,Z´,Z´´,⋅⋅⋅,Z´´´,Y,B to authenticate
itself to, and protect its communications with, B.

In particular, note that the successive steps of this cross-cell authentication scenario are all secure,
because the referral information (cell name and RS name of successive KDS servers to be

260 CAE Specification (1997)



Key Distribution (Authentication) Services Cross-cell Authentication

contacted, session keys, and so on) is securely determined by a chain of trusted KDS servers and
securely transmitted to A at each stage.

Finally, it is to be noted that this chapter has not explained how authorisation data or UUIDs
make their appearance in the protocol. That is the province of the Privilege Service, as specified
in Chapter 5.

Part 2 Security Services and Protocols 261



Key Distribution (Authentication) Services

262 CAE Specification (1997)



Chapter 5

Privilege (Authorisation) Services

This chapter specifies the privilege (or authorisation), services supported by DCE, together with
the protocols associated with them. Currently, two such services are supported, namely PAC-
based Privilege Service (PS) and Name-based Privilege Service. Of these two, PAC-based
authorisation used to be the more important and better supported, and most of this chapter is
devoted to it. With the advent of delegation, extensions have been made to the PAC in order to
support delegation controls and extensible restrictions. These extend the notion of identity to
include chained identities, and to allow delegation and extensible restrictions to be specified.

In addition, the extensions also include certain attributes, those dealing with the data repository
or registry. Including them as extensions to the PAC, designated EPAC, permits them to be
transmitted securely and automatically along with a principal’s identity information.

In order to ensure the integrity of the data being transmitted across the network in a delegated
environment, name-based authorization is used. This is because specific attributes must be
requested and examined prior to transmission. Name-based authorisation is treated briefly at
the end of the chapter.

Throughout this chapter the notation ps_request_*( ), wherever it appears, is used in a generic
sense to mean any one of ps_request_ptgt( ), ps_request_eptgt( ), ps_request_become_delegate( ), or
ps_request_become_impersonator( ) as appropriate. In addition, where it is used elsewhere in this
document, it is used in the same sense.

For an overview of this chapter, see Section 1.5 on page 18 through Section 1.7 on page 32 of this
specification — which are considered a prerequisite for this whole chapter.

5.1 PAC-based Privilege Service (PS)
The PS is a distributed, partitioned RPC service, instantiated by a (conceptually unitary, but
potentially replicated) RPC server in each cell Z, denoted PSZ. If the name of cell Z is, say,
/.../cellZ, then the RPC service name of PSZ (used for RPC binding purposes) is determined from
/.../cellZ/cell-profile via the rpriv interface UUID and version number (specified in Section 5.1.1)
— typically, the name associated with this profile element will be /.../cellZ/sec, which will be an
RPC server group pointing to the individual (replicated) PSZ server(s). (The principal names of PS
servers (used for security purposes) — as opposed to their RPC server names — are introduced
later in this chapter.)

5.1.1 The rpriv RPC Interface

Each PS server, PSZ, supports the following RPC interface:

[uuid(b1e338f8-9533-11c9-a34a-08001e019c1e), version(1.1),
pointer_default(ptr)]

interface rpriv {
/* begin running listing of rpriv interface */

Part 2 Security Services and Protocols 263



PAC-based Privilege Service (PS) Privilege (Authorisation) Services

5.1.1.1 ps_message_t

This is the definition of the encoding used for the data in the PTGS Request/PTGS Response
message pair by which clients acquire privilege-ticket-granting-tickets. (See Section 5.1.6 on page
275.)

typedef struct {
unsigned32 count;
[size_is(count)] byte bytes[];

} ps_message_t;

5.1.1.2 ps_attr_request_t

This is the definition of the structure to encapsulate information relevant to an optional auxiliary
attributes request from the privilege server (PS).

typedef struct {
unsigned32 count_auxiliary_attribute_keys;
[ptr, size_is(count_auxiliary_attribute_keys)]

sec_attr_t *auxiliary_attribute_keys;
} ps_attr_request_t;

5.1.1.3 ps_attr_result_t

This is the definition of the structure to encapsulate information relevant to an optional auxiliary
attributes response from the privilege server (PS).

typedef struct {
error_status_t status;
unsigned32 count_attrs;
[ptr, size_is(count_attrs)]

sec_attr_t *attrs;
} ps_attr_result_t;

5.1.1.4 ps_app_tkt_result_t

This is the definition of the structure to encapsulate information relevant to an optional
application service ticket response used for delegation — for extended-privilege-ticket-
granting-tickets, as well as for becoming a delegate or an impersonator on behalf of a client.

typedef struct {
error_status_t status;
[ptr] ps_message_t *application_ticket_result;

} ps_app_tkt_result_t;

5.1.1.5 ps_request_ptgt

void
ps_request_ptgt (

[in] handle_t rpc_handle,
[in] unsigned32 authn_service,
[in] unsigned32 authz_service,
[in] ps_message_t *request,
[out] ps_message_t **response,
[out, ref] error_status_t *status

);

264 CAE Specification (1997)



Privilege (Authorisation) Services PAC-based Privilege Service (PS)

The semantics of ps_request_ptgt( ) are that a client, C, invokes ps_request_ptgt( ) to ‘‘send a PS
Request message’’ to a PS server, PSZ; C receives a PS Response message from PSZ when
ps_request_ptgt( ) returns. Its parameters are the following:

• rpc_handle

RPC binding handle, bound by the client C to a PS server PSZ.

• authn_service

The authentication (or key distribution) service for which this invocation of ps_request_ptgt( )
is requesting a PAC. The currently supported authentication services are collected in Section
5.1.2 on page 273.

• authz_service

The authorisation service for which this invocation of ps_request_ptgt( ) is requesting a
privilege attribute certificate. The currently registered authorisation services are collected in
Section 5.1.3 on page 273.

• request

(Pointer to) PS Request message. It has length (*request).count and value (*request).bytes[].
See Section 5.2.10 on page 282.

• response

(Pointer to pointer to) PS Response message. It has length (**response).count and value
(**response).bytes[]. See Section 5.2.11 on page 283 and Section 5.2.12 on page 283.

• status

(Pointer to) status code. See Section 5.1.4 on page 273.

Part 2 Security Services and Protocols 265



PAC-based Privilege Service (PS) Privilege (Authorisation) Services

5.1.1.6 ps_request_become_delegate

void
ps_request_become_delegate (

[in] handle_t rpc_handle,
[in] unsigned32 authn_service,
[in] unsigned32 authz_service,
[in] sec_id_delegation_type_t delegation_type_permitted,
[in] sec_id_restriction_set_t *delegate_restrictions,
[in] sec_id_restriction_set_t *target_restrictions,
[in] sec_id_opt_req_t *optional_restrictions,
[in] sec_id_opt_req_t *required_restrictions,
[in] sec_id_compatibility_mode_t compatibility_mode,
[in] sec_bytes_t *delegation_chain,
[in] sec_bytes_t *delegate,
[in] sec_encrypted_bytes_t *delegation_token,
[in, ref] ps_message_t *request,
[out] ps_message_t **response,
[out] sec_bytes_t *new_delegation_chain,
[in, ptr] ps_attr_request_t *auxliary_attribute_request,
[out] ps_attr_result_t *auxliary_attribute_result,
[in, ptr, string] unsigned char *application_ticket_request,
[out] ps_app_tkt_result_t *application_ticket_result,
[out, ref] error_status_t *status

);

The semantics of ps_request_become_delegate( ) are that an intermediary caller (on behalf of a
Client, C,) invokes ps_request_become_delegate( ) to ‘‘send a PS Request message’’ to a PS server, PSZ
for an entire delegation chain. The delegation chain includes the EPAC(s) and associated
Delegation Token (DT) from the intermediary’s caller, along with the intermdiary’s EPAC and PS
Request message. The PS Server, PSZ, once it ensures that no tampering has taken place (by
verifying that the Delegation Token for the delegation chain is correct), will create a new
delegation chain from the existing one with the intermediary’s EPAC as a new delegate. If any
EPAC(s) in the chain have a delegate restriction preventing this intermediary (server) from
transmitting it’s identity, the PS server will replace that participant’s EPAC with an anonymous
EPAC. (See Section 1.20.7.1 on page 96).

The intermediary caller receives a PS Response message from PSZ when
ps_request_become_delegate( ) returns. This response pertains to the delegation chain. The PS
Response message will contain a seal in the A_D field encrypted in the key of the privilege server,
PSZ, as the new delegation token for this delegation chain. In addition, the A_D field will also
contain the seal of the EPAC chain. This seal is an MD5 checksum for each EPAC in the chain,
and an MD5 checksum of those checksums.

The parameters of ps_request_become_delegate( ) are the following:

• rpc_handle

RPC binding handle, bound by the client C to a PS server PSZ.

• authn_service

The authentication (or key distribution) service for which this invocation of
ps_request_become_delegate( ) is requesting an EPAC. The currently supported authentication
services are collected in Section 5.1.2 on page 273.

266 CAE Specification (1997)



Privilege (Authorisation) Services PAC-based Privilege Service (PS)

• authz_service

The authorisation service for which this invocation of ps_request_become_delegate( ) is
requesting a privilege attribute certificate. The currently registered authorisation services are
collected in Section 5.1.3 on page 273.

• delegation_type_permitted

Determines the delegation type to be permitted. This is specified by the client when it
permits delegation to be enabled. Only two types are permitted — traced delegation or
impersonation. An intermediary (server) is not permitted to use a delegation type that was not
enabled by the initiator. For the data type definitions, see Section 5.2.13.6 on page 285.

• delegate_restrictions

(Pointer to) the list of delegates that are permitted. Delegate restrictions are set by a client
and limit the servers that may act as an intermediary for the client. The restriction is imposed
by the PS when constructing a new PTGT that permits the intermediary to operate as a
delegate for the client. For more information see Section 5.2.13.3 on page 284. For definitions
of the entries for the restrictions, see Section 5.2.13.2 on page 284.

• target_restrictions

(Pointer to) the list of targets to whom this identity may be presented. The restrictions are
placed by a given client to restrict the set of targets to whom the client’s identity may be
projected. These restrictions are imposed by the PSZ of the cell Z (the target cell). For more
information see Section 5.2.13.3 on page 284. For definitions of the entries for the restrictions,
see Section 5.2.13.2 on page 284.

• optional_restrictions

(Pointer to) the list of (application defined) optional restrictions denoting specific
authorization requirements. These restrictions may be set by initiators and delegates and
apply to the delegation context (they are interpreted and enforced by the target server
application). A server is free to ignore any optional restriction that cannot be interpreted. See
Section 5.2.13.1 on page 283 for the data type definition.

• required_restrictions

(Pointer to) the list of (application defined) required restrictions denoting specific
authorization requirements. These restrictions may be set by initiators and delegates and
apply to the delegation context (they are interpreted and enforced by the target server
application). A server must reject requests for which there is a required restriction that
cannot be interpreted. See Section 5.2.13.1 on page 283 for the data type definition.

• compatibility_mode

Specifies the compatibility mode desired when operating on DCE 1.0 servers. The extensions
to the PAC required by delegation are not understood by DCE 1.0 servers. This parameter
determines the contents of the of the start of the Authorization Data (A_D) field. See Section
5.2.13.5 on page 285 for a description of the values and Section 1.20.1 on page 90 for a
description of the DCE 1.1 A_D field in the PTGT.

• delegation_chain

(Pointer to) a set of chained EPACs. This set of (one or more) EPACs is encrypted in the same
session key used to ensure the privacy of the arguments in the RPC call, if the authenticated
RPC call is using protect level packet_privacy (more specifically,
rpc_c_protect_level_pkt_privacy, listed in Section 1.10 on page 54).

Part 2 Security Services and Protocols 267



PAC-based Privilege Service (PS) Privilege (Authorisation) Services

Note that for DCE 1.1, the chain of EPACs must all reside in the same cell. Thus, if a
delegation request traverses outside the cell - for instance, from cell A to cell B, no further
delegation is permitted - that is, a server in cell B may perform the function requested, but
may not delegate the request to any other server.

• delegate

(Pointer to) the EPAC for the intermediary that is issuing the ps_request_become_delegate( ).

• delegation_token

(Pointer to) he encrypted seal of the EPAC chain. It consists of an MD5 checksum over the
checksums for each EPAC in the chain of EPACs (known as the seal of the EPACs), encrypted
in the key of the Privilege Server (PSZ). This encrypted checksum is inserted into the A_D
field of the EPAC in order to be passed along with the Authorization Data, in any requests
(authenticated RPC calls) made subsequent to this call to other servers.

• request

(Pointer to) PS Request message. It has length (*request).count and value (*request).bytes[].
See Section 5.2.10 on page 282.

• response

(Pointer to pointer to) PS Response message. It has length (**response).count and value
(**response).bytes[]. See Section 5.2.11 on page 283 and Section 5.2.12 on page 283.

• new_delegation_chain

(Pointer to) a chain constructed from the existing (input to this function) one with the
intermediary’s EPAC as a new delegate. As noted previously, the input delegation chain may
be modified if any EPACs in the chain have a delegate restriction preventing this
intermediary server (making this ps_request_become_delegate( ) request) from transmitting
their identity. In such instances, each such EPAC will be replaced by an anonymous EPAC.
See Section 1.20.7.1 on page 96 for more details.

• auxiliary_attribute_request

(Pointer to) types of attributes. Auxiliary attributes only have meaning in local requests to
the PS. This is an optional parameter which specifies instances of the types of attributes to be
searched for on the node of the principal for whom ps_request_become_delegate( ) is granted.

Note: This parameter is not implemented in this version of DCE (DCE 1.1).

• auxiliary_attribute_result

(Pointer to) the results obtained from the search for instances of types of attributes specified
in auxiliary_attribute_request. For this version of DCE (DCE 1.1), auxiliary attributes are not
implemented. Upon return, this parameter is set to the value sec_rgy_not_implemented in
DCE 1.1.

• application_ticket_request

(Pointer to) a string of characters. This is an optional parameter. It specifies (a pointer to) an
application service ticket request which consists solely of the principal’s name on whose
behalf this PS request is being made. (See Section 4.2.7 on page 174).

• application_ticket_result

(Pointer to) information relevant to an optional application service ticket response. This
information is in the form of a structure consisting of a status code and the ticket response.
For this version of DCE (DCE 1.1), application ticket requests are not implemented. Upon

268 CAE Specification (1997)



Privilege (Authorisation) Services PAC-based Privilege Service (PS)

return, this parameter is set to the value sec_rgy_not_implemented in DCE 1.1. See Section
5.1.1.4 on page 264.

• status

(Pointer to) status code. See Section 5.1.4 on page 273.

5.1.1.7 ps_request_become_impersonator

void
ps_request_become_impersonator (

[in] handle_t rpc_handle,
[in] unsigned32 authn_service,
[in] unsigned32 authz_service,
[in] sec_id_delegation_type_t delegation_type_permitted,
[in] sec_id_restriction_set_t *delegate_restrictions,
[in] sec_id_restriction_set_t *target_restrictions,
[in] sec_id_opt_req_t *optional_restrictions,
[in] sec_id_opt_req_t *required_restrictions,
[in] sec_bytes_t *delegation_chain,
[in] sec_bytes_t *impersonator,
[in] sec_encrypted_bytes_t *delegation_token,
[in] ps_message_t *request,
[out] ps_message_t **response,
[out] sec_bytes_t *new_delegation_chain,
[in, ptr] ps_attr_request_t *auxliary_attribute_request,
[out] ps_attr_result_t *auxliary_attribute_result,
[in, ptr, string] unsigned char *application_ticket_request,
[out] ps_app_tkt_result_t *application_ticket_result,
[out, ref] error_status_t *status

);

The semantics of ps_request_become_impersonator( ) are that an intermediary caller (on behalf of a
Client, C,) invokes ps_request_become_impersonator( ) to ‘‘send a PS Request message’’ to a PS
server, PSZ for the initiator’s EPAC (The initiator’s EPAC includes the EPAC(s) and associated
Delegation Token (DT) from the intermediary’s caller), along with the intermediary’s EPAC and
PS Request message. The PS Server, PSZ, once it ensures that no tampering has taken place (by
verifying that the Delegation Token for the initiator’s EPAC is correct), will then verify that the
intermediary is permitted to impersonate the initiator.

The intermediary caller receives a PS Response message from PSZ when
ps_request_become_impersonator( ) returns. This response pertains to the impersonator’s EPAC.
The PS Response message will contain a seal of the initiator’s EPAC in the A_D field. This seal is
an MD5 checksum for the initiator’s EPAC. In addition, the A_D field will also contain that same
seal encrypted in the key of the privilege server, PSZ, as the new delegation token for the
impersonators’s EPAC.

The parameters of ps_request_become_impersonator( ) are the following:

• rpc_handle

RPC binding handle, bound by the client C to a PS server PSZ.

• authn_service

The authentication (or key distribution) service for which this invocation of
ps_request_become_impersonator( ) is requesting an EPAC. The currently supported

Part 2 Security Services and Protocols 269



PAC-based Privilege Service (PS) Privilege (Authorisation) Services

authentication services are collected in Section 5.1.2 on page 273.

• authz_service

The authorisation service for which this invocation of ps_request_become_impersonator( ) is
requesting a privilege attribute certificate. The currently registered authorisation services are
collected in Section 5.1.3 on page 273.

• delegation_type_permitted

Determines the delegation type to be permitted. This is specified by the client when it
permits delegation to be enabled. Only two types are permitted — traced delegation or
impersonation. An intermediary (server) is not permitted to use a delegation type that was not
enabled by the initiator. For the data type definitions, see Section 5.2.13.6 on page 285.

• delegate_restrictions

(Pointer to) the list of delegates that are permitted. Delegate restrictions are set by a client
and limit the servers that may act as an intermediary for the client. The restriction is imposed
by the PS when constructing a new PTGT that allows the intermediary to operate as a
delegate for the client. See Section 5.2.13.3 on page 284.

• target_restrictions

(Pointer to) the list of targets to whom this identity may be presented. The restrictions are
placed by a given client to restrict the set of targets to whom the client’s identity may be
projected. These restrictions are imposed by the PSZ of the cell Z (the target cell). See Section
5.2.13.3 on page 284.

• optional_restrictions

(Pointer to) the list of (application defined) optional restrictions denoting specific
authorization requirements. These restrictions may be set by initiators and delegates and
apply to the delegation context (they are interpreted and enforced by the target server
application). A server is free to ignore any optional restriction that cannot be interpreted.

• required_restrictions

(Pointer to) the list of (application defined) required restrictions denoting specific
authorization requirements. These restrictions may be set by initiators and delegates and
apply to the delegation context (they are interpreted and enforced by the target server
application). A server must reject requests for which there is a required restriction that
cannot be interpreted.

• delegation_chain

(Pointer to) a set of chained EPACs. This set of (one or more) EPACs is encrypted in the same
session key used to ensure the privacy of the arguments in the RPC call, if the authenticated
RPC call is using protect level packet_privacy (more specifically,
rpc_c_protect_level_pkt_privacy, listed in Section 1.10 on page 54).

• impersonator

(Pointer to) the EPAC for the intermediary that is issuing the
ps_request_become_impersonator( ).

• delegation_token

(Pointer to) the encrypted seal of the EPAC. It consists of an MD5 checksum over the
initiator’s EPAC (known as the seal of the EPAC), encrypted in the key of the Privilege Server
(PSZ). This encrypted checksum is inserted into the A_D field of the EPAC in order to be

270 CAE Specification (1997)



Privilege (Authorisation) Services PAC-based Privilege Service (PS)

passed along with the Authorization Data, in any requests (authenticated RPC calls) made
subsequent to this call to other servers, as the new delegation token for this identity.

• request

(Pointer to) PS Request message. It has length (*request).count and value (*request).bytes[].
See Section 5.2.10 on page 282.

• response

(Pointer to pointer to) PS Response message. It has length (**response).count and value
(**response).bytes[]. See Section 5.2.11 on page 283 and Section 5.2.12 on page 283.

• new_delegation_chain

(Pointer to) a chain constructed from the existing (input to this function) one with the
intermediary’s EPAC as an impersonator of the initiator. As noted previously, the input
delegation chain may be modified if any EPACs in the chain have a delegate restriction
preventing this intermediary server (making this ps_request_become_impersonator( ) request)
from transmitting their identity. In such instances, each such EPAC will be replaced by an
anonymous EPAC. See Section 1.20.7.1 on page 96 for more details.

• auxiliary_attribute_request

(Pointer to) types of attributes. Auxiliary attributes only have meaning in local requests to
the PS. This is an optional parameter which specifies instances of the types of attributes to be
searched for on the node of the principal for whom ps_request_become_impersonator( ) is
granted.

Note: This parameter is not implemented in this version of DCE (DCE 1.1).

• auxiliary_attribute_result

(Pointer to) the results obtained from the search for instances of types of attributes specified
in auxiliary_attribute_request. For this version of DCE (DCE 1.1), auxiliary attributes are not
implemented. Upon return, this parameter is set to the value sec_rgy_not_implemented in
DCE 1.1.

• application_ticket_request

This is an optional parameter. It specifies (a pointer to) an application service ticket request
which consists solely of the principal’s name on whose behalf this PS request is being made.

• application_ticket_result

(Pointer to) information relevant to an optional application service ticket response. This
information is in the form of a structure consisting of a status code and the ticket response.
For this version of DCE (DCE 1.1), application ticket requests are not implemented. Upon
return, this parameter is set to the value sec_rgy_not_implemented in DCE 1.1.

• status

(Pointer to) status code. See Section 5.1.4 on page 273.

5.1.1.8 ps_request_eptgt

Part 2 Security Services and Protocols 271



PAC-based Privilege Service (PS) Privilege (Authorisation) Services

void
ps_request_eptgt (

[in] handle_t rpc_handle,
[in] unsigned32 authn_service,
[in] unsigned32 authz_service,
[in] sec_bytes_t *requested_privileges,
[in] ps_message_t *request,
[out] ps_message_t **response,
[out] sec_bytes_t *granted_privileges,
[in, ptr] ps_attr_request_t *auxliary_attribute_request,
[out] ps_attr_result *auxliary_attribute_result,
[in, ptr, string] unsigned char *application_ticket_request,
[out] ps_app_tkt_result_t *application_ticket_result,
[out, ref] error_status_t *status

);

The semantics of ps_request_eptgt( ) are that a client, C, invokes ps_request_eptgt( ) using name-
based authorisation to ensure the integrity of the parameters across the network to ‘‘send a PS
Request message’’ to a PS server, PSZ; C receives a PS Response message containing an Extended
PAC (EPAC) from PSZ when ps_request_ptgt( ) returns. The PS Request message may optionally
request specific attributes. The parameters of ps_request_eptgt( ) are the following:

• rpc_handle

RPC binding handle, bound by the client C to a PS server PSZ.

• authn_service

The authentication (or key distribution) service for which this invocation of ps_request_eptgt( )
is requesting an EPAC. The currently supported authentication services are collected in
Section 5.1.2 on page 273.

• authz_service

The authorisation service for which this invocation of ps_request_eptgt( ) is requesting a
privilege attribute certificate. The currently registered authorisation services are collected in
Section 5.1.3 on page 273.

• requested_privileges

The set of privileges being requested from the PS. These privileges are usually found in one
or more (encoded) extended PACs (unless the privileges being requested are not valid), for
local requests. If the request is an intercell request, the PS uses the EPAC seal from the
authorization data contained in the extended PTGT (EPTGT) in examining the privileges.

• request

(Pointer to) PS Request message. It has length (*request).count and value (*request).bytes[].
See Section 5.2.10 on page 282.

• response

(Pointer to pointer to) PS Response message. It has length (**response).count and value
(**response).bytes[]. See Section 5.2.11 on page 283 and Section 5.2.12 on page 283.

• granted_privileges

An encoded EPAC set (of one or more EPACs) containing the granted privileges.

272 CAE Specification (1997)



Privilege (Authorisation) Services PAC-based Privilege Service (PS)

• auxiliary_attribute_request

Auxiliary attributes only have meaning in local requests to the PS. This is an optional
parameter which specifies instances of the types of attributes to be searched for on the node
of the principal for whom ps_request_eptgt( ) is granted.

Note: This parameter is not implemented in this version of DCE (DCE 1.1).

• auxiliary_attribute_result

For this version of DCE (DCE 1.1), auxiliary attributes are not implemented. Upon return,
this parameter is set to the value sec_rgy_not_implemented in DCE 1.1.

• application_ticket_request

This is an optional parameter. It specifies (a pointer to) an application service ticket request
which consists solely of the principal’s name on whose behalf this PS request is being made.

• application_ticket_result

(Pointer to) information relevant to an optional application service ticket response. This
information is in the form of a structure consisting of a status code and the ticket response.
For this version of DCE (DCE 1.1), application ticket requests are not implemented. Upon
return, this parameter is set to the value sec_rgy_not_implemented in DCE 1.1.

• status

(Pointer to) status code. See Section 5.1.4.
} /* end running listing of rpriv interface */

5.1.2 Registered Authentication Services

The currently registered values for authn_service are the following:

• ps_c_authn_secret = 1

Kerberos authentication (key distribution) service (as defined in Chapter 4).

5.1.3 Registered Authorisation Services

The currently registered values for authz_service are the following:

• ps_c_authz_dce = 2

PAC-based authorisation service (as defined in this chapter).

5.1.4 Status Codes

[RFC 24.2: 2.]

The following status codes (transmitted as values of the type error_status_t) are specified for the
rpriv interface. Only their values are specified here — their use is specified elsewhere in this
specification. See RFC 24.2 for details of how the status code values are determined. Within that
context, the base value for the component security whose mnemonic is ’’sec’’, translates into the
base value, in hex, of 17122. For any given message, the last three digits appended to this base
are the actual index value into the message catalog (in hex) of that message.

Part 2 Security Services and Protocols 273



PAC-based Privilege Service (PS) Privilege (Authorisation) Services

const unsigned32 sec_priv_s_server_unavailable = 0x1712205a;
const unsigned32 sec_priv_s_invalid_principal = 0x1712205b;
const unsigned32 sec_priv_s_not_member_any_group = 0x1712205c;
const unsigned32 sec_priv_s_invalid_authn_svc = 0x1712205e;
const unsigned32 sec_priv_s_invalid_authz_svc = 0x1712205f;
const unsigned32 sec_priv_s_invalid_trust_path = 0x17122060;
const unsigned32 sec_priv_s_invalid_request = 0x17122061;
const unsigned32 sec_priv_s_deleg_not_enabled = 0x17122065;
const unsigned32 sec_priv_s_intercell_deleg_req = 0x17122069;
const unsigned32 sec_rgy_not_implemented = 0x17122072;
const unsigned32 sec_rgy_server_unavailable = 0x1712207b;

274 CAE Specification (1997)



Privilege (Authorisation) Services PAC-based Privilege Service (PS)

5.1.5 Status Code Origination

The status codes in the preceedng section can possibily be set by the following functions. Note
this is a probable source of the code, and as such does not restrict a specific code to that
particular function in a future revision of DCE.

Status Code Possible Origin
sec_priv_s_server_unavailable ps_request_get_ptgt()

sec_priv_s_invalid_principal ps_request_get_ptgt()

sec_priv_s_not_member_any_group ps_request_ptgt()

sec_priv_s_invalid_authn_svc ps_request_ptgt()
ps_request_become_delegate()
ps_request_become_impersonator()
ps_request_eptgt()

sec_priv_s_invalid_authz_svc ps_request_ptgt()
ps_request_become_delegate()
ps_request_become_impersonator()
ps_request_eptgt()

sec_priv_s_invalid_trust_path ps_request_ptgt()
ps_request_eptgt()

sec_priv_s_invalid_request ps_request_ptgt()

sec_priv_s_deleg_not_enabled ps_request_become_delegate()
ps_request_become_impersonator()

sec_priv_s_intercell_deleg_req ps_request_become_delegate()

sec_rgy_not_implemented ps_request_become_delegate()
ps_request_become_impersonator()
ps_request_eptgt()

sec_rgy_server_unavailable ps_request_ptgt()

Table 5-1 Possible Source of rpriv RPC Interface Status Codes

5.1.6 PTGS Service

PS servers support just one service, which is associated with a pair of request/response
messages (for definitions relating to privilege-ticket-granting-tickets, see Section 5.1.7 on page
276):

• Privilege-ticket-granting Service (PTGS)

PTGS Request/PTGS Response message pair (that is, (*request).bytes[] is a value of data
type PTGSRequest, and (**response).bytes[] is a value of data type PTGSResponse). This is
the service by which clients acquire privilege-ticket-granting-tickets.

Part 2 Security Services and Protocols 275



PAC-based Privilege Service (PS) Privilege (Authorisation) Services

Thus, a PS Request message is a PTGS Request message, and a PS Response message is a PTGS
Response message.

5.1.7 Privilege-tickets

Privilege-tickets are the (trusted) information objects that the PS manages (their relationships
with ps_request_*( ) are given later in this chapter).

Privilege-tickets are the ‘‘same’’ as non-privilege-tickets (as specified in Chapter 4 on page 159),
with the following three supplements (for details see Section 5.2.7 on page 281):

• The client ‘‘named’’ in a privilege-ticket is always a PS server, never a non-PS client
principal.

• The authorisation data in a privilege-ticket carries PAC information (see Section 4.3.8.1 on
page 194, Section 5.2.5 on page 280 and Section 5.2.6 on page 281) pertaining to some client.
That client is said to be the client nominated by the privilege-ticket (unless the PAC
information is empty, in which case the nominated client defaults to the named client; that is,
to the PS server mentioned in the preceding item).

• The transit path carried by a privilege-ticket is always empty (or absent).

Since privilege-tickets are special kinds of tickets, the terminology and other specifications of
Chapter 4 relating to tickets applies with appropriate modification of detail to the privilege-
tickets of this chapter — and this will be understood to be in force by default unless explicitly indicated
otherwise. In particular, the following notation can and will be used without more elaborate
high-level explanation than that given here (the low-level details are given in the remainder of
this chapter, of course):

• Privilege-ticket

PTktA,B. This denotes a privilege-ticket nominating A in cell X, naming PSY (in cell Y; not
naming A, as was the case with a non-privilege-ticket), and targeted to B in cell Y. It is either
a privilege-ticket-granting-ticket (PTGT) or a privilege-service-ticket, according to whether
its targeted server is or is not a KDS server. (Note that since privilege-tickets carry no transit
path information, there is no notion of a ‘‘PTktA,X,Z´,⋅⋅⋅,Z´´,Y,B’’.)

Note that the privilege-ticket acquired via ps_request_eptgt( ) to a PS server PSZ is always a
privilege-ticket-granting-ticket (targeted to the KDS server KDSZ in the same cell Z), never a
privilege-ticket targeted to a non-KDS server (those are obtained from KDS servers, not PS
servers).

276 CAE Specification (1997)



Privilege (Authorisation) Services Data Types

5.2 Data Types
The data type definitions of Chapter 4 remain in effect for this chapter, and in addition the
following data types are defined. The data description languages and encodings used are
ASN.1/BER/DER and IDL/NDR (see the referenced X/Open DCE RPC Specification for the
latter), which can be distinguished from one another by their syntaxes. The representations from
Section 5.2.1 through Section 5.2.6 on page 281 are identified by the following interface:

[
uuid(47EAABA3-3000-000-0D00-01DC6C000000)

]

5.2.1 Authorisation Identities

Identities suitable for the DCE authorisation architecture are represented by the sec_id_t data
type, which is defined as follows:

typedef struct {
uuid_t uuid;
[string, ptr] char *name;

} sec_id_t;

Its semantics are that it indicates the identity of security entities — principals (including KDS
principals; that is, ‘‘cell identities’’), groups, and so on — for the purposes of the authorisation
subsystem. Its fields are the following:

• uuid

The ‘‘definitive’’, ‘‘computer-friendly’’ identifier, represented as a UUID, of the identity in
question. Concerning the version number of this UUID, see Section 5.2.1.1 on page 278.

• name

An ‘‘advisory’’, ‘‘human-friendly’’ string form of the entity’s identity. It is useful for some
purposes (such as performance efficiency), but in general it is optional, in the sense that it is
the uuid (not name) field that is the definitive identifier of the identity in question (for
example, name may even be NULL, on an implementation-specific basis). (The definitive
mapping between UUID identifiers and stringname identifiers is given by the ID Map Facility
— see Section 1.13 on page 67 and Chapter 12.)

Note: Authentication identities must be carefully distinguished from authorisation identities in
DCE. The former are represented by stringnames (client name and server name), and
their semantics are defined in Chapter 4; the latter are represented by UUIDs, and
their semantics are defined in this chapter and in Chapter 7 and Chapter 8. As will be
seen in the remainder of this chapter, PAC-based authorisation decisions made by
servers in the DCE environment depend only on authorisation identities, not
authentication identities, because the client’s authentication identity is not (securely)
transmitted to the server (the ‘‘client name’’ authentication identity that is
transmitted is that of the PS, not the accessing client principal) — hence, in this sense,
DCE service requests are sometimes said, by abuse of language, to be ‘‘anonymous’’
(with respect to authentication identities). Name-based authorisation decisions, on
the other hand, do depend on authentication identity stringnames, not on UUIDs —
see Section 5.9 on page 299.

Part 2 Security Services and Protocols 277



Data Types Privilege (Authorisation) Services

5.2.1.1 Security-version (Version 2) UUIDs

The UUIDs that appear in the uuid field of sec_id_t must be security-version (or ‘‘version 2’’)
UUIDs, in all cases except :

• those identifying an identity containing well known anonymous privilege attributes (See
Section 1.20.7.1 on page 96 and Section 5.2.14.1 on page 288) , or

• those identifying cells (that is, ‘‘cell principals’’ or KDS principals — principals whose RS
name has initial component krbtgt.

These must always have non-security-version (‘‘version 1’’) UUIDs as specified in Appendix
A, Universal Unique Identifier, of the referenced X/Open DCE RPC Specification).

These security-version UUIDs are specified exactly as in Appendix A, except that they have the
following special properties and interpretations:

• The version number is 2.

• The clock_seq_low field (which represents an integer in the range [0, 28−1]) is interpreted as
a local domain (as represented by sec_rgy_domain_t; see Section 11.5.1.1 on page 379); that is,
an identifier domain meaningful to the local host. (Note that the data type
sec_rgy_domain_t can potentially hold values outside the range [0, 28−1]; however, the only
values currently registered are in the range [0, 2], so this type mismatch is not significant.) In
the particular case of a POSIX host, the value sec_rgy_domain_person is to be interpreted as
the ‘‘POSIX UID domain’’, and the value sec_rgy_domain_group is to be interpreted as the
‘‘POSIX GID domain’’.

• The time_low field (which represents an integer in the range [0, 232−1]) is interpreted as a
local-ID; that is, an identifier (within the domain specified by clock_seq_low) meaningful to
the local host. In the particular case of a POSIX host, when combined with a POSIX UID or
POSIX GID domain in the clock_seq_low field (above), the time_low field represents a
POSIX UID or POSIX GID, respectively.

By this embedding of local host IDs in (security-version) UUIDs, local host identity information
(privilege attributes) can be derived from UUIDs in an especially straightforward and efficient
manner (as opposed to, say, going through an auxiliary ID mapping table, maintained either on
the local host or elsewhere). (The embedding of local host IDs is specified above in the
particular case of POSIX hosts; the embedding in the case of non-POSIX systems is not currently
specified in DCE.)

Concerning the uniqueness of security-version UUIDs, see the discussion in Section 1.6 on page
25 of the double-UUID identification scheme. The point of that discussion is that the security
architecture of DCE depends upon the uniqueness of security-version UUIDs only within the
context of a cell; that is, only within the context of the local RS’s (persistent) datastore, and that
degree of uniqueness can be guaranteed by the RS itself (namely, the RS maintains state in its
datastore, in the sense that it can always check that every UUID it maintains is different from all
other UUIDs it maintains). In other words, while security-version UUIDs are (like all UUIDs)
specified to be ‘‘globally unique in space and time’’, security is not compromised if they are
merely ‘‘locally unique per cell’’. This statement does not relax the requirements on
implementations of security-version UUIDs, it is only a comment about the trust structure of
DCE, namely, entities (security subjects and objects) need not trust that foreign RSs maintain
globally unique UUIDs, only that their own local RS maintains locally unique UUIDs.

Note that the manner in which security-version UUIDs are generated is implementation-
dependent: no API routine is supported by DCE that generates security-version UUIDs (recall
that uuid_create( ) specified in the referenced X/Open DCE RPC Specification generates only
version 1 UUIDs).

278 CAE Specification (1997)



Privilege (Authorisation) Services Data Types

5.2.2 Local and Foreign Authorisation Identities

Foreign identities are represented by the sec_id_foreign_t, which is defined as follows:

typedef struct {
sec_id_t id;
sec_id_t cell;

} sec_id_foreign_t;

Its semantics are that it indicates a ‘‘foreign’’ (as opposed to ‘‘local’’) entity for authorisation
purposes. Here, ‘‘local’’ (resp., ‘‘foreign’’) are relative (context-dependent) terms, indicating
entities registered in the RS of the same (resp., different) cell as some other (specified) entity.
Cells themselves, as well as other local identities, are represented by the sec_id_t data type;
foreign identities are represented by sec_id_foreign_t. In any specific application of these
notions, the entity relative to which the local/foreign distinction is being made must be
unambiguously specified.

The fields of the sec_id_foreign_t data type are the following:

• id

The cell-relative identity of the entity being identified.

• cell

The (foreign) cell of the entity being identified.

5.2.3 Groups Associated With a Foreign Cell

Foreign group sets are represented by the sec_id_foreign_groupset_t, which is defined as
follows:

typedef struct {
sec_id_t cell;
unsigned16 count_local_groups;
[size_is(count_local_groups), ptr]
sec_id_t *local_groups;
} sec_id_foreign_groupset_t;

Its semantics are that it indicates a set of groups that are all associated with the same ‘‘foreign’’
entity for authorisation purposes. In that sense, the groups are ‘‘local’’ to the entity, and are
registered in the RS of the same cell. Thus, the groups within this entity are represented by the
sec_id_t data type.

The fields of the sec_id_foreign_t data type are the following:

• cell

The (foreign) cell of the entity being identified.

• count_local_groups

The number of local groups (local_groups) associated with this groupset.

• local_groups

The non-primary local group authorisation identities associated with this groupset.

Part 2 Security Services and Protocols 279



Data Types Privilege (Authorisation) Services

5.2.4 PAC Formats

PAC formats are represented by the sec_id_pac_format_t data type, which is defined as follows:

typedef enum {
sec_id_pac_format_v1 /* 0 */

} sec_id_pac_format_t;

Its semantics are that it identifies the format of PACs (defined in Section 5.2.5) in use. The
currently supported formats are:

• sec_id_pac_format_v1 = 0

PAC format version 1.

5.2.5 Privilege Attribute Certificates (PACs)

Privilege attribute certificates are represented by the sec_id_pac_t data type, which is defined as
follows:

typedef struct {
sec_id_pac_format_t pac_format;
unsigned32 authenticated;
sec_id_t cell;
sec_id_t principal;
sec_id_t primary_group;
unsigned16 count_local_groups;
unsigned16 count_foreign_groups;
[size_is(count_local_groups), ptr]

sec_id_t *local_groups;
[size_is(count_foreign_groups), ptr]

sec_id_foreign_t *foreign_groups;
} sec_id_pac_t;

Its semantics are that it indicates authorisation attributes (or characteristics) which are
‘‘projected’’ (sent in a message) from a client to a server during a service request. Its fields are
the following:

• pac_format

The format of this PAC. The only currently supported PAC format is version 1
(sec_id_pac_format_v1).

• authenticated

Boolean value, indicating whether (true) or not (false) this PAC is secure, in the sense of
having been authenticated by the DCE TCB (more specifically, the PS in the server’s cell); if
not authenticated, the PAC is said to be unauthenticated or asserted (as in the phrase ‘‘this
PAC’s authorisation data is merely asserted to be legitimate by the client, but not trustworthily
so; that is, not certified to be legitimate by the (server’s) PS’’). Servers may grant
unauthenticated accesses if they so desire, depending on their policy (see the
UNAUTHENTICATED ACLE in Section 7.1.2 on page 312, and its use in the Common Access
Determination Algorithm in Section 8.2 on page 321).

• cell

Identifier of the cell relative to which the principal and group entries of this PAC (below) are
‘‘local’’ or ‘‘foreign’’.

280 CAE Specification (1997)



Privilege (Authorisation) Services Data Types

• principal

The principal authorisation identity associated with this PAC.

• primary_group

The primary (local) group authorisation identity associated with this PAC.

• count_local_groups

The number of local groups (local_groups) associated with this PAC.

• count_foreign_groups

The number of foreign groups (foreign_groups) associated with this PAC.

• local_groups

The non-primary local group authorisation identities associated with this PAC.

• foreign_groups

The foreign group authorisation identities associated with this PAC.

The significance of the principal and group attributes (authorisation identities) in the PAC is that
servers use them for access authorisation purposes (see Section 8.2 on page 321).

5.2.6 Pickled PACs

Pickled PACs are represented by the sec_id_pickled_pac_t data type, which is defined to be a
sec_id_pac_t pickle. In the terminology and notation of Section 2.1.7 on page 132, this pickle’s
type UUID (H.pkl_type) is d9f3bd98-567d-11ca-9ec6-08001e022936, and its body datastream is
an NDR-marshalled sec_id_pac_t.

As mentioned in Section 4.3.8.1 on page 194, the authorisation data type authzDataType-PAC is
represented by a sec_id_pickled_pac_t.

5.2.7 Privilege-tickets

Privilege-tickets are represented by the PrivilegeTicket data type, which is defined as follows:

PrivilegeTicket ::= Ticket

Its semantics are identical with that of Ticket’s, with the following three supplementary
semantics:

• The named client in a privilege-ticket is always a privilege server (that is, tkt-EncryptPart.tkt-
ClientName is always dce-ptgt).

• The authorisation data field (tkt-EncryptPart.tkt-AuthzData) in a privilege-ticket carries an
array of authorisation data, say authzData (data type AuthzData, see Section 4.3.8 on page
194), which contains one and only one element, say authzData[i], whose type
(authzData[i].authzData-Type) is equal to authzDataType-PAC; that element’s value
(authzData[i].authzData-Value) must be (the underlying OCTET STRING of) a pickled PAC,
as defined in Section 5.2.6. The client nominated by the privilege-ticket is the principal
identified by the underlying PAC.

Notes:

1. The case of an ‘‘empty PAC’’ (that is, the pickled_data[] array of the pickled
PAC has length zero) is not currently supported, but is reserved for
potential future usage. (It may, for example, be useful in supporting
‘‘anonymous clients’’.)

Part 2 Security Services and Protocols 281



Data Types Privilege (Authorisation) Services

2. As seen in Section 5.4.2 on page 293, if the PS in a cell ever issued to a
principal A ≠ PS in its own cell a PTGS Response containing a PTGT having
an empty authorisation data array, a clear breach of security would result.
For, such a PTGT would be indistinguishable from a TGT identifying the PS
itself as the named client. Therefore, A could then use this PTGT in a TGS
Request, requesting that arbitrary authorisation data (PAC) of A’s choosing
be included in the resulting privilege-service-ticket (see Section 4.14.2 on
page 245). In this manner, A could illicitly impersonate any principal it
desired.

• The transit path (tkt-EncryptPart.tkt-TransitPath) is always empty (or absent). In particular,
servers targeted by privilege-tickets cannot use the privilege-ticket to distinguish remote
service requests (that is, from clients in remote cells) from local service requests (that is, from
clients in the server’s local cell).

5.2.8 Privilege Authentication Headers

Privilege authentication headers are represented by the PAuthnHeader data type, which is
defined as follows:

PAuthnHeader ::= AuthnHeader

Its semantics are identical with that of AuthnHeader’s, with the following supplementary
semantics:

• The associated ticket (authnHdr-Tkt) is a privilege-ticket, not a non-privilege-ticket. Hence,
a privilege authentication header supplies forward authorisation information (a PAC) — not
really authentication information (at least, not in the sense of a stringname) — that
‘‘authorises a client A to a server B’’. (Whether or not B actually grants A its request for
service depends upon a conceptually separate access determination step.)

(Note that the client named in authnHdr-EncryptedAuthnr (authnHdr-EncryptAuthnr.authnr-
ClientCell and authnHdr-EncryptAuthnr.authnr-ClientName) identifies the the PS server named in
the privilege-ticket, not the calling client A.)

5.2.9 Privilege Reverse-authentication Headers

Privilege reverse-authentication headers are represented by the PRevAuthnHeader data type,
which is defined as follows:

PRevAuthnHeader ::= RevAuthnHeader

Its semantics are identical with that of RevAuthnHeader’s. In particular, it does (securely)
identify the server to the client on the basis of its authentication identity (stringname).

5.2.10 PTGS Requests

PTGS Requests are represented by the PTGSRequest data type, which is defined as follows:

PTGSRequest ::= TGSRequest

Its semantics are that it indicates a request for a privilege-ticket-granting-ticket.

Note: As seen in Section 5.4 on page 292, the semantics of a PTGS Request/Response pair
differ somewhat from that of a TGS Request/Response pair, particularly with respect
to the interpretation (or lack thereof) of some of the data fields transmitted by the
client in the request body (denoted ptgsReq.req-Body in Section 5.4 on page 292),
which are simply ignored by the target PS server (this is the case for the options field,

282 CAE Specification (1997)



Privilege (Authorisation) Services Data Types

ptgsReq.req-Body.req-Flags, and the data fields associated with its flag bits). This
situation could be expressed by saying that ‘‘certain information is ‘lost’ when
passing from the authentication environment to the authorisation environment’’. An
argument could therefore be made that the present PTGS Request format
(PTGSRequest = TGSRequest) is ‘‘overkill’’, and that a simpler format, transmitting
a smaller amount of data, would be sufficient to effect the required semantics of a
PTGS Request (and a similar argument could be made for the format of PTkts).
Nevertheless, while such an argument may be reasonable, that isn’t what is actually
done (partially for historical reasons), as specified in this chapter.

5.2.11 PTGS Responses

PTGS Responses are represented by the PTGSResponse data type, which is defined as follows:

PTGSResponse ::= TGSResponse

Its semantics are that it indicates a returned privilege-ticket-granting-ticket.

5.2.12 PS Errors

There is no special ‘‘PSError data type’’ (analogous to the KDSError data type). All errors
encountered in ps_request_*( ) are reported via its status parameter.

5.2.13 Extended PAC (EPAC) Interface

This is the base set of definitions that extend the PAC in order to support delegation. This
extended PAC (EPAC) contains the identity and group membership information present in a
DCE 1.0 format PAC. In addition, it contains optional delegation controls, optional and required
restrictions, and extended attributes which are certified by means of being sealed in an EPAC by
the privilege server (PS).

The following EPAC interface defines the base type definitions of the data supported by each PS
server, PSZ, for DCE Version 1.1 and newer versions.

[
uuid(6a7409ee-d6c0-11cc-8fe9-0800093569b9)

]

interface sec_id_epac_base { /* Begin sec_id_epac_base Interface */

5.2.13.1 Optional and Required Restrictions

Optional and required restrictions are represented by the sec_id_opt_req_t, which is defined as
follows:

typedef struct {
unsigned16 restriction_len;
[size_is(restriction_len), ptr]

byte *restrictions;
} sec_id_opt_req_t;

Part 2 Security Services and Protocols 283



Data Types Privilege (Authorisation) Services

5.2.13.2 Entry Types for Delegate and Target Restrictions

The entries for delegate and target restrictions are defined by the sec_rstr_entry_type_t, which
follows:

typedef enum {
sec_rstr_e_type_user, /* POSIX 1003.6 */

/* Entry contains a key identifying
* a user */

sec_rstr_e_type_group, /* POSIX 1003.6 */
/* Entry contains a key identifying

* a group */
sec_rstr_e_type_foreign_user,

/* Entry contains a key identifying
* a user and the foreign realm */

sec_rstr_e_type_foreign_group,
/* Entry contains a key identifying

* a group and the foreign realm */
sec_rstr_e_type_foreign_other,

/* Entry contains a key identifying
* a foreign realm. Any user that
* can authenticate to the foreign
* realm will be allowed access. */

sec_rstr_e_type_any_other,
/* Any user that can authenticate to

* any foreign realm will be allowed
* access. */

sec_rstr_e_type_no_other
/* No other user is allowed access. */

} sec_rstr_entry_type_t;

5.2.13.3 Delegate and Target Restriction Types

Optional and required restrictions are defined by the sec_id_restriction_t, which follows:

typedef struct {
union sec_id_entry_u
switch (sec_rstr_entry_type_t entry_type) tagged_union {
case sec_rstr_e_type_any_other:
case sec_rstr_e_type_no_other:

/* Just the tag field */;
case sec_rstr_e_type_user:
case sec_rstr_e_type_group:
case sec_rstr_e_type_foreign_other:

sec_id_t id;
case sec_rstr_e_type_foreign_user:
case sec_rstr_e_type_foreign_group:

sec_id_foreign_t foreign_id;
} entry_info;

} sec_id_restriction_t;

284 CAE Specification (1997)



Privilege (Authorisation) Services Data Types

5.2.13.4 Set of Delegation and Target Restrictions

The set of delegation or target restrictions is represented by the sec_id_restriction_set_t which is
defined as follows:

typedef struct {
unsigned16 num_restrictions;
[ptr, size_is(num_restrictions)]

sec_id_restriction_t *restrictions;
} sec_id_restriction_set_t;

5.2.13.5 Delegation Compatibility Modes

Delegation compatibility modes determine which EPAC from the delegation chain, if any, to
convert and insert into the V1.0 PAC portion of the Authorization Data field. They are defined
by the sec_id_compatibility_mode_t, which follows:

typedef unsigned16 sec_id_compatibility_mode_t;
const unsigned16 sec_id_compat_mode_none = 0;
const unsigned16 sec_id_compat_mode_initiator = 1;
const unsigned16 sec_id_compat_mode_caller = 2;

5.2.13.6 Supported Delegation Types

Delegation may take the forms permitted in the sec_id_delegation_type_t, which is defined by
the selections that follow:

typedef unsigned16 sec_id_delegation_type_t;
const unsigned16 sec_id_deleg_type_none = 0;
const unsigned16 sec_id_deleg_type_traced = 1;
const unsigned16 sec_id_deleg_type_impersonation = 2;

5.2.13.7 Supported Seal Types

The seal for a DCE 1.1 (and newer versions) EPAC is defined by the sec_id_seal_type_t, which
follows. For delegation tokens, the type is sec_id_seal_type_md5_des:

typedef unsigned16 sec_id_seal_type_t;
const unsigned16 sec_id_seal_type_none = 0;
const unsigned16 sec_id_seal_type_md5_des = 1;
const unsigned16 sec_id_seal_type_md5 = 2;

5.2.13.8 EPAC Seal

The seal (cryptographic checksum) over the EPAC is defined by the sec_id_seal_t, and is
performed by the privilege server (PS) when the EPAC is generated. The sec_id_seal_t definition
follows:

Part 2 Security Services and Protocols 285



Data Types Privilege (Authorisation) Services

typedef struct {
sec_id_seal_type_t seal_type;
unsigned16 seal_len;
[size_is(seal_len),ptr]

byte *seal_data;
} sec_id_seal_t;

5.2.13.9 Privilege Attributes for the EPAC

The sec_id_pa_t data type provides for inclusion of privilege attributes in an Extended PAC
(EPAC). By including attributes within an EPAC, they may be transmitted securely and
automatically along with a principal’s identity information. The definition of the sec_id_pa_t
follows:

typedef struct {
sec_id_t realm;
sec_id_t principal;
sec_id_t group;
unsigned16 num_groups;
[size_is(num_groups), ptr]

sec_id_t *groups;
unsigned16 num_foreign_groupsets;
[size_is(num_foreign_groupsets), ptr]

sec_id_foreign_groupset_t *foreign_groupsets;
} sec_id_pa_t;

5.2.13.10 Handle for Privilege Attribute Data

The sec_cred_pa_handle_t definition which follows, provides a handle for the opaque privilege
attribute data. Direct access to an EPAC is not supported. This handle provides an interface to
permit applications to abstract the contents of an EPAC.

typedef void *sec_cred_pa_handle_t;

5.2.13.11 Cursor for Delegate Iteration

The sec_cred_cursor_t provides an input or output cursor that can be used to iterate through a set
of delegates via the sec_cred_get_delegate( ) or sec_login_cred_get_delegate ( ) calls. It is initialized
with a call to sec_cred_initialize_cursor ( ) or sec_login_cred_initialize_cursor ( ).

typedef void *sec_cred_cursor_t;

5.2.13.12 Cursor for Extended Attributee Iteration

sec_cred_attr_cursor_t provides an input or output cursor used to iterate through a set of
extended attributes using calls to sec_cred_get_extended_attributes( ). It is initialized with a call to
sec_cred_initialize_attr_cursor ( ).

typedef void *sec_cred_attr_cursor_t;

286 CAE Specification (1997)



Privilege (Authorisation) Services Data Types

5.2.13.13 Extended PAC Data

The extended PAC (EPAC) data is defined by the sec_id_epac_data_t, which follows:

typedef struct {
sec_id_pa_t pa;
sec_id_compatibility_mode_t compat_mode;
sec_id_delegation_type_t deleg_type;
sec_id_opt_req_t opt_restrictions;
sec_id_opt_req_t req_restrictions;
unsigned32 num_attrs;
[size_is(num_attrs), ptr]

sec_attr_t *attrs;
sec_id_restriction_set_t deleg_restrictions;
sec_id_restriction_set_t target_restrictions;

} sec_id_epac_data_t;

This data type extends the notion of identities to include chained identities, and also permits
delegation and extensible restrictions to be specified. In addition, arbitrary attributes are
included within the EPAC. This permits them to be transmitted securely and automatically
along with a principal’s identity information.

Arbitrary in this context means they are freeform and do not necessarily have a clear cell
boundary.

5.2.13.14 List of seals

This is the definition for a list of seals. It is represented by the sec_id_seal_set_t, which follows:

typedef struct {
unsigned32 num_seals;
[size_is(num_seals), ptr]

sec_id_seal_t *seals;
} sec_id_seal_set_t;

typedef [ptr] sec_id_seal_set_t *sec_id_seal_set_p_t;

When traced delegation is in use, there may be a set of Extended PACs (EPACs) to transmit.
Since the EPAC set consists of one EPAC for the initiator and one EPAC for each delegate
involved in the operation, a single seal in the PTGT is no longer sufficient to guarantee the
individual integrity of each EPAC as well as the integrity of the specific order of the EPACs. To
obtain this integrity, the A_D field portion of a PTGT carries the seal of the ordered list of EPAC
seals.

5.2.13.15 Extended PAC (EPAC)

This is the definition of the Extended PAC (EPAC). It is represented by the sec_id_epac_t, which
follows:

typedef struct {
sec_bytes_t pickled_epac_data;
[ptr] sec_id_seal_set_t *seals;

} sec_id_epac_t;

Part 2 Security Services and Protocols 287



Data Types Privilege (Authorisation) Services

5.2.13.16 Set of Extended PACs (EPACs)

This is the definition of the set of Extended PACs (EPACs). It is represented by the
sec_id_epac_set_t, which follows:

typedef struct {
unsigned32 num_epacs;
[size_is(num_epacs), ptr]

sec_id_epac_t *epacs;
} sec_id_epac_set_t;

} /* End sec_id_epac_base Interface */

5.2.14 The sec_cred API for Abstracting EPAC Contents

This API is provided for retrieval of Privilege Attribute information from Extended PACs since
direct access to EPACs is not supported in this specification.

[ local ]

interface sec_cred { /* Start of sec_cred interface */

5.2.14.1 Anonymous Identity

The following self-defining constants represent the definitions for the Anonymous Cell UUID,
Anonymous Principal UUID and Anonymous Group UUID.

const char * SEC_ANONYMOUS_PRINC = "fad18d52-ac83-11cc-b72d-0800092784e9";
const char * SEC_ANONYMOUS_GROUP = "fc6ed07a-ac83-11cc-97af-0800092784e9";
const char * SEC_ANONYMOUS_CELL = "6761d66a-cff2-11cd-ab92-0800097086e0";

These UUIDs represent well known anonymous identities — cell, principal and group. These
UUIDs ensure that any implementation using them will have the same representations for the
anonymous cell, principal and anonymous group UUIDs. These are non-security-version UUIDs
(‘‘version 1’’ UUIDs) as specified in Appendix A, Universal Unique Identifier, of the referenced
X/Open DCE RPC Specification). They have the following properties:

• The time_hi_and_version field contains the version number (1) in the 4 most significant bits.

The Anonymous Principal UUID’s octet number 6 (starting from 0), being X’11’ has most
significant bits 1-3 being (0) and most significant bit 4 being (1), and likewise, the
Anonymous Group UUID’s octet number 6, being X’11’ also has most significant bits 1-3
being (0) and most significant bit 4 being (1). The same is true for the Anonymous Cell.

• The variant field consists of a variable number of msbs (most significant bits) of the
clock_seq_hi_and_reserved field. This field determines the layout of the UUID. For the DCE
variant, most significant bits 1 and 2 are defined as being the values (1) and (0), respectively.

Thus, the Anonymous Principal UUID’s octet number 8 (starting from 0), being X’b7’ has
most significant bits 1 and 2 being (1) and (0), respectively; and likewise, the Anonymous
Group UUID’s octet number 8, being X’97’ also has most significant bits 1 and 2 being (1) and
(0), respectively. Similarly, the Anonymous Cell UUID’s octet number 8, being X’ab’ also has
most significant bits 1 and 2 being (1) and (0), respectively.

Section 5.2.14 provides the descriptions for the rest of the interface functions defined in this
sec_cred interface. Since these functions are provided at the API level, their descriptions will not
be repeated here. The functions that comprise this interface are also listed in <REFERENCE

288 CAE Specification (1997)



Privilege (Authorisation) Services Data Types

UNDEFINED>(EPAC-Accessor).

} /* End of sec_cred interface */

5.2.15 Delegation Token (Version 0) Format

A delegation token consists of an expiration date and a byte stream. See Section 5.2.16 on page
290 for its representation. The first byte of any delegation token byte stream is a version
number. The contents of subsequent bytes depends upon the version number.

As of DCE1.1, version 0 is the only valid delegation token version. The content of a version 0
delegation token byte stream is illustrated in the following figure.

0 1 2 3 4 12 16 20 36 44-52
0x0 flags1 flags2 key confounder crc32 expiration md5 conf conf

vers chksum digest bytes bytes
DES DES
key ivec

cleartext ciphertext
required optional

Figure 5-1 Version 0 Delegation Token Format

Its fields have the following properties:

• The first 4 fields (0 through 3, inclusive) are in cleartext.

• The remaining fields (4 through 52, inclusive) are in ciphertext.

• The first 8 fields are required; the remaining 2 are optional.

• Field 4 (key version number) is the current version of the Privilege Server key used to encrypt
the ciphertext portion of the token bytes.

• The ciphertext portion of a version 0 token consists of a 4 byte expiration timestamp in big-
endian byte order followed by a 16 byte MD5 message digest (or checksum).

In addition, if the low-order bit of byte 1, flags1, is set (to 1) the MD5 message digest is
followed by an 8 byte DES key and an 8 byte initialization vector that is used for encrypting
confidential byes of ERAs in EPACs.

The ciphertext portion is encrypted using sec_etype_des_cbc_crc.

5.2.15.1 Version 0 Token Flags

This is the definition of the confidential bytes for the Version 0 delegation token:

const unsigned8 sec_dlg_token_v0_conf_bytes = 0x1;

Part 2 Security Services and Protocols 289



Data Types Privilege (Authorisation) Services

5.2.16 Delegation Token

This is the representation of the sec_dlg_token_t data type:

typedef struct {
unsigned32 expiration;
sec_bytes_t token_bytes;

} sec_dlg_token_t;

Its semantics are that it is inserted into the A_D field of a new PTGT by the Privilege Server, PSZ,
to ensure that the proper steps were taken to enable delegation, and that none of the data has
been tampered with since that time. Its fields are:

• expiration

A 4 byte expiration timestamp in big-endian byte order, in cleartext.

• token_bytes

A byte stream. The first 4 bytes are in cleartext and the rest are in ciphertext. The cyphertext
portion of a version 0 token consists of a 4 byte timestamp in big-endian byte order followed
by a 16 byte MD5 digest or checksum. In addition, if hte low-order bit of byte1 (glags1 field)
is set (to 1), the MD5 message digest is followed by an 8 byte DES key and an 8 byte
initialization vector that is used for encrypting confidential bytes of ERAs (extended registry
attributes) in EPACs.

The ciphertext portion is encrypted using sec_etype_des_cbc_crc defined in Section 11.6.1.18
on page 399.

In order that delegation tokens not be valid forever, the expiration timestamp is part of the
encrypted data (The expiration timestamp is also provided in the clear for use by clients for
checking for expired tokens).

5.2.17 Delegation Token Set

This is the representation of the sec_dlg_token_set_t data type:

typedef struct {
unsigned32 num_tokens;
[size_is(num_tokens), ptr]

sec_dlg_token_t *tokens;
} sec_dlg_token_set_t;

Its semantics are that it represents the set of tokens involved in a request. Its fields are:

• num_tokens The number of tokens in the delegation token set.

• tokens (Pointer to) the set of delegation tokens.

290 CAE Specification (1997)



Privilege (Authorisation) Services RS Information

5.3 RS Information
Every PSZ requires access to certain (non-volatile) information. Such information is held in the
RSZ datastore, not in the PSZ itself. Some of this information is, with appropriate modification of
detail, the same as that held in RSZ for the use of KDSZ. (But note that such information held in
the RS datastore for the PS servers, while similar in kind to that held for KDS servers, may be of
different values — for example, the KDS may allow renewable tickets, while the PS may not
allow renewable privilege-tickets.) Additionally, the following information in the RSZ datastore,
which has no analog for the KDSZ, is held solely for use by PSZ:

• Authorisation (PAC) attributes

The information about principals in Z (currently, their principal identity UUIDs and group
UUIDs) that PSZ puts in their PACs.

• PAC vetting rules

Information that PSZ uses to vet (or modulate, or temper) PACs received in the cross-cell
authorisation scenario. This depends on cell policy, but typically involves such activities as
discarding some privilege attributes disallowed by Z’s policies. See Section 5.8 on page 298.

• Transit path vetting rules

Information about the shape(s) of transit paths that are trusted by PSZ. (This information is
used only by PSZ, not KDSZ: KDSZ knows only about the cells it is directly cross-registered
with, not about the trust to be placed in transit paths having multiple links in them.)

The simplest (and most secure) trusted shape model is the self model, in which the only
transit paths that are trusted are those of length 0; that is, no cross-cell links are trusted. The
next most simple (and next most secure) is the peer-to-peer model, in which a transit path is
trusted if and only if it has length (0 or) 1; that is, only a cell’s directly cross-registered peers
are trusted (in addition to itself). Another simple (but rather insecure) model is the universal
trust model, in which every transit path is trusted. A rather sophisticated (and rather secure)
model is the up-over-down model, which makes use of the natural hierarchical structure of cell
names: the trusted transit paths are those which include ancestors (in the namespace sense)
of the client’s and server’s cells, up to a common ancestor or (at most one) non-ancestral
peer-to-peer link (see Section 1.7.2 on page 38).

Part 2 Security Services and Protocols 291



PTGS Request/Response Processing Privilege (Authorisation) Services

5.4 PTGS Request/Response Processing
This section specifies in detail the processing that occurs during a PTGS Request/Response
exchange. That is, this section specifies the issuing of privilege-ticket-granting-tickets. There are
three steps involved:

1. A client prepares a PTGS Request and sends it to a PS server.

2. A PS server receives the PTGS Request from a client, processes it, prepares a PTGS
Response (success case) or diagnostic information (failure case), and returns that to the
client.

3. A client receives a PTGS Response (status = error_status_ok) or PS error (status ≠
error_status_ok).

The details of the three steps of the success case are specified next. (For the failure case, see
Section 5.7 on page 298.) By specification, it is, with appropriate modification of detail, identical
to Section 4.14 on page 240, with the supplements specified in the present section being made.

Throughout the description of PTGS request/response processing, there are two essentially
different cases to be considered:

• The client is in the same cell as the PS server. In this case, the client sends the PS server a
PAC containing the authorisation data it wants to be included in the privilege-ticket-
granting-ticket, and the PS server checks this requested data against the authorisation
information registered for the client in the RS datastore before it issues the client a privilege-
ticket-granting-ticket with the requested authorisation data (minus that not registered for the
client) in it (informing the client at the same time of the contents of the issued PAC).

• The client is in a different cell from the PS server. In this case, the client sends the PS server a
PAC, and the PS server vets the transit path taken by the client’s request (that is, evaluates
the transit path for a ‘‘trusted shape’’), and vets (modulates, tempers) the PAC itself for use
in its cell.

5.4.1 Client Sends PTGS Request

Consider a client A in cell X which has in its possession a non-privilege-ticket targeted to the PS
in cell Y (possibly X = Y), TktA,X,⋅⋅⋅,Y,PSY (containing session key KA,PSY, of encryption type
encType). (This TktA,X,⋅⋅⋅,Y,PSY must not be a PTktA,PSY — PSY must reject such a PTGS Request.)
And suppose A wants to present this TktA,X,⋅⋅⋅,Y,PSY to PSY, and receive in return a privilege-
ticket-granting-ticket ‘‘based on’’ TktA,X,⋅⋅⋅,Y,PSY, PTktA,KDSY, which nominates A, names PSY, and
targets KDSY. That is, A wants to send to PSY a PTGS Request, ptgsReq (a value of the data type
PTGSRequest), containing TktA,X,⋅⋅⋅,Y,PSY (ahTkt, in its ptgsReq.req-AuthnData field as the
authnHdr.authnHdr-Tkt field of an authentication header authnHdr), and receive in response a
PTGS Response, ptgsResp (a value of data type PTGSResponse) containing PTktA,KDSY (ptgsTkt,
in its ptgsResp.resp-Tkt field). A prepares ptgsReq in the same way as a TGSRequest message
(see Section 4.14.1 on page 240) with the supplements indicated below, and ‘‘sends it’’ (that is,
calls ps_request_*( )) to PSY.

• Server cell

The server cell (ptgsReq.req-Body.req-ServerCell) is set to the cell name of the target server
PSY; that is, it is set to Y’s cell name.

• Server name

The server name (ptgsReq.req-Body.req-ServerName) is set to the RS name of the target
server PSY; that is, it is set to dce-ptgt.

292 CAE Specification (1997)



Privilege (Authorisation) Services PTGS Request/Response Processing

Note: As discussed in Chapter 1, the DCE RPC programming model handles
communications with the PS in runtime code (just as it deals with, for example,
cross-cell referrals), so that the application programmer does not have to deal
with it directly.

• Authorisation data

If X ≠ Y, the authorisation data field (ptgsReq.req-Body.req-EncryptAuthzData) is omitted. (If
it is not omitted, it will not result in an error, it will simply be ignored by PSY, as seen in
Section 5.4.2.)

If X = Y, the authorisation data field is used to indicate the (maximum) rights that A wants
PTktA,KDSY to convey (provided A is registered in RSX to have these rights, and that PSY
allows them be used in Y). That is, this field is used to implement the concept of least
privilege (that is, the idea that clients should be accorded only the least set of rights necessary
for them to get their job done, thereby preventing the potential misuse of ‘‘excessive’’ rights).
Namely, if A desires that PTktA,KDSY contain the authorisation information indicated by a
PAC pac (a value of data type sec_id_pac_t), A pickles pac to produce a pickled PAC ppac (a
value of data type sec_id_pickled_pac_t), then creates authzData (a value of data type
AuthzData, whose authzData-Type has value authzDataType-PAC and whose authzData-
Value is (the underlying octet string of) ppac), then authzData is encrypted using the
conversation key KÂ,PSY (authnr.authnr-ConversationKey, of encryption type encType, see
below) if present, otherwise using the session key KA,PSY in TktA,X,⋅⋅⋅,Y,PSY, and the
authorisation data field (ptgsReq.req-Body.req-EncryptedAuthzData) is then set to the
resulting encrypted value.

If the authorisation data field is omitted (in the case X = Y), then PSY rejects the request.

Note: A client A that wants to receive a PAC entitling it to the absolute maximum rights it
is entitled to, can do so by first querying RSX to determine what its maximum
rights are — see rs_acct_get_projlist ( ), Section 11.6.8 on page 407.)

• Options

All options (that is, all flag bits of ptgsReq.req-Body.req-Flags) are unselected (and all data
connected with them, namely ptgsReq.req-Body.req-StartTime, ptgsReq.req-Body.req-
MaxExpireTime, ptgsReq.req-Body.req-ClientAddrs and ptgsReq.req-Body.req-
AdditionalTkts, are omitted). (Or, if options are selected and/or their data included, they
will be ignored by PSY, as seen in Section 5.4.2.)

• Expiration time

The expiration time (ptgsReq.req-Body.req-ExpireTime) is set to ahTkt.tkt-EncryptPart.tkt-
ExpireTime. (If set to any other value, that value will be ignored by PSY, as seen in Section
5.4.2.)

5.4.2 PS Server Receives PTGS Request and Sends PTGS Response

Consider a PTGS Request, ptgsReq, received by PSY from A. Thus, ptgsReq is a value of data type
PTGSRequest. Then PSY behaves the same way that KDSY behaves when it receives a
TGSRequest message (see Section 4.14.2 on page 245), with the supplements indicated below.
(Recall also the description in Section 1.6 on page 25 of the PSY’s implementation-dependent use
of KDSY’s long-term key, KKDSY: if PSY does not have knowledge of KKDSY, it may need to send a
TGS Request to KDSY in order to get PTktA,KDSY protected by KKDSY.) In the success case, PSY
returns a PTGSResponse to A; in the failure case it returns an error diagnostic (status ≠
error_status_ok).

Part 2 Security Services and Protocols 293



PTGS Request/Response Processing Privilege (Authorisation) Services

• Client name

In the case X ≠ Y, PSY checks that the client name from TktA,X,⋅⋅⋅,Y,PSY is that of a PS server; that
is, is dce-ptgt.

• Authorisation data

PSY checks the authorisation data requested by A (ptgsReq.req-Body.req-EncryptAuthzData)
against the maximum A is entitled to (if X = Y, this information comes from RSX; if X ≠ Y, it
comes from TktA,X,⋅⋅⋅,Y,PSY’s authorisation data field, tkt-EncryptPart.tkt-AuthzData). If X = Y,
the maximum rights PSY will issue to A in PTktA,KDSY (in PACs, in ptgsTkt.tkt-EncryptPart.tkt-
AuthzData and in ptgsResp.resp-AuthnData) is the intersection of these two sets of
authorisation data; if X ≠ Y, the maximum rights PSY will issue to A is simply TktA,X,⋅⋅⋅,Y,PSY’s
tkt-EncryptPart.tkt-AuthzData (the intersection mentioned in the case X = Y could conceivably
have been used in the case X ≠ Y as well, but this isn’t currently done — this is for potential
future study). However (in either case, X = Y or X ≠ Y), PSY may further restrict A’s rights,
according to its local vetting (modulating, tempering) policy, thereby issuing to A less than
the maximum set of rights it would otherwise be entitled to. In any case (X = Y or X ≠ Y), the
minimum rights PSY will issue to a principal A ≠ PSY will be non-empty (that is, if A requests
rights it is not entitled to, a failure results and PSY issues an error). PSY also decides, again
according to local policy, whether or not it ‘‘vouches’’ for the security of this authorisation
data, and indicates this by (respectively) setting or resetting the authenticated bit of the PAC
— this allows servers to grant unauthenticated accesses if they so desire, depending on their
policy. (For example, a PS will typically reset the authenticated bit if it does not trust the
strength of the encryption type used, or if the transit path (below) does not conform to a
trusted shape.) The authorisation data issued to A is passed back to A in two PACs, one in
ptgsTkt.tkt-EncryptPart.tkt-AuthzData and one in ptgsResp.resp-AuthnData, and these two
PACs have identical contents but are formatted differently: the former is of data type
AuthzData, with authzData-Type = authzDataType-PAC and authzData-Value (the
underlying OCTET STRING of) a pickled PAC; the latter is of data type AuthnData, with
authnData-Type = −2 (see Note below) and authnData-Value (the underlying OCTET
STRING of) the encryption of a pickled PAC; that is, a value of data type EncryptedData,
with encData-EncType = encType, an appropriate encData-EncKeyVersNum, and encData-
CipherText (the underlying OCTET STRING of) the encryption of a pickled PAC using the
conversation key KÂ,PSY if present, otherwise using the session key KA,PSY.

Note: If the value authnData-Type = −2 were being used in a Kerberos authentication
protocol, it would be ‘‘unregisterable’’ in the sense of Section 4.3.7 on page 193
(because it is negative). However, this value is being used here not in that way,
but in an authorisation protocol.

• Options

PSY ‘‘ignores’’ all options (as well as data connected with them if present); that is, it treats all
flag bits of ptgsReq.req-Body.req-Flags as if they were unselected. Thus, PSY unselects all flag
bits of PTktA,KDSY’s option field (ptgsTkt.tkt-EncryptPart.tkt-Flags).

• Expiration time

PSY sets PTktA,KDSY’s expiration time (ptgsTkt.tkt-EncryptPart.tkt-ExpireTime) to TktA,X,⋅⋅⋅,Y,PSY’s
expiration time (ahTkt.tkt-EncryptPart.tkt-ExpireTime). (Note that PSY ignores ptgsReq.req-
Body.req-ExpireTime.)

294 CAE Specification (1997)



Privilege (Authorisation) Services PTGS Request/Response Processing

• Client addresses

PSY sets PTktA,KDSY’s client addresses (ptgsTkt.tkt-EncryptPart.tkt-ClientAddrs) to
TktA,X,⋅⋅⋅,Y,PSY’s client addresses (ahTkt.tkt-EncryptPart.tkt-ClientAddrs). (Note that PSY ignores
ptgsReq.req-Body.req-ClientAddrs.)

• Transit path

PSY examines TktA,X,⋅⋅⋅,Y,PSY’s transit path field (ahTkt.tkt-EncryptPart.tkt-TransitPath), and
checks that it is a ‘‘trusted shape’’ (which in general depends on PSY’s policy; in the special
case where X = Y or X and Y are cross-registered with one another, the transit path is empty
(or absent), and this is always considered to be a trusted shape) — this is also called PSY’s
‘‘vetting the transit path’’. PSY sets PTktA,KDSY’s transit path (ptgsTkt.tkt-EncryptPart.tkt-
TransitPath) to the empty (or absent) path.

5.4.3 Client Receives PTGS Response

Consider a client A that receives a PTGS Response, ptgsResp (that is, ptgsResp is a value of data
type PTGSResponse), in response to a PTGS Request, ptgsReq (as a result of calling
ps_request_*( )) to PSY. A processes ptgsResp in the same way as a TGS Response (see Section
4.14.3 on page 254), with the supplements indicated below. In the success case, A is justified in
believing that the returned PTktA,KDSY (or ptgsTkt; that is, ptgsResp.resp-Tkt) is correctly and
securely targeted to KDSY, and that it contains the values returned elsewhere in the ptgsResp (in
particular, the authorisation data attributed to A (ptgsResp.resp-AuthnData)), and using it
(especially, its session key, which is denoted KÃ,KDSY) in subsequent TGS Requests to KDSY for
privilege-tickets. In the failure case, A takes (application-specific) recovery action.

• Authentication Data

A learns the authorisation information (PAC) that has been issued to it from ptgsResp.resp-
AuthnData (which is encrypted as specified in Section 5.4.2 on page 293).

Part 2 Security Services and Protocols 295



Privilege (Reverse-)Authentication Header Processing Privilege (Authorisation) Services

5.5 Privilege (Reverse-)Authentication Header Processing
This section specifies in detail the processing that occurs during a privilege
authentication/reverse-authentication header exchange. There are three steps involved:

1. A client prepares a privilege authentication header and sends it to a server as part of a
‘‘privilege authentication request for (RPC) service’’ (for example, this could be a TGS
Request for a privilege-ticket, in which case the server is a KDS server). Typically, this
privilege authentication header will be merely a part of the whole message sent from client
to server, and the rest of the message will contain RPC protocol information and the input
parameters for the RPC service request.

2. A server receives a privilege authentication header from a client, processes it, prepares a
privilege reverse-authentication header (in the case of a successful client-to-server
privilege authentication, and the client has requested the mutual authentication option) or
an error message (in the case of a failed client-to-server privilege authentication), and
returns that to the client (though some servers may not return errors depending on their
policy). Typically, in the success case, the server will proceed to perform the requested
service (subject to authorisation constraints that it decides on the basis of the PAC
transmitted in the privilege authentication header) and return the output RPC parameters
to the client.

3. A client receives a privilege reverse-authentication header (success case, if it had requested
mutual authentication in its privilege authentication header) or an error (failure case).
Typically, in the success case, it also receives the results of its RPC service request, which it
will then decide to accept or reject (on the basis of the privilege reverse-authentication
header).

The details of the three steps of the success case are specified next. By specification, it is, with
appropriate modification of detail, identical to Section 4.13 on page 231, with the supplements
specified in the present section being made.

Note: As noted in Section 4.13 on page 231, the descriptions here are ‘‘typical’’ of privilege
authentication/reverse-authentication header processing, but since the interpreters
(A and B) of the authentication/reverse-authentication headers are in general
application-specific, this whole discussion should be understood to implicitly
accommodate some such wording as ‘‘⋅⋅⋅ or other such processing as the application
requires or allows ⋅⋅⋅’’.

5.5.1 Client Sends Privilege Authentication Header

Consider a client A in cell X which has successfully obtained a privilege-ticket to a server in cell
Y (possibly X = Y). Thus, A is in possession of a privilege-ticket (possibly a privilege-ticket-
granting-ticket), pTkt, targeted to a server B in cell Y, whose contents A knows, especially its
session key KA,B (and its encryption type encType), and now A wants to use this privilege-ticket
to ‘‘privilege-authenticate to’’ (that is, engage in protected communications with, and ‘‘project’’
(transmit) privilege attributes to) server B in cell Y. Then A prepares a privilege authentication
header, pAuthnHdr (a value of the PAuthnHeader data type) containing pTkt
(pAuthnHdr.authnHdr-Tkt), and a newly generated authenticator authnr (pAuthnHdr.authnHdr-
EncryptAuthnr, of type Authenticator), in a way similar to an authenticator (see Section 4.13.1 on
page 232) and sends it to B, with the supplements indicated below.

• Client name

The client name (authnr.authnr-ClientName) is set to PSX’s RS name (that is, to dce-ptgt).

296 CAE Specification (1997)



Privilege (Authorisation) Services Privilege (Reverse-)Authentication Header Processing

• Authorisation data

The authorisation data field (authnr.authnr-AuthzData) is omitted.

Note: Even though A sets authnr’s client cell and client name (authnr.authnr-ClientCell and
authnr.authnr-ClientName) to A’s cell name (that is, X’s cell name) and to PSX’s RS
name, respectively, these cannot be trusted by the recipient, B. The only identities B
can trust are those carried in the ticket, pAuthnHdr.authnHdr-Tkt (that is, pTkt),
which are PSY’s cell name and RS name (in pTkt.tkt-EncryptPart.tkt-ClientCell and
pTkt.tkt-EncryptPart.tkt-ClientName) and A’s PAC (in pTkt.tkt-EncryptPart.tkt-
AuthzData).

5.5.2 Server Receives Privilege Authentication Header and Sends Privilege Reverse-
authentication Header

Consider a privilege authentication header, pAuthnHdr (a value of the data type PAuthnHeader),
received by a server B, containing a privilege-ticket, pAhTkt (pAuthnHdr.authnHdr-Tkt), and an
authenticator, authnr (pAuthnHdr.authnHdr-EncryptAuthnr). (For example, KDS servers receive
such a privilege authentication header in an entry of the authentication data field of a TGS
Request (tgsReq.req-AuthnData[i].authnData-Value for some i ≥ 0) — see Section 4.14.2 on page
245.) Then B processes pAuthnHdr similarly to the processing of an authenticator header (see
Section 4.13.2 on page 234), with the supplements indicated below. In the success case, the
privilege authentication header ‘‘authorises the client A to the server B’’ (but it does not
‘‘authenticate’’ A to B in the sense of stringname authentication discussed in Chapter 4, because
the stringname of A is not necessarily projected to B).

• Client cell

The client cell from pAhTkt (pAhTkt.tkt-EncryptPart.tkt-ClientCell) is checked to be B’s cell
name; that is, Y’s cell name.

• Client name

The client name from pAhTkt (pAhTkt.tkt-EncryptPart.tkt-ClientName) is checked to be PSY’s
RS name; that is, dce-ptgt.

• Ticket authorisation data

B uses the ticket authorisation data (pAhTkt.tkt-EncryptPart.tkt-AuthzData); that is, A’s PAC
information, to make authorisation decisions. Typically — that is, if B protects its resources
via a Common ACL Manager — this will be done using the DCE Common Access
Determination Algorithm.

• Authenticator authorisation data

B ignores the authenticator’s authorisation data field (authnr.authnr-AuthzData).

5.5.3 Client Receives Privilege Reverse-authentication Header

Consider a privilege reverse-authentication header, pRevAuthnHdr (a value of the data type
PRevAuthnHeader), received by a client A, in response to a privilege authentication header,
pAuthnHdr (with the mutual authentication option selected), that A had earlier sent to a server B.
Then A processes pRevAuthnHdr exactly as the processing of a reverse-authentication header
(see Section 4.13.3 on page 238), with no supplements at all. In the success case, the privilege
reverse-authentication header ‘‘authenticates the server B to the client A’’, exactly as a (non-
privilege) reverse-authentication header does (by stringname).

Part 2 Security Services and Protocols 297



TGS Request/Response Processing (By KDS) Privilege (Authorisation) Services

5.6 TGS Request/Response Processing (By KDS)
Section 4.14 on page 240 persists to be completely valid (that is, it doesn’t change at all), in the
case that a client presents a privilege-ticket-granting-ticket (as opposed to an ordinary ticket-
granting-ticket) to the KDS server to which it is targeted, thereby requesting the KDS to issue a
privilege-ticket. Namely, the TGS Subservice of the KDS is ‘‘blissfully unaware’’ of the existence
of the PS. The KDS simply issues tickets exactly as described in Chapter 4 (especially, the ‘‘blind
copying’’ of authorisation data), and those tickets then ‘‘just happen’’ to be privilege-tickets by
virtue of the very definition of privilege-tickets (namely, their named client is a PS server, they
carry the nominated client’s PAC authorisation data, and their transit path is empty). Therefore,
no supplements at all to TGS request/response processing need be specified here to support
‘‘TGS request/response processing (by the KDS)’’; that is, to support the issuing of privilege-
tickets by the KDS.

5.7 PS Error Processing
This section specifies in detail the processing that occurs when a PS server encounters a failure
during its processing of a PS Request, and returns a PS error to the requesting client.

Consider a PS Request, psReq, received by PSY from a client A. PSY performs the algorithm
specified in Section 5.4 on page 292, and if it encounters one or more algorithmic failures, it
chooses one to return in the status parameter of ps_request_*( ) (recall, there is no special PSError
data type, or ‘‘PS Error message’’).

5.8 Cross-cell Authorisation — Vetting the Privilege-ticket-granting-ticket
As seen in Section 5.4 on page 292, PSY’s processing of the PAC of a client A in cell X is quite
straightforward if X = Y. But the case X ≠ Y requires that PSY vet the privilege-ticket-granting-
ticket in the following two senses:

• Vetting (or evaluating) the transit path

PSY examines the transit path of the incoming service-ticket (in the ps_request_*( )) to verify
that it conforms to a ‘‘trusted shape’’ (depending on Y’s policies).

• Vetting (or modulating, tempering) the PAC

PSY removes from the incoming PAC (in the incoming service-ticket) any authorisation
attributes that are prohibited by Y’s policies.

These two activities have already been discussed in context above, and need have no more said
about them here.

298 CAE Specification (1997)



Privilege (Authorisation) Services Name-based Authorisation

5.9 Name-based Authorisation
Note: Name-based authorisation is included in DCE for support of legacy applications

only, and its use for any other purpose is discouraged.

By name-based authorisation is meant authorisation of a client A in cell X to a server B in cell Y, on
the basis of a non-privilege-ticket TktA,X,Z´,⋅⋅⋅,Z´´,Y,B instead of a privilege-ticket PTktA,B, by means
of the KDS authentication protocols specified in Chapter 4. That is, PS servers are not visited
during name-based authorisation. Thus, the only ‘‘authorisation’’ information that is projected
from A to B is the transit path (kdsTkt.tkt-EncryptPart.tkt-TransitPath) and the ‘‘authentication’’
stringname of A (kdsTkt.tkt-EncryptPart.tkt-ClientCell and kdsTkt.tkt-EncryptPart.tkt-ClientName —
see Chapter 4).

DCE does not specify a suite of supporting facilities for name-based authorisation as it does for
PAC-based authorisation. Therefore, an application (that is, a client/server pair) that chooses to
use name-based authorisation must take upon itself the responsibility of dealing with the
following issues in an application-dependent way:

• B must vet the transit path (using criteria of its own devising).

• B must be prepared to grant or deny access solely on the basis of the individual identity of A
(because that’s all that is projected to B — no ‘‘name-based group identities’’ are projected or
supported).

• B must support its own facilities providing the functionality of the ACLs defined elsewhere
in DCE (such as ‘‘name-based permissions’’, ‘‘name-based access control managers’’,
‘‘name-based access control editors’’ and ‘‘name-based common access determination
algorithm’’).

All-in-all, while name-based authorisation may be of some use to some legacy applications, it
should be avoided in favor of PAC-based authorisation for new applications (and even legacy
applications should be migrated to PAC-based authorisation, if that is at all feasible, in order
that they may participate seamlessly in the DCE security environment).

Part 2 Security Services and Protocols 299



Privilege (Authorisation) Services

300 CAE Specification (1997)



Chapter 6

DCE Security Replication and Propagation

The information in this chapter assumes a knowledge of the DCE security model. Refer to
Section 1.2 on page 12 for a description of this model. Chapter 11 on page 357, about the
interfaces and datatypes used for propagation of changes to replicas, specifically in Section 11.10
on page 439 to (and including) Section 11.16 on page 459, and Section 11.19 on page 464 to and
including Section 11.22 on page 481, and finally, Section 11.24 on page 487.

In a given DCE cell many security servers may run. Each one of the security servers manages its
own copy of the registry database. A security server and its database are known as a replica. The
servers collaborate to keep their copies of the database consistent. Only one of the replicas
accepts changes, the master replica. The action of copying a change from one server to another is
propagating that change. All of the changes that occur in the master registry database are
propagated to all remaining replicas at the granularity of the change. That is, whenever a change
is made to the master registry, such as when a new principal is added, that change is then
propagated to each replica. The act of propagating changes from the master security server to
all other replica security servers is considered replication.

Replication improves the system’s reliability and availability. When clients bind to a replica they
bind to either a read or update site. The master site is the only update site; all read only sites are
called slave replicas. If a slave replica fails to respond to a query the client can then rebind to
another replica.

No facility for supporting replication is specified in this document, though implementations
would likely provide some sort of service functions for this purpose. Typically they would
consist of support for administration and configuration functions for DCE installation.

6.1 Replication Overview
All security servers can answer queries from clients. The master server is the only server that
accepts updates from clients. When a client binds to a server it must bind according to the type
of access required. There are currently two methods of binding to a registry server. The client
can bind to an arbitrary server using sec_rgy_site_bind(); this will bind to any available server.
The client can also target the master registry for binding with sec_rgy_site_bind_update(); this will
force binding to the master registry. The master propagates updates it receives from clients to
the other security servers, called slaves. The replication scheme is highly available and weakly
consistent.

Replication is done only within a cell. That is, within hierarchical cells or cells connected intercell
a change within a cell does not force a change or a replica update in any other cell.

When an update arrives at the master, the master server applies the update to its copy of the
database. It then adds the update to its propagation queue. The master then persistently tries to
deliver the updates on its propagation queue to all replicas. When an update has been delivered
to all replicas, the master then removes the update from its propagation queue.

Note: The master server will maintain the update on the propagation queue until each
replica server has received the update. If a replica is taken out of service without
being properly retired the propagation queue will grow indefinitely. This will not
stop the propagations from proceeding on all other slave replicas, however, all
entries on the queue will remain until the out of service replica is in service again.
This would be potentially damaging to a master replica. As the propagation queue

Part 2 Security Services and Protocols 301



Replication Overview DCE Security Replication and Propagation

grows without bounds there are memory considerations that must be taken into
account.

6.2 The Master Replica
The master replica is responsible for maintaining and administering the several entities with
regard to replication. During operation the master replica maintains the registry database,
replica list and propagation queue. In addition, checkpoint entries are made in order to preserve
updates, for both the registry and the replica list. No method is specified in this document for
such preservation although a typical implementation might take the form of update logs.

6.2.1 Propagation Queue

To maintain the synchronicity between the replicas the master replica maintains a propagation
queue. Each entry on the propagation queue needs to be sent to one or more replicas. The entries
on the propagation queue remain until all replicas have received them. All entries on the queue
are positioned on the queue as they occur, positioned in first-in, first-out order. That is, when an
event occurs at the master registry it is put on the queue. During normal propagation events the
following list shows the interfaces which perform normal propagation. Each entry made to the
propagation queue typically would be checkpointed (or preserved) in some manner (as with the
registry and replica list). The technique for doing so is not specified in this document.

The current per-modification propagation interfaces are described in Chapter 11. These
interfaces are:

• rs_prop_acct_* for propagating registry account information,

• rs_prop_acl_* for propagating registry ACL information,

• rs_prop_attr_* for propagating registry attributes,

• rs_prop_attr_schema_* for propagating registry attribute schemas,

• rs_prop_pgo_* for propagating registry PGO items,

• rs_prop[_*]_plcy_* for propagating registry policy information,

• rs_prop_replist_* for propagating registry replica list.

For more information regarding the individual propagation function calls, please see the
appropriate rs_prop sections in Chapter 11.

Each time a modification is made to the registry a corresponding entry is made on the
propagation queue. In some instances entries are made to the propagation queue and are not
propagated out to the replicas immediately. That is, when an entry is added for propagation the
interface has a general argument that places the data on the queue with the specific intention of
no propagation. A specific instance for the no propagation flag is during change of master. In
this specific case, the sequence of events occurring during a change of master, may cause loss of
data.

The propagation queue contains the following information.

• Sequence Number
The master registry sequence number of the change. This is the coordinating entry within the
update and propagation process. When the replicas are communicating their relative up-to-
dateness this number is the determining factor. This number is originally generated on the
master replica, it is generated when an update occurs. For each change within the master
there is a sequence number generated and assigned to that change.

302 CAE Specification (1997)



DCE Security Replication and Propagation The Master Replica

• Timestamp
The time when the update happened to the master registry.

• Data
The data that is specific to this update. The actual data that was modified in the master.

6.2.2 Replica List

The replica list contains an entry for each security replica in operation. Each entry within the list
contains the replica’s UUID, name and tower information. The master replica controls the replica
list. That is, in order for a replica to be added or removed from the list, the master controls the
process.

6.2.2.1 Replica List Entries

Each security server in the cell manages a replica list. Several entries are common to all replica
lists. This basic information on all security servers’ replica lists gives each replica an idea of the
location and status of all the replicas. The entries for the replica list are outlined here; please see
Section 11.20.1.1 on page 469 which contains a complete description of replica list data items.
The following entries within the replica list are common to all replicas.

• replica’s name
The cell relative name of the replica. The replica’s name (which is not ’’well-known’’) falls in
the form /.../cell_name/subsys/dce/sec/replica_name, where replica_name represents the name for
the replica.

• replica’s UUID
The replica’s instance UUID.

• replica’s network address(es)
The network address(es) for the replica. There may be multiple addresses. See the data types
for rs_replica_item_t in Section 11.20.1.1 on page 469 and rs_replica_twr_vec_t in Section
11.3.1.2 on page 364 for more information.

• master
This flag indicates whether the described replica is currently the master replica.

• deleted
Flag indicating if the replica has been or is marked for deletion.

The server maintains special information to manage propagation of updates to a replica.

• propagation type
Describes the current relative state of the replica. This will determine the method of updates
passed from the master replica.

• marked for initialization
The replica is currently in the process of receiving a database from a replica.

• marked for deletion
The replica has been scheduled to be deleted.

• ready for updates
The replica is currently accepting updates.

• Sequence Number
If the replica is ready for updates, this is the sequence number of the last update successfully
delivered to the replica. (This implies, of course, that all previous sequence numbers have
been successfully delivered.) See the rs_replica_prop_info_t data type definition in Section

Part 2 Security Services and Protocols 303



The Master Replica DCE Security Replication and Propagation

11.20.1.4 on page 471 for information on this entry (and also the next, Time Stamp.)

• Time Stamp
The timestamp of the last update represented by the sequence number.

• Communications Status
The communication status of this particular replica. There are currently three levels of
communication status. They are the nominal state replica_comm_ok, short term
communication interruption replica_comm_short_failure, and long term communication
interruption replica_comm_long_failure.

The data types rs_replica_item_t in Section 11.20.1.1 on page 469 , rs_replica_prop_info_t in
Section 11.20.1.4 on page 471 and rs_replica_comm_t in Section 11.20.1.5 on page 471 give
details of replica list entries and communication status values.

6.3 Replica Information
Each security replica has a flag that defines its current state. This state is either known or
distributed to other replicas. During certain states the replica is incapable of accepting
propagation information or providing database information to clients and other replicas. The
complete set of replication information that each replica maintains about itself and about the
system is:

• State
As defined in the next section.

• Replica UUID
The replica’s instance UUID. This UUID may or may not be identical to that of the Master
UUID. If it is, then this replica is the master replica (otherwise, it is a slave replica).

Note: The master flag in the replica information rs_replica_item_t data type would also
indicate TRUE if this replica is the master replica.

• Name
Its cell-relative name.

• Sequence Number
The sequence number of the last update provided. This is noted on the master and the client
replicas to maintain a cross check of the updates. That is, the master (’’thinks’’ it) has sent a
specific number of updates and this number on the client would confirm that number.

• Timestamp
The timestamp of the last update represented by the sequence number.

• Initialization UUID
The UUID of the replica that provided the initialization of the replica’s registry.

• Network Address(es)
The security replica’s network address(es).

• Cell’s Security UUID
This UUID is generated at the initialization of the master registry database when the cell is
created. This entry is the same as the cell UUID. It uniquely determines the cell.

• Master UUID
The UUID of the current master replica.

• Sequence Number
The number of the event when this master became the master. This information is only

304 CAE Specification (1997)



DCE Security Replication and Propagation Replica Information

relevant if this is the master replica. The master keeps the sequence number that was current
at the time this replica became the master.

The rs_replica_info_t structure in Section 11.19.1.2 on page 464 provides more information.

6.3.1 Replica State

Because of the variety of changes and situations that a replica can be in, the necessity of
maintaining state information is critical. When a replica is attempting to communicate with a
peer it needs to understand what the current state of that peer is. The concept of replica state
provides this. If a new replica is going to request a database from a peer it needs to know
whether that particular replica is able to be a provider. The state generally defines a series of
events in the life of a replica, from initialization, name changes, slave to master changes or
database key changes. The replica state defines the current condition of the replica. The data
type definition of the replica states can be found in Section 11.20.1.2 on page 469. There are 13
possible states. The following is the list of the various states.

• unknown to master
The current state of the replica is unknown to the master.

• uninitialized
The replica remains uninitialized while the database is being created. This is generally a
temporary state during creation of a replica.

• initializing
The replica is currently being initialized by another replica.

• in service
The replica is currently in service. The replica may either provide information for clients or
become the master.

• renaming
This state is in effect during a renaming of the replica.

• copying database
This state is active when the database is in the process of being copied to a new replica or a
replica that has requested a new database.

• in maintenance
The replica is in maintenance mode.

• master key changing
The current master key is in the process of being changed.

• becoming master
When a replica receives the request to become a master, this state is active (on the replica that
is in state transition from slave to master).

• becoming slave
During the time when a slave replica receives a request to become a master this state is active
(on the master that is in state transition from master to slave).

• duplicate master
A replica that thinks it is the master has been informed by a slave that the slave believes a
different replica to be the legitimate master.

• closed
A replica has closed its databases and is in the process of exiting.

Part 2 Security Services and Protocols 305



Replica Information DCE Security Replication and Propagation

• deleted
The replica has been deleted from the replica list.

6.4 Slave Replica
The slave replicas maintain both the registry database and replica list in memory and on disk.
Each entry is updated when the master replica propagates a change. Each change is applied to
the in-memory copy and then pushed to the disk copy. For each update that is propagated from
the master replica an entry is made to the update log as well.

The slave replica also maintains a list of all changes that have been made.

6.4.1 Creating a Replica

In DCE 1.1 a replica is created by configuring the host as a DCE client. In addition, a new
(’’empty’’ or skeletal) (security) database is created. Once the new database is created several
entries from the current master are required to be cataloged. The database is initialized with the
following entries:

• Cell Security ID
The Cell well known security UUID.

• Replica ID
The instance UUID of the replica being created. This UUID is (dynamically) created during
the process of creating the replica.

• Network Towers
The binding towers for the replica being created. See the rs_replica_twr_vec_p_t data type
definition in Section 11.3.1.2 on page 364 for more information.

• Replica Name
The replica name. This name is of data type rs_replica_item_p_t. It is supplied by the
administrator upon creation of the replica. See Section 11.20.1.1 on page 469 for a more
complete description.

• Sequence Number
The master sequence number at the time of creation. This sequence number is of data type
rs_update_seqno_t.

• Creator Id
The sec_id_t of the entity creating the replica. This id is either supplied by the administrator,
or it is the UUID and string name of the local cell on which the replica is created if not given
by the administrator. Typically (usually) the (registry) Creator Id is supplied by the
administrator.

• Cell Id
The sec_id_t of the (local) cell. This Cell Id is initially stored in the registry database when
the cell is being created. It consists of the cell’s UUID and a string name identifying it. The
cell name (string name) is retrieved when necessary (for instance when creating a replica).
The method of retrieval is not specified in this document.

• Keyseed
The initial keyseed for the database.

• Master Rep Information
The rs_replica_item_t of the master replica (see Section 11.20.1.1 on page 469 for more
information).

306 CAE Specification (1997)



DCE Security Replication and Propagation Slave Replica

The replica name is then created and verified with the CDS name service. This is done by
creating the replica name of the form /.../cell_name/subsys/sec/replica_name. The name service is
then checked to verify that the name is acceptable for use with rs_ns_entry_validate(). (See
rs_ns_entry_validate ( ) on page 810 for information about this routine.) The process of creating a
database notifies the master replica to add the new replica to the master’s replica list. The
master is notified via the rs_replist_add_replica() operation. The state of the replica is set to
rs_c_state_uninitialized. The cell name (Cell Id), Replica Id (instance UUID of the replica) and
binding information is then stored in the name space. In conjunction, the name of the master site
is also set in the name space. The security service uses this information when contacting the
master security server during initialization.

When the master site is notified of a new replica the master server guides the initialization of the
replica. When the replica is added to the master’s replica list it is marked for initialization using
rs_rep_admin_init_replica(), which sets the replica state to rs_c_replica_prop_init. The master
sends an initialization request to the replica using rs_rep_mgr_init(). This request includes a list
of other replicas that the new replica can use to initialize from (see Section 11.21.4 on page 477 ).
The new slave replica selects one of these specified replicas and sends it a request to copy its
entire database using rs_rep_mgr_copy_all(). The slave replica supplying the database goes into a
special copying database state, rs_c_state_copying_dbase, during which it will not accept
propagations from the master replica. It copies its database to the new replica. When the copy is
complete the new replica finishes its registration in the name service, goes into the state,
rs_c_state_in_service, and notifies the master that it is now initialized, using
rs_rep_mgr_init_done(). The master marks the new replica as ready for updates on the master
replica list and records the sequence number of the last update the replica received.

6.4.2 Delete A Replica

A replica is deleted in DCE 1.1 under command of (initiated by) the Security Administrator.
Typically, installations have a set of commands for security administration-however, they are
beyond the scope of this document and are not specified here.

When the replica deletion command is given, a delete replica request is sent to the master server
using rs_replist_delete_replica(). The master marks the replica for deletion by setting replica state
to rs_c_replica_prop_delete and puts the delete replica update on its propagation queue. The
master then propagates the delete replica update to all other replicas sites on its list. These
replicas remove the entry for the deleted replica from their respective replica lists. The master
then delivers the delete request to the replica being deleted. When the replica server receives the
request, it destroys its database and stops running. Upon completion, the master server removes
the deleted replica from it’s replica list.

Ultimately there is no verification the replica deleted its database and stopped operating. But the
other slave replicas and the master replica would refuse communications because it has been
marked as deleted.

Part 2 Security Services and Protocols 307



Master Change DCE Security Replication and Propagation

6.5 Master Change
By issuing the appropriate command (implementation specific items are beyond the scope of
this document), the security administrator can change a slave to a master. This change is effected
through rs_rep_admin_change_master( ) (see Section 11.19.10 on page 467 for a detailed
description of this function). This function causes the then current master to change its replica
state into rs_c_state_becoming_slave. This stops the propagation activity and starts the transfer
of the outstanding updates on the propagation queue to the new master. The becoming slave
master then sends via rs_rep_mgr_become_master() a request to the selected slave to become a
master. The new master replica will then request the propagation queue from the old master
using the rs_rep_mgr_copy_propq(). When the change master ( rs_rep_admin_change_master( ) )
function call returns successfully the old master (the replica becoming the slave) writes the new
master information to disk and sets its replica state to rs_c_state_in_service.

During the entire master change sequence, from initiation to completion, changes to the master
registry are not accepted. If a client is attempting to change the master registry at this time and is
not successful, the client attempts resubmitting the change a number of times. The number of
attempts permitted is determined by the security administrator.

The slave replica selected to become the new master replica will, upon receiving the request to
become the master, read the original master’s replica list using rs_replist_read_full ( ). Once the
replica list is successfully transferred to the new master a request is made to the original master
to send the propagation queue using rs_rep_mgr_copy_propq( ). Having successfully received the
propagation queue, the new master uses the lowest number on the propagation queue as it’s
master sequence number, and commits to being the master by writing the new master
information to disk, sending updates to clients and accepting updates from clients.

308 CAE Specification (1997)



DCE Security Replication and Propagation Master Change

SLAVE

state_in_service

MASTER

MASTER SLAVE

rs_rep_admin_change_master()

rs_rep_mgr_become_master()

rs_replist_read_full()

Replica list is transferred

Select New
Sequence Nmbr

rs_rep_mgr_copy_propq()

Propagation queue is transferred

Propagate New Replist to Slaves

Save Information

st_becoming_slave

Save Information

Figure 6-1  Master to Slave Conversion

6.6 Authentication between Replicas
Communication between replicas is secure. The master server authenticates to the slaves as the
dce-rgy principal and the slaves authenticate to the master using the host principal of the
machine on which they run. By default slaves need i, m and I ACL rights to the replica list
(/.:sec/replist) — see Section 11.1 on page 358 for more information on ACL rights. The replica’s
information and credentials are acquired using the rs_rep_mgr_get_info_and_creds ( ) function call
(see Section 11.21.3 on page 476 for more information).

Part 2 Security Services and Protocols 309



Name Service Registration DCE Security Replication and Propagation

6.7 Name Service Registration
Each replica has a server entry name in CDS. The default is /.:/sec. When binding to a security
server, using this default will cause a binding to the cell’s master replica. (An installation (cell)
can change this default to any of the security server names registered in CDS. This is typically
done via installation-supplied functions that set the default (and which are beyond the scope of
this document) to a specific replica in /.../cell_name/subsys/dce/sec.)

The /.../cell_name/subsys/dce/sec node maps the replica’s name to its location, its replica UUID
(replica ID), and the cell’s security object UUID (Cell Security ID), for any replicas that have been
registered. When a replica server is first created it validates its server entry’s information.

The security RPC group name is /.../cell_name/sec. This name is not ‘‘well-known’’, but by
convention it is named ‘‘/.:/sec’’ (see Section 1.18.1.1 on page 86 for more detail on group names
(and cell-profiles)). All initialized security server entry names appear in the security group. The
cell profile, /.../cell_name/cell-profile (a well-known CDS node), maps a few security interface
UUIDs to the security group name as follows: (For more information regarding RPC Profiles
please reference the DCE RPC Specification. It’s complete title can be found in the Referenced
Documents preface section of this specification.)

UUID Vers Name Priority Interface

{{d46113d0-a848-11cb-b863-08001e046aa5 2.0} /.../cell_name/sec 0 rs_bind}

{{0d7c1e50-113a-11ca-b71f-08001e01dc6c 1.0} /.../cell_name/sec-v1 0 secidmap}

{{8f73de50-768c-11ca-bffc-08001e039431 1.0} /.../cell_name/sec 0 krb5rpc}

{{b1e338f8-9533-11c9-a34a-08001e019c1e 1.0} /.../cell_name/sec 0 ps_request}

{{b1e338f8-9533-11c9-a34a-08001e019c1e 1.1} /.../cell_name/sec 0 ps_request}

In the preceding map, the interface UUID and version number (noted as Vers) pair together are
known as the Interface Identifier, and identify the profile (they are the search key for the profile).
The Name is short for the profile member name, and is the name of the server entry for the
interface (specified by Interface Identifier). The Priority value of zero (0) indicates the highest
priority. Also, the Interface is the annotation string that textually identifies the cell profile. Note
that the ps_request annotation string is alternatively known as (the) rpriv (interface). (See
Section 5.1.1 on page 263 for more information.)

6.7.1 Sample Cell Profile Entries

The CDS name /.../cell_name/sec-v1 is an RPC Group designating the master security server. For
more information regarding RPC Groups please reference the DCE RPC Specification.

310 CAE Specification (1997)



DCE Security Replication and Propagation Locate a Security Server

6.8 Locate a Security Server
When a client needs to find a security server replica it does so by looking up a special security
service interface UUID in the CDS cell profile /.../cell_name/cell-profile . This special interface
UUID in the cell profile maps to the cell’s security group name /.../cell_name/sec. The client
binding code tries to bind to one of the servers in the security group.

Note: During initialization and configuration of a site, the client cannot locate a security
server through the CDS name service as that information is not yet available. For
these instances, installation-specific information is used to locate the servers. The
handling of such information is not specified in this document.

6.9 Registry Database Encryption
Each replica maintains its own master key to encrypt the data it stores on disk. The key is
initially generated via system administrator input. This key can be changed with the routine
rs_rep_admin_mkey( ).

When a database is initially created by the administrator, as part of the creation process (for both
slave and master replicas), the administrator command usually typically requires the
specification of a keyseed in order to create the key for the database. In DCE 1.1, if a keyseed is
not specified, the administrator is asked to input one as part of the creation process. This
keyseed is a character string up to 1024 bytes in length that is then used to seed the random key
generator in order to create the master key for the database being created (master or slave). This
master key is used to encrypt account passwords. Note that each instance of a replica has its
own master key.

Part 2 Security Services and Protocols 311



Chapter 7

Access Control Lists (ACLs)

This chapter specifies the ACLs supported by DCE. It consists entirely of the static (data)
properties of ACLs — the dynamic (programmatic) properties of ACLs are dealt with in Chapter
8. For generalities on ACLs, see Section 1.8 on page 40.

7.1 Data Types
This section defines (in IDL/NDR) the data types associated with ACLs.

7.1.1 Interface UUID for ACLs

The interface UUID for the ACL information specified in this chapter (and also in Chapter 8, is
given by the following:

[ uuid(47AEE3EA-F000-0000-0D00-01DC6C000000) ]
interface sec_acl_base

7.1.2 ACLE Types

ACL entry (ACLE) types are represented by the sec_acl_entry_type_t data type, which is
defined as follows (comments indicate the values and the ‘‘colloquial’’ names of each type, as
used in Section 1.8 on page 40):

typedef enum {
sec_acl_e_type_user_obj, /* 0 -- USER_OBJ or UO */
sec_acl_e_type_group_obj, /* 1 -- GROUP_OBJ or GO */
sec_acl_e_type_other_obj, /* 2 -- OTHER_OBJ or O */
sec_acl_e_type_user, /* 3 -- USER or U */
sec_acl_e_type_group, /* 4 -- GROUP or G */
sec_acl_e_type_mask_obj, /* 5 -- MASK_OBJ or M */
sec_acl_e_type_foreign_user, /* 6 -- FOREIGN_USER or FU */
sec_acl_e_type_foreign_group, /* 7 -- FOREIGN_GROUP or FG */
sec_acl_e_type_foreign_other, /* 8 -- FOREIGN_OTHER or FO */
sec_acl_e_type_unauthenticated, /* 9 -- UNAUTHENTICATED or UN */
sec_acl_e_type_extended, /* 10 -- EXTENDED or E */
sec_acl_e_type_any_other, /* 11 -- ANY_OTHER or AO */
sec_acl_e_type_user_obj_deleg, /* 12 -- USER_OBJ_DEL or UOD */
sec_acl_e_type_user_deleg, /* 13 -- USER_DEL or UD */
sec_acl_e_type_for_user_deleg, /* 14 -- FOREIGN_USER_DEL or FUD */
sec_acl_e_type_group_obj_deleg, /* 15 -- GROUP_OBJ_DEL or GOD */
sec_acl_e_type_group_deleg, /* 16 -- GROUP_DEL or GD */
sec_acl_e_type_for_group_deleg, /* 17 -- FOREIGN_GROUP_DEL or FGD */
sec_acl_e_type_other_obj_deleg, /* 18 -- OTHER_OBJ_DEL or OD */
sec_acl_e_type_for_other_deleg, /* 19 -- FOREIGN_OTHER_DEL or FOD */
sec_acl_e_type_any_other_deleg /* 20 -- ANY_OTHER_DEL or AOD */

} sec_acl_entry_type_t;

Its semantics are that it indicates the type of an ACLE (the significance of which is manifested in
access determination algorithms) — see Section 7.1.5 on page 313.

312 CAE Specification (1997)



Access Control Lists (ACLs) Data Types

7.1.3 ACLE Permission Sets

A permission set; that is, the set of permissions associated to (or ‘‘carried by’’) an ACLE, is
represented by the sec_acl_permset_t data type, which is defined as follows:

typedef unsigned32 sec_acl_permset_t;

Its semantics are that the individual bits (called permission bits) of a permission set indicate the
access rights (up to 32 of them) granted or denied (masked) by an ACLE. The actual access
semantics (that is, the ‘‘meaning’’ in the sense of access control) of these access rights is the
responsibility of the ACL manager type associated with the ACL in which the ACLE occurs (see
Section 1.9 on page 46 and Chapter 8).

7.1.4 Extended ACLE Information

Extended ACLEs (that is, ACLEs of EXTENDED type) carry information that is represented by the
sec_acl_extend_info_t data type, which is defined to be a pickle. In the terminology and
notation of Section 2.1.7 on page 132, this pickle’s type UUID (H.pkl_type) and its body
datastream (which is an NDR-marshalled value of an IDL-defined data type) are to be
interpreted on an application-specific basis; none are further specified in this revision of DCE.
(Some such values may be registered and specified in future revisions of DCE.)

The rationale for extended ACLEs is as follows. Future revisions of DCE may add new ACLE
types not present in previous revisions. Those new ACLE types are of course unknown to ‘‘old’’
ACL clients (such as, for example, ACL editor programs) conforming to the prevision revision.
Therefore, new servers supporting the new ACLE types are expected to recognise (for example,
via RPC interface version numbers) when an ACL operation (such as rdacl_lookup ( ) or
rdacl_replace ( )) comes from an old client, and to encode/decode the new ACLE types into/from
the EXTENDED ACLE type (which the old client can handle at least sanely, if not intelligently).
Thus, at this initial revision of DCE, the EXTENDED ACLE type is supported at specification
level, though no servers actually need to encode/decode ACLEs into the EXTENDED type until
such time as additional ACLEs are actually defined. ACL clients need to handle the EXTENDED
type in order to migrate smoothly into the future, however.

7.1.5 ACLEs

ACLEs are represented by the sec_acl_entry_t data type, which is defined as follows:

Part 2 Security Services and Protocols 313



Data Types Access Control Lists (ACLs)

typedef struct {
sec_acl_permset_t permset;
union sec_acl_entry_u

switch (sec_acl_entry_type_t entry_type) tagged_union {

case sec_acl_e_type_user_obj:
case sec_acl_e_type_group_obj:
case sec_acl_e_type_other_obj:
case sec_acl_e_type_mask_obj:
case sec_acl_e_type_unauthenticated:
case sec_acl_e_type_any_other:
case sec_acl_e_type_user_obj_deleg:
case sec_acl_e_type_group_obj_deleg:
case sec_acl_e_type_other_obj_deleg:
case sec_acl_e_type_any_other_deleg:

/*empty*/ /*... just the permset_t... */;
case sec_acl_e_type_user:
case sec_acl_e_type_group:
case sec_acl_e_type_foreign_other:
case sec_acl_e_type_user_deleg:
case sec_acl_e_type_group_deleg:
case sec_acl_e_type_for_other_deleg:

sec_id_t local_id;
case sec_acl_e_type_foreign_user:
case sec_acl_e_type_foreign_group:
case sec_acl_e_type_for_user_deleg:
case sec_acl_e_type_for_group_deleg:

sec_id_foreign_t foreign_id;
case sec_acl_e_type_extended:

[ptr] sec_acl_extend_info_t
*extended_info;

} entry_info;
} sec_acl_entry_t;

Its semantics are that it indicates one entry of an ACL (see Section 1.8.1 on page 40 for
generalities on the concept of ACLEs). Its fields are the following:

• permset

The permission set associated with this ACLE.

• entry_type

The ACLE type of this ACLE.

• entry_info

Additional information associated with this ACLE. The additional information consists of
the following, according to this ACLE’s type:

— USER_OBJ, GROUP_OBJ, OTHER_OBJ, MASK_OBJ, UNAUTHENTICATED,
ANY_OTHER, USER_OBJ_DEL, GROUP_OBJ_DEL, OTHER_OBJ_DEL,
ANY_OTHER_DEL

No additional information (just the permset).

314 CAE Specification (1997)



Access Control Lists (ACLs) Data Types

— USER, GROUP, FOREIGN_OTHER, USER_DEL, GROUP_DEL, FOREIGN_OTHER_DEL

A tag (local_id), indicating that this ACLE refers to a particular user or group in the
‘‘default cell (of the ACL in which this ACLE occurs)’’ (see below), or to a particular
‘‘non-default cell’’.

— FOREIGN_USER, FOREIGN_GROUP, FOREIGN_USER_DEL, FOREIGN_GROUP_DEL

A tag (foreign_id), indicating that this ACLE refers to a particular user or group in a
(specified) ‘‘non-default cell (of the ACL in which this ACLE occurs)’’.

— EXTENDED

Extended information (extended_info) associated with this ACLE. See Section 7.1.4 on
page 313 for details.

7.1.6 ACLs

ACLs are represented by the sec_acl_t data type, which is defined as follows:

typedef struct {
sec_id_t default_cell;
uuid_t sec_acl_manager_type;
unsigned32 count;
[ptr, size_is(count)]

sec_acl_entry_t *sec_acl_entries;
} sec_acl_t;

Its semantics are that it indicates an access control list (see Section 1.8 on page 40 for generalities
on the concept of ACLs). Its fields are the following:

• default_cell

The ‘‘default cell’’ associated with this ACL (see Section 7.1.5 on page 313 and the Common
Access Determination Algorithm in Chapter 8).

• sec_acl_manager_type

The ACL manager type that can interpret this ACL (see Chapter 8).

• count

The number of ACLEs in this ACL.

• sec_acl_entries

The actual ACLEs in this ACL.

7.1.7 ACL Types

ACL types are represented by the sec_acl_type_t data type, which is defined as follows:

typedef enum {
sec_acl_type_object, /* 0 */
sec_acl_type_default_object, /* 1 */
sec_acl_type_default_container /* 2 */

} sec_acl_type_t;

Its semantics are that it indicates the ‘‘type’’ of ACL associated to an object, as follows.

• sec_acl_type_object

Part 2 Security Services and Protocols 315



Data Types Access Control Lists (ACLs)

Indicates a protection ACL attached to an object (either simple object or container object).

• sec_acl_type_default_object

Indicates a default object creation ACL attached to a container object.

• sec_acl_type_default_container

Indicates a default container creation ACL attached to a container object.

These ACL types are used for inheritance purposes, as specified in Section 1.8.2 on page 44.

316 CAE Specification (1997)



Access Control Lists (ACLs) Common ACLs

7.2 Common ACLs
In principle, a ‘‘legal’’ ACL (in the absolute sense of the generic ACL Facility mechanism itself,
as opposed to the relative sense of the specific subset of well-formed ACLs supported by the
policies of any specific ACL Manager) can contain any number of ACLEs of any types. But in
the case of Common ACL Managers (see Section 1.9 on page 46 and Chapter 8), any ACL
managed by a Common ACL Manager is required to satisfy the following conditions. (In the
context of Common ACL Managers, these conditions are known as common ACL formation rules,
and such an ACL is known as a (well-formed) common ACL.)

• It contains only ACLEs of types specified by sec_acl_entry_type_t (see Section 7.1.2 on page
312).

• It contains no EXTENDED ACLEs (see Section 7.1.4 on page 313 for an explanation of
EXTENDED ACLEs).

• Its total number of ACLEs is in the range [0, 232−1].

• It contains at most one USER_OBJ ACLE.

• All its USER ACLEs (if any) refer to principals distinct from one another (though not
necessarily distinct from the principal referred to by the USER_OBJ ACLE, if present).

• It contains at most one GROUP_OBJ ACLE.

• All its GROUP ACLEs (if any) refer to groups distinct from one another (though not
necessarily distinct from the group referred to by the GROUP_OBJ ACLE, if present).

• It contains at most one OTHER_OBJ ACLE.

• All its FOREIGN_USER ACLEs (if any) refer to principals distinct from one another, and
from the principals referred to by the USER ACLEs if present (though not necessarily distinct
from the principal referred to by the USER_OBJ ACLE, if present).

• All its FOREIGN_GROUP ACLEs (if any) refer to groups distinct from one another, and from
the groups referred to by the GROUP ACLEs if present (though not necessarily distinct from
the group referred to by the GROUP_OBJ ACLE, if present).

• All its FOREIGN_OTHER ACLEs (if any) refer to cells distinct from one another, and from
the cell referred to by the OTHER_OBJ ACLE if present.

• It contains at most one ANY_OTHER ACLE.

• It contains at most one MASK_OBJ ACLE.

• It contains at most one UNAUTHENTICATED ACLE.

The rules above that forbid ‘‘collisions’’ of ACLEs (that is, those that require ACLEs to be
‘‘distinct from one another’’), are usually summarised by the paraphrase: ‘‘The ACLEs of a
(well-formed) common ACL must all be of different specificity’’ (with the possible exceptions of
USER_OBJ and GROUP_OBJ, depending on whether or not one considers these to be of the
‘‘same specificity’’ as USER/FOREIGN_USER and GROUP/FOREIGN_GROUP, respectively).

Note: The above DCE formation rules should be compared with the following draft-POSIX
formation rule (which is present in some drafts of the POSIX ACL standard): ‘‘Every
ACL must have exactly one each of USER_OBJ, GROUP_OBJ, OTHER_OBJ; and if it
has any USER, GROUP or application-defined entries, then it must have exactly one
MASK_OBJ entry’’. This rule is not required by DCE. (This represents one of the
ways that the ACL model supported by DCE generalises, in ways sanctioned by
POSIX, that of the draft-POSIX models.)

Part 2 Security Services and Protocols 317



Common ACLs Access Control Lists (ACLs)

318 CAE Specification (1997)



Chapter 8

ACL Managers

This chapter specifies the common ACL managers supported by DCE. See Section 1.9 on page
46 for generalities on ACL managers, and for the definition of Common ACL Managers.

8.1 Data Types
This section defines (in IDL) the data types associated with ACL Managers.

8.1.1 Common Permissions

There are 7 permission bits, given in the following list, that are distinguished by the ACL
Facility, by virtue of their being given specified names (in the C programming language) and
values. These 7 distinguished permissions are said to be common permissions because of their
support by Common ACL Managers (see Section 1.9 on page 46). (The ‘‘colloquial’’ names of
these permissions, as used in Section 1.9 on page 46, are given by the terminal substring
following the last underscore character of their C names.)

const sec_acl_permset_t sec_acl_perm_read = 0x00000001;
const sec_acl_perm_set_t sec_acl_perm_write = 0x00000002;
const sec_acl_perm_set_t sec_acl_perm_execute = 0x00000004;
const sec_acl_perm_set_t sec_acl_perm_control = 0x00000008;
const sec_acl_perm_set_t sec_acl_perm_insert = 0x00000010;
const sec_acl_perm_set_t sec_acl_perm_delete = 0x00000020;
const sec_acl_perm_set_t sec_acl_perm_test = 0x00000040;

It is beyond the scope of the generic ACL Facility itself to specify the access semantics of these
common permissions — that is the responsibility of individual ACL managers themselves. (For
their semantics in the case of Common ACL Managers, see Section 1.9 on page 46.)

8.1.2 Printstrings and Helpstrings

The printstring and helpstring associated with a permission bit are represented by the
sec_acl_printstring_t data type, which is defined as follows:

const signed32 sec_acl_printstring_len = 16;
const signed32 sec_acl_printstring_help_len = 64;

typedef struct {
[string] char printstring[sec_acl_printstring_len];
[string] char helpstring[sec_acl_printstring_help_len];
sec_acl_permset_t perm;

} sec_acl_printstring_t;

Its semantics are that it specifies the printstring and helpstring associated with the permission
bit(s) perm. Its fields are the following:

• printstring

The printstring associated to perm. Its character elements are to be drawn from the
alphanumeric characters (a−zA−Z0−9) of the Portable Character Set (see Appendix G,
Portable Character Set, of the referenced X/Open DCE RPC Specification). Every common

Part 2 Security Services and Protocols 319



Data Types ACL Managers

ACL manager is required to associate distinct printstrings, of length ≥ 1, with each permission
it supports (distinct because typical user interfaces to ACL editors use these printstrings to
refer to permissions). (However, it is not required that each printstring consists of a single
character, nor that the set of characters present in any one printstring supported by an ACL
manager are disjoint from those of any other printstring it supports.)

• helpstring

The helpstring associated to perm. It contains a description of the semantics of perm. Its
character elements are to be drawn from the Portable Character Set (see Appendix G,
Portable Character Set, of the referenced X/Open DCE RPC Specification).

• perm

The bit representation of the permission for which this sec_acl_printstring_t specifies the
printstring and helpstring. It must be a single bit; that is, its value must be a power of 2 (2k, 0
≤ k ≤ 31).

The sec_acl_printstring_t is also used to describe ACL managers as a whole, not just their
individual permission bits (see Section 10.1.9 on page 352).

8.1.2.1 Common Printstrings

There are 7 (single-character) printstrings, given in the following list, that are distinguished by
virtue of their being the printstrings associated with the 7 common permission bits of Common
ACL Managers (for this reason, they are called common printstrings).

• Read: ‘‘r’’.

• Write: ‘‘w’’.

• Execute: ‘‘x’’.

• Control (or Change, or Write-ACL): ‘‘c’’.

• Insert: ‘‘i’’.

• Delete: ‘‘d’’.

• Test: ‘‘t’’.

8.1.2.2 Common Helpstrings

There are 7 helpstrings, given in the following list, that are distinguished by virtue of their being
the recommended helpstrings associated with the 7 common permission bits of Common ACL
Managers (for this reason, they are called common helpstrings), at least in the ‘‘C locale’’.

• Read: ‘‘read’’.

• Write: ‘‘write’’.

• Execute: ‘‘execute’’.

• Control (or Change, or Write-ACL): ‘‘control’’.

• Insert: ‘‘insert’’.

• Delete: ‘‘delete’’.

• Test: ‘‘test’’.

320 CAE Specification (1997)



ACL Managers Common Access Determination Algorithm

8.2 Common Access Determination Algorithm
There is one access determination algorithm, specified by pseudocode in this section, that is
distinguished by virtue of its being supported by Common ACL Managers (for this reason, it is
called the common access determination algorithm). See Figure 1-8 on page 50 for a memorisable
mental image of this pseudocode. The pseudocode is presented in three steps below. Recall that
the ACLs supported by Common ACL Managers satisfy the conditions of Section 7.2 on page
317.

Note: The common access determination algorithm depends only upon:

1. the client’s PAC or EPAC

For DCE 1.1 and newer versions, an EPAC is used to encode the information
that used to be provided by the PAC. An EPAC also contains additional
attribute information notably that required for delegation support.

Note that the steps described in this section, unless noted, may still be used for
access determination using a PAC.

2. the object’s ACL

For DCE 1.1 and newer versions, new entries have been added to the ACL.
These extensions have been added as additional values for the existing
sec_acl_entry_type_t and defined in Section 7.1.2 on page 312. The key and
permission fields of the new ACL entries are defined exactly as they would for
other DCE ACLEs. Because of this, users of ACLs who do not enable
delegation will continue to operate as before, with no change in behavior.

Notes:

1. Because new entries for delegation have been added as new
ACLEs, no wire protocol changes are necessary to support
these new types.

2. It is possible to support delegation without using the new
ACLE types that have been added to the ACL. While this
provides a simple migration path, it has the consequence that
every intermediary involved in an operation (request) is
granted the ability to perform the operation of their own
initiative (assuming their permissions are sufficient).
However, that behavior is strongly discouraged by this
specification. The new entries for delegation should be used.
In this manner, intermediaries can be listed on the ACL
without granting the intermediary the ability to operate on the
target object directly.

3. the nature of the access request itself (that is, the set of permissions required by
the operation requested by the client to be performed on the object).

Significantly, it does not depend on the name or path that the client uses to specify the
object. This is in contradistinction to certain other systems, notably POSIX, whose
access semantics support a notion of ‘‘pathname resolution’’, whereby a ‘‘search’’
(‘‘traverse’’) permission is required of intermediate naming nodes in addition to the
access permissions of the ultimate target (leaf) object. For this reason, the common
access determination algorithm is said to be ‘‘object-based’’, as opposed to ‘‘name-
based’’. (If a name-based access model is required, as, for example, in a POSIX-
conformant distributed filesystem, it can of course be implemented within the

Part 2 Security Services and Protocols 321



Common Access Determination Algorithm ACL Managers

context of this specification via a special-purpose (non-common) ACL manager.)

8.2.1 First Step: Reduction

In the first step of the algorithm, the overall determination of access is reduced from the full
access request (consisting of a subset of the primitive permissions supported by the Common
ACL Manager) to the individual primitive permissions themselves (or ‘‘permission bits’’)
comprising the access request:

/* reduction step -- check each perm bit */
if (for every permission in the (non-empty) access request,

the matching step of the algorithm (below) grants access) {
GRANT access;

} else {
DENY access;

}

Note that the second leg of the above pseudocode is entered (resulting in a denial of access)
precisely when the matching step of the algorithm (below) denies access for at least one
permission in the (non-empty) access request.

8.2.2 Second Step: Matching

In the second step of the algorithm, the determination of access for an individual primitive
permission is reduced to a sequence of attempted matches against ACLE types (the notion of
‘‘matching’’ is defined in the subalgorithms themselves). This step is subdivided into two parts:

I. Determination of access for the client, in the non-delegation case, or determination of
access for the initiator, in the delegation case, by a sequence of attempted matches against
ACLE types, below:

/* matching step -- match PAC or EPAC against ACLEs, stop at first match */
if (PAC or EPAC matches ACL’s USER_OBJ ACLE) {

invoke USER_OBJ subalgorithm;
} else if (PAC matches one of ACL’s USER or FOREIGN_USER ACLEs) {

invoke USER’s/FOREIGN_USER’s subalgorithm;
} else if (PAC matches any of ACL’s GROUP_OBJ, GROUP or

FOREIGN_GROUP ACLEs /*union model here*/) {
invoke GROUP_OBJ/GROUP’s/FOREIGN_GROUP’s subalgorithm;

} else if (PAC matches ACL’s OTHER_OBJ ACLE) {
invoke OTHER_OBJ subalgorithm;

} else if (PAC matches one of ACL’s FOREIGN_OTHER ACLEs) {
invoke FOREIGN_OTHER’s subalgorithm;

} else if (PAC matches ACL’s ANY_OTHER ACLE) {
invoke ANY_OTHER subalgorithm;

} else {
DENY access;

}

Note: In the non_delegation case, the next substep is not executed. Thus, when
delegation is not in effect, the decision for the client is to either GRANT or
DENY access at this point.

II. Determination of access for each intermediary in the traced delegation case, by a sequence
of attempted matches against ACLE types, below:

322 CAE Specification (1997)



ACL Managers Common Access Determination Algorithm

/* matching step -- match EPAC against ACLEs, stop at first match */
if (EPAC matches ACL’s USER_OBJ_DEL ACLE) {

invoke USER_OBJ_DEL subalgorithm;
} else if (EPAC matches one of ACL’s USER_DEL or FOREIGN_USER_DEL ACLEs) {

invoke USER_DEL’s/FOREIGN_USER_DEL’s subalgorithm;
} else if (EPAC matches any of ACL’s GROUP_OBJ_DEL, GROUP_DEL or

FOREIGN_GROUP_DEL ACLEs /*union model here*/) {
invoke GROUP_OBJ_DEL/GROUP_DEL’s/FOREIGN_GROUP_DEL’s subalgorithm;

} else if (EPAC matches ACL’s OTHER_OBJ_DEL ACLE) {
invoke OTHER_OBJ_DEL subalgorithm;

} else if (EPAC matches one of ACL’s FOREIGN_OTHER_DEL ACLEs) {
invoke FOREIGN_OTHER_DEL’s subalgorithm;

} else if (EPAC matches ACL’s ANY_OTHER_DEL ACLE) {
invoke ANY_OTHER_DEL subalgorithm;

} else {
DENY access;

}

Note that the final leg of the pseudocode in the access determination checking in either of the
two substeps above is entered (resulting in a denial of access) if and only if the EPAC (or PAC)
matches no ACLE of the ACL. This is, in particular, the case if the ACL in question is empty (that
is, has an empty list of ACLEs). (An object protected by an empty ACL is inaccessible, even for
modifying its ACL; ACL Managers will typically enforce a minimal, non-empty configuration
for their ACLs, so that this can’t happen, but DCE does not specify such.)

8.2.2.1 Combined First and Second Steps

Note also that the first and second steps of the algorithm as presented thus far are
‘‘interchangeable’’, and thus can be combined to give the following equivalent algorithm (and this
is the form in which the paraphrase associated with Figure 1-8 on page 50 was couched):

/* combined matching and reduction steps */
/* for client or, for delegation, initiator */
if (PAC matches ACL’s USER_OBJ ACLE) {

if (for every permission in the (non-empty) access request,
the USER_OBJ subalgorithm grants access) {

GRANT access;
} else {

DENY access;
}

} else /* ⋅⋅⋅ similarly for the remaining subalgorithms ⋅⋅⋅ */

This compined set of steps also applies to intermediaries in the case of traced delegation, using
the ACLEs for delegation. Since the combined steps are intuitively obvious, they are not
explicitely shown here.

Part 2 Security Services and Protocols 323



Common Access Determination Algorithm ACL Managers

8.2.3 Third Step: Subalgorithms

The third step of the algorithm is to invoke the subalgorithm determined by the second step.
These subalgorithms determine access for an individual requested permission, and are described
below. Throughout the following subalgorithms, to say that a permission is granted (resp.,
denied) by an ACLE means that the bit in the ACLE’s permissions field representing that
permission is set (resp., reset). Also, the following textual (‘‘macro’’) substitutions are employed:

/* MASK_OBJ ACLE masking */
#define MASK_OBJ-TEST-OK \

( (MASK_OBJ ACLE is not present in ACL) \
|| (permission is granted by MASK_OBJ ACLE) )

/* authentication flag test, and UNAUTHENTICATED ACLE masking */
#define AUTHENTICATION-TEST-OK \

( (PAC’s authentication flag is TRUE) \
|| ( (UNAUTHENTICATED ACLE is present in ACL) \

&& (permission is granted by UNAUTHENTICATED ACLE) ) )

Thus note:

• If the MASK_OBJ ACLE is not present in the ACL, the behaviour of the MASK_OBJ-TEST-
OK macro is the same ‘‘as if’’ it were present and granted all permissions.

• If the UNAUTHENTICATED ACLE is not present in the ACL, the behaviour of the
AUTHENTICATION-TEST-OK macro is the same ‘‘as if’’ it were present and denied all
permissions.

The subalgorithms are divided into two categories according to the substeps of Section 8.2.2 on
page 322. Thus, if either delegation is not enabled, or the authorisation is for the initiator of a
request, the non-intermediary subalgorithms in Section 8.2.4 are used. Otherwise, the
intermediary subalgorithms in Section 8.2.5 on page 326 are used.

8.2.4 Non-intermediary Subalgorithms

8.2.4.1 USER_OBJ Subalgorithm

This subalgorithm is invoked when the PAC matches the ACL’s USER_OBJ ACLE, in the
following sense. There is a USER_OBJ ACLE present in the ACL (there can be at most one, by
Section 7.2 on page 317), and the principal to which the PAC refers is equal to the principal to
which the USER_OBJ refers.

/* USER_OBJ subalgorithm */
if ((permission is granted by USER_OBJ ACLE)
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

324 CAE Specification (1997)



ACL Managers Common Access Determination Algorithm

8.2.4.2 USER/FOREIGN_USER Subalgorithm

This subalgorithm is invoked when the PAC matches one of the ACL’s USER or
FOREIGN_USER ACLEs, in the following sense (at most one ACLE can be matched). There are
(one or more) USER and/or FOREIGN_USER ACLEs present in the ACL, and the principal to
which the PAC refers is equal to the principal to which some USER or FOREIGN_USER ACLE
refers.

/* USER’s/FOREIGN_USER’s subalgorithm */
if ((permission is granted by matched USER or FOREIGN_USER ACLE)
&& MASK_OBJ-TEST-OK
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

8.2.4.3 GROUP_OBJ/GROUP/FOREIGN_GROUP Subalgorithm

This subalgorithm is invoked when the PAC matches any of the ACL’s GROUP_OBJ, GROUP or
FOREIGN_GROUP ACLEs, in the following sense (one or more ACLEs can be matched). There
are (one or more) GROUP_OBJ, GROUP and/or FOREIGN_GROUP ACLEs present in the
ACLE, and some primary group, local secondary group or foreign secondary group to which the
PAC refers is equal to some group to which some GROUP_OBJ, GROUP or FOREIGN_GROUP
refers.

/* GROUP_OBJ/GROUP’s/FOREIGN_GROUP’s subalgorithm */
if ((permission is granted by (at least one) matched GROUP_OBJ,

GROUP or FOREIGN_GROUP ACLE)
&& MASK_OBJ-TEST-OK
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

8.2.4.4 OTHER_OBJ Subalgorithm

This subalgorithm is invoked when the PAC matches the ACL’s OTHER_OBJ ACLE, in the
following sense. There is an OTHER_OBJ ACLE present in the ACL (there can be at most one),
and the cell to which the PAC refers is equal to the cell to which the ACL refers.

/* OTHER_OBJ subalgorithm */
if ((permission is granted by OTHER_OBJ ACLE)
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

Part 2 Security Services and Protocols 325



Common Access Determination Algorithm ACL Managers

8.2.4.5 FOREIGN_OTHER Subalgorithm

This subalgorithm is invoked when the PAC matches one of the ACL’s FOREIGN_OTHER
ACLEs, in the following sense (at most one ACLE can be matched). There are (one or more)
FOREIGN_OTHER ACLEs present in the ACL, and the cell to which the PAC refers is equal to
the cell to which some FOREIGN_OTHER ACLE refers.

/* FOREIGN_OTHER’s subalgorithm */
if ((permission is granted by matched FOREIGN_OTHER ACLE)
&& MASK_OBJ-TEST-OK
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

8.2.4.6 ANY_OTHER Subalgorithm

This subalgorithm is invoked when the PAC matches the ACL’s ANY_OTHER ACLE, in the
following sense. There is an ANY_OTHER ACLE present in the ACL (there can be at most one),
and none of the preceding subalgorithms has been invoked. That is, every PAC ‘‘matches’’ the
ANY_OTHER ACLE (if it is present), including a NULL PAC (which is considered to be
‘‘unauthenticated’’).

/* ANY_OTHER subalgorithm */
if ((permission is granted by ANY_OTHER ACLE)
&& MASK_OBJ-TEST-OK
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

8.2.5 Intermediary Subalgorithms

8.2.5.1 USER_OBJ_DEL Subalgorithm

This subalgorithm is invoked when the EPAC matches the ACL’s USER_OBJ_DEL ACLE, in the
following sense. There is a USER_OBJ_DEL ACLE present in the ACL (there can be at most one,
by POSIX-allowable delegation extensions to Section 7.2 on page 317), and the principal to which
the EPAC refers is equal to the principal to which the USER_OBJ_DEL refers.

/* USER_OBJ_DEL subalgorithm */
if ((permission is granted by USER_OBJ_DEL ACLE)
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

326 CAE Specification (1997)



ACL Managers Common Access Determination Algorithm

8.2.5.2 USER_DEL/FOREIGN_USER_DELSubalgorithm

This subalgorithm is invoked when the EPAC matches one of the ACL’s USER_DEL or
FOREIGN_USER_DEL ACLEs, in the following sense (at most one ACLE can be matched).
There are (one or more) USER_DEL and/or FOREIGN_USER_DEL ACLEs present in the ACL,
and the principal to which the EPAC refers is equal to the principal to which some USER_DEL or
FOREIGN_USER_DEL ACLE refers.

/* USER_DEL’s/FOREIGN_USER_DEL’s subalgorithm */
if ((permission is granted by matched USER_DEL or FOREIGN_USER_DEL ACLE)
&& MASK_OBJ-TEST-OK
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

8.2.5.3 GROUP_OBJ_DEL/GROUP_DEL/FOREIGN_GROUP_DELSubalgorithm

This subalgorithm is invoked when the EPAC matches any of the ACL’s GROUP_OBJ_DEL,
GROUP_DEL or FOREIGN_GROUP_DEL ACLEs, in the following sense (one or more ACLEs
can be matched). There are (one or more) GROUP_OBJ_DEL, GROUP_DEL and/or
FOREIGN_GROUP_DEL ACLEs present in the ACLE, and some primary group, local secondary
group or foreign secondary group to which the EPAC refers is equal to some group to which
some GROUP_OBJ_DEL, GROUP_DEL or FOREIGN_GROUP_DEL refers.

/* GROUP_OBJ_DEL/GROUP_DEL’s/FOREIGN_GROUP_DEL’s subalgorithm */
if ((permission is granted by (at least one) matched GROUP_OBJ_DEL,

GROUP_DEL or FOREIGN_GROUP_DEL ACLE)
&& MASK_OBJ-TEST-OK
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

8.2.5.4 OTHER_OBJ_DEL Subalgorithm

This subalgorithm is invoked when the EPAC matches the ACL’s OTHER_OBJ_DEL ACLE, in
the following sense. There is an OTHER_OBJ_DEL ACLE present in the ACL (there can be at
most one), and the cell to which the EPAC refers is equal to the cell to which the ACL refers.

/* OTHER_OBJ_DEL subalgorithm */
if ((permission is granted by OTHER_OBJ_DEL ACLE)
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

Part 2 Security Services and Protocols 327



Common Access Determination Algorithm ACL Managers

8.2.5.5 FOREIGN_OTHER_DEL Subalgorithm

This subalgorithm is invoked when the EPAC matches one of the ACL’s
FOREIGN_OTHER_DEL ACLEs, in the following sense (at most one ACLE can be matched).
There are (one or more) FOREIGN_OTHER_DEL ACLEs present in the ACL, and the cell to
which the EPAC refers is equal to the cell to which some FOREIGN_OTHER_DEL ACLE refers.

/* FOREIGN_OTHER_DEL’s subalgorithm */
if ((permission is granted by matched FOREIGN_OTHER_DEL ACLE)
&& MASK_OBJ-TEST-OK
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

8.2.5.6 ANY_OTHER_DEL Subalgorithm

This subalgorithm is invoked when the EPAC matches the ACL’s ANY_OTHER_DEL ACLE, in
the following sense. There is an ANY_OTHER_DEL ACLE present in the ACL (there can be at
most one), and none of the preceding subalgorithms has been invoked. That is, every EPAC
‘‘matches’’ the ANY_OTHER_DEL ACLE (if it is present), including a NULL EPAC (which is
considered to be ‘‘unauthenticated’’).

/* ANY_OTHER_DEL subalgorithm */
if ((permission is granted by ANY_OTHER_DEL ACLE)
&& MASK_OBJ-TEST-OK
&& AUTHENTICATION-TEST-OK) {

GRANT access;
} else {

DENY access;
}

328 CAE Specification (1997)



Chapter 9

Protected RPC

This chapter specifies how the security services specified in the preceding chapters are
supported by the DCE RPC facility, thereby presenting a simplified programming model of
security services to RPC programmers and securing applications against many passive and
active network attacks.

This chapter depends strongly on the referenced X/Open DCE RPC Specification. The reader of
this chapter is assumed to have detailed familiarity with that specification (especially its Chapters 12
and 13 and Appendix P, including the notation established there), since this chapter does not
review the information available there. Also, for the cyclic redundancy checksum CRC§

32 used in
this chapter, see Section 2.2 on page 136.

The following list specifies all currently supported RPC protocols, authentication protocols and
authorisation types; this whole chapter is therefore restricted to these only:

• RPC protocols

— Connectionless (CL) RPC protocol.

— Connection-oriented (CO) RPC protocol.

• Authentication protocols

— None (dce_c_rpc_authn_protocol_none); that is, ‘‘unprotected RPC’’.

— Kerberos (dce_c_rpc_authn_protocol_krb5); that is, ‘‘protected RPC’’, of various
protection levels (see Section 1.10 on page 54).

• Authorisation types

— Name-based (dce_c_authz_name).

— PAC-based (dce_c_authz_dce).

9.1 What is Specified in this Chapter
Recall that all RPC PDUs, as specified in the referenced X/Open DCE RPC Specification (for
both the CL and CO protocols), can be regarded as bit-vectors (actually, byte-vectors — see
below) having a common structure, which in this chapter will be denoted:

PDU = <H, B, V>

where:

• H is the PDU’s header. It is metadata, describing the actual data carried by the PDU, and is
never empty.

• B is the PDU’s body. It embodies the actual data carried by the PDU, and may be empty. It
consists of IDL-defined NDR-marshalled data, generated by a client or server stub or by the
RPC runtime itself — possibly encrypted, as specified in this chapter.

• V is the PDU’s (authentication/security) verifier. It represents the security attributes of the
PDU, and may be empty.

Each of H, B and V is actually a byte-sequence (that is, has bit-length a non-negative integral
multiple of 8); they are henceforth always regarded as byte-sequences, not bit-sequences. In

Part 2 Security Services and Protocols 329



What is Specified in this Chapter Protected RPC

particular, the length of such a (byte-)vector M henceforth in this chapter, will always mean its
length in bytes, and denoted as:

Λ(M)

(as opposed to λ(M), which denotes length in bits; that is, λ(M) = 8⋅Λ(M)).

The referenced X/Open DCE RPC Specification also specifies alignment rules for PDUs, as part of
its definitions of H, B and V (these rules are not repeated here).

The verifier V is said to be present in a given PDU if it has length > 0. The referenced X/Open
DCE RPC Specification specifies the conditions under which V is present and B (if present) is
encrypted (that is, B is the ciphertext of a corresponding plaintext raw body R, which itself
generally consists of IDL-defined NDR-marshalled data), namely:

• CL case

V is present if and only if H.auth_proto ≠ dce_c_rpc_authn_protocol_none; that is, if and
only if (currently) H.auth_proto = dce_c_authn_level_protocol_krb5. In that case, V is
represented by the data type auth_verifier_cl_t. Further, B is encrypted if and only if
V.protection_level = dce_c_authn_level_privacy.

• CO case

V is present if and only H.auth_length (= Λ(V)) is > 0. In that case, V is represented by the
data type auth_verifier_co_t, with V.auth_type ≠ dce_c_rpc_authn_protocol_none; that is,
with (currently) V.auth_type = dce_c_rpc_authn_protocol_krb5. Further, B is encrypted if
and only if V.auth_level = dce_c_authn_level_privacy.

The conditions under which all PDU types are transmitted are completely specified in the
referenced X/Open DCE RPC Specification, and there is nothing further to say about that in this
chapter. The formats and contents of all PDU types (that is, their headers, bodies and verifiers)
are also completely specified in the referenced X/Open DCE RPC Specification, except for
certain security-related items — those were explicitly deferred to this specification, and it is the
specification of them that forms the contents of this chapter.

Namely, the following is an exhaustive list of the RPC security-related material that was
deferred from the referenced X/Open DCE RPC Specification to this specification, and is to be
specified in this chapter:

• Establishment of credentials

As specified in the referenced X/Open DCE RPC Specification, credentials (authentication
and authorisation information) are established in different ways in the CL and CO cases.
Thus, the following need to be specified, in both the dce_c_authz_name and
dce_c_authz_dce cases:

— CL case

The in_data and out_data parameters of the conv_who_are_you_auth ( ) conversation
manager operation (these parameters are part of the bodies of the corresponding
conv_who_are_you_auth ( ) request and response PDUs) need to be specified.

— CO case

The verifier field V.auth_value needs to be specified for bind, bind_ack, alter_context and
alter_context_response PDUs, provided that H.auth_length > 0.

330 CAE Specification (1997)



Protected RPC What is Specified in this Chapter

• Integrity protection

RPC integrity protection is implemented by cryptographic checksums of PDU headers and
bodies, carried in PDU verifiers. Thus:

— CL case

The verifier field V.auth_value needs to be specified when V.protection_level is one of:
dce_c_authn_level_pkt, dce_c_authn_level_integrity or dce_c_authn_level_privacy.

— CO case

The verifier field V.auth_value needs to be specified when V.auth_level is one of:
dce_c_authn_level_pkt, dce_c_authn_level_integrity or dce_c_authn_level_privacy.

• Confidentiality (privacy) protection

RPC confidentiality (privacy) protection is implemented by encrypting PDU bodies. Thus:

— CL case

The body B needs to be specified when V.protection_level = dce_c_authn_level_privacy.

— CO case

The body B needs to be specified when V.auth_level = dce_c_authn_level_privacy.

These will now be specified, first in the CL case (Section 9.2 on page 332), then in the CO case
Section 9.3 on page 337).

Part 2 Security Services and Protocols 331



Security in the CL RPC Protocol Protected RPC

9.2 Security in the CL RPC Protocol
This section specifies the security-related material listed in Section 9.1 on page 329 for the CL
protocol.

9.2.1 CL Establishment of Credentials (Conversation Manager)

See Section 13.3.3, Conversation Manager Encodings, of the referenced X/Open DCE RPC
Specification for an explanation of when the conversation manager protocol is invoked. In
particular, recall that conv_who_are_you_auth ( ) is used as an ‘‘(RPC) callback’’ that is triggered
by an ‘‘original (application-level) RPC’’; that is, the invoker of conv_who_are_you_auth ( ) is
actually an application-level server, and the invokee is an application-level client which is in the
process of invoking an original application-level RPC request to an application-level server —
that is what triggers the conv_who_are_you_auth ( ) callback. (Thus, the words ‘‘client’’ and
‘‘server’’ as used in this section refer to these application-level entities, as opposed to the
system-level invoker and invokee of the conv_who_are_you_auth ( ) callback.)

9.2.1.1 Conversation Manager in_data

The conversation manager in_data parameter has as its value the following 12-byte vector:

<key_seq_num, challenge>

Its components have the following formats and semantics:

• Key version number

The field in_data.key_seq_num is a 4-byte value, big/big-endian representing an encryption
key version number (an integer), as specified in Section 4.3.5 on page 187. Its value must be
in the range [0, 255], despite the fact that this field could potentially hold values in a larger
range. (This is because it is stored elsewhere in the CL RPC protocol in an 8-bit field — see
Section 13.3.4, Authentication Verifier Encodings, referenced X/Open DCE RPC
Specification.) Its semantics are that it indicates the key version number to be used to
‘‘respond to this challenge’’; that is, to construct the out_data response — see Section 9.2.1.2.

• Challenge

The field in_data.challenge is an 8-byte value representing a nonce value (see Section 4.3.1 on
page 183). Its semantics are that it indicates a nonce to be used by the original RPC server to
match this in_data request message with its corresponding out_data response message (see
Section 9.2.1.2).

9.2.1.2 Conversation Manager out_data

The conversation manager out_data parameter represents an authentication header (that is, a
value of type AuthnHeader as specified in Section 4.6 on page 202) or a privilege authentication
header (that is, a value of data type PAuthnHeader as specified in Section 5.2.8 on page 282),
with the supplements indicated below. (Note that the client sends an AuthnHeader or
PAuthnHeader in out_data according to its original RPC request specified authorisation type
dce_c_authz_name or dce_c_authz_dce, respectively.) In particular, the field
out_data.authnHdr-Tkt carries a ticket that authenticates the client to the server.

• Options

The field out_data.authnHdr-Flags contains no selected options.

332 CAE Specification (1997)



Protected RPC Security in the CL RPC Protocol

• Conversation key

The field out_data.authnHdr-EncryptAuthnr.authnr-ConversationKey is omitted.

Note: The key subfield of the checksum value field (out_data.authnHdr-
EncryptAuthnr.authnr-Cksum.cksum-Value — see below) carries a conversation
key. Historically, the CL RPC protocol was defined before the conversation key
negotiation challenge/response capability was added to the Kerberos RFC 1510
protocol (by means of the conversation keys, ‘‘Kˆ’’ and ‘‘Kˆˆ’’, of the Kerberos
authentication header and reverse-authentication header; see Section 4.5 on page
200 and Section 4.7 on page 205).

• Sequence number

The field out_data.authnHdr-EncryptAuthnr.authnr-SeqNum is omitted.

• Authorisation data

The field out_data.authnHdr-EncryptAuthnr.authnr-AuthzData is omitted.

• Checksum

The field out_data.authnHdr-EncryptAuthnr.authnr-Cksum.cksum-Type has the value
chksumType-CL-RPC (see Section 4.3.4.1 on page 185), which is defined as follows. The field
out_data.authnHdr-EncryptAuthnr.authnr-Cksum.cksum-Value, which will be denoted
checksum here, has as its value the following 40-byte vector:

<challenge, protection_level, key_seq_num, key_type,
key_length, key>

(Note that this usage of the authnr-Cksum field is quite different from the ‘‘normal’’ usage of
checksums as discussed in Chapter 2 and in Section 4.3.4 on page 185. The present usage
does meet the syntactic definition of the authnr-Cksum field, with a ‘‘similar though non-
standard’’ semantic. This is discussed further at the end of this section.) The components of
checksum have the following formats and semantics:

— The field challenge is an 8-byte vector, equal to the in_data.challenge field of the
corresponding request message. In this manner, challenge represents a nonce that the
RPC server uses to (securely) match this out_data response message with the
corresponding in_data request message.

— The field protection_level is a 4-byte vector, big/big-endian representing an integer equal
to the protection level of the original RPC PDU that this authentication header is
authenticating (as specified in the referenced X/Open DCE RPC Specification).

— The field key_seq_num is a 4-byte vector, big/big-endian representing an integer equal to
the encryption key version number (in the sense of Section 4.3.5 on page 187) of key. It is
equal to in_data.key_seq_num.

— The field key_type is a 4-byte vector, big/big-endian representing an integer equal to the
encryption key type (in the sense of Section 4.3.3 on page 184) of key. The only value
currently supported is 1.

— The field key_length is a 4-byte vector, big/big-endian representing an integer equal to
Λ(key), depending on the value of key_type. For key_type = 1, key_length is 16.

— The field key is a byte vector, representing an encryption key of type indicated by
key_type. In the case key_type = 1, key is a 16-byte vector, consisting of two 8-byte
subvectors, which are denoted:

Part 2 Security Services and Protocols 333



Security in the CL RPC Protocol Protected RPC

<des_key, des_iv>

Here, des_key represents an encryption key of type encKeyType-DES (see Section 4.3.3.1
on page 184), and des_iv represents a DES initialisation vector (see Section 3.2 on page
148). This key and initialisation vector are used to protect the ensuing
session/conversation between the client and server (that is, for integrity and
confidentiality protection of the PDU verifiers and bodies as specified in the remainder of
this chapter). Consequently, all such keys must be distinct over all <RPC activity,
key_seq_num> pairs. The activity UUID uniquely identifies a ‘‘shared state’’ (in the
sense of ‘‘connection’’ or ‘‘association’’) between client and server. All requests with the
same activity UUID must use the same protection level, and all responses must be sent at
the same protection level (and with the same key) as the requests that induced them.

This Conversation Manager in_data/out_data mechanism thus represents yet another way to
establish a conversation key between client and server. Extending the notations ‘‘Kˆ’’ and ‘‘Kˆˆ’’
of Section 4.5 on page 200 and Section 4.7 on page 205 (though those do not occur in the CL RPC
protocol, as already noted), the key checksum.key.des_key may be denoted ‘‘Kˆˆˆ’’. Like Kˆ, Kˆˆˆ
is chosen by the client (not the server).

The semantics of out_data are that it authenticates (in the sense specified in Section 4.13.1 on
page 232 and Section 5.5.1 on page 296) the original RPC request message (the one triggering this
invocation of the conv_who_are_you_auth ( ) callback). Note that out_data is bound to the client’s
original RPC request because that request is protected with checksum.key. Finally, no explicit
reverse (privilege) authentication header is generated corresponding to the (privilege)
authentication header carried by out_data — nevertheless, the conversation between the client
and server is indeed implicitly mutually authenticated, by virtue of the fact that the key Kˆˆˆ is
used to protect the communications.

Note: Concerning the above-mentioned non-standard usage of authnr-Cksum, note that
the usual intention of the authnr-Cksum field in the Kerberos protocol is to
cryptographically bind the authentication header to the client’s message. In the
present application of this idea to RPC, as will be detailed in the remainder of this
chapter, this binding is done indirectly, in that authnr-Cksum is used to
cryptographically bind the authentication header to the RPC session/conversation
between client and server. The security of this approach relies on the fact that
authnr-Cksum is protected for both integrity and privacy.

9.2.2 CL Integrity and Confidentiality (PDU Verifiers and Bodies)

Let <H, B, V> be a PDU protected for integrity and/or confidentiality. This section specifies the
format and semantics of its body B and its (16-byte) verifier field V.auth_value.

Throughout, the following notation is used. Let authnHdr denote the authentication header
associated with the given PDU — it has been transmitted from the client to the server as the
out_data parameter of a conversation manager conv_who_are_you_auth ( ) request (see above).

• R denotes raw (plaintext) body data (generally consisting of IDL-defined NDR-marshalled
data generated by a client or server stub, or by RPC runtime itself), as specified in the
referenced X/Open DCE RPC Specification.

• K = authnHdr.authnHdr-EncryptAuthnr.authnr-Cksum.cksum-Value.key.des_key.

• IV = authnHdr.authnHdr-EncryptAuthnr.authnr-Cksum.cksum-Value.key.des_iv.

334 CAE Specification (1997)



Protected RPC Security in the CL RPC Protocol

9.2.2.1 CL dce_c_authn_level_pkt

If V.protection_level = dce_c_authn_level_pkt, then the body B and verifier field V.auth_value
are specified as follows.

In pseudocode:

B = <R, 0 (- Λ(R))(mod 8) >;
struct {unsigned32 _1_; unsigned32 _2_;} seq_frag =

{is_client_pdu?H.seqnum:(H.seqnumˆ2 31), H.fragnum};
enc_seq_frag = DES-CBC(K, IV, seq_frag);
V.auth_value = <enc_seq_frag, 0 8>;

In words: The body B is set to the raw data R (which may be empty) appended with a 0-vector of
length (−Λ(R))(mod 8), so that B has length a multiple of 8. Next, define seq_frag to be the IDL-
defined NDR-marshalled 8-byte quantity consisting of the 4-byte direction-bit-adjusted PDU
sequence number H.seqnum (namely, if this is a server PDU; that is, is transmitted from server
to client, then invert (complement) the most significant bit (that is, bitwise-XOR with 0x80000000
= 231)), and the 4-byte PDU fragment number H.fragnum. (The lack of provision for overflow of
H.seqnum is not considered to be a significant security exposure. Also, note that H.fragnum is
in the range [0, 216−1], which is a subset of [0, 232−1], so it can certainly (by ‘‘casting’’) be
marshalled as an IDL unsigned32 — and the size of this range is also not considered to be a
significant security exposure.) Let enc_seq_frag be the indicated 8-byte DES-CBC encryption of
seq_frag. Then the 16-byte V.auth_value is the concatenation of enc_seq_frag with an 8-byte 0-
vector.

Security interpretation: The PDU’s direction-bit-adjusted sequence number and fragment
number (which are carried in the header H) are integrity-protected (and bound together) by the
verifier V. The PDU’s body B (R) is unprotected.

9.2.2.2 CL dce_c_authn_level_integrity

If V.protection_level = dce_c_authn_level_integrity, then the body B and verifier field
V.auth_value are specified as follows.

In pseudocode:

B = <R, 0 (- Λ(R))(mod 8) >;
hdr_bdy = <H, B>;
cksum_hdr_bdy = MD5(hdr_bdy);
V.auth_value = DES-CBC(K, IV, cksum_hdr_bdy);

In words: The body B is set to the raw data R (it may be empty) appended with a 0-vector of
length (−Λ(R))(mod 8), so that B has length a multiple of 8. Next, define hdr_bdy to be the
concatenation of the header H (recall that Λ(H) = 80) and the body B. Let cksum_hdr_bdy be the
16-byte MD5 checksum of hdr_bdy. Then the 16-byte V.auth_value is the indicated DES-CBC
encryption of cksum_hdr_bdy.

Security interpretation: The PDU’s header H and body B (R) are integrity-protected (and bound
together) by the verifier V.

Part 2 Security Services and Protocols 335



Security in the CL RPC Protocol Protected RPC

9.2.2.3 CL dce_c_authn_level_privacy

If V.protection_level = dce_c_authn_level_privacy, then the body B and verifier field
V.auth_value are specified as follows.

In pseudocode:

struct {byte _1_[4]; unsigned32 _2_;} conf_len =
{RANDOM4( ), Λ(R)};

crc_conf_len = CRC §
32(0 4, conf_len);

enc_conf_len = DES-CBC(K, IV, conf_len);
if ( Λ(R) == 0) {

crc_conf_len_bdy = crc_conf_len;
B = R; /*that is , B = empty*/
cksum_conf_len_bdy = 0 8;

} else {
R’ = <R, 0 (- Λ(R))(mod 8) >;
crc_conf_len_bdy = CRC §

32(crc_conf_len, R’);
B = DES-CBC(K, enc_conf_len, R’);
cksum_conf_len_bdy = DES-CBC-CKSUM(K, enc_conf_len, R’);

}
crc_conf_len_bdy_hdr = CRC §

32(crc_conf_len_bdy, H);
cksum_conf_len_bdy_hdr = DES-CBC-CKSUM(K, cksum_conf_len_bdy, H);
struct {unsigned32 _1_; unsigned32 _2_;} seq_crc_conf_len_bdy_hdr =

{H.seqnum, crc_conf_len_bdy_hdr};
enc_cksum_seq_crc_conf_len_bdy_hdr =

DES-CBC(K, cksum_conf_len_bdy_hdr, seq_crc_conf_len_bdy_hdr);
V.auth_value = <enc_conf_len, enc_cksum_seq_crc_conf_len_bdy_hdr>;

In words: Set conf_len to the IDL-defined NDR-marshalled 8-byte quantity consisting of a 4-byte
random vector, and the integer Λ(R) (which is ≤ 65528, by Section 12.5.2.15, PDU Body Length, of
the referenced X/Open DCE RPC Specification). Let crc_conf_len be the 4-byte CRC of conf_len,
with 4-byte 0-vector as seed. Let enc_conf_len be the indicated 8-byte DES-CBC encryption of
conf_len. If Λ(R) = 0: let crc_conf_len_bdy be the 4-byte crc_conf_len; let B be R (that is, empty); and
let cksum_conf_len_bdy be the 8-byte 0-vector. If Λ(R) > 0: let R´ be the raw data R appended with
a 0-vector of length (−Λ(R))(mod 8), so that R´ has length a positive multiple of 8; let
crc_conf_len_bdy be the 4-byte CRC of R´ with seed crc_conf_len; let B be the indicated DES-CBC
encryption of R´; and let cksum_conf_len_bdy be the indicated DES-CBC-CKSUM of R´. Let
crc_conf_len_bdy_hdr be the CRC of the 80-byte header H with seed crc_conf_len_bdy. Let
cksum_conf_len_bdy_hdr be the indicated DES-CBC-CKSUM of H. Let seq_crc_conf_len_bdy_hdr be
the IDL-defined NDR-marshalled 8-byte quantity consisting of the 4-byte PDU sequence number
H.seqnum (not direction-bit-adjusted, because the header H contains the CL packet type (ptype
field), which itself serves as a ‘‘direction bit’’), and the 4-byte crc_conf_len_hdr_bdy regarded as
integer by the big/big-endian mapping. Let enc_cksum_seq_crc_conf_len_bdy_hdr be the indicated
8-byte DES-CBC encryption of seq_crc_conf_len_bdy_hdr. Finally, V.auth_value is the 16-byte
concatenation of enc_conf_len and enc_cksum_seq_crc_conf_len_bdy_hdr.

Security interpretation: The PDU’s body B (R) is confidentiality-protected. The PDU’s header H
and body B (R) are integrity-protected (and bound together) by the verifier V, and by the use of
the DES-CBC-CKSUM as the initialisation vector for the DES-CBC encryption of the body.

336 CAE Specification (1997)



Protected RPC Security in the CO RPC Protocol

9.3 Security in the CO RPC Protocol
This section specifies the security-related material listed in Section 9.1 on page 329 for the CO
protocol.

Recall that the following quantities are associated with any PDU (see Section 13.2.1, Client
Association State Machine, of the referenced X/Open DCE RPC Specification for definitions and
details). The formats used for them are specified here:

• crc_assoc_uuid

The PDU’s CRC of association UUID. As explained in Section 13.2.1, Client Association State
Machine, of the referenced X/Open DCE RPC Specification (see also Section 9.3.1.1 on page
338 below), every PDU has an association UUID attached to it, assoc_uuid, which is a 16-byte
NDR-marshalled value of the IDL uuid_t data type. However, this association UUID is
known only by the client, not the server — all that is known by the server is crc_assoc_uuid (in
the referenced X/Open DCE RPC Specification, this was denoted assoc_uuid_cksum). It is
defined as follows:

crc_assoc_uuid = CRC §
32(0 4, assoc_uuid);

In words: crc_assoc_uuid is the indicated 4-byte CRC of assoc_uuid with 4-byte 0-vector as
seed.

Security interpretation: crc_assoc_uuid is a uniformly distributed 32-bit hash of the 128-bit
assoc_uuid (that is, even though CRCs are not cryptographic hashes, the probability of
crc_assoc_uuid colliding with another such hash is probablistically insignificant).

It is viewed (and formatted) as a 4-byte little/big-endian integer (even though only its bit
pattern is of significance, never its integral value — that is, the only operation ever
performed on it is testing for equality, never arithmetic operations such as addition).

Note also that (as seen by the remainder of this section) the uniqueness of crc_assoc_uuids is
relied upon (though not in a trusted way) to distinguish between associations. This in turn
relies upon the uniqueness of UUIDs, and in fact on the actual algorithm for generating
UUIDs (see Section A.2, Algorithms for Creating a UUID, of the referenced X/Open DCE
RPC Specification). The secrecy of crc_assoc_uuids is never relied upon, and collisions of
crc_assoc_uuids can at worst result in a denial of service. In particular, uuid_create( ) need not
be considered part of the local TCB.

• dir_seq

The PDU’s direction-bit-adjusted sequence number; that is, its sequence number with the most
significant bit inverted (complemented) in the case of a server(-to-client) PDU. This is
specified in the referenced X/Open DCE RPC Specification (note that it is separately
maintained locally on the client and on the server, and is not directly transmitted in the PDU,
though it is used in the cryptographic computations below). It is formatted as a 4-byte
little/big-endian integer. (The lack of provision for overflow of the sequence number is not
considered to be a significant security exposure.)

• sub_type

The PDU’s encryption/checksum subtype identifier. It is an integer value in the range [0, 28−1],
formatted into 1 byte via the big-endian mapping. It specifies a combined
encryption/checksum mechanism depending on the value of sub_type, which is denoted:

ENCCKSUMsub_type(K, CRCUUID, DIRSEQ, M)

where the 4 input items are: K is an 8-byte vector (in fact, for both of the registered sub_types
listed below, K must actually be a DES key; that is, must be in odd-parity normal form);

Part 2 Security Services and Protocols 337



Security in the CO RPC Protocol Protected RPC

CRCUUID is a 4-byte vector; DIRSEQ is a 4-byte vector; and M is a byte-vector of length
Λ(M) > 0. The currently registered values for sub_type, and the definitions of their
corresponding encryption/checksum mechanisms, are the following:

— dce_c_cn_sub_type_des = 0

This yields as output an 8-byte encryption/checksum value defined by the following
pseudocode:

crcuuid_dirseq = <CRCUUID, DIRSEQ>;
M’ = <M, 0 (- Λ(M))(mod 8) >;
ENCCKSUMdce_c_cn_sub_type_des (K, CRCUUID, DIRSEQ, M) =

DES-CBC(K, crcuuid_dirseq, M’);

In words: Set crcuuid_dirseq to the 8-byte concatenation of CRCUUID and DIRSEQ. Let
M´ be M padded with a 0-vector of length (−Λ(M))(mod 8), so that Λ(M´) is a positive
multiple of 8. Then ENCCKSUMdce_c_cn_sub_type_des(K, CRCUUID, DIRSEQ, M) is set to the
indicated 8-byte DES-CBC encryption of M´.

— dce_c_cn_sub_type_md5 = 1

This yields as output a 16-byte encryption/checksum value defined by the following
pseudocode:

crcuuid = <CRCUUID, 0 4>;
enc_crcuuid = DES-CBC(K, 0 8, crcuuid);
msg_enc_crcuuid_dirseq = <M, enc_crcuuid, DIRSEQ>;
ENCCKSUMdce_c_cn_sub_type_md5 (K, CRCUUID, DIRSEQ, M) =

MD5(msg_enc_crcuuid_dirseq);

In words: Set crcuuid to the 8-byte concatenation of the 4-byte CRCUUID and the 4-byte
0-vector. Let enc_crcuuid be the indicated 8-byte DES-CBC encryption of crcuuid. Next let
msg_enc_crcuuid_dirseq be the concatenation of M (not padded), the 8-byte enc_crcuuid,
and the 4-byte DIRSEQ. Then ENCCKSUMdce_c_cn_sub_type_md5(K, CRCUUID, DIRSEQ, M)
is set to the 16-byte MD5 checksum of msg_enc_crcuuid_dirseq.

Security interpretation (in both of the above two cases): CRCUUID, DIRSEQ and M are
integrity-protected (and bound together) by ENCCKSUMsub_type(K, CRCUUID, DIRSEQ, M).

9.3.1 CO Establishment of Credentials (bind, bind_ack, alter_context,
alter_context_response)

Let <H, B, V> be a PDU of one of the types bind, bind_ack, alter_context or
alter_context_response such that H.auth_length > 0. This section specifies the verifier field
V.auth_value in these cases.

9.3.1.1 CO Verifier auth_value.assoc_uuid_crc

This section specifies the verifier field V.auth_value.assoc_uuid_crc. It depends on the PDU
type, as follows:

• The case of a bind or alter_context PDU.

V.auth_value.assoc_uuid_crc is defined as follows:

V.auth_value.assoc_uuid_crc = crc_assoc_uuid;

In words: The client sets V.auth_value.assoc_uuid_crc to the 4-byte CRC of association
UUID, crc_assoc_uuid, as defined in Section 9.3 on page 337. (This is how the server learns
crc_assoc_uuid, but not the actual assoc_uuid itself.)

338 CAE Specification (1997)



Protected RPC Security in the CO RPC Protocol

• The case of a bind_ack or alter_context_response PDU.

V.auth_value.assoc_uuid_crc is defined as follows:

V.auth_value.assoc_uuid_crc = ‘unspecified’;

In words: V.auth_value.assoc_uuid_crc is set to a 4-byte 0-vector by the server, and is
ignored by the client.

9.3.1.2 CO Verifier auth_value.checksum

This section specifies the verifier field V.auth_value.checksum. It depends on the value of
V.auth_level, as follows:

• The case V.auth_level = dce_c_authn_level_none — V.auth_value.checksum is defined by the
following pseudocode:

V.auth_value.checksum = ‘unspecified’;

In words: V.auth_value.checksum is set by the sender to an 8-byte or 16-byte 0-vector,
according as V.auth_value.sub_type is dce_c_cn_sub_type_des or dce_c_cn_sub_type_md5
respectively; its value is ignored by the receiver.

Security interpretation: The PDU is not protected by its verifier field V.auth_value.checksum.

• The case V.auth_level = dce_c_authn_level_connect, dce_c_authn_level_call or
dce_c_authn_level_pkt.

V.auth_value.checksum is defined by the following pseudocode:

V.auth_value.checksum =
ENCCKSUMV.auth_value.sub_type

(K, crc_assoc_uuid, dir_seq, 0 8 or 16 );

In words: The field V.auth_value.checksum is set to the indicated (8-byte or 16-byte)
ENCCKSUM of an 8-byte or 16-byte 0-vector, according as V.auth_value.sub_type is
dce_c_cn_sub_type_des or dce_c_cn_sub_type_md5 respectively..

Security interpretation: The PDU’s CRC of association UUID and its direction-bit-adjusted sequence
number are integrity-protected (and bound together) by the verifier field V.auth_value.checksum.

• The case V.auth_level = dce_c_authn_level_pkt_integrity or dce_c_authn_level_pkt_privacy.

V.auth_value.checksum is defined by the following pseudocode:

struct {unsigned32 _1_; unsigned8 _2_; unsigned8 _3_;
unsigned16 _4_;} vrf =

{V.auth_value.assoc_uuid_crc, V.auth_value.sub_type,
V.auth_value.checksum_length, V.auth_value.cred_length};

hdr_bdy_vrf = <H, B, vrf>;
V.auth_value.checksum =

ENCCKSUMV.auth_value.sub_type (K, crc_assoc_uuid, dir_seq,
hdr_bdy_vrf);

In words: Let vrf be the IDL-defined NDR-marshalled 8-byte data indicated (it is the first 8
bytes of the verifier’s V.auth_value field; that is, it is V.auth_value excluding the
V.auth_value.credentials and V.auth_value.checksum fields). Let hdr_bdy_vrf be the
concatenation of the PDU header H, the PDU body B, and vrf. Then V.auth_value.checksum
is set to the indicated (8-byte or 16-byte) ENCCKSUM of hdr_bdy_vrf.

Part 2 Security Services and Protocols 339



Security in the CO RPC Protocol Protected RPC

Security interpretation: The PDU’s header H, body B (R), and the specified fields of the
verifier V are integrity-protected (and bound together) by the verifier field
V.auth_value.checksum.

9.3.1.3 CO Verifier auth_value.credentials

This section specifies the verifier field V.auth_value.credentials. Most of this specification has
already been given in Section 13.2.6.3, Credentials Encoding, of the referenced X/Open DCE
RPC Specification, so this section just gives the specification of the components there were left
unspecified there: namely, the components that were there called name, pac, request, response and
error.

• name

This is unsupported (it will be removed from future versions of the referenced X/Open DCE
RPC Specification and this specification).

• pac

This is unsupported (it will be removed from future versions of the referenced X/Open DCE
RPC Specification and this specification).

• request

This is (the NDR-marshalled IDL byte[] data type underlying) either an AuthnHeader or a
PAuthnHeader data type, dependent on whether the dce_c_authz_name or dce_c_authz_dce
authorisation service has been specified respectively (this is used to authenticate the client to
the server, in the sense of Section 4.13 on page 231), with the following supplements:

— Options

The field V.auth_value.credentials.authnHdr-Flags contains no selected options.

— Conversation key

The field V.auth_value.credentials.authnHdr-EncryptAuthnr.authnr-ConversationKeyis
omitted.

— Sequence number

The field V.auth_value.credentials.authnHdr-EncryptAuthnr.authnr-SeqNum is omitted
by the client, and is ignored by the server.

— Authorisation data

The field V.auth_value.credentials.authnHdr-EncryptAuthnr.authnr-AuthzData is
omitted.

— Checksum

The field V.auth_value.credentials.authnHdr-EncryptAuthnr.authnr-Cksum.cksum-
Type has the value chksumType-CO-RPC (see Section 4.3.4.1 on page 185), which is
defined as follows. The field V.auth_value.credentials.authnHdr-
EncryptAuthnr.authnr-Cksum.cksum-Type has as its value the (unique) vector of length
0 (that is, there is no checksum data).

• response

This is (the NDR-marshalled IDL byte[] data type underlying) either a RevAuthnHeader or a
PRevAuthnHeader data type, dependent on whether the dce_c_authz_name or
dce_c_authz_dce authorisation service has been specified respectively (this is used to
reverse-authenticate the server to the client, in the sense of Section 4.13 on page 231), with the

340 CAE Specification (1997)



Protected RPC Security in the CO RPC Protocol

following supplements:

— Conversation key

The field V.auth_value.credentials.revAuthnHdr-EncryptPart.revAuthnHdr-
ConversationKey is omitted.

— Sequence number

The field V.auth_value.credentials.revAuthnHdr-EncryptPart.revAuthnHdr-SeqNum is
omitted by the server, and is ignored by the client.

• error

This is (the NDR-marshalled IDL byte[] data type underlying) a KDSError data type.

9.3.2 CO Integrity and Confidentiality (PDU Verifiers and Bodies)

Let <H, B, V> be a PDU protected for integrity and/or confidentiality. This section specifies the
format and semantics of its body B and its verifier field V.auth_value.

Throughout, the following notation is used. Let authnHdr denote the authentication header
associated with the given PDU — it has been transmitted from the client to the server in a PDU’s
V.auth_value.credentials field (see above).

• R denotes raw (plaintext) body data (generally consisting of IDL-defined NDR-marshalled
data generated by a client or server stub, or by the RPC runtime itself) as specified in the
referenced X/Open DCE RPC Specification.

• K = authnHdr.authnHdr-Tkt.tkt-EncryptPart.tkt-SessionKey.

• (No initialisation vector, IV, is used below.)

9.3.2.1 CO dce_c_authn_level_pkt

If V.auth_level = dce_c_authn_level_pkt, then the body B and verifier field
V.auth_value.checksum are specified as follows.

In pseudocode:

B = R;
V.auth_value.checksum =

ENCCKSUMV.auth_value.sub_type
(K, crc_assoc_uuid, dir_seq, 0 8 or 16 );

In words: The body B is set to the raw data R (it may be empty). The field
V.auth_value.checksum is set to the indicated (8-byte or 16-byte) ENCCKSUM of a 0-vector (of
length 8 or 16 bytes, dependent on whether V.auth_value.sub_type is dce_c_cn_sub_type_des
or dce_c_cn_sub_type_md5 respectively).

Security interpretation: The PDU’s CRC of association UUID and its direction-bit-adjusted
sequence number are integrity-protected (and bound together) by the verifier field
V.auth_value.checksum. The body B (R) is unprotected.

Part 2 Security Services and Protocols 341



Security in the CO RPC Protocol Protected RPC

9.3.2.2 CO dce_c_authn_level_pkt_integrity

If V.auth_level = dce_c_authn_level_pkt_integrity, then the body B and verifier field
V.auth_value.checksum are specified as follows.

In pseudocode:

B = R;
hdr_bdy = <H, B>;
V.auth_value.checksum =

ENCCKSUMV.auth_value.sub_type (K, crc_assoc_uuid,
dir_seq, hdr_bdy);

In words: The body B is set to the raw data R (it may be empty). Let hdr_bdy be the
concatenation of the header H and body B. Then the field V.auth_value.checksum is set to the
indicated (8-byte or 16-byte) ENCCKSUM of hdr_bdy.

Security interpretation: The PDU’s CRC of association UUID, direction-bit-adjusted sequence
number, header H and body B (R) are integrity-protected (and bound together) by the verifier
field V.auth_value.checksum.

9.3.2.3 CO dce_c_authn_level_pkt_privacy

If V.auth_level = dce_c_authn_level_pkt_privacy, then the body B and verifier field
V.auth_value.checksum are specified as follows.

If R is empty, in pseudocode:

B = R; /*that is , B = empty*/
V.auth_value.checksum =

ENCCKSUMV.auth_value.sub_type (K, crc_assoc_uuid, dir_seq, H);

In words: This is identical to the dce_c_authn_level_pkt_integrity case (in the case R is empty),
above.

If R is non-empty, in pseudocode:

enccksum_crc_assoc_uuid_dir_seq_hdr =
ENCCKSUMV.auth_value.sub_type (K, crc_assoc_uuid, dir_seq, H);

if (V.auth_value.sub_type == dce_c_cn_sub_type_md5) {
enccksum_crc_assoc_uuid_dir_seq_hdr =

FOLD8(enccksum_crc_assoc_uuid_dir_seq_hdr);
}
R’ = <R, 0 (3- Λ(R))(mod 8) , (3- Λ(R))(mod 8)>;
crc_bdy = CRC §

32(0 4, R’);
R’’ = <R’, crc_bdy>;
B = DES-CBC(K, enccksum_crc_assoc_uuid_dir_seq_hdr, R’’);
V.auth_value.checksum = 0 8 or 16 ;

In words: Let enccksum_crc_assoc_uuid_dir_seq_hdr be the indicated (8-byte or 16-byte)
ENCCKSUM of the header H. If V.auth_value.sub_type = dce_c_cn_sub_type_md5, then ‘‘fold
the 16-byte enccksum_crc_assoc_uuid_dir_seq_hdr in half’’ (making it into an 8-byte vector), as
defined by the following pseudocode for any 16-byte vector <C0, C1, ⋅⋅⋅, C15>:

342 CAE Specification (1997)



Protected RPC Security in the CO RPC Protocol

FOLD8(<C 0, C 1,
⋅⋅⋅, C 15>) =
<C0ˆC 8,
C1ˆC 9,
⋅⋅⋅,
C7ˆC 15>;

Next, let R´ be the concatenation of the raw data R, a 0-vector of length (3−Λ(R))(mod 8), and a
1-byte big-endian integer whose value is (3−Λ(R))(mod 8); thus, Λ(R´) ≡ 4 (mod 8). Let crc_bdy be
the 4-byte CRC of R´, with 4-byte 0-vector as seed. Then let R´´ be the concatenation of R´ and
crc_bdy, so that Λ(R´´) is a multiple of 8. Then B is the indicated DES-CBC encryption of R´´.
Finally, V.auth_value.checksum is set to an 8-byte or 16-byte 0-vector, dependent on whether
V.auth_value.sub_type is dce_c_cn_sub_type_des or dce_c_cn_sub_type_md5 respectively.

Security interpretation: The PDU’s CRC of association UUID, direction-bit-adjusted sequence
number, header H and body B (R) are integrity-protected (and bound together), and the body B
(R) is confidentiality-protected, all via the encrypted data B (not via the verifier field
V.auth_value.checksum).

Part 2 Security Services and Protocols 343



Protected RPC

344 CAE Specification (1997)



Chapter 10

ACL Editor RPC Interface

This chapter specifies the RPC interface supporting ACL Editors, namely the rdacl RPC interface
(the corresponding sec_acl API is specified in Chapter 15). Recall that, by definition, ‘‘ACL
Editors’’ are just RPC clients that invoke the operations defined in this chapter to access and
manipulate (via the RPC server and its ACL managers) the ACLs on protected objects, without
actually accessing the protected objects themselves.

Required background for this chapter appears in Section 1.11 on page 55, Chapter 7 and Chapter
8.

10.1 The rdacl RPC Interface
This section specifies (in IDL/NDR) the rdacl RPC interface. All servers that support protected
objects must export this RPC interface in order for ACL Editors to be able to manage their ACLs.
They must also, of course, protect it (at a level consistent with the policy of the server) in order to
guarantee the security of the server’s ACLs and protected objects (see Chapter 9 for generalities
on Protected RPC, and see the required rights specifications on the rdacl operations below).

This section begins with some remarks about identifying protected objects and ACLs, followed
by definitions of some common data types, and the rdacl interface interspersed with
commentary explaining it.

10.1.1 Identifying Protected Objects and ACLs

The rdacl interface represents references to ACLs by a 4-tuple of data items, namely:

• An RPC binding handle, identifying the server that manages the protected object whose ACL
is being referenced.

• A string, which ‘‘further identifies’’, on an application-specific basis (that is, by a ‘‘server-
supported namespace’’ — see Section 1.11 on page 55), the protected object within the server
whose ACL is being referenced.

• An ACL manager type UUID, identifying the ACL manager type of the ACL being referenced
(and thereby identifying the ACL manager within the server that can interpret the ACL).

• An ACL type, identifying the ACL type of the ACL being referenced (protection ACL, default
object creation ACL, default container creation ACL).

A consistent notation for these items is used throughout this section, namely (in the order listed
above):

handle_t rpc_handle;
sec_acl_component_name_t component_name;
uuid_t *manager_type;
sec_acl_type_t acl_type;

This identification scheme implies that servers supporting the rdacl interface must uniquely
identify all their ACLs by means of such a 4-tuple. Within this constraint, however, the server’s
management of its protected objects and ACLs is not further specified here, so is application-
specific.

Part 2 Security Services and Protocols 345



The rdacl RPC Interface ACL Editor RPC Interface

Note: Typically, it is the case that the first 2 of the above items (rpc_handle, component_name)
together uniquely identify the protected object itself, and the last 2 items
(manager_type, acl_type) together uniquely identify a particular ACL associated with
that protected object. However, this is not a requirement. For example, it is
conceivable (though atypical) that a server (identified by rpc_handle) could support
more than one protected object having the same stringname (component_name),
provided those were disambiguated (for ACL editing purposes) by being protected
by ACL managers of different type UUIDs (manager_type). Again, it is entirely
conceivable that a server could support protected objects that are uniquely identified
by stringname (component_name), but having more than one ACL per object (these
being disambiguated by their manager_types). This latter is the case of so-called
‘‘polymorphic types’’, and is especially useful when the server supports a
hierarchical namespace whose internal nodes are not only ‘‘mere’’ directories but
also participate in some other role (such as a directory that participates in some of
the qualities of a leaf node).

10.1.2 Common Data Types and Constants for rdacl Interface

This section specifies (in IDL/NDR) common data types and constants used by the rdacl
interface (additional data types not defined in this chapter are defined in preceding chapters and
in the referenced X/Open DCE RPC Specification).

10.1.2.1 sec_acl_component_name_t

The sec_acl_component_name_t data type is a string for ‘‘further identifying’’ (in an
application-specific manner) a protected object (and hence its ACL) — see Section 10.1.1 on page
345. Its character elements are to be drawn from the Portable Character Set (see Appendix G,
Portable Character Set, of the referenced X/Open DCE RPC Specification).

typedef [string, ptr] unsigned char *sec_acl_component_name_t;

10.1.2.2 sec_acl_p_t

The sec_acl_p_t data type represents a pointer to an ACL.

typedef [ptr] sec_acl_t *sec_acl_p_t;

10.1.2.3 sec_acl_list_t

The sec_acl_list_t data type represents a list (array) of (pointers to) ACLs.

typedef struct {
unsigned32 count;
[size_is(count)] sec_acl_p_t sec_acls[];

} sec_acl_list_t;

10.1.2.4 sec_acl_result_t

The sec_acl_result_t data type represents a ‘‘performance-optimised’’ version of the
sec_acl_list_t data type. In the success case (status = error_status_ok), sec_acl_result_t
represents a (pointer to a) value of type sec_acl_list_t; in the error case (status ≠ error_status_ok)
it is empty (thereby preventing unnecessary marshalling/unmarshalling of data in the error
case).

346 CAE Specification (1997)



ACL Editor RPC Interface The rdacl RPC Interface

typedef union switch (error_status_t status) {
case error_status_ok:

[ptr] sec_acl_list_t acl_list;
default:

/*empty*/ /*empty*/;
} sec_acl_result_t;

10.1.2.5 sec_acl_twr_ref_t

The sac_acl_twr_ref_t data type represents a pointer to an RPC protocol tower (twr_t, defined in
Appendix L, Protocol Tower Encoding, of the referenced X/Open DCE RPC Specification).

typedef [ref] twr_t *sec_acl_twr_ref_t;

10.1.2.6 sec_acl_tower_set_t

The sec_acl_tower_set_t data type represents a pointer to a list of (pointers to) RPC protocol
towers.

typedef [ptr] struct {
unsigned32 count;
[size_is(count)] sec_acl_twr_ref_t towers[];

} *sec_acl_tower_set_t;

10.1.2.7 sec_acl_posix_semantics_t

The sec_acl_posix_semantics_t data type is a flag word indicating the extent of POSIX
semantics supported by an ACL manager.

typedef unsigned32 sec_acl_posix_semantics_t;
const sec_acl_posix_semantics_t sec_acl_posix_no_semantics

= 0x00000000;
const sec_acl_posix_semantics_t sec_acl_posix_mask_obj

= 0x00000001;

The following values are currently registered:

• sec_acl_posix_no_semantics

ACL manager supports ACLs as described throughout DCE, with the exception that the
MASK_OBJ ACLE type is not supported (that is, is not present on any ACL).

• sec_acl_posix_mask_obj

ACL manager supports ACLs as described throughout DCE (including the MASK_OBJ
ACLE type).

Note: Arguably, DCE ‘‘should’’ support a sec_acl_semantics_t flag word data type,
encompassing ‘‘all’’ kinds of semantics, not just those related to POSIX. Such
support is for future study. For the time being, DCE restricts itself to ‘‘POSIX-like’’
semantics, and the intention is that the bits of the sec_acl_posix_semantics_t indicate
various ‘‘levels’’ or ‘‘flavours’’ of POSIX-like semantics.

Part 2 Security Services and Protocols 347



The rdacl RPC Interface ACL Editor RPC Interface

10.1.2.8 Status Codes

The following status codes (transmitted as values of the type error_status_t) are specified for the
rdacl interface. Only their values are specified here — their use is specified in context elsewhere
in this specification.

const unsigned32 sec_acl_not_implemented = 0x17122016;
const unsigned32 sec_acl_cant_allocate_memory = 0x17122017;
const unsigned32 sec_acl_invalid_site_name = 0x17122018;
const unsigned32 sec_acl_unknown_manager_type = 0x17122019;
const unsigned32 sec_acl_object_not_found = 0x1712201a;
const unsigned32 sec_acl_no_acl_found = 0x1712201b;
const unsigned32 sec_acl_invalid_entry_name = 0x1712201c;
const unsigned32 sec_acl_expected_user_obj = 0x1712201d;
const unsigned32 sec_acl_expected_group_obj = 0x1712201e;
const unsigned32 sec_acl_invalid_entry_type = 0x1712201f;
const unsigned32 sec_acl_invalid_acl_type = 0x17122020;
const unsigned32 sec_acl_bad_key = 0x17122021;
const unsigned32 sec_acl_invalid_manager_type = 0x17122022;
const unsigned32 sec_acl_read_only = 0x17122023;
const unsigned32 sec_acl_site_read_only = 0x17122024;
const unsigned32 sec_acl_invalid_permission = 0x17122025;
const unsigned32 sec_acl_bad_acl_syntax = 0x17122026;
const unsigned32 sec_acl_no_owner = 0x17122027;
const unsigned32 sec_acl_invalid_entry_class = 0x17122028;
const unsigned32 sec_acl_unable_to_authenticate = 0x17122029;
const unsigned32 sec_acl_name_resolution_failed = 0x1712202a;
const unsigned32 sec_acl_rpc_error = 0x1712202b;
const unsigned32 sec_acl_bind_error = 0x1712202c;
const unsigned32 sec_acl_invalid_acl_handle = 0x1712202d;
const unsigned32 sec_acl_no_update_sites = 0x1712202e;
const unsigned32 sec_acl_missing_required_entry = 0x17122030;
const unsigned32 sec_acl_duplicate_entry = 0x17122031;
const unsigned32 sec_acl_bad_parameter = 0x17122032;
const unsigned32 sec_acl_not_authorized = 0x17122033;
const unsigned32 sec_acl_server_bad_state = 0x17122034;
const unsigned32 sec_acl_invalid_dfs_acl = 0x17122035;
const unsigned32 sec_acl_bad_permset = 0x17122037;

10.1.3 Interface UUID and Version Number for rdacl Interface

The interface UUID and version number for the rdacl interface are given by the following:

[uuid(47b33331-8000-0000-0d00-01dc6c000000), version(0.0)]
interface rdacl
{ /* begin running listing of rdacl interface */

10.1.3.1 Implementation Variability regarding Required Rights

The RPC (rdacl) operations specified in this chapter are intended to be implemented by various
kinds of servers, whose detailed specification is in general beyond the scope of this specification,
and all of whose security requirements cannot therefore be anticipated by DCE. In particular,
the authorisation policies (‘‘required rights’’) to the server’s ACLs are the responsibility of the
server itself (or more precisely, of its ACL manager(s)), and are in general beyond the scope of
this document. As such, the specifications of required rights in this chapter are to be interpreted

348 CAE Specification (1997)



ACL Editor RPC Interface The rdacl RPC Interface

as suggestions only, whose exact interpretation must be specified by the implementing servers.
To emphasise this, the permissions mentioned in the required rights of this chapter are given
hypothetical ‘‘names’’, explicitly denoted with quotation marks (indicating that their exact
interpretation is to be specified by the specific server in question). Typical interpretations of
these hypothetical permissions are given as suggestions.

For an explicit example of a concrete interpretation, namely in the specific case of the RS server
(whose specification is within the scope of this document), see Section 11.1 on page 358.

10.1.4 rdacl_lookup( )

The rdacl_lookup ( ) operation retrieves (‘‘reads’’) all ACLs specified by an <rpc_handle,
component_name, manager_type, acl_type> 4-tuple, creating a copy locally on the client.

void
rdacl_lookup (

[in] handle_t rpc_handle,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_acl_type_t acl_type,
[out] sec_acl_result_t *acl_result );

The rpc_handle parameter identifies the server that manages the protected object.

The component_name parameter further identifies the protected object within the server.

The manager_type parameter identifies an ACL manager type UUID.

The acl_type parameter identifies an ACL type.

The acl_result parameter returns the result of the operation.

Required rights (suggested): This operation succeeds only if the calling client has ‘‘rdacl-lookup’’
permission (to the specified protected object, according to the specified ACL manager’s policy —
see Section 10.1.3.1 on page 348). Typically, servers will grant this permission to clients which
have Read-ACL permission to the protected object in question (which, in turn, is typically
interpreted as any access — see Section 1.9 on page 46).

10.1.5 rdacl_replace( )

The rdacl_replace ( ) operation applies (‘‘writes’’) all ACLs specified by an <rpc_handle,
component_name, manager_type, acl_type> 4-tuple. This operation is atomic, in the sense that it
manipulates a whole ACL (not its individual ACLEs, and it cannot be ‘‘interrupted’’ by another
invocation of rdacl_replace ( )) — thus, the specified new ACL entirely replaces the old (existing)
ACL on the protected object.

void
rdacl_replace (

[in] handle_t rpc_handle,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_acl_type_t acl_type,
[in] sec_acl_list_t *acl_list,
[out] error_status_t *status );

The rpc_handle parameter identifies the server that manages the protected object.

Part 2 Security Services and Protocols 349



The rdacl RPC Interface ACL Editor RPC Interface

The component_name parameter further identifies the protected object within the server.

The manager_type parameter identifies an ACL manager type UUID.

The acl_type parameter identifies an ACL type.

The acl_list parameter specifies the new ACLs to replace the old ACLs.

The status parameter returns the status of the operation.

Required rights (suggested): This operation succeeds only if the calling client has ‘‘rdacl-replace’’
permission (to the specified protected object, according to the specified ACL manager’s policy —
see Section 10.1.3.1 on page 348). Typically, servers will grant this permission to clients which
have Control (Write-ACL) permission to the protected object in question (see Section 1.9 on page
46).

10.1.6 rdacl_get_access( )

The rdacl_get_access ( ) operation determines the calling client’s access rights to the protected
object specified by an <rpc_handle, component_name, manager_type> 3-tuple.

void
rdacl_get_access (

[in] handle_t rpc_handle,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[out] sec_acl_permset_t *access_rights,
[out] error_status_t *status );

The rpc_handle parameter identifies the server that manages the protected object.

The component_name parameter further identifies the protected object within the server.

The manager_type parameter identifies an ACL manager type UUID.

The access_rights parameter returns the calling client’s access rights to the specified protected
object. This is the client’s ‘‘maximum’’ access rights; that is, the ‘‘union’’ (bitwise OR) of all the
permission bits granted to the client, according to the ACLs on the protected object of ACL type
sec_acl_type_object.

The status parameter returns the status of the operation.

Required rights (suggested): This operation succeeds only if the calling client has ‘‘rdacl-get-
access’’ permission (to the specified protected object, according to the specified ACL manager’s
policy — see Section 10.1.3.1 on page 348). Typically, servers will grant this permission to clients
which have Read-ACL permission to the protected object in question (which, in turn, is typically
interpreted as any access — see Section 1.9 on page 46).

10.1.7 rdacl_test_access( )

The rdacl_test_access( ) operation determines (‘‘tests’’) whether or not the calling client has the
specified access rights to a protected object.

350 CAE Specification (1997)



ACL Editor RPC Interface The rdacl RPC Interface

boolean32
rdacl_test_access (

[in] handle_t rpc_handle,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_acl_permset_t access_rights,
[out] error_status_t *status );

The rpc_handle parameter identifies the server that manages the protected object.

The component_name parameter further identifies the protected object within the server.

The manager_type parameter identifies an ACL manager type UUID of the protected object.

The access_rights parameter identifies the specific access rights (according to the ACLs on the
protected object of ACL type sec_acl_type_object) to be tested.

The status parameter returns the status of the operation.

The boolean32 return value of this operation, which is valid only when status returns
error_status_ok, returns 0 (‘‘false’’) if the calling client is denied access, non-0 (‘‘true’’) if the
client is granted access.

Required rights (suggested): This operation succeeds only if the calling client has ‘‘rdacl-test-
access’’ permission (to the specified protected object, according to the specified ACL manager’s
policy — see Section 10.1.3.1 on page 348). Typically, servers will grant this permission to all
clients (that is, no permissions are required).

10.1.8 rdacl_place_holder_1( )

The rdacl_place_holder_1 ( ) operation is merely an IDL place-holder; it is a ‘‘no-op’’ (that is, the
specification of its semantics is empty). (The presence of this operation is anachronistic, but
necessary.)

boolean32
rdacl_place_holder_1 (

[in] handle_t rpc_handle,
[in] sec_acl_component_name_t _1_,
[in] uuid_t *_2_,
[in, ptr] sec_id_pac_t *_3_,
[in] sec_acl_permset_t _4_,
[out] error_status_t *status );

The rpc_handle parameter identifies the server that manages the protected object.

The _1_ parameter has unspecified semantics.

The _2_ parameter has unspecified semantics.

The _3_ parameter has unspecified semantics.

The _4_ parameter has unspecified semantics.

The status parameter returns the status of the operation. It always returns
sec_acl_not_implemented.

The boolean32 return value of this operation always returns 0 (‘‘false’’).

Required rights (suggested): None.

Part 2 Security Services and Protocols 351



The rdacl RPC Interface ACL Editor RPC Interface

10.1.9 rdacl_get_manager_types( )

The rdacl_get_manager_types ( ) operation retrieves the types of ACL managers protecting a
protected object.

void
rdacl_get_manager_types (

[in] handle_t rpc_handle,
[in] sec_acl_component_name_t component_name,
[in] sec_acl_type_t acl_type,
[in] unsigned32 count_max,
[out] unsigned32 *count,
[out] unsigned32 *num_manager_types,
[out, size_is(count_max), length_is(*count)]

uuid_t manager_types[],
[out] error_status_t *status );

The rpc_handle parameter identifies the server that manages the protected object.

The component_name parameter further identifies the protected object within the server.

The acl_type parameter identifies an ACL type.

The count_max parameter identifies the maximum number of ACL manager type UUIDs to be
returned (in manager_types).

The count parameter identifies the actual number of ACL manager type UUIDs returned (in
manager_types).

The num_manager_types parameter identifies the total number of ACL manager types, of ACL
type acl_type, at the heads of chains (see rdacl_get_printstring ( ), Section 10.1.10), protecting the
protected object — thus, an invocation of this operation is ‘‘completely successful’’ only if count
= num_manager_types.

The manager_types parameter is an array (of size count) of distinct UUIDs identifying different
ACL manager types protecting the protected object (in the case of a chain of ACL managers,
each supporting ≤ 32 permission bits, only the first ACL manager in the chain is returned in this
way, and the rest are returned by calls to rdacl_get_printstring ( ) — see Section 10.1.10).

The status parameter returns the status of the operation.

Required rights (suggested): This operation succeeds only if the calling client has ‘‘rdacl-get-
manager-types’’ permission (to the specified protected object, according to the specified server’s
policy (which may, in turn, depend on the policies of the protected object’s ACL managers) —
see Section 10.1.3.1 on page 348). Typically, servers will grant this permission to all clients (that
is, no permissions are required).

10.1.10 rdacl_get_printstring( )

The rdacl_get_printstring ( ) operation retrieves printstring representations for the permission bits
that an ACL manager supports.

352 CAE Specification (1997)



ACL Editor RPC Interface The rdacl RPC Interface

void
rdacl_get_printstring (

[in] handle_t rpc_handle,
[in] uuid_t *manager_type,
[in] unsigned32 count_max,
[out] uuid_t *manager_type_next,
[out] sec_acl_printstring_t *manager_info,
[out] boolean32 *tokenize,
[out] unsigned32 *num_printstrings,
[out] unsigned32 *count,
[out, size_is(count_max), length_is(*count)]

sec_acl_printstring_t printstrings[],
[out] error_status_t *status );

The rpc_handle parameter identifies the server that manages the ACL manager.

The manager_type parameter identifies an ACL manager type UUID.

The count_max parameter identifies the maximum number of printstrings to be returned (in
printstrings).

The manager_type_next parameter, if not equal to uuid_nil, identifies the next ACL manager type
in a linked list or ‘‘chain’’ of ACL manager types, which can be successively followed until the
chain is exhausted (for example, such a chain can be used to support > 32 permission bits). The
value uuid_nil indicates the end of this chain.

The manager_info parameter provides a name and help information for the manager_type ACL
manager as a whole (as opposed to any of its specific permission bits — those are described in
the printstrings parameter), as well as a complete list of all its supported permission bits
(represented as the union (bitwise OR) of all those supported bits). Concerning this bitwise OR,
it is suggested that, by convention, ‘‘simple’’ or ‘‘primitive’’ permission bits (for example,
permissions having semantics not interpretable in terms of other permissions) appear in low-
order bit positions (and in particular, that the 7 common permission bits, if present, occupy their
usual places in the low-order 7 bit positions, 0x0000007f — see Section 8.1.1 on page 319), and
that ‘‘complex’’ or ‘‘combination’’ permission bits (for example, permissions having semantics
interpretable in terms of other permissions) appear near the high-order end. Thus, for example,
for an ACL manager supporting the first 6 of the 7 common permission bits (rwxcid but not t)
plus 2 combination bits, one with value 0x00000080 and having the semantics ‘‘Read and Write’’,
and the other with value 0x00000100 and having the semantics ‘‘Read or Write’’, this bitwise OR
would be equal to 0x000001bf.

Note: This example, using ‘‘combined rights’’, is contrived to illustrate the problem of
tokenisation (below) — it is not necessarily a realistic example. Combining rights in
this manner is not necessarily to be encouraged, and the merits/demerits of doing so
are not debated here.)

The tokenize parameter identifies potential ambiguity in the concatenation of permission
printstrings (that is, in the printstring fields of the elements of the printstrings[] array) — when
tokenize is 0 (‘‘false’’), the permission printstrings may be concatenated into a single string
without ambiguity; when non-0 (‘‘true’’), this property does not hold, and the permission
printstrings must be ‘‘tokenised’’ (that is, separated by disambiguating characters; for example,
by non-alphanumeric characters, such as whitespace) to avoid ambiguity when concatenated.
The consumer of the tokenize parameter is typically a user interface program (for example, an
ACL editor) which wants to display printstrings to users, and must do so unambiguously. Thus
in the example above, if the two combination permissions were represented by, say, the
printstrings raw (for ‘‘Read and Write’’) and row (for ‘‘Read or Write’’), then tokenize would be

Part 2 Security Services and Protocols 353



The rdacl RPC Interface ACL Editor RPC Interface

non-0 (because these printstrings have characters in common with one another, as well as with
the common printstrings r (‘‘Read’’) and w (‘‘Write’’), and this could potentially be confusing to
human users). In this example, a user interface program could display the 8 supported
permissions to humans in a manner such as: r w x c i d raw row, where ‘‘ ’’ denotes the
space character (for visual clarity). Alternatively (and probably preferably), tokenisation could
have been avoided in this example by choosing different printstrings for the combination
permissions, such as a and o instead of raw and row, in which case a user interface program
could display the supported permissions as rwxcidao. (Note that the order of display of
permission bits need not be correlated to the order of their values — that’s an implementation
decision of the user interface program itself, though the reverse-value order indicated here is
suggested, for consistency with the well-known 7 common permissions, rwxcidt.)

The num_printstrings parameter identifies the total number (≤ 32) of permission bits and
printstrings ‘‘supported’’ (in the sense of rdacl_get_printstring ( ), as indicated in the following
sentence) by the ACL manager (thus, an invocation of this operation is ‘‘completely successful’’
only if count = num_printstrings). In the example above, the value of num_printstrings is 9, even
though only 8 permission bits are ‘‘actually supported’’ by the manager_type ACL manager (the t
bit is not supported, but its position is reserved by convention, so must be skipped).

The count parameter identifies the actual number of printstrings returned (in the printstrings
array). In the example above, the value of count is 9.

The printstrings parameter is an array (of size count) of printstrings returning information about
the permission bits (see manager_info above) supported by the ACL manager. (See Section 8.1.2
on page 319.) The correspondence between supported permission bits and information about
those bits is realised ‘‘as if’’ it were given by an array of permission bit / printstring pairs
(unsupported permission bits corresponding to NULL printstrings). That is, if permission bit 2k

(0 ≤ k ≤ 31) is supported (this bit is set in the perm field of manager_info — see Section 8.1.2 on
page 319), then printstring[k] contains the information about this permission bit. Unsupported
permissions correspond to NULL printstrings. Thus in the example above, printstring[6] is
NULL because it corresponds to the unsupported permission bit t.

The status parameter returns the status of the operation.

Required rights (suggested): This operation succeeds only if the calling client has ‘‘rdacl-get-
printstring’’ permission (to the specified ACL manager, according to the specified ACL
manager’s policy — see Section 10.1.3.1 on page 348). Typically, servers will grant this
permission to all clients (that is, no permissions are required).

10.1.11 rdacl_get_referral( )

The rdacl_get_referral ( ) operation supports a server replication strategy wherein ACL ‘‘updates’’
(rdacl_replace ( )) may not be supported at all ‘‘sites’’ (that is, by all server instances or replicas).
This operation, which refers clients to sites where ACLs can be updated, is to be invoked by a
client after an update operation targeted to an ACL site yields a sec_acl_site_read_only status
error ≠ error_status_ok. (Non-replicated servers never return a sec_acl_site_read_only status
value, so they can provide a trivial implementation of this operation; for example, by returning
sec_acl_not_implemented as the status parameter.)

354 CAE Specification (1997)



ACL Editor RPC Interface The rdacl RPC Interface

void
rdacl_get_referral (

[in] handle_t rpc_handle,
[in] sec_acl_component_name_t component_name,
[in] uuid_t *manager_type,
[in] sec_acl_type_t acl_type,
[out] sec_acl_tower_set_t *tower_set,
[out] error_status_t *status );

The rpc_handle parameter identifies the server that manages the ACLs in question.

The component_name parameter further identifies a protected object within the server.

The manager_type parameter identifies an ACLE manager type UUID.

The acl_type parameter identifies an ACL type.

The tower_set parameter identifies the actual update referral information itself (represented as
RPC towers, to which the client can rebind).

The status parameter returns the status of the operation.

Required rights (suggested): This operation succeeds only if the calling client has ‘‘rdacl-get-
referral’’ permission (to the specified server, according to the server’s policy — see Section
10.1.3.1 on page 348). Typically, servers will grant this permission to all clients (that is, no
permissions are required).

10.1.12 rdacl_get_mgr_types_semantics( )

The rdacl_get_mgr_types_semantics( ) operation determines the types of ACL managers protecting
a protected object, and the extent of their conformance to POSIX semantics.

void
rdacl_get_mgr_types_semantics (

[in] handle_t rpc_handle,
[in] sec_acl_component_name_t component_name,
[in] sec_acl_type_t acl_type,
[in] unsigned32 count_max,
[out] unsigned32 *count,
[out] unsigned32 *num_manager_types,
[out, size_is(count_max), length_is(*count)]

uuid_t manager_types[],
[out, size_is(count_max), length_is(*count)]

sec_acl_posix_semantics_t posix_semantics[],
[out] error_status_t *status );

} /* end running listing of rdacl interface */

The description of rdacl_get_mgr_types_semantics( ) is identical to that of
rdacl_get_manager_types ( ), except that it returns the additional posix_semantics array parameter.

The posix_semantics parameter is an array of flag words indicating the semantics that the
corresponding ACL manager in the manager_types array supports.

Required rights (suggested): This operation succeeds only if the calling client has ‘‘rdacl-get-mgr-
types-semantics’’ permission (to the specified protected object, according to the specified
server’s policy — which may, in turn, depend on the policies of the protected object’s ACL
managers — see Section 10.1.3.1 on page 348).

Part 2 Security Services and Protocols 355



The rdacl RPC Interface ACL Editor RPC Interface

Typically, servers will grant this permission to all clients (that is, no permissions are required).

356 CAE Specification (1997)



Chapter 11

RS Editor RPC Interfaces

This chapter specifies the RPC interfaces supporting RS (or Registry) Editors. These interfaces are:

• rs_bind for registry binding operations,

• rs_policy for registry policy and properties operations,

• rs_pgo for PGO item management,

• rs_acct for account management,

• rs_misc for miscellaneous registry operations,

• rs_attr for manipulating registry attributes,

• rs_attr_schema for manipulating registry attribute schemas,

• rs_prop_acct for propagating registry account information,

• rs_prop_acl for propagating registry ACL information,

• rs_prop_attr for propagating registry attributes,

• rs_prop_attr_schema for propagating registry attribute schemas,

• rs_prop_pgo for propagating registry PGO items,

• rs_prop_plcy for propagating registry policy information,

• rs_prop_replist for propagating registry replica list,

• rs_repadm for replica administration,

• rs_replist for replica list administration,

• rs_repmgr for replica management,

• rs_rpladmn for replica administration,

• rs_update for updating replica information,

• rs_pwd_mgmt for password management between clients and security daemons,

• rs_qry for finding a registry server, and

• rs_unix for UNIX interface operations.

The APIs that correspond to these RPC interfaces are specified in Chapter 16.

Recall that, by definition, RS Editors are just RPC clients that invoke the operations defined in
this chapter to access and manipulate (via the RS server and its ACL managers) the RS datastore
items. (See Section 1.12 on page 60 for background.)

Note that the RS supports some RPC interfaces other than those specified in this chapter (they
are specified in subsequent chapters).

Part 2 Security Services and Protocols 357



RS Protected Objects and their ACL Manager Types RS Editor RPC Interfaces

11.1 RS Protected Objects and their ACL Manager Types
The RS regards its datastore items as protected objects, so it supports the rdacl RPC interface,
and its ACLs can be managed via ACL Editors. The RS supports seven kinds of protected
objects, each of which is managed by a single ACL Manager Type (see Section 1.12 on page 60).

For DCE 1.1 (and newer versions), the RS ACL Managers have been enhanced to support generic
‘‘attribute persmssions’’ that (cell) administrators may assign for access control for attribute
types of their choice. The set of new permission bits in the set {O, P, Q, ..., X, Y, Z} are supported
by the ACL Manager for each registry object type that supports Extended Registry Attributes
(ERAs). In other words, the list of valid permissions for each ACL Manager type listed in Table
11-2 has been augmented with the ‘O’ through ‘Z’ permission bits. All uses of these additional
attribute permission bits:

• in the Access Permsets fields of schema entries,

• on ACLs, and

• in policies regarding their use,

will be controlled by the cell administrator. The DCE security services will not interpret or assign
meaning to these bits other than what is implied by their inclusion in a schema entry.

Information on Extended Registry Attributes can be found in Section 1.21 on page 100.

The ACL Manager Type UUIDs of these five ACL Managers are as follows:

Manager Type ACL Manager Type UUID
Policy 06ab8f10-0191-11ca-a9e8-08001e039d7d

Directory 06ab9c80-0191-11ca-a9e8-08001e039d7d

Principal 06ab9320-0191-11ca-a9e8-08001e039d7d

Group 06ab9640-0191-11ca-a9e8-08001e039d7d

Organisation 06ab9960-0191-11ca-a9e8-08001e039d7d

Replist 2ac24970-60c3-11cb-b261-08001e039d7d

Attr_schema 755cd9ce-ded3-11cc-8d0a-080009353559

Table 11-1  ACL Managers Supported by RS

The permissions supported by the RS’s ACL Managers are as follows (see also Section 10.1.3.1 on
page 348 ). Note that those marked with ‘‘ERA’’ are supported as generic permissions only:

Supported Permissions
Manager Type r c i d t D n f m a u g M A I {O-Z}
Policy r c m a A ERA
Directory r c i d D n ERA
Principal r c D n f m a u g ERA
Group r c t D n f m M ERA
Organization r c t D n f m M ERA
Replist c i d m A I ERA
Attr_schema r c i d m M ERA

Table 11-2  ACL Permissions Supported by RS

358 CAE Specification (1997)



RS Editor RPC Interfaces RS Protected Objects and their ACL Manager Types

The ACLE Types supported by the RS’s ACL Managers are as follows:

• Only the Group Manager Type supports ACLE type GROUP_OBJ (GO).

• Only the Principal Manager Type supports ACLE type USER_OBJ (UO).

• ALL Manager Types support all other ACLE types.

This is illustrated in the following two tables:

Supported ACLE Types
Manager Type UO U GO G O FU FG FO AO UN E
Policy U G O FU FG FO AO UN E
Directory U G O FU FG FO AO UN E
Principal UO U G O FU FG FO AO UN E
Group U GO G O FU FG FO AO UN E
Organization U G O FU FG FO AO UN E
Replist U G O FU FG FO AO UN E
Attr_schema U G O FU FG FO AO UN E

Table 11-3  ACLE Types Supported by RS

The meanings of the abbreviations of the ACLE types given in this and the preceeding table can
be found in the representation of the sec_acl_entry_type_t data type in Section 7.1.2 on page 312.

Supported Delegation ACLE Types
Manager Type UOD UD FUD GOD GD FGD OD FOD AOD
Policy UOD UD FUD GOD GD FGD OD FOD AOD
Directory UOD UD FUD GOD GD FGD OD FOD AOD
Principal UOD UD FUD GOD GD FGD OD FOD AOD
Group UOD UD FUD GOD GD FGD OD FOD AOD
Organization UOD UD FUD GOD GD FGD OD FOD AOD
Replist UOD UD FUD GOD GD FGD OD FOD AOD
Attr_schema UOD UD FUD GOD GD FGD OD FOD AOD

Table 11-4  Delegation ACLE Types Supported by RS

11.1.1 Supported Permissions

The printstrings, bit representations and semantics of the supported permissions (listed in Table 11-
2 on page 358) are specified as follows (see also Section 10.1.3.1 on page 348):

• Read: ‘‘r’’, 0x00000001

Disclose an item’s information.

• Control (Change, Write-ACL): ‘‘c’’, 0x00000008

Modify an item’s ACL.

• Insert: ‘‘i’’, 0x00000010

Insert into a directory.

Part 2 Security Services and Protocols 359



RS Protected Objects and their ACL Manager Types RS Editor RPC Interfaces

• Delete: ‘‘d’’, 0x00000020

Delete from a directory.

• Test: ‘‘t’’, 0x00000040

Test a principal’s membership in a group or organisation.

• Delete Item: ‘‘D’’, 0x00000080

Delete an item.

• Name: ‘‘n’’, 0x00000100

Modify name of an item.

• Fullname: ‘‘f’’, 0x00000200

Modify the (human-friendly) ‘‘full name’’ (or other annotation).

• Management Info: ‘‘m’’, 0x00000400

Modify management information.

• Authentication Info: ‘‘a’’, 0x00000800

Modify authentication information.

• User Info: ‘‘u’’, 0x00001000

Modify user information.

• Group: ‘‘g’’, 0x00002000

Add a principal to a group.

• Membership: ‘‘M’’, 0x00004000

Add or delete principals from a group or organisation.

• Administer: ‘‘A’’, 0x00008000

Administer the RS.

• Initialise: ‘‘I’’, 0x00010000

Initialise replica list.

• Generic ERA: ‘‘O-Z’’, 0x00020000, 0x00040000, ⋅⋅⋅ - 0x08000000, 0x10000000

Generic ERA support only. Not interpreted or assigned meaning by DCE Security Services
(controlled by cell administrator). These are marked by an ‘‘ERA’’ in Table 11-2 on page 358.

• Serviceability: ‘‘s’’, 0x20000000

Support ERA Serviceability information for the RS.

The RS’s Directory ACL Manager (which is the only one of the seven RS ACL Managers that
supports container objects) supports the inheritance model specified in Section 1.8.2 on page 44.

The required rights for successful invocation of RS RPC interface operations (and therefore of the
routines based on them) are specified in context in the remaining sections of this chapter.

360 CAE Specification (1997)



RS Editor RPC Interfaces Common Data Types and Constants for RS Editors

11.2 Common Data Types and Constants for RS Editors
This section specifies (in IDL/NDR) common data types and constants used in the RS’s RPC
interfaces.

11.2.1 bitset

The bitset data type represents a 32-bit flag word.

typedef unsigned32 bitset;

11.2.2 sec_timeval_sec_t

The sec_timeval_sec_t data type represents the number of seconds elapsed since the epoch
00:00.00 January 1, 1970 AD.

typedef signed32 sec_timeval_sec_t;

11.2.3 sec_timeval_t

The sec_timeval_t data type consists of a structure containing the full UNIX time. The structure
contains two 32-bit integers that indicate seconds (sec) and microseconds (usec) since 00:00.00
January 1, 1970 AD.

typedef struct {
signed32 sec;
signed32 usec;

} sec_timeval_t;

11.2.4 sec_rgy_name_t — Short and Long PGO Names

The sec_rgy_name_t data type represents stringnames, usually short PGO names in the RS-
supported PGO namespaces (on occasion, as in Section 11.3.3 on page 364, this data type is used
to indicate names other than short PGO names). These short PGO names are also called security-
(domain-)relative names, indicating that they are subordinate to a specified PGO naming domain,
of type sec_rgy_domain_t, as specified in Section 11.5.1.1 on page 379. They are the names that
appear at the level of the RPC interfaces supported by RS Editors.

const signed32 sec_rgy_name_max_len = 1024;
const signed32 sec_rgy_name_t_size = 1025;
typedef [string] char sec_rgy_name_t[sec_rgy_name_t_size];

The syntax of sec_rgy_name_t is the same as the CDS naming syntax (as specified in the
referenced X/Open DCE Directory Services Specification), with the additional stipulation that
these names always have length in the interval [1, 1024]. In particular, a short PGO name cannot
begin or end with the character / (slash).

In all applications where a sec_rgy_name_t occurs, the context of a PGO naming domain must
also be indicated, explicitly or implicitly. Then, a long PGO name (or security-relative name) may
be formed by prepending the stringname associated with the PGO domain to the short PGO
name (sec_rgy_name_t), separated by a / (slash).

For example, the short PGO name foo/bar in the context of the PGO principal domain
(sec_rgy_domain_person, which has associated stringname person — see Section 11.5.1.1 on
page 379), yields the long PGO name person/foo/bar. (And then this would further appear in the
global namespace, via the junction architecture (Section 1.11 on page 55), as the name /.../name-
of-server/person/foo/bar — for example, as /.../name-of-cell/sec/person/foo/bar.)

Part 2 Security Services and Protocols 361



Common Data Types and Constants for RS Editors RS Editor RPC Interfaces

11.2.5 sec_rgy_pname_t

The sec_rgy_pname_t data type represents printable stringnames.

const signed32 sec_rgy_pname_max_len = 256;
const signed32 sec_rgy_pname_t_size = 257;
typedef [string] char sec_rgy_pname_t[sec_rgy_pname_t_size];

The characters of sec_rgy_pname_t are to be taken from the DCE Portable Character Set.

11.2.6 sec_rgy_login_name_t

The sec_rgy_login_name_t data type represents (the name of) an account.

typedef struct {
sec_rgy_name_t pname;
sec_rgy_name_t gname;
sec_rgy_name_t oname;

} sec_rgy_login_name_t;

Its fields are the following:

• pname
Principal name associated with the account (subordinate to the sec_rgy_domain_person
domain).

• gname
Group name (subordinate to the sec_rgy_domain_group domain).

• oname
Organisation name (subordinate to the sec_rgy_domain_org domain).

11.2.7 sec_rgy_cursor_t

The sec_rgy_cursor_t data type is used as a datastore cursor (that is, a position indicator) for
incremental operations in the RS datastore.

typedef struct {
uuid_t source;
signed32 position;
boolean32 valid;

} sec_rgy_cursor_t;

Its fields are the following:

• source
The object UUID of the RS server, identifying the RS server/datastore for which a cursor is
meaningful.

Note: This is not merely the cell UUID of such an RS server; this is especially significant
in a cell with replicated RS servers, as cursors are not meaningful across RS
servers/datastores/replicas.

• position
Position in the datastore of the RS server indicated by source. Its use is RS server/datastore
implementation-dependent, in the sense that only the RS server indicated by source can
interpret it. In particular, unless specified otherwise in DCE, any implied ordering of the
various kinds of data in the RS datastore (for example, the order in which data is returned by
multiple invocations of an operation that takes a cursor as in input/output parameter) is also
implementation-dependent (for example, alphabetical by principal name, chronological by

362 CAE Specification (1997)



RS Editor RPC Interfaces Common Data Types and Constants for RS Editors

creation time, random, and so on).

• valid
If 0 (FALSE), this cursor represents the initial position of an RS datastore; if non-0 (TRUE), a
non-initial position (as determined by source and position) is indicated. Clients must set
valid to 0 the first time a cursor is used, to initiate an RS datastore retrieval request; after this
initial request, clients must treat a cursor as an opaque data object (that is, not accessing any
of its fields), interpretable only by the RS server indicated by source.

11.2.8 rs_cache_data_t

The rs_cache_data_t data type represents RS datastore modification time information. This
information is intended to be used by RS Editor clients to manage their caches of RS datastore
information they may maintain.

Note: Maintaining a cache, as well as the details of its maintenance, is implementation-
specific, and so is not further specified by DCE.

typedef struct {
uuid_t site_id;
sec_timeval_sec_t person_dtm;
sec_timeval_sec_t group_dtm;
sec_timeval_sec_t org_dtm;

} rs_cache_data_t;

Its fields are the following (see Section 11.5.1.1 on page 379 and Section 11.5.1.4 on page 380 for
definitions of terms used here):

• site_id
The object UUID of the RS server to which this modification time information pertains.

• person_dtm
Time of last deletion (or change) of name, UUID or local-ID, to a PGO item in the principal
domain.

• group_dtm
Time of last deletion (or change) of name, UUID or local-ID, to a PGO item in the group
domain.

• org_dtm
Time of last deletion (or change) of name, UUID or local-ID, to a PGO item in the
organisation domain.

Note: The dtm (date/time modified) information conveyed by the rs_cache_data_t data
type is fairly coarse-grained, but since PGO nodes are only infrequently modified, a
more sophisticated caching scheme is not considered necessary.

11.2.9 sec_rgy_handle_t

The sec_rgy_handle_t data type represents a pointer to a RS server handle. The RS server is
bound to a handle with the sec_rgy_site_open( ) routine.

typedef void *sec_rgy_handle_t;

Part 2 Security Services and Protocols 363



The rs_bind RPC Interface RS Editor RPC Interfaces

11.3 The rs_bind RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_bind RPC interface.

11.3.1 Common Data Types and Constants for rs_bind

The following are common data types and constants used in the rs_bind interface.

11.3.1.1 rs_replica_name_p_t

The rs_replica_name_p_t data type represents the (cell-relative) RPC binding stringname of an
RS server.

typedef [string] unsigned char *rs_replica_name_p_t;

11.3.1.2 rs_replica_twr_vec_p_t

The rs_replica_twr_vec_p_t data type represents a vector of (pointers to) RPC protocol towers.

typedef struct
{

unsigned32 num_towers;
[size_is(num_towers)] twr_p_t towers[ ];

} rs_replica_twr_vec_t, *rs_replica_twr_vec_p_t;

Its fields are the following:

• num_towers
The number of elements in the towers[ ] array.

• towers[ ]
The actual vector (of size num_towers) of (pointers to) RPC protocol towers. (For the IDL
definition of the twr_p_t data type, see Appendix N, IDL Data Type Declarations, of the
referenced X/Open DCE RPC Specification.)

11.3.2 Interface UUID and Version Number for rs_bind

The interface UUID and version number for the rs_bind interface are given by the following:

[
uuid(d46113d0-a848-11cb-b863-08001e046aa5),
version(2.0),
pointer_default(ptr)

]
interface rs_bind {
/* begin running listing of rs_bind interface */

11.3.3 rs_bind_get_update_site( )

The rs_bind_get_update_site ( ) operation returns binding information for an update RS server (as
opposed to a query server).

364 CAE Specification (1997)



RS Editor RPC Interfaces The rs_bind RPC Interface

void
rs_bind_get_update_site (

[in] handle_t rpc_handle,
[out] sec_rgy_name_t cellname,
[out] boolean32 *update_site,
[out] rs_replica_name_p_t *update_site_name,
[out] uuid_t *update_site_id,
[out] rs_replica_twr_vec_p_t *update_site_twrs,
[out] error_status_t *status );

}

The rpc_handle parameter identifies the RS server (called the bound server in this section).

The cellname parameter indicates the bound server’s cell.

The update_site parameter indicates whether the bound server is an update server or not: if non-0
(TRUE), the bound server is an update server; if 0 (FALSE), it is only a query (non-update)
server.

The update_site_name parameter indicates the cell-relative RS binding stringname (relative to the
cell cellname) of an update server in the cell cellname.

The semantics of the update_site_id parameter are unspecified in this revision of DCE.

Note: It is intended that update_site_id indicates the object UUID of an update server replica
in the cell cellname, but this notion is specific to the replication model, which is not
specified in this revision of DCE (it is intended for inclusion in a future revision).
(The notion of object UUID of update server replica is not be confused with the RS’s
object UUID in the sense of RPC, which is registered in the CDS namespace, and
which represents all replicas, not just this update server replica.)

The update_site_twrs parameter indicates the protocol tower set of an update server in the cell
cellname.

The status parameter returns the status of the operation.

Required rights: None.

Part 2 Security Services and Protocols 365



The rs_policy RPC Interface RS Editor RPC Interfaces

11.4 The rs_policy RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_policy RPC interface.

11.4.1 Common Data Types and Constants for rs_policy

The following are common data types and constants used in the rs_policy interface.

11.4.1.1 sec_timeval_period_t

The sec_timeval_period_t data type measures time intervals in seconds.

typedef signed32 sec_timeval_period_t;

11.4.1.2 sec_rgy_properties_flags_t

The sec_rgy_properties_flags_t data type is a flag word representing attributes of an RS
server/datastore.

typedef bitset sec_rgy_properties_flags_t;
const unsigned32 sec_rgy_prop_readonly = 0x1;
const unsigned32 sec_rgy_prop_auth_cert_unbound = 0x2;
const unsigned32 sec_rgy_prop_shadow_passwd = 0x4;
const unsigned32 sec_rgy_prop_embedded_unix_id = 0x8;

The following values are currently registered:

• sec_rgy_prop_readonly
Read-only RS site (that is, this replica of the RS server will not service operations that modify
data held in the RS datastore). The following are the RS operations that can potentially
modify data held in RS datastores (and, therefore, whose service is prevented by the
sec_rgy_prop_readonly flag): rdacl_replace ( ), rs_acct_add ( ), rs_acct_delete( ), rs_acct_rename( ),
rs_acct_replace( ), rs_auth_policy_set_info ( ), rs_pgo_add ( ), rs_pgo_add_member( ),
rs_pgo_delete( ), rs_pgo_delete_member( ), rs_pgo_rename( ), rs_pgo_replace ( ), rs_policy_set_info ( ),
rs_properties_set_info ( ).

• sec_rgy_prop_auth_cert_unbound
All certificates (tickets and privilege tickets) generated at this RS site are to be usable at any
client site; that is, are not bound to the host from which the client requested the certificate —
they contain no client addresses; see Section 4.4.1 on page 195.)

• sec_rgy_prop_shadow_passwd
No (protected) passwords are to be transmitted remotely. (Note that the (protected)
passwords in question are those relevant to local operating systems — the passwords
relevant to the Login Facility specified by DCE are not stored in the RS datastore.) The
following are the operations that honour this property: rs_acct_lookup ( ), rs_login_get_info ( ).

The word ‘‘shadow’’ is used here in analogy with the notion of ‘‘shadow password file’’, with
the same semantics: ‘‘as a general statement of intent, passwords, even protected ones,
should never be visible’’. In the cases where (protected) passwords would normally be
transmitted, operations that honour this RS property must transmit something else which
cannot be interpreted as a (protected) password (the character string of length 1, * (asterisk)
(expressed in C-like pseudocode), is recommended, though not required).

366 CAE Specification (1997)



RS Editor RPC Interfaces The rs_policy RPC Interface

• sec_rgy_prop_embedded_unix_id
The UUIDs of principals (except for KDS principals), groups and organisations contain
embedded local-IDs (see Section 5.2.1.1 on page 278).

11.4.1.3 sec_rgy_properties_t

The sec_rgy_properties_t data type represents the attributes of the RS’s Policy item.

typedef struct {
signed32 read_version;
signed32 write_version;
sec_timeval_period_t minimum_ticket_lifetime;
sec_timeval_period_t default_certificate_lifetime;
unsigned32 low_unix_id_person;
unsigned32 low_unix_id_group;
unsigned32 low_unix_id_org;
unsigned32 max_unix_id;
sec_rgy_properties_flags_t flags;
sec_rgy_name_t realm;
uuid_t realm_uuid;
signed32 unauthenticated_quota;

} sec_rgy_properties_t;

Its fields are the following:

• read_version
The semantics of this field are currently unspecified (it is intended that when it is specified, it
will denote a property of the underlying RS datastore, indicating the earliest version of the
RS software that can correctly read the datastore). Implementations must set it to 1.

• write_version
The semantics of this field are currently unspecified (it is intended that when it is specified, it
will denote a property of the underlying RS datastore, indicating the earliest version of the
RS software that can correctly write the datastore). Implementations must set it to 1.

• minimum_ticket_lifetime
Cell-wide minimum period of time for which a ticket is to be valid. In the case of the
Kerberos authentication service (which is the only authentication service currently
supported), ‘‘ticket’’ here is interpreted as ‘‘Kerberos ticket’’ (see Chapter 4), and this field is
the same as the cell-wide minimum ticket lifetime listed in Section 4.11 on page 217.

• default_certificate_lifetime
Cell-wide default period of time for which a certificate is to be valid. In the case of Kerberos
authentication, ‘‘certificate’’ here is interpreted as ‘‘Kerberos ticket-granting-ticket’’, and this
field is the same as the cell-wide default ticket-granting-ticket lifetime listed in Section 4.11 on
page 217.

• low_unix_id_person
The minimum local-ID that the RS will assign to a newly created principal.

• low_unix_id_group
The minimum local-ID that the RS will assign to a newly created group.

• low_unix_id_org
The minimum local-ID that the RS will assign to a newly created organisation.

Part 2 Security Services and Protocols 367



The rs_policy RPC Interface RS Editor RPC Interfaces

• max_unix_id
The maximum local-ID that the RS will assign to any newly created entity (in any PGO
domain).

• flags
Flag word.

• realm
Name of the cell to which the RS belongs (and holds the security information for).

• realm_uuid
UUID of cell to which RS belongs.

• unauthenticated_quota
Quota for unauthenticated users. Concerning the general definition of quotas in the RS
datastore, see Section 11.5.1.4 on page 380. Relative to that definition, the notion of
unauthenticated_quota is used for unauthenticated callers of rs_pgo_add ( ) and rs_acct_add ( ).

11.4.1.4 sec_rgy_plcy_pwd_flags_t

The sec_rgy_plcy_pwd_flags_t data type is a flag word indicating password policy restrictions.

typedef bitset sec_rgy_plcy_pwd_flags_t;
const unsigned32 sec_rgy_plcy_pwd_no_spaces = 0x1;
const unsigned32 sec_rgy_plcy_pwd_non_alpha = 0x2;

The following values are currently registered:

• sec_rgy_plcy_pwd_no_spaces
Password must not contain the space character.

• sec_rgy_plcy_pwd_non_alpha
Password must contain a non-alphabetic character.

11.4.1.5 sec_rgy_plcy_t

The sec_rgy_plcy_t data type represents an organisation’s policy information (or that of the cell).

typedef struct {
signed32 passwd_min_len;
sec_timeval_period_t passwd_lifetime;
sec_timeval_sec_t passwd_exp_date;
sec_timeval_period_t acct_lifespan;
sec_rgy_plcy_pwd_flags_t passwd_flags;

} sec_rgy_plcy_t;

Its fields are the following:

• passwd_min_len
The minimum allowable length, in characters (or, equivalently, bytes) for a password.
Currently, this value is intended to be enforced by client-side password changing utilities,
not by the RS server (this may change in future releases).

• passwd_lifetime
The lifetime for a password (or, equivalently, a long-term key). Its value must be ≥ 0.
Currently, this value is intended to be enforced by client-side login utilities, not by the RS
server (this may change in future releases). See next item.

• passwd_exp_date
The lifetime for a password (or, equivalently, a long-term key). Its value must be ≥ 0.

368 CAE Specification (1997)



RS Editor RPC Interfaces The rs_policy RPC Interface

Currently, this value is intended to be enforced by client-side login utilities, not by the RS
server (this may change in future releases).

The time at which an account’s password will expire (that is, after which logging in to this
account will be granted only after the password has been changed), denoted here as acct-
passwd-exp-time, is intended to be calculated by the client-side login code via the following
algorithm, where passwd_lifetime and passwd_exp_date are from the effective policy for
the account (determined by choosing the strictest (smallest, earliest) policy parameters from
the account’s organisation policy and its cell policy), and where acct-passwd-last-update
(whose value must be ≥ 0) is the time of the most recent change of the account’s password, or
equivalently, long-term key (thus, it is the same as passwd_dtm in Section 11.6.1.15 on page
397):

— If passwd_lifetime = 0, then acct-passwd-exp-time is equal to passwd_exp_date, unless
acct-passwd-last-update is greater (later) than passwd_exp_date (that is, the account’s
password/key has been changed since passwd_exp_date), in which case,
passwd_exp_date is equal to 0 (meaning the password/key does not expire).

— If passwd_lifetime > 0 and passwd_exp_date = 0, then acct-passwd-exp-time is equal to
acct-passwd-last-update + passwd_lifetime.

— If passwd_lifetime > 0 and passwd_exp_date > 0, then acct-passwd-exp-time is equal to the
minimum (earliest) of the two values determined by the two calculations in the two
preceding cases, where the value 0 (meaning the password/key does not expire) is
considered to be later than any non-zero value.

The value of acct-passwd-exp-time must be ≥ 0; the value 0 indicates that the password/key
does not expire.

• acct_lifespan
The length of time an account is valid. Its value must be ≥ 0. Currently, this value is intended
to be enforced by client-side login utilities, not by the RS server (this may change in future
releases).

The time at which an account will expire (that is, after which logging in to this account will
be denied), denoted here acct-exp-time, is intended to be calculated by the client-side login
code via the following algorithm, where acct_lifespan is from the effective policy for the
account (see previous item for definition of this), and where creation_date and
expiration_date (both of whose values must be ≥ 0) are from the account’s administrative
information (see Section 11.6.1.5 on page 392). (The account can only be reactivated by the
administrative action of modifying expiration_date.)

— If acct_lifespan = 0, then acct-exp-time is equal to expiration_date.

— If acct_lifespan > 0 and expiration_date = 0, then acct-exp-time is equal to creation_date +
acct_lifespan.

— If acct_lifespan > 0 and expiration_date > 0, then acct-exp-time is equal to the minimum
(earliest) of the two values determined by the two calculations in the two preceding cases.

The value of acct-exp-time must be ≥ 0; the value 0 indicates that the account does not expire.

• passwd_flags
Flag word.

Part 2 Security Services and Protocols 369



The rs_policy RPC Interface RS Editor RPC Interfaces

11.4.1.6 sec_rgy_plcy_auth_t

The sec_rgy_plcy_auth_t data type represents cell-wide authentication policy.

typedef struct {
sec_timeval_period_t max_ticket_lifetime;
sec_timeval_period_t max_renewable_lifetime;

} sec_rgy_plcy_auth_t;

Its fields are the following:

• max_ticket_lifetime
Maximum ticket lifetime. In the case of Kerberos authentication, ‘‘ticket’’ here is interpreted
as ‘‘Kerberos ticket’’ (see Chapter 4), and this field is the same as the cell-wide maximum ticket
lifetime listed in Section 4.11 on page 217.

• max_renewable_lifetime
Maximum renewable ticket lifetime. In the case of Kerberos authentication, ‘‘ticket’’ here is
interpreted as ‘‘Kerberos ticket’’ (see Chapter 4), and this field is same as the cell-wide
maximum renewable ticket lifetime listed in Section 4.11 on page 217.

11.4.1.7 Status Codes

The following status codes (transmitted as values of the type error_status_t) are specified for the
RS editor interfaces. Only their values and a short one-line description of them are specified here
— their detailed usage is specified in context elsewhere in this chapter.

Values:

const unsigned32 sec_rgy_not_implemented = 0x17122073;
const unsigned32 sec_rgy_bad_domain = 0x17122074;
const unsigned32 sec_rgy_object_exists = 0x17122075;
const unsigned32 sec_rgy_name_exists = 0x17122076;
const unsigned32 sec_rgy_unix_id_changed = 0x17122077;
const unsigned32 sec_rgy_is_an_alias = 0x17122078;
const unsigned32 sec_rgy_no_more_entries = 0x17122079;
const unsigned32 sec_rgy_object_not_found = 0x1712207a;
const unsigned32 sec_rgy_server_unavailable = 0x1712207b;
const unsigned32 sec_rgy_not_member_group = 0x1712207c;
const unsigned32 sec_rgy_not_member_org = 0x1712207d;
const unsigned32 sec_rgy_not_member_group_org = 0x1712207e;
const unsigned32 sec_rgy_incomplete_login_name = 0x1712207f;
const unsigned32 sec_rgy_passwd_invalid = 0x17122080;
const unsigned32 sec_rgy_not_authorized = 0x17122081;
const unsigned32 sec_rgy_read_only = 0x17122082;
const unsigned32 sec_rgy_bad_alias_owner = 0x17122083;
const unsigned32 sec_rgy_bad_data = 0x17122084;
const unsigned32 sec_rgy_cant_allocate_memory = 0x17122085;
const unsigned32 sec_rgy_dir_not_found = 0x17122086;
const unsigned32 sec_rgy_dir_not_empty = 0x17122087;
const unsigned32 sec_rgy_bad_name = 0x17122088;
const unsigned32 sec_rgy_dir_could_not_create = 0x17122089;
const unsigned32 sec_rgy_dir_move_illegal = 0x1712208a;
const unsigned32 sec_rgy_quota_exhausted = 0x1712208b;
const unsigned32 sec_rgy_foreign_quota_exhausted = 0x1712208c;
const unsigned32 sec_rgy_no_more_unix_ids = 0x1712208d;

370 CAE Specification (1997)



RS Editor RPC Interfaces The rs_policy RPC Interface

const unsigned32 sec_rgy_uuid_bad_version = 0x1712208e;
const unsigned32 sec_rgy_key_bad_version = 0x1712208f;
const unsigned32 sec_rgy_key_version_in_use = 0x17122090;
const unsigned32 sec_rgy_key_bad_type = 0x17122091;
const unsigned32 sec_rgy_crypt_bad_type = 0x17122092;
const unsigned32 sec_rgy_bad_scope = 0x17122093;
const unsigned32 sec_rgy_object_not_in_scope = 0x17122094;
const unsigned32 sec_rgy_cant_authenticate = 0x17122095;
const unsigned32 sec_rgy_alias_not_allowed = 0x17122096;
const unsigned32 sec_rgy_bad_chksum_type = 0x17122097;
const unsigned32 sec_rgy_bad_integrity = 0x17122098;
const unsigned32 sec_rgy_key_bad_size = 0x17122099;
const unsigned32 sec_rgy_mkey_cant_read_stored = 0x1712209a;
const unsigned32 sec_rgy_mkey_bad_stored = 0x1712209b;
const unsigned32 sec_rgy_mkey_bad = 0x1712209c;
const unsigned32 sec_rgy_bad_handle = 0x1712209d;
const unsigned32 sec_rgy_s_pgo_is_required = 0x1712209e;
const unsigned32 sec_rgy_host_context_not_avail = 0x1712209f;
const unsigned32 sec_rgy_mkey_file_io_failed = 0x171220a0;
const unsigned32 sec_rgy_tower_rebind_failed = 0x171220a1;
const unsigned32 sec_rgy_site_not_absolute = 0x171220a2;
const unsigned32 sec_rgy_bad_nameservice_name = 0x171220a3;
const unsigned32 sec_rgy_log_entry_out_of_range = 0x171220a4;
const unsigned32 sec_rgy_era_pwd_mgmt_auth_type = 0x171220a5;
const unsigned32 sec_rgy_passwd_too_short = 0x171220a6;
const unsigned32 sec_rgy_passwd_non_alpha = 0x171220a7;
const unsigned32 sec_rgy_passwd_spaces = 0x171220a8;

Descriptions:

• sec_rgy_not_implemented
Operation not (or not yet) implemented.

• sec_rgy_bad_domain
Operation not supported on specified domain.

• sec_rgy_object_exists
Object already exists.

• sec_rgy_name_exists
Name already exists.

• sec_rgy_unix_id_changed
Local ID changed on an alias add.

• sec_rgy_is_an_alias
Query returned an alias but aliases were not allowed to satisfy the query (see Section 11.5.7
on page 386).

• sec_rgy_no_more_entries
No more matching entries.

• sec_rgy_object_not_found
Registry object not found.

• sec_rgy_server_unavailable
Registry server unavailable.

Part 2 Security Services and Protocols 371



The rs_policy RPC Interface RS Editor RPC Interfaces

• sec_rgy_not_member_group
User is not member of specified group.

• sec_rgy_not_member_org
User is not member of specified organisation.

• sec_rgy_not_member_group_org
User is not member of specified group and organisation.

• sec_rgy_incomplete_login_name
Incomplete login name specification.

• sec_rgy_passwd_invalid
Invalid password.

• sec_rgy_not_authorized
User is not authorised to update record.

• sec_rgy_read_only
Registry is read only; updates are not allowed.

• sec_rgy_bad_alias_owner
PGO alias entry has an invalid owner.

• sec_rgy_bad_data
Invalid data record.

• sec_rgy_cant_allocate_memory
Unable to allocate memory.

• sec_rgy_dir_not_found
Directory not found.

• sec_rgy_dir_not_empty
Directory not empty.

• sec_rgy_bad_name
Illegal PGO or directory name.

• sec_rgy_dir_could_not_create
Unable to create directory.

• sec_rgy_dir_move_illegal
Directory move not allowed.

• sec_rgy_quota_exhausted
Principal quota exhausted.

• sec_rgy_foreign_quota_exhausted
Foreign quota for realm exhausted.

• sec_rgy_no_more_unix_ids
Local ID space for domain has been exhausted.

• sec_rgy_uuid_bad_version
UUID version invalid.

• sec_rgy_key_bad_version
Key version number out of range.

• sec_rgy_key_version_in_use
Key version number currently in use.

372 CAE Specification (1997)



RS Editor RPC Interfaces The rs_policy RPC Interface

• sec_rgy_key_bad_type
Key type not supported.

• sec_rgy_crypt_bad_type
Encrypt/decrypt type not supported.

• sec_rgy_bad_scope
Scope doesn’t name existing directory or PGO.

• sec_rgy_object_not_in_scope
Object found was not in scope.

• sec_rgy_cant_authenticate
Can’t establish authentication to security server.

• sec_rgy_alias_not_allowed
Can’t add alias for this name or principal (for example, krbtgt).

• sec_rgy_bad_chksum_type
Checksum type not supported.

• sec_rgy_bad_integrity
Data integrity error.

• sec_rgy_key_bad_size
Invalid size for key data.

• sec_rgy_mkey_cant_read_stored
Can’t read stored master key.

• sec_rgy_mkey_bad_stored
Stored master key is bad.

• sec_rgy_mkey_bad
Supplied master key is bad.

• sec_rgy_bad_handle
Bad security context handle.

• sec_rgy_s_pgo_is_required
PGO/account is required and can’t be deleted.

• sec_rgy_host_context_not_avail
Login context of local host principal not available.

• sec_rgy_mkey_file_io_failed
Master key file I/O operation failed.

• sec_rgy_tower_rebind_failed
No usable tower entries.

• sec_rgy_site_not_absolute
Registry site name must be absolute.

• sec_rgy_bad_nameservice_name
Invalid nameservice name.

• sec_rgy_log_entry_out_of_range
Invalid log entry module or operation.

• sec_rgy_era_pwd_mgmt_auth_type
Authorization type for pwd_mgmt_binding ERA binding cannot be none.

Part 2 Security Services and Protocols 373



The rs_policy RPC Interface RS Editor RPC Interfaces

• sec_rgy_passwd_too_short
Password is too short.

• sec_rgy_passwd_non_alpha
Passwords must contain at least one non-alphanumeric character.

• sec_rgy_passwd_spaces
Passwords must contain at least one non-blank character.

11.4.2 Interface UUID and Version Number for rs_policy

The interface UUID and version number for the rs_policy interface are given by the following:

[
uuid(4C878280-4000-0000-0D00-028714000000),
version(1)

]
interface rs_policy {
/* begin running listing of rs_policy interface */

11.4.3 rs_properties_get_info( )

The rs_properties_get_info ( ) operation retrieves (reads) the RS Policy’s property information.

[idempotent] void
rs_properties_get_info (

[in] handle_t rpc_handle,
[out] sec_rgy_properties_t *properties,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The properties parameter indicates the RS Policy’s properties.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
RS Policy object.

11.4.4 rs_properties_set_info( )

The rs_properties_set_info ( ) operation modifies (writes) the RS Policy’s property information.

void
rs_properties_set_info (

[in] handle_t rpc_handle,
[in] sec_rgy_properties_t *properties,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The properties parameter indicates the RS Policy’s properties.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

374 CAE Specification (1997)



RS Editor RPC Interfaces The rs_policy RPC Interface

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Management Info (m)
permission on the RS’s Policy object.

11.4.5 rs_policy_get_info( )

The rs_policy_get_info ( ) operation retrieves (reads) an organisation’s policy information (or that
of the cell).

[idempotent] void
rs_policy_get_info (

[in] handle_t rpc_handle,
[in] sec_rgy_name_t organization,
[out] sec_rgy_plcy_t *policy_data,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status

);

The rpc_handle parameter identifies the RS server.

The organization parameter indicates the organisation whose policy information is to be
retrieved; or, if NULL, the RS Policy’s policy information is indicated. (If non-NULL, this string
is interpreted as a short PGO name, subordinate to the organisation naming domain — see
Section 11.2.4 on page 361.)

The policy_data parameter indicates the retrieved policy information.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
object specified by the organization parameter.

11.4.6 rs_policy_set_info( )

The rs_policy_set_info ( ) modifies (writes) an organisation’s policy information (or that of the
cell).

void
rs_policy_set_info (

[in] handle_t rpc_handle,
[in] sec_rgy_name_t organization,
[in] sec_rgy_plcy_t *policy_data,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The organization parameter indicates the organisation whose policy information is to be
modified; or, if NULL, the RS Policy’s policy information is indicated. (If non-NULL, this string
is interpreted as a short PGO name, subordinate to the organisation naming domain — see
Section 11.2.4 on page 361.)

The policy_data parameter indicates the policy information that is to be written.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

Part 2 Security Services and Protocols 375



The rs_policy RPC Interface RS Editor RPC Interfaces

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Management Info (m)
permission on the object specified by the organization parameter.

11.4.7 rs_policy_get_effective( )

The rs_policy_get_effective( ) operation returns an organisation’s effective policy information; that
is, the more restrictive of the organisation’s policy information and the cell’s policy information.

[idempotent] void
rs_policy_get_effective (

[in] handle_t rpc_handle,
[in] sec_rgy_name_t organization,
[out] sec_rgy_plcy_t *policy_data,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The organization parameter indicates the organisation whose effective policy information is to be
retrieved; or, if NULL, the RS Policy’s policy information is indicated. (If non-NULL, this string
is interpreted as a short PGO name, subordinate to the organisation naming domain — see
Section 11.2.4 on page 361.)

The policy_data parameter indicates the returned effective policy information.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
object(s) specified by the organization parameter (that is, on both organisation and RS Policy
object, or just RS Policy object).

11.4.8 rs_auth_policy_get_info( )

The rs_auth_policy_get_info ( ) operation retrieves (reads) an account’s authentication policy
information (or that of the cell).

[idempotent] void
rs_auth_policy_get_info (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *account,
[out] sec_rgy_plcy_auth_t *auth_policy,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The account parameter indicates the account whose authentication policy information is to be
retrieved; or if all the fields of account are NULL or empty strings the RS Policy’s authentication
policy information is indicated.

The auth_policy parameter indicates the retrieved policy information.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

376 CAE Specification (1997)



RS Editor RPC Interfaces The rs_policy RPC Interface

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
object specified by the account parameter.

11.4.9 rs_auth_policy_get_effective( )

The rs_auth_policy_get_effective( ) operation returns an account’s effective authentication policy
information; that is, for each sec_rgy_plcy_auth_t field the more restrictive of the account’s
authentication policy information and the cell’s authentication policy information.

[idempotent] void
rs_auth_policy_get_effective (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *account,
[out] sec_rgy_plcy_auth_t *auth_policy,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The account parameter indicates the account whose effective authentication policy information is
to be retrieved; or if all the fields of account are NULL or empty strings the RS Policy’s
authentication policy information is indicated.

The auth_policy parameter indicates the retrieved policy information.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
object(s) specified by the account parameter (that is, on both account and RS Policy object, or just
RS Policy object).

11.4.10 rs_auth_policy_set_info( )

The rs_auth_policy_set_info ( ) operation modifies (writes) an account’s authentication policy
information (or that of the cell).

void
rs_auth_policy_set_info (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *account,
[in] sec_rgy_plcy_auth_t *auth_policy,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

}
/* end running listing of rs_policy interface */

The rpc_handle parameter identifies the RS server.

The account parameter indicates the account whose authentication policy information is to be
modified; or if all the fields of account are NULL or empty strings the RS Policy’s authentication
policy information is indicated.

The auth_policy parameter indicates the policy information that is to be written.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

Part 2 Security Services and Protocols 377



The rs_policy RPC Interface RS Editor RPC Interfaces

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Authentication Info (a)
permission on the object specified by the account parameter.

378 CAE Specification (1997)



RS Editor RPC Interfaces The rs_pgo RPC Interface

11.5 The rs_pgo RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_pgo RPC interface.

11.5.1 Common Data Types and Constants for rs_pgo

The following are common data types and constants used in the rs_pgo interface.

11.5.1.1 sec_rgy_domain_t

The sec_rgy_domain_t data type represents the RS datastore’s PGO domains. For naming
purposes (see Section 11.2.4 on page 361), these domains also have stringnames associated with
them (and therefore they are also known as naming domains).

typedef signed32 sec_rgy_domain_t;
const signed32 sec_rgy_domain_person = 0;
const signed32 sec_rgy_domain_group = 1;
const signed32 sec_rgy_domain_org = 2;

The following values are currently registered:

• sec_rgy_domain_person
The principal domain. Its associated stringname is person.

• sec_rgy_domain_group
The group domain. Its associated stringname is group.

• sec_rgy_domain_org
The organisation domain. Its associated stringname is org.

Note that three PGO domains are identified in the rs_pgo interface described in this section via
the indicated sec_rgy_domain_t values, not via the indicated stringnames. These stringnames
occur only in fully-qualified global names, as used by the rdacl RPC interface and sec_acl API
(see Chapter 10 and Chapter 15).

11.5.1.2 sec_rgy_member_t

The sec_rgy_member_t data type represents names in the RS-supported namespace.

typedef char sec_rgy_member_t[sec_rgy_name_t_size];

Note: There is no substantive difference between the data types sec_rgy_name_t (see
Section 11.2.4 on page 361) and sec_rgy_member_t. The existence of the two types is
best thought of as being historical.

11.5.1.3 sec_rgy_pgo_flags_t

The sec_rgy_pgo_flags_t data type represents a flag word of attributes on PGO items.

typedef bitset sec_rgy_pgo_flags_t;
const unsigned32 sec_rgy_pgo_is_an_alias = 0x1;
const unsigned32 sec_rgy_pgo_is_required = 0x2;
const unsigned32 sec_rgy_pgo_projlist_ok = 0x4;

The following values are currently registered:

Part 2 Security Services and Protocols 379



The rs_pgo RPC Interface RS Editor RPC Interfaces

• sec_rgy_pgo_is_an_alias
PGO item is an alias.

• sec_rgy_pgo_is_required
PGO item is required (cannot be deleted).

• sec_rgy_pgo_projlist_ok
For a group item, indicates that the group can occur in a concurrent group set; that is, can
occur as a secondary (non-primary) group associated with some principal or account. Has no
meaning on a principal item or an organisation item.

11.5.1.4 sec_rgy_pgo_item_t

The sec_rgy_pgo_item_t data type represents the RS datastore information associated with PGO
items.

typedef struct {
uuid_t id;
signed32 unix_num;
signed32 quota;
sec_rgy_pgo_flags_t flags;
sec_rgy_pname_t fullname;

} sec_rgy_pgo_item_t;

Its fields are the following:

• id
UUID associated with item. This is the definitive identifier of a PGO item, in the sense that it
cannot be changed (see rs_pgo_replace ( ), Section 11.5.5 on page 385).

• unix_num
Local-ID associated with item.

Note: The semantics of the unix_num field does not depend on the
sec_rgy_prop_embedded_unix_id property of RS servers (see Section 11.4.1.2 on
page 366). The sec_rgy_prop_embedded_unix_id property is important only for
those environments/applications that need to extract principals’ local-IDs from
their principal UUIDs. Other environments/applications are advised instead to
use the RS’s services (namely, rs_pgo_get( ), see Section 11.5.7 on page 386) to do
the UUID→local-ID mapping, thereby eliminating their dependency on the
sec_rgy_prop_embedded_unix_id property.

• quota
Quota associated with a principal item (this is not meaningful for group or organisation
items).

The RS server associates to each principal a quota; that is, the maximum number of PGO
items and accounts (combined) that may be added to the RS datastore by the principal (by
using rs_pgo_add ( ) and/or rs_acct_add ( )). A quota value of −1 indicates an unlimited quota
(no restrictions). If the quota is greater than 0, the quota is decremented on each successful
PGO item or account added by the indicated principal. If the quota equals zero, the RS server
will fail attempts to add PGO items or accounts (with status sec_rgy_quota_exhausted). The
only way to increase a quota value is to explicitly modify the quota field (with
rs_pgo_replace ( ) or rs_properties_set_info ( ); the quota is not incremented on PGO or account
deletions operations, for example).

• flags
Flag word associated with item.

380 CAE Specification (1997)



RS Editor RPC Interfaces The rs_pgo RPC Interface

• fullname
Human-friendly full name of item — or, for that matter, any other human-friendly
informative (annotation) data that may be convenient. For example, a PGO item named
principal/root might have a fullname of ‘‘M. Root, the Superuser’’. (Note that this example is
strictly illustrative — there is no notion in DCE Security that corresponds to the traditional
notion of superuser as defined in the security architecture of some local systems.)

11.5.1.5 rs_pgo_id_key_t

The rs_pgo_id_key_t data type represents the data necessary for a lookup-by-UUID query in the
RS datastore.

typedef struct {
uuid_t id;
sec_rgy_name_t scope;

} rs_pgo_id_key_t;

Its fields are the following:

• id
UUID of the object being sought (that is, the item to be matched by the query).

• scope
The scope of the lookup-by-UUID. This is either the sought object’s name, or the name of a
directory which is an ancestor (not necessarily an immediate parent) of the sought object.

11.5.1.6 rs_pgo_unix_num_key_t

The rs_pgo_unix_num_key_t data type represents the data necessary for a lookup-by-local-ID
query in the RS datastore.

typedef struct {
signed32 unix_num;
sec_rgy_name_t scope;

} rs_pgo_unix_num_key_t;

Its fields are the following:

• unix_num
Local-ID of the object being sought (that is, the item to be matched by the query).

• scope
The scope of the lookup-by-local-ID. This is either the sought object’s name, or the name of a
directory which is an ancestor (not necessarily an immediate parent) of the sought object.

11.5.1.7 rs_pgo_query_t

The rs_pgo_query_t data type indicates the type of an RS datastore query key (see
rs_pgo_query_key_t, Section 11.5.1.8 on page 382).

typedef enum {
rs_pgo_query_name, /* 0 */
rs_pgo_query_id, /* 1 */
rs_pgo_query_unix_num, /* 2 */
rs_pgo_query_next, /* 3 */
rs_pgo_query_none /* 4 */

} rs_pgo_query_t;

Part 2 Security Services and Protocols 381



The rs_pgo RPC Interface RS Editor RPC Interfaces

The following values are currently registered:

• rs_pgo_query_name
Query keyed by name (sec_rgy_name_t).

• rs_pgo_query_id
Query keyed by UUID (rs_pgo_id_key_t).

• rs_pgo_query_unix_num
Query keyed by local-ID (rs_pgo_unix_num_key_t).

• rs_pgo_query_next
Query keyed by the next PGO item following the current cursor position. (See the discussion
at rs_pgo_get( ), see Section 11.5.7 on page 386.)

• rs_pgo_query_none
Indicates an empty rs_pgo_query_key_t (that is, a non-existent value of this data type). It is
used in error cases, to indicate that a item being sought could not be found.

11.5.1.8 rs_pgo_query_key_t

The rs_pgo_query_key_t data type represents an RS datastore query (lookup) key.

typedef union switch (rs_pgo_query_t query) tagged_union {
case rs_pgo_query_name:

sec_rgy_name_t name;
case rs_pgo_query_id:

rs_pgo_id_key_t id_key;
case rs_pgo_query_unix_num:

rs_pgo_unix_num_key_t unix_num_key;
case rs_pgo_query_next:

sec_rgy_name_t scope;
default:

/*empty*/ /*empty*/;
} rs_pgo_query_key_t;

Note that the rs_pgo_query_none value of the query discriminator matches the default arm of
the union switch.

11.5.1.9 rs_pgo_result_t

The rs_pgo_result_t data type represents the result of an RS datastore query (lookup).

typedef struct {
sec_rgy_name_t name;
sec_rgy_pgo_item_t item;

} rs_pgo_result_t;

Its fields are the following:

• name
Name of item.

• item
RS datastore information associated with item.

382 CAE Specification (1997)



RS Editor RPC Interfaces The rs_pgo RPC Interface

11.5.1.10 rs_pgo_query_result_t

The rs_pgo_query_result_t data type represents a performance-optimised version of the
rs_pgo_result_t data type. In the success case (status = error_status_ok), rs_pgo_query_result_t
represents a value of type rs_pgo_result_t); in the error case (status ≠ error_status_ok) it is
empty (thereby preventing unnecessary marshalling/unmarshalling of data in the error case).

typedef union switch (signed32 status) tagged_union {
case error_status_ok:

rs_pgo_result_t result;
default:

/*empty*/ /*empty*/;
} rs_pgo_query_result_t;

11.5.2 Interface UUID and Version Number for rs_pgo

The interface UUID and version number for the rs_pgo interface are given by the following:

[
uuid(4c878280-3000-0000-0d00-028714000000),
version(1.0)

]
interface rs_pgo {
/* begin running listing of rs_pgo interface */

11.5.3 rs_pgo_add( )

The rs_pgo_add ( ) operation creates (adds) to the RS’s datastore a PGO item that does not
currently exist.

void
rs_pgo_add (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t pgo_name,
[in] sec_rgy_pgo_item_t *pgo_item,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The name_domain parameter identifies the PGO domain in which the new item is to be created.

The pgo_name parameter identifies the (name of the) PGO item, subordinate to name_domain, that
is to be created. Only terminal objects (that is, PGO items per se) are valid named items in this
context — not intermediate directories (between the root of name_domain and the named PGO
item), which are created automatically by this operation if necessary (namely, if they don’t
already exist), and cannot be created directly.

The pgo_item parameter indicates the information that is to be stored in the RS’s datastore for the
newly created PGO item. The fields of pgo_item indicate the following:

• id
If id is a nil-valued UUID (see referenced X/Open DCE RPC Specification), the RS server will
generate a non-nil value for the UUID of the added item. If the
sec_rgy_prop_embedded_unix_id property is set for the RS server, the generated UUID will
be a security-version UUID (see Section 5.2.1.1 on page 278) and will contain an embedded
local-ID that is either passed in as the unix_num field or generated by the RS server.

Part 2 Security Services and Protocols 383



The rs_pgo RPC Interface RS Editor RPC Interfaces

If id is non-nil, it will be used as the UUID of the created item. If the
sec_rgy_prop_embedded_unix_id property is set, the UUID will be inspected for the correct
(security) version (see Section 5.2.1.1 on page 278) and checked to ensure that its embedded
local-ID matches the unix_num field (if unix_num is not specified, it will be derived from the
embedded local-ID of id).

• unix_num
If unix_num = −1, the RS server will generate the local-ID of the created item; or, if the RS
server’s sec_rgy_prop_embedded_unix_id property is set and the id field is non-nil, the
local-ID of the created item will be extracted from id.

If unix_num ≠ −1, it will be used as the local-ID of the created item. If the RS server’s
sec_rgy_prop_embedded_unix_id property is set and the id field is non-nil, then unix_num
must match the local-ID embedded in id.

• quota
The quota for created principal items. (Has no meaning for group or organisation items.)

• flags
Flag word associated with this PGO item.

• fullname
Human-friendly full name associated with this PGO item.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Insert (i) permission on the
parent container of the created PGO item (that is, the container in which the PGO item is to be
created).

11.5.4 rs_pgo_delete( )

The rs_pgo_delete( ) operation deletes from the RS’s datastore an existing PGO item, together
with all accounts depending on that PGO item (that is, having that PGO item as an element).

void
rs_pgo_delete (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t pgo_name,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The name_domain parameter identifies the PGO domain from which the PGO item is to be
deleted.

The pgo_name parameter identifies the PGO item, subordinate to name_domain, to be deleted.
Only terminal objects (that is, PGO items per se) are valid named items in this context — not
intermediate directories (between the root of name_domain and the named item), which are
deleted automatically by this operation if necessary (namely, if this operation deletes the last
entry subordinate to them), and cannot be deleted directly.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

384 CAE Specification (1997)



RS Editor RPC Interfaces The rs_pgo RPC Interface

Required rights: This operation succeeds only if the calling client has Delete Item (D) permission
on the PGO item to be deleted, and Delete (d) permission on the parent container of that PGO
item.

11.5.5 rs_pgo_replace( )

The rs_pgo_replace ( ) operation modifies (writes) an existing PGO item in the RS’s datastore.

void
rs_pgo_replace (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t pgo_name,
[in] sec_rgy_pgo_item_t *pgo_item,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The name_domain parameter identifies the PGO domain of the PGO item which is to be modified.

The pgo_name parameter identifies the PGO item, subordinate to name_domain, to be modified.

The pgo_item parameter indicates the new information that is to be written in the RS’s datastore
for the indicated PGO item. The fields of pgo_item that are generally modifiable are: quota, flags,
and fullname. In general, the id field (and hence the unix_num field) cannot be modified by
rs_pgo_replace ( ) (such an effect could be achieved through a combination of rs_pgo_delete( ) and
rs_pgo_add ( ), but it is inadvisable). (This lack of modifiability of the UUID is the sense in which
the UUID is the definitive identifier of the PGO item.)

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: If quota or flags or unix_num is being changed, this operation succeeds only if
the calling client has Management Info (m) permission on the PGO item. If fullname is being
changed, this operation succeeds only if the calling client has Fullname (f) permission on the
PGO item.

11.5.6 rs_pgo_rename( )

The rs_pgo_rename( ) operation modifies the name of a PGO item in the RS’s datastore. This
operation can modify any portion of a PGO item’s name (either its leaf portion, or move the PGO
item from one container to another), but it is limited to operate within a single PGO domain.

void
rs_pgo_rename (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t old_name,
[in] sec_rgy_name_t new_name,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The name_domain parameter identifies the PGO domain of the PGO item which is to be renamed.

Part 2 Security Services and Protocols 385



The rs_pgo RPC Interface RS Editor RPC Interfaces

The old_name parameter identifies the PGO item, subordinate to name_domain, whose name is to
be modified.

The new_name parameter indicates the new name of the PGO item whose name is being
modified.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Name (n) permission on the
PGO item. If only the last component of the PGO item’s name is being changed, the calling client
requires no other permissions. If the PGO item is being moved from one container to another
(that is, if some part of the PGO item’s name other than just its last component is being changed),
this operation succeeds only if the calling client has in addition Delete (d) permission on the
parent container of old_name, and Insert (i) permission on the parent container of new_name.

11.5.7 rs_pgo_get( )

The rs_pgo_get( ) operation searches for and retrieves (reads) data from an RS server/datastore.
This operation returns the datastore information of the next PGO item (with respect to the RS
server/datastore’s implementation-dependent ordering of PGO items) at or following a specified
cursor position, whose stored data matches that indicated by a specified query (lookup) key
(where the notion of matching is query-key-specific, as defined below in this section).

[idempotent] void
rs_pgo_get (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] rs_pgo_query_key_t *key,
[in] boolean32 allow_aliases,
[in, out] sec_rgy_cursor_t *item_cursor,
[out] rs_cache_data_t *cache_info,
[out] rs_pgo_query_result_t *result );

The rpc_handle parameter identifies the RS server.

The name_domain parameter identifies the PGO domain to be searched. (Searches are limited to a
single domain per call.)

The key parameter identifies the query (or lookup) key on which the search is to be based.
Namely, the query discriminator of key (see Section 11.5.1.8 on page 382) takes one of the
following values:

• rs_pgo_query_name
This indicates a lookup-by-name search. The PGO item (there can be at most one) at or
following item_cursor and having the name specified by (*key).tagged_union.name is to be
matched. (No scope information is relevant in this case.)

• rs_pgo_query_id
This indicates a lookup-by-UUID search. The next PGO item at or following item_cursor and
having the UUID specified by (*key).tagged_union.id_key.id, whose name lies within the
scope specified by (*key).tagged_union.id_key.scope, is to be matched. Called successively
with the same UUID, rs_pgo_get( ) returns first the distinguished (non-alias) item, then all
alias items matching this UUID.

• rs_pgo_query_unix_num
This indicates a lookup-by-local-ID search. The next PGO item at or following item_cursor

386 CAE Specification (1997)



RS Editor RPC Interfaces The rs_pgo RPC Interface

and having the local-ID specified by (*key).tagged_union.unix_num_key.unix_num, whose
name lies within the scope specified by (*key).tagged_union.unix_num_key.scope, is to be
matched. Called successively with the same local-ID, rs_pgo_get( ) returns first the
distinguished (non-alias) item, then all alias items matching this local-ID.

• rs_pgo_query_next
This indicates that the next PGO item at or following item_cursor, and whose name lies within
the scope specified by (*key).tagged_union.scope, is to be matched. Thus, successive queries
of this type retrieve all PGO items whose names lie within the indicated scope (or within the
entire indicated name_domain, in the case where the scope is the NULL string, indicating the
root directory of name_domain).

The allow_aliases parameter, if non-0 (TRUE), indicates that an alias PGO item matching key
satisfies the query request. If 0 (FALSE), only a distinguished (that is, non-alias) PGO item can
satisfy the query request.

On input, the item_cursor parameter indicates the current cursor position (so that the PGO item it
indicates is eligible to be matched, as are all the items following it); on output it indicates the
cursor position next following the retrieved PGO item. The item_cursor does not automatically
wrap around from the end of the datastore to its beginning: instead, the
sec_rgy_no_more_entries status value is returned in the result parameter if the requested item is
not matched between the current cursor position and the end of the datastore (and item_cursor
remains indicating the end of the datastore in this case).

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The result parameter returns the retrieved information for the matched PGO item.

The status of this operation is indicated by the result element of the result parameter.

The ritual for using rs_pgo_get( ) is as follows. Before making the first rs_pgo_get( ) call, the
item_cursor parameter must be initialised to the beginning of the RS’s datastore (modulo any
scoping information), by setting the *item_cursor.valid field to 0 (FALSE); the other fields of
*item_cursor may be set to any convenient value. In the returned value of item_cursor, the RS
server will set values that it (and only it) can interpret. The client uses this returned value of
item_cursor, without modifying it, for a subsequent call. This ritual may be followed for a
sequence of successive calls, until the end of the datastore is reached (that is,
sec_rgy_no_more_entries status value is returned). In any such sequence of calls, the same
name_domain and key parameters must be used (otherwise, the results are undefined).

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
matched PGO item.

11.5.8 rs_pgo_key_transfer( )

The rs_pgo_key_transfer ( ) operation converts one of an RS datastore item’s query keys (PGO
item’s name, UUID or local-ID) into another. Using this operation may be more efficient and/or
convenient than using rs_pgo_get( ) when one query key is known, another is desired, and other
datastore information is not needed. In other words, this operation implements the six
mappings: name→UUID, UUID→name, name→local-ID, local-ID→name, UUID→local-ID, and
local-ID→UUID.

Part 2 Security Services and Protocols 387



The rs_pgo RPC Interface RS Editor RPC Interfaces

[idempotent] void
rs_pgo_key_transfer (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] rs_pgo_query_t requested_result_type,
[in, out] rs_pgo_query_key_t *key,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The name_domain parameter identifies the PGO domain to be searched.

The requested_result_type parameter indicates the query key to which key is to be converted.

On input, the key parameter indicates a query key which is to be converted. On output, it
indicates the converted query key.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: In the cases where no name query key is involved (that is, the UUID→local-ID
and local-ID→UUID cases), this operation succeeds unconditionally. In the cases where a name
query key is involved (that is, the name→UUID, UUID→name, name→local-ID and
local-ID→name cases), this operation succeeds only if the calling client has at least some (any)
access permission to the PGO item.

11.5.9 rs_pgo_add_member( )

The rs_pgo_add_member( ) operation adds a member principal to the membership list of a group
or organisation.

void
rs_pgo_add_member (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t go_name,
[in] sec_rgy_name_t person_name,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The name_domain parameter indicates the domain of interest (it must be sec_rgy_domain_group
or sec_rgy_domain_org; it may not be sec_rgy_domain_person).

The go_name parameter indicates the group or organisation item, subordinate to name_domain, to
which the member is to be added.

The person_name parameter indicates the principal item to be added to the go_name item.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Membership (M) permission
on the item indicated by go_name. If further go_name is a group (as opposed to an organisation),
then the calling client must also have Group (g) permission on the principal indicated by
person_name.

388 CAE Specification (1997)



RS Editor RPC Interfaces The rs_pgo RPC Interface

11.5.10 rs_pgo_delete_member( )

The rs_pgo_delete_member( ) operation deletes a member principal from the membership list of a
group or organisation, together with all accounts depending on that member (that is, having the
specified principal, and group or organisation).

void
rs_pgo_delete_member (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t go_name,
[in] sec_rgy_name_t person_name,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The name_domain parameter indicates the domain of interest (it must be sec_rgy_domain_group
or sec_rgy_domain_org; it may not be sec_rgy_domain_person).

The go_name parameter indicates the group or organisation item, subordinate to name_domain,
from which the member is to be deleted.

The person_name parameter indicates the principal item to be deleted from the go_name item.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Membership (M)
permission on the item indicated by go_name.

11.5.11 rs_pgo_is_member( )

The rs_pgo_is_member( ) operation determines whether a principal is a member of a group or
organisation.

[idempotent] boolean32
rs_pgo_is_member (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t go_name,
[in] sec_rgy_name_t person_name,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The name_domain parameter indicates the domain of interest (it must be sec_rgy_domain_group
or sec_rgy_domain_org; it may not be sec_rgy_domain_person).

The go_name parameter indicates the name of the group or organisation item, subordinate to
name_domain, for which membership is being queried.

The person_name parameter indicates the principal item whose membership in the go_name item
is being queried.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Part 2 Security Services and Protocols 389



The rs_pgo RPC Interface RS Editor RPC Interfaces

The boolean32 return value returns non-0 (TRUE) if person_name is a member of go_name, and 0
(FALSE) otherwise.

Required rights: This operation succeeds only if the calling client has Test (t) permission on the
item indicated by go_name.

11.5.12 rs_pgo_get_members( )

The rs_pgo_get_members( ) operation retrieves the list of member principals of a group or
organisation, or the list of groups to which a principal belongs.

[idempotent] void
rs_pgo_get_members (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t go_name,
[in, out] sec_rgy_cursor_t *member_cursor,
[in] signed32 max_members,
[out, length_is(*number_supplied), size_is(max_members)]

sec_rgy_member_t member_list[ ],
[out] signed32 *number_supplied,
[out] signed32 *number_members,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

} /* end running listing of rs_pgo interface */

The rpc_handle parameter identifies the RS server.

The name_domain parameter indicates the PGO domain of interest. If name_domain is
sec_rgy_domain_group or sec_rgy_domain_org, the principals which are members of the group
or organisation indicated by go_name are to be returned in member_list[ ]. If name_domain is
sec_rgy_domain_person, the groups of which the principal indicated by go_name is a member
are to be returned in member_list[ ].

The go_name parameter indicates the PGO item, subordinate to name_domain, whose
membership is being queried.

The member_cursor parameter indicates, on input, the current cursor position (so that the items at
and following this position are eligible to be retrieved on the current invocation of this
operation); on output, it indicates the cursor position next following the retrieved item(s).

The max_members parameter indicates the maximum number of members to be retrieved in
member_list[ ].

The member_list parameter indicates the retrieved members.

The number_supplied parameter indicates the actual number of retrieved members.

The number_members parameter indicates the total number of members available for the go_name
item. (The member_cursor parameter is used to coordinate multiple invocations to retrieve the
complete list of members.)

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
go_name item.

390 CAE Specification (1997)



RS Editor RPC Interfaces The rs_pgo RPC Interface

11.6 The rs_acct RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_acct RPC interface.

11.6.1 Common Data Types and Constants for rs_acct

The following are common data types and constants used in the rs_acct interface.

11.6.1.1 sec_rgy_acct_key_t

The sec_rgy_acct_key_t data type indicates the minimal portion of an account’s <P, G, O> name
triple that is required to unambiguously identify the account — that is, the minimal name
information (or abbreviation) that constitutes an RS datastore query key for the account.

typedef signed32 sec_rgy_acct_key_t;
const signed32 sec_rgy_acct_key_person = 1;
const signed32 sec_rgy_acct_key_group = 2;
const signed32 sec_rgy_acct_key_org = 3;

The following values are currently registered:

• sec_rgy_acct_key_person
The principal name identifies the account; that is, the account (<P, G, O>) is uniquely
determined by its <P> component.

This is the only value required to be supported by this revision of DCE. (That is, an RS datastore in
which no principal is associated with more than one account is conformant with DCE.)

• sec_rgy_acct_key_group
The principal and group names identify the account; that is, the account (<P, G, O>) is
uniquely determined by its <P, G> component pair — and moreover this is a minimal query
key (that is, the account’s <P> component does not constitute a query key).

• sec_rgy_acct_key_org
The principal, group and organisation names identify the account — and moreover this is a
minimal query key (that is, the account’s <P, G> component pair does not constitute a query
key).

11.6.1.2 sec_rgy_acct_admin_flags_t

The sec_rgy_acct_admin_flags_t data type is a flag word representing administrative flags.

typedef bitset sec_rgy_acct_admin_flags_t;
const unsigned32 sec_rgy_acct_admin_valid = 0x1;
const unsigned32 sec_rgy_acct_admin_server = 0x4;
const unsigned32 sec_rgy_acct_admin_client = 0x8;

The following values are currently registered:

• sec_rgy_acct_admin_valid
Account is valid for logging in.

• sec_rgy_acct_admin_server
Allow account to be a server. (That is, this account’s principal name may be used as a
targeted server name in tickets issued in this cell.)

• sec_rgy_acct_admin_client
Allow account to be a client. (That is, this account’s principal name may be used as a named
client name in tickets issued in this cell.)

Part 2 Security Services and Protocols 391



The rs_acct RPC Interface RS Editor RPC Interfaces

11.6.1.3 sec_rgy_acct_auth_flags_t

The sec_rgy_acct_auth_flags_t data type is a flag word representing account authentication
flags.

typedef bitset sec_rgy_acct_auth_flags_t;
const unsigned32 sec_rgy_acct_auth_tgt = 0x4;

The following values are currently registered:

• sec_rgy_acct_auth_tgt
Allow issuance of certificates based on (privilege-)ticket-granting-ticket authentication. This
must always be set (to 1).

11.6.1.4 sec_rgy_foreign_id_t

The sec_rgy_foreign_id_t data type represents identities (principals, groups and organisations,
despite the field name principal in the defining structure below) from arbitrary cells (including
the local interpreting cell; that is, not necessarily a strictly foreign non-local cell). This data type
is defined as follows (compare to the sec_id_foreign_t data type, Section 5.2.2 on page 279):

typedef struct sec_rgy_foreign_id_t {
uuid_t principal;
uuid_t cell;

} sec_rgy_foreign_id_t;

Its fields are the following:

• principal
The UUID of the principal, within its cell.

• cell
The UUID of the cell.

11.6.1.5 sec_rgy_acct_admin_t

The sec_rgy_acct_admin_t data type represents administration-level information about
accounts held in the RS datastore.

typedef struct {
sec_rgy_foreign_id_t creator;
sec_timeval_sec_t creation_date;
sec_rgy_foreign_id_t last_changer;
sec_timeval_sec_t change_date;
sec_timeval_sec_t expiration_date;
sec_timeval_sec_t good_since_date;
sec_rgy_acct_admin_flags_t flags;
sec_rgy_acct_auth_flags_t authentication_flags;

} sec_rgy_acct_admin_t;

Its fields are the following:

• creator
Identity of the principal who created this account. (Set by the RS server, not directly by the
administrator.)

• creation_date
Time of creation of this account. (Set by the RS server, not directly by the administrator.)

392 CAE Specification (1997)



RS Editor RPC Interfaces The rs_acct RPC Interface

• last_changer
Identity of the last principal to modify this account. (Set by the RS server, not directly by the
administrator.)

• change_date
Time of last modification of this account. (Set by the RS server, not directly by the
administrator.)

• expiration_date
Last date of validity of this account. (Typically, this indicates a date by which a reactivation
of the account must be performed; for example, its password must be changed.)

• good_since_date
First date of validity of this account. (The KDS will not honour tickets issued before this
date.)

• flags
Flag word for this account.

• authentication_flags
Authentication flag word for this account.

11.6.1.6 sec_rgy_acct_user_flags_t

The sec_rgy_acct_user_flags_t data type represents a flag word of attributes about users.

typedef bitset sec_rgy_acct_user_flags_t;
const unsigned32 sec_rgy_acct_user_passwd_valid = 0x1;

The following values are currently registered:

• sec_rgy_acct_user_passwd_valid
This password is good. The absence of this bit forces the user to change his or her password.

11.6.1.7 sec_passwd_type_t

The sec_passwd_type_t data type represents password type (either a true password to be
mapped to a cryptographic key, or else a cryptographic key; for usage, see Section 11.6.1.11 on
page 395).

typedef enum {
sec_passwd_none, /* 0 */
sec_passwd_plain, /* 1 */
sec_passwd_des /* 2 */

} sec_passwd_type_t;

The following values are currently registered:

• sec_passwd_none
Invalid password/key.

• sec_passwd_plain
Plaintext password.

• sec_passwd_des
DES key.

Part 2 Security Services and Protocols 393



The rs_acct RPC Interface RS Editor RPC Interfaces

11.6.1.8 sec_key_version_t

The sec_key_version_t data type indicates the version number of a long-term cryptographic key
associated to an account held in the RS datastore. It is used in identifying the version number of
uninterpreted byte strings of encrypted network data. See Section 11.6.1.20 on page 399 for its
usage.

typedef unsigned32 sec_key_version_t;

11.6.1.9 sec_passwd_version_t

The sec_passwd_version_t data type indicates the version number of a long-term cryptographic
key (and hence, by extension, its associated password, if there is one) associated to an account
held in the RS datastore.

typedef unsigned32 sec_passwd_version_t;
const unsigned32 sec_c_key_version_none = 0;
const unsigned32 sec_passwd_c_version_none = 0;

Key version numbers have the following semantics. Every account has zero or more keys
associated with it; every valid account has exactly one key associated with it, with the potential
(notable) exceptions of the RS (dce-rgy), PS (dce-ptgt) and KDS (or cell, krbtgt/cell-name)
principals in every cell. (Typically, implementations will support multiple simultaneous keys for
these principals, so that their keys can be updated regularly without invalidating the many
unexpired (ticket-granting) tickets that have been issued (protected) under previous keys; when
such an update occurs, the old key is retained until the account’s maximum renewable ticket
lifetime is reached (see Section 11.4.1.6 on page 370), at which time it can be discarded.) Every
such key has one and only one version number attached to it (a value of type
sec_passwd_version_t). All the keys associated with a given account must all be distinct, and
must all have different key version numbers attached to them. No key may ever have the version
number sec_c_key_version_none. These key version numbers are used to distinguish among the
various keys associated with an account, as follows.

Under normal circumstances (that is, in the stable operating configuration), an account has
exactly one key associated with it. But due to security considerations (namely, the longer a key
has been used, and the greater the volume of traffic it has encrypted, the more susceptible it is to
compromise), the value of this key needs to be changed from time to time. (For a human user,
this is manifested as changing the user’s password; for a non-human server, it is manifested as
changing the server’s key.) However, when a new key is associated with an account, the old key
needs to be retained until it times out; that is, until all the tickets that could legitimately be
protected by the old key have expired. Thus, KDSs must always use accounts’ most recent keys
to protect all tickets. Finally, all KDSs must implement the successive versions of keys by means
of strictly increasing version numbers (typically, incrementing by 1 for each new version
number), and the most recent key must always be that having the highest version number (no
provision is specified here for overflow of the sec_passwd_version_t data type — note,
however, that keys are typically changed at most once an hour, and that 232 hours ≈ 490,000
years, so the likelihood of colliding key version numbers is insignificant).

Note: The condition given here (namely, that the most recent key must correspond to the
highest version number, and the related restriction to strictly increasing version
numbers) might reasonably be expected to be implementation details, as opposed to
specification requirements. Nevertheless, the description as given here is consistent
with the Kerberos specification. [RFC 1510: 4.1]

394 CAE Specification (1997)



RS Editor RPC Interfaces The rs_acct RPC Interface

The following values are currently registered:

• sec_c_key_version_none
Invalid key. This is a reserved value to be used in certain service requests; for example, in key
lookup requests for the current key whose version number is not known a priori, or in key
update requests where the next available version number is to be assigned to the new key.

• sec_passwd_c_version_none
Invalid password. This is a reserved value to be used in certain service requests; for example,
in password initialization for cell initialization when a (new) cell is being added, or when
initializing the registry information.

11.6.1.10 sec_passwd_des_key_t

The sec_passwd_des_key_t data type represents a (64-bit) DES key.

const unsigned32 sec_passwd_c_des_key_size = 8;
typedef byte sec_passwd_des_key_t[sec_passwd_c_des_key_size];

The mapping of bit-vectors to byte-vectors is the usual one (see Section 2.1.3 on page 128),
namely: if K = <k0, ⋅⋅⋅, k63> is a 64-bit DES key, then it is represented as the 8-byte
sec_passwd_des_key_t vector <<k0, ⋅⋅⋅, k7>, ⋅⋅⋅, <k56, ⋅⋅⋅, k63>>.

11.6.1.11 sec_passwd_rec_t

The sec_passwd_rec_t data type represents a password or cryptographic key record.

typedef struct {
sec_passwd_version_t version_number;
[string, ptr] char *pepper;
union switch (sec_passwd_type_t key_type) {

case sec_passwd_plain:
[string, ptr] char *plain;

case sec_passwd_des:
sec_passwd_des_key_t des_key;

} key;
} sec_passwd_rec_t;

Its fields are the following:

• version_number
Version number.

• pepper
A string used to modify the password-to-key generation algorithm (see Section 4.3.6.1 on
page 190, where it was called salt).

• key
Either a plaintext password (plain) or a DES key (des_key), depending on whether key_type
is equal to sec_passwd_plain or sec_passwd_des, respectively.

For a description of how this data type is used, see Section 11.6.1.21 on page 400.

Part 2 Security Services and Protocols 395



The rs_acct RPC Interface RS Editor RPC Interfaces

11.6.1.12 sec_chksum_type_t

The sec_chksum_type_t data type represents checksum type.

typedef enum {
sec_chksum_none, /* 0 */
sec_chksum_crc32, /* 1 */
sec_chksum_des_cbc, /* 2 */
sec_chksum_rsa_md4, /* 3 */
sec_chksum_rsa_md4_des /* 4 */

} sec_chksum_type_t;

The following values are currently registered:

• sec_chksum_none
Invalid checksum.

• sec_chksum_crc32
CRC§

G checksum, with seed 0 (see Section 2.2 on page 136).

• sec_chksum_rsa_md4
RSA-MD4-CKSUM which is non-invertible and of length 128 bits, derived from an arbitrary
length bit-message (see Chapter 2 on page 127 and Section 1.3 on page 16).

• sec_chksum_rsa_md4_des
RSA-MD4-DES-CKSUM which is non-invertible and of length 128 bits, derived from an
arbitrary length bit-message by prepending an 8 octet confounder and applying the RSA-
MD4-CKSUM, and with initialisation vector zero (see Chapter 2 on page 127 and Section 1.3
on page 16).

• sec_chksum_des_cbc
DES-CBC-CKSUM, with a specified key, and with initialisation vector equal to the same key
(see Section 3.3 on page 150).

11.6.1.13 sec_chksum_t

The sec_chksum_t data type represents a checksum.

typedef struct {
sec_chksum_type_t chksum_type;
unsigned32 len;
[size_is(len), ptr] byte *chksum;

} sec_chksum_t;

Its fields are the following:

• chksum_type
Type of checksum data.

• len
Length of checksum data. This is 0 when chksum_type is sec_chksum_none; 4 when
chksum_type is sec_chksum_crc32; 8 when chksum_type is sec_chksum_des_cbc; 16 when
chksum_type is either sec_chksum_rsa_md4 or sec_chksum_rsa_md4_des.

• chksum
The checksum data itself.

For a description of how this data type is used, see Section 11.6.1.21 on page 400.

396 CAE Specification (1997)



RS Editor RPC Interfaces The rs_acct RPC Interface

11.6.1.14 sec_rgy_unix_passwd_buf_t

The sec_rgy_unix_passwd_t data type represents a (protected) (local) password (as opposed to
a long-term key); that is, one whose exact interpretation (for example, the manner of its
protection, or its usage by local operating systems) is implementation-specific (and whose
further specification is therefore beyond the scope of DCE). (The use of the substring unix in the
name of this data type is historical.) (Protected passwords are sometimes said to be encrypted,
but this is usually a misnomer because passwords are usually protected by non-invertible
cryptographic checksum techniques, not by invertible encryption/decryption techniques.)

const unsigned32 sec_rgy_max_unix_passwd_len = 16;
typedef [string] char

sec_rgy_unix_passwd_buf_t[sec_rgy_max_unix_passwd_len];

11.6.1.15 sec_rgy_acct_user_t

The sec_rgy_acct_user_t data type represents user-level information about accounts held in the
RS datastore.

typedef struct {
sec_rgy_pname_t gecos;
sec_rgy_pname_t homedir;
sec_rgy_pname_t shell;
sec_passwd_version_t passwd_version_number;
sec_timeval_sec_t passwd_dtm;
sec_rgy_acct_user_flags_t flags;
sec_rgy_unix_passwd_buf_t passwd;

} sec_rgy_acct_user_t;

Its fields are the following:

• gecos
An annotation field, holding any convenient information (similar to the fullname field of
sec_rgy_pgo_item_t).

• homedir
An annotation field, holding any convenient information (typically, this field is interpreted as
a user’s home directory, in the sense of a POSIX-conformant operating system).

• shell
An annotation field, holding any convenient information (typically, this field is interpreted as
a user’s login shell, in the sense of a POSIX-conformant operating system).

• passwd_version_number
Version number of long-term cryptographic key. (This number is assigned by the RS server,
not by an administrator.)

• passwd_dtm
Time of last password/key update (see Section 11.4.1.5 on page 368). (This number is
assigned by the RS server, not by an administrator.)

• flags
User flag word.

• passwd
User’s (protected) local password. Its semantics are implementation-dependent. Typical
implementations use it to support UNIX password management, as follows.

Part 2 Security Services and Protocols 397



The rs_acct RPC Interface RS Editor RPC Interfaces

If the key input parameter to rs_acct_replace( ) (see Section 11.6.7 on page 405) has key_type
(in the sense of Section 11.6.1.21 on page 400) sec_key_plain (that is, the key field of the key
parameter contains a plaintext password instead of a DES key), then the RS will use that
plaintext and a salt (in the sense of UNIX password management) to generate a UNIX key
via crypt( ).) (If a DES key is passed instead of a plaintext password, the RS will copy the
fixed string CIPHER into this UNIX key.)

This field is ignored on input to rs_acct_add ( ) or rs_acct_replace( ), but it contains the UNIX
key just described on output from rs_acct_lookup ( ). Since this passwd field is not used by the
authentication services specified in DCE (it merely provides some compatibility and
coexistence with the UNIX operating system to clients that care about such things), further
details are not relevant to DCE.

11.6.1.16 rs_acct_parts_t

The rs_acct_parts_t data type is a flag word used to indicate portions of an account’s datastore
information. In the current revision of DCE, the only place this is used is in conjunction with the
rs_acct_replace( ) operation (see Section 11.6.7 on page 405), where it indicates what parts of the
account’s information are being updated by a given invocation of rs_acct_replace( ). (This allows,
for example, multiple partial APIs (unspecified in this revision of DCE) to be layered over the
single complete RPC rs_acct_replace( ) operation.)

typedef bitset rs_acct_parts_t;
const unsigned32 rs_acct_part_user = 0x1;
const unsigned32 rs_acct_part_admin = 0x2;
const unsigned32 rs_acct_part_passwd = 0x4;
const unsigned32 rs_acct_part_login_name = 0x10;

The following values are currently registered (see Section 11.6.7 on page 405 for details):

• rs_acct_part_user
Indicates user-level information.

• rs_acct_part_admin
Indicates administrative-level information.

• rs_acct_part_passwd
Indicates password/key information.

• rs_acct_part_login_name
Indicates datastore query key information.

11.6.1.17 rs_encrypted_pickle_t

The rs_encrypted_pickle_t data type represents a cryptographically encrypted pickle (see
Section 2.1.7 on page 132 for the definition of pickles). (The encryption type and key are not
specified here, but must be specified by other means in any application of this data type.)

typedef struct {
unsigned32 enc_pickle_len;
[ref, size_is(enc_pickle_len)] byte *enc_pickle;

} rs_encrypted_pickle_t;

Its fields are the following:

• enc_pickle_len
The number of bytes of encrypted data.

398 CAE Specification (1997)



RS Editor RPC Interfaces The rs_acct RPC Interface

• enc_pickle
The encrypted pickle itself.

11.6.1.18 sec_etype_t

The sec_etype_t data type indicates encryption type.

typedef enum {
sec_etype_none, /* 0 */
sec_etype_des_cbc_crc /* 1 */

} sec_etype_t;

The following values are currently registered:

• sec_etype_none
Trivial encryption, as described in Section 4.3.5.1 on page 188 (encType-TRIVIAL).

• sec_etype_des_cbc_crc
DES-CBC-CRC encryption, as described in Section 4.3.5.1 on page 188 (encType-DES-CBC-
CRC).

11.6.1.19 sec_bytes_t

The sec_bytes_t data type represents a generic pickle type for uninterpreted byte strings of
network data.

typedef struct {
unsigned32 num_bytes;
[size_is(num_bytes), ptr] byte *bytes;

} sec_bytes_t;

Its fields are the following:

• num_bytes
The number of bytes of network data.

• bytes
The bytes of network data. This network data is a pickle of some sort.

11.6.1.20 sec_encrypted_bytes_t

The sec_encrypted_bytes_t data type represents a generic pickle type for encrypting byte strings
of network data.

typedef struct {
sec_etype_t etype;
sec_key_version_t ekvno;
sec_bytes_t ebytes;

} sec_encrypted_bytes_t;

Its fields are the following:

• etype
An encryption type for encrypting data. The supported etype’s are enumerated in Section
11.6.1.18. The etype is used in conjunction with the session key type and is extracted from
the global cryptosystem information. Presently, only one encryption type is supported.

• ekvno
A version number representing the generic encryption type. Presently, the only version
number supported for this generic type is 0.

Part 2 Security Services and Protocols 399



The rs_acct RPC Interface RS Editor RPC Interfaces

• ebytes
The actual bytes of encrypted data that are available to servers.

11.6.1.21 rs_acct_key_transmit_t

The rs_acct_key_transmit_t data type represents cryptographic keying information
(cryptographic key or DES key), protected for transmittal in communications.

typedef struct {
sec_etype_t enc_type;
sec_passwd_type_t enc_keytype;
sec_passwd_version_t enc_key_version;
unsigned32 key_pickle_len;
[ref] rs_encrypted_pickle_t *key;
[ref] rs_encrypted_pickle_t *checksum;

} rs_acct_key_transmit_t;

Its fields are the following (for further elucidation of all these fields and how they are used, see
below):

• enc_type
Encryption type used by the client to encrypt key and checksum.

• enc_keytype
Key type of the client’s key, used by the client to encrypt key and checksum.

• enc_key_version
Key version number of the client’s key, used by the client to encrypt key and checksum.

• key_pickle_len
Length (in bytes) of the (unencrypted) sec_passwd_rec_t pickle indicated by key — as
opposed to the length of the encrypted pickle (which is already determined by key itself),
which might include some padding appended to the unencrypted sec_passwd_rec_t pickle,
depending on the encryption algorithm used.

• key
Encrypted sec_passwd_rec_t pickle. In the terminology and notation of Section 2.1.7 on page
132, this (pre-encrypted) pickle’s type UUID (H.pkl_type) is d52ef390-49da-11ca-b2ac-
08001e022936, and its body datastream is an NDR-marshalled sec_passwd_rec_t.

• checksum
Encrypted sec_chksum_t pickle. In the terminology and notation of Section 2.1.7 on page
132, this (pre-encrypted) pickle’s type UUID (H.pkl_type) is d20b05c8-49da-11ca-996d-
08001e022936, and its body datastream is an NDR-marshalled sec_chksum_t.

This data type is used (in rs_acct_add ( ) and rs_acct_replace( )) as follows.

A principal (acting as an RS RPC client) stores keying information (password or cryptographic
key) in a sec_passwd_rec_t record (see Section 11.6.1.11 on page 395), and pickles this
sec_passwd_rec_t. The principal then encrypts the sec_passwd_rec_t pickle (using
sec_chksum_none when enc_type sec_etype_none, and using sec_chksum_des_cbc when
enc_type = sec_etype_des_cbc_crc — see Section 11.6.1.12 on page 396 and Section 11.6.1.13 on
page 396) in its (the principal’s) own long-term key — this encrypted pickle is the key field. The
principal also computes the checksum over the (unencrypted) sec_passwd_rec_t pickle (using
cksumType-TRIVIAL when enc_type = sec_etype_none, and using DES-CBC-CKSUM with
initialisation vector 0 when enc_type = sec_etype_des_cbc_crc — see Section 3.3 on page 150
and Section 4.3.4.1 on page 185), stores that in a sec_chksum_t data type, pickles it, and encrypts
that pickle in its long-term key — this encrypted pickle is the checksum field. The client stores

400 CAE Specification (1997)



RS Editor RPC Interfaces The rs_acct RPC Interface

the encrypting information used for these encryptions (that is, information about its own long-
term key) in the enc_type, enc_keytype, enc_key_version and in key_pickle_len fields.

On the receiving end, the RS server retrieves the client principal’s (authenticated) identity from
the protected RPC runtime (see Chapter 9), retrieves the client’s long-term key using this
identity and the enc_type, enc_keytype, enc_key_version fields of the rs_acct_key_transmit_t,
then uses this information and key_pickle_len to decrypt key and checksum, thereby retrieving
the sec_passwd_rec_t and sec_chksum_t pickles, and thence the original transmitted keying
data.

11.6.1.22 sec_rgy_sid_t

The sec_rgy_sid_t data type represents an account’s UUIDs.

typedef struct sec_rgy_sid_t {
uuid_t person;
uuid_t group;
uuid_t org;

} sec_rgy_sid_t;

Its fields are the following:

• person
Principal UUID.

• group
Group UUID.

• org
Organisation UUID.

11.6.1.23 sec_rgy_unix_sid_t

The sec_rgy_unix_sid_t data type represents an account’s local-IDs.

typedef struct {
signed32 person;
signed32 group;
signed32 org;

} sec_rgy_unix_sid_t;

Its fields are the following:

• person
Principal local-ID.

• group
Group local-ID.

• org
Organisation local-ID.

11.6.1.24 rs_acct_info_t

The rs_acct_info_t data type represents a performance-optimised data type for returning
account data. In the success case (status = error_status_ok), rs_acct_info_t represents a value of
type struct result (see definition below); in the error case (status ≠ error_status_ok) it is empty
(thereby preventing unnecessary marshalling/unmarshalling of data in the error case).

Part 2 Security Services and Protocols 401



The rs_acct RPC Interface RS Editor RPC Interfaces

typedef union switch (signed32 status) {
case error_status_ok:

struct {
sec_rgy_acct_key_t key_parts;
sec_rgy_sid_t sid;
sec_rgy_unix_sid_t unix_sid;
sec_rgy_acct_admin_t admin_part;
sec_rgy_acct_user_t user_part;

} result;
default:

/*empty*/ /*empty*/;
} rs_acct_info_t;

The fields of result are the following:

• key_parts
Indicates the minimal portion of the account’s <P, G, O> name triple that is required to
identify the account.

• sid
The account’s UUID.

• unix_sid
The account’s local-ID.

• admin_part
The account’s administration-level information.

• user_part
The account’s user-level information.

11.6.2 Interface UUID and Version Number for rs_acct

The interface UUID and version number for the rs_acct interface are given by the following:

[
uuid(4c878280-2000-0000-0d00-028714000000),
version(1.0)

]
interface rs_acct {
/* begin running listing of rs_acct interface */

402 CAE Specification (1997)



RS Editor RPC Interfaces The rs_acct RPC Interface

11.6.3 rs_acct_add( )

The rs_acct_add ( ) operation adds (or registers) an account to the RS datastore.

void
rs_acct_add (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *login_name,
[in, out] sec_rgy_acct_key_t *key_parts,
[in] sec_rgy_acct_user_t *user_part,
[in] sec_rgy_acct_admin_t *admin_part,
[in, ref] rs_acct_key_transmit_t *key,
[in] sec_passwd_type_t new_keytype,
[out] sec_passwd_version_t *new_key_version,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the (name of the) account to be registered (added).

The key_parts parameter indicates the minimal portion of login_name’s <P, G, O> name triple that
is required to identify the account.

The user_part parameter indicates the user-level portion of the account’s datastore data.

The admin_part parameter indicates the administrative-level portion of the account’s datastore
data.

The key parameter indicates the long-term cryptographic key to be stored in the RS’s datastore
for this account. Namely, if key carries a cryptographic key, that is stored as the account’s long-
term key; if key carries a password (and possibly also pepper), then that is transformed into a
cryptographic key according to the type specified by the new_keytype parameter (see Section
4.3.6.1 on page 190), and that is stored as the account’s long-term key.

The new_keytype parameter indicates the type of the long-term cryptographic key determined by
key. (If key carries a cryptographic key instead of a password, then the type of that key must be
the same as key.)

The new_key_version parameter indicates the version number of the long-term cryptographic key
determined by key. This version number may be specified by the client (in the version_number
field of the sec_passwd_rec_t structure of key). If the client specifies sec_c_key_version_none,
then the server assigns it. In either case, the version number is returned to the client in
new_key_version. (In the sec_c_key_version_none case, the server typically assigns the next
smallest available version number; that is, 1 in the case of a new account, incrementing the old
version number by 1 in the case of a pre-existing account.)

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has the following permissions
on the principal component of the account to be added ((*login_name).pname): Management Info
(m), Authentication Info (a) and User Info (u).

Part 2 Security Services and Protocols 403



The rs_acct RPC Interface RS Editor RPC Interfaces

11.6.4 rs_acct_delete( )

The rs_acct_delete( ) operation deletes (removes) an account from the RS datastore.

void
rs_acct_delete (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *login_name,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the (name of the) account to be deleted.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has the following permissions
on the principal component of the account to be deleted ((*login_name).pname): Management
Info (m), Authentication Info (a) and User Info (u).

11.6.5 rs_acct_rename( )

The rs_acct_rename( ) operation renames an account; that is, it associates a different <P, G, O>
name triple to an existing account’s data in the RS datastore, but with the restriction that the
principal component cannot be changed.

void
rs_acct_rename (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *old_login_name,
[in] sec_rgy_login_name_t *new_login_name,
[in, out] sec_rgy_acct_key_t *new_key_parts,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The old_login_name parameter identifies the existing name associated with the account data.

The new_login_name parameter identifies the new name to be associated with the account data.
The new principal component ((*new_login_name).pname) must be the same as the old principal
component ((*old_login_name).pname).

The new_key_parts parameter indicates the minimal portion of new_login_name’s <P, G, O> name
triple that is required to identify the account.

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Management Info (m)
permission on the principal component of the existing account ((*old_login_name).pname).

404 CAE Specification (1997)



RS Editor RPC Interfaces The rs_acct RPC Interface

11.6.6 rs_acct_lookup( )

The rs_acct_lookup ( ) operation retrieves (reads) account data from the RS server/datastore. This
operation returns the datastore information of the next account, at or following a specified
cursor position, whose name matches that indicated by a specified account <P, G, O> name
triple (where the notion of matching recognises wildcards).

[idempotent] void
rs_acct_lookup (

[in] handle_t rpc_handle,
[in, out] sec_rgy_login_name_t *login_name,
[in, out] sec_rgy_cursor_t *cursor,
[out] rs_cache_data_t *cache_info,
[out] rs_acct_info_t *result );

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the (name of the) account to be read from. On input, any of
its components ((*login_name).pname, (*login_name).gname or (*login_name).oname) which is
empty (that is, of length 0) is considered to be a wildcard (that is, not used as a matching
criterion — every name matches an empty string). On output, all components of login_name are
non-empty, and indicate the account whose data is retrieved in result.

The cursor parameter indicates, on input, the current cursor position (so that the accounts at and
following this position are eligible to be retrieved on the current invocation of this operation).
On output, the cursor parameter indicates the cursor position next following the retrieved
account(s). (See Section 11.2.7 on page 362.)

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The result parameter represents the result of this operation.

The status of this operation is indicated by the status of the result parameter.

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
principal component of the matched account ((*login_name).pname).

11.6.7 rs_acct_replace( )

The rs_acct_replace( ) operation modifies (writes) account data in the RS server/datastore.

void
rs_acct_replace (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *login_name,
[in, out] sec_rgy_acct_key_t *key_parts,
[in] rs_acct_parts_t modify_parts,
[in] sec_rgy_acct_user_t *user_part,
[in] sec_rgy_acct_admin_t *admin_part,
[in, ptr] rs_acct_key_transmit_t *key,
[in] sec_passwd_type_t new_keytype,
[out] sec_passwd_version_t *new_key_version,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the (name of the) account to be replaced (modified, written,
updated).

Part 2 Security Services and Protocols 405



The rs_acct RPC Interface RS Editor RPC Interfaces

The key_parts parameter indicates the minimal portion of the login_name’s <P, G, O> name triple
that is required to identify the account. (Even though key_parts is specified as both an input and
output parameter, it is used only as an input parameter for this operation.)

The modify_parts parameter indicates which portion(s) of the account’s datastore information is
to be updated:

• If the rs_acct_part_user bit is set, the account’s user-level information is to be replaced with
user_part (if this bit is reset, user_part is ignored).

• If the rs_acct_part_admin bit is set, the account’s administration-level information is to be
replaced with admin_part (if this bit is reset, admin_part is ignored).

• If the rs_acct_part_passwd bit is set, the account’s long-term cryptographic key is to be
replaced with the keying information contained in (or generatable from) key and new_keytype
(if this bit is reset, key and new_keytype are ignored).

• If the rs_acct_part_login_name bit is set, the minimal portion of the account’s <P, G, O>
name triple that is required to identify the account is to be replaced with key_parts (if this bit
is reset, key_parts is ignored).

The user_part parameter indicates new user-level information.

The admin_part parameter indicates new administrative-level information.

The key parameter indicates a new long-term cryptographic key. (See the description of the key
parameter of rs_acct_add ( ).)

The new_keytype parameter indicates the type of the long-term cryptographic key determined by
key. (See the description of the new_keytype parameter of rs_acct_add ( ).)

The new_key_version parameter indicates the version number or number of the long-term
cryptographic key determined by key. (See the description of the new_key_version parameter of
rs_acct_add ( ).)

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has the following permission(s)
on the principal component of the account to be modified ((*login_name).pname):

• Management Info (m), if (*admin_part).flags or (*admin_part).expiration_date is to be changed
(to a value different from the previously stored value).

• Authentication Info (a), if (*admin_part).authentication_flags or
(*admin_part).good_since_date is to be changed (to a value different from the previously
stored value).

• User Info (u), if the key or any field of (*user_part) is to be written (that is, if the
rs_acct_part_passwd or rs_acct_part_user bit of the modify_parts parameter is set).

406 CAE Specification (1997)



RS Editor RPC Interfaces The rs_acct RPC Interface

11.6.8 rs_acct_get_projlist( )

The rs_acct_get_projlist ( ) operation retrieves an account’s project list; that is, the primary group
and the concurrent secondary group list associated with the principal component of the account
((*login_name).pname).

[idempotent] void
rs_acct_get_projlist (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *login_name,
[in, out] sec_rgy_cursor_t *projlist_cursor,
[in] signed32 max_number,
[out] signed32 *supplied_number,
[out, length_is(*supplied_number),size_is(max_number)]

uuid_t id_projlist[ ],
[out, length_is(*supplied_number),size_is(max_number)]

signed32 unix_projlist[ ],
[out] signed32 *num_projects,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

} /* end running listing of rs_acct interface */

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the (name of the) account whose project list is to be
retrieved.

The projlist_cursor parameter indicates, on input, the current cursor position (so that the
concurrent groups at and following this position are eligible to be retrieved on the current
invocation of this operation). On output, projlist_cursor indicates the cursor position next
following the retrieved concurrent group(s). (See Section 11.2.7 on page 362.)

The max_number parameter indicates the maximum number of concurrent groups to be
retrieved.

The supplied_number parameter indicates the number of retrieved concurrent groups.

The id_projlist parameter indicates the UUIDs of retrieved concurrent groups.

The unix_projlist parameter indicates the local-IDs of retrieved concurrent groups.

The num_projects parameter indicates the total number of concurrent groups associated with the
account (that is, with (*login_name).pname). (The projlist_cursor parameter is used to coordinate
multiple invocations to retrieve the complete project list of concurrent groups.)

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Required rights: This operation succeeds only if the calling client has Read (r) permission on the
principal component of the account ((*login_name).pname).

Part 2 Security Services and Protocols 407



The rs_misc RPC Interface RS Editor RPC Interfaces

11.7 The rs_misc RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_misc RPC interface.

11.7.1 Common Data Types and Constants for rs_misc

The following are common data types and constants used in the rs_misc interface.

11.7.1.1 rs_login_info_t

The rs_login_info_t data type represents account data, appropriate for network and local
system login usage. It is performance-optimised (see rs_pgo_query_result_t) so that in the
success case (status = error_status_ok), rs_login_info_t represents account data; in the error case
(status ≠ error_status_ok) it is empty (thereby preventing unnecessary
marshalling/unmarshalling of data in the error case).

typedef union switch (long status) tagged_union {
case error_status_ok:

struct {
sec_rgy_acct_key_t key_parts;
sec_rgy_sid_t sid;
sec_rgy_unix_sid_t unix_sid;
sec_rgy_acct_user_t user_part;
sec_rgy_acct_admin_t admin_part;
sec_rgy_plcy_t policy_data;
sec_rgy_name_t cell_name;
uuid_t cell_uuid;

} result;
default:

/*empty*/ /*empty*/;
} rs_login_info_t;

The fields of result are the following:

• key_parts
Indicates the minimal portion of the account’s <P, G, O> name triple that is required to
identify the account.

• sid
The account’s UUIDs.

• unix_sid
The account’s local-IDs.

• user_part
The account’s user-level information.

• admin_part
The account’s administration-level information.

• policy_data
The account’s effective policy data.

• cell_name
The account’s home cell’s name.

• cell_uuid
The account’s home cell’s UUID.

408 CAE Specification (1997)



RS Editor RPC Interfaces The rs_misc RPC Interface

11.7.1.2 rs_update_seqno_t

The rs_update_seqno_t data type represents an event’s monotonically increasing sequence
number assigned by the master.

typedef struct
{

unsigned32 high;
unsigned32 low;

} rs_update_seqno_t;

11.7.2 Interface UUID and Version Number for rs_misc

The interface UUID and version number for the rs_misc interface are given by the following:

[
uuid(4c878280-5000-0000-0d00-028714000000),
version(1.0)

]
interface rs_misc {
/* begin running listing of rs_misc interface */

11.7.3 rs_login_get_info()

The rs_login_get_info ( ) operation retrieves (reads) account data from the RS server/datastore.

[idempotent] void
rs_login_get_info (

[in] handle_t rpc_handle,
[in, out] sec_rgy_login_name_t *login_name,
[out] rs_cache_data_t *cache_info,
[out] rs_login_info_t *result,
[in] signed32 max_number,
[out] signed32 *supplied_number,
[out, length_is(*supplied_number),size_is(max_number)]

uuid_t id_projlist[ ],
[out, length_is(*supplied_number),size_is(max_number)]

signed32 unix_projlist[ ],
[out] signed32 *num_projects );

}

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the (name of the) account whose information is to be
retrieved.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The result parameter represents the bulk of the information returned by this operation.

Note: The project list information returned by this operation does not occur in the
rs_login_info_t data type because the IDL language does not permit conformant
arrays in union arms.

The max_number parameter indicates the maximum number of concurrent groups to be
retrieved.

Part 2 Security Services and Protocols 409



The rs_misc RPC Interface RS Editor RPC Interfaces

The supplied_number parameter indicates the number of retrieved concurrent groups.

The id_projlist parameter indicates the UUIDs of retrieved concurrent groups.

The unix_projlist parameter indicates the local-IDs of retrieved concurrent groups.

The num_projects parameter indicates the total number of concurrent groups associated with the
account (that is, with (*login_name).pname).

The status of this operation is indicated by the status of the result parameter.

Required rights: This operation supports name-based authorisation for local principals only (that
is, those in the same cell as this RS server), in addition to the usual EPAC-based authorisation
supported by other RS RPC operations (that is a special characteristic of this operation). In either
case, this operation succeeds only if the calling client has Read (r) permission on the principal
component of the account ((*login_name).pname).

This operation provides all of the credentials and login policy information required for both
network and local logins. Apart from its characteristic support of name-based authorisation,
this operation is a mere optimisation; it duplicates in a single operation the core functionality
that is embodied in four other RS operations, namely rs_properties_get_info ( ), rs_policy_get_info ( ),
rs_acct_lookup ( ) and rs_acct_get_projlist ( ).

11.7.4 rs_wait_until_consistent( )

The rs_wait_until_consistent ( ) operation returns a value of TRUE once all replicas have been
updated. Otherwise, at least one replica is incommunicado.

boolean32
rs_wait_until_consistent (

[in] handle_t rpc_handle,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.7.5 rs_check_consistency( )

The rs_check_consistency( ) operation performs a non-blocking check for replica consistency.

boolean32
rs_check_consistency (

[in] handle_t rpc_handle,
[out] boolean32 *retry,
[in,out] rs_update_seqno_t *seqno,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

} /* end running listing of rs_misc interface */

The rpc_handle parameter identifies the RS server.

The retry parameter, if TRUE, indicates that a replica is responsive but not consistent (out of
sync).

410 CAE Specification (1997)



RS Editor RPC Interfaces The rs_misc RPC Interface

As input, the seqno parameter is set to NULL by the client. As output, seqno contains the
reference sequence number required for subsequent polling attempts to a responsive but
inconsistent replica.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

The client calls rs_check_consistency( ) initially with a NULL seqno. The operation returns a retry
value of TRUE and a reference seqno to be used for subsequent polling attempts to any replica
that is responsive but inconsistent (out of sync).

This routine returns a value of TRUE if none of the polled replicas are incommunicado.

Part 2 Security Services and Protocols 411



The rs_attr RPC Interface RS Editor RPC Interfaces

11.8 The rs_attr RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_attr RPC interface.

11.8.1 Common Data Types and Constants for rs_attr

The following are common data types and constants used in the rs_attr interface.

11.8.1.1 sec_attr_component_name_t

The sec_attr_component_name_t data type is a pointer to a character string used to further
specify the object to which the attribute is attached. (Note that this data type is analogous to the
sec_acl_component_name_t data type in the ACL interface.)

typedef [string, ptr] unsigned char *sec_attr_component_name_t;

11.8.1.2 rs_attr_cursor_t

The rs_attr_cursor_t data type provides a datastore scan cursor (that is, a position indicator) for
iterative database operations for schema and attribute interfaces.

typedef struct {
uuid_t source;
unsigned32 object;
unsigned32 list;
unsigned32 entry;
unsigned32 num_entries_left;
boolean32 valid;

} rs_attr_cursor_t;

Its fields are the following:

• source
Object UUID of the RS server that initialized the cursor.

• object
The RS object upon which an operation is currently being performed. For schema operations,
this object is identified by the schema_name parameter of the operation; for attribute
operations, it is identified by the component_name parameter.

• list
Optionally identifies a list of entries to be operated on, identified by the attr_list parameter of
the operation (not used for schema operations).

• entry
The datastore entry for the current operation. For schema operations, this is the sequential id
of the current schema entry. For attribute operations, this is the number of entries remaining
in the datastore.

• num_entries_left
The approximate number of datastore entries that remain to be seen.

• valid
If 0, an uninitialized cursor. Set to 1 at initialization.

412 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr RPC Interface

11.8.1.3 sec_attr_bind_auth_info_type_t

The sec_attr_bind_auth_info_type_t data type is an enumeration that defines whether or not an
RPC binding is authenticated. This data type is used in conjunction with the
sec_attr_bind_auth_info_t data type to set up the authorization method and parameters for an
RPC binding.

typedef enum {
sec_attr_bind_auth_none,
sec_attr_bind_auth_dce

} sec_attr_bind_auth_info_type_t;

The following values are currently registered:

• sec_attr_bind_auth_none
The binding is not authenticated.

• sec_attr_bind_auth_dce
The binding uses DCE shared-secret key authentication.

11.8.1.4 sec_attr_bind_auth_info_t

The sec_attr_bind_auth_info_t data type is a discriminated union that defines authorization and
authentication parameters for an RPC binding. This data type is used in conjunction with the
sec_attr_bind_auth_info_type_t data type to set up the authorization method and parameters
for an RPC binding.

typedef union
switch (sec_attr_bind_auth_info_type_t info_type)
tagged_union {

case sec_attr_bind_auth_none:
;

case sec_attr_bind_auth_dce:
struct {

[string, ptr] char *svr_princ_name;
unsigned32 protect_level;
unsigned32 authn_svc;
unsigned32 authz_svc;

} dce_info;
} sec_attr_bind_auth_info_t;

The sec_attr_bind_auth_info_t data type consists of the following elements:

• info_type
Specifies whether or not the binding is authenticated.

• dce_info
A tagged union specifying the method of authorization and the authorization parameters.
For unauthenticated bindings (info_type is sec_attr_bind_auth_none), no parameters are
supplied. For authenticated bindings (info_type is sec_attr_bind_auth_dce), the following
union is supplied:

— svr_princ_name
The principal name of the RS server referenced by the binding handle.

— protect_level
The protection level for RPC calls made using the binding handle. The protection level
determines the degree to which authenticated communications between the client and the

Part 2 Security Services and Protocols 413



The rs_attr RPC Interface RS Editor RPC Interfaces

server are protected by the authentication service specified by authn_svc.

If the RPC runtime or the RPC protocol in the bound protocol sequence does not support
a specified protect_level, the level is automatically upgraded to the next higher
supported level. The possible protection levels are as follows:

• rpc_c_protect_level_default
Uses the default protection level for the specified authentication service. (The default
protection level for DCE shared-secret key authentication is
rpc_c_protect_level_pkt.)

• rpc_c_protect_level_none
Performs no authentication; tickets are not exchanged, session keys are not
established, client EPACs or names are not certified, and transmissions are in the
clear. Note that although uncertified EPACs should not be trusted, they may be
useful for debugging, tracing, and measurement purposes.

• rpc_c_protect_level_connect
Authenticates only when the client establishes a relationship with the server.

• rpc_c_protect_level_call
Authenticates only at the beginning of each RPC call when the RS server receives the
request.

This level does not apply to RPC calls made over a connection-based protocol
sequence (that is, ncacn_ip_tcp). If this level is specified and the binding handle uses
a connection-based protocol sequence, the routine uses the rpc_c_protect_level_pkt
level instead.

• rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

• rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred between client and server has
been modified. This is the highest protection level that is guaranteed to be present in
the RPC runtime.

• rpc_c_protect_level_pkt_privacy
Authenticates as specified by all of the previous levels and also encrypts each RPC
argument value. This is the highest protection level, but is not guaranteed to be
present in the RPC runtime.

— authn_svc
Specifies the authentication service to use. The exact level of protection provided by the
authentication service is specified by protect_level (see above). The supported
authentication services are as follows:

• rpc_c_authn_none
No authentication; no tickets are exchanged, no session keys established, client
EPACs or names are not transmitted, and transmissions are in the clear. Specify
rpc_c_authn_none to turn authentication off for RPC calls made using this binding.

• rpc_c_authn_dce_secret
DCE shared-secret key authentication.

414 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr RPC Interface

• rpc_c_authn_default
Default authentication service. The current default authentication service is DCE
shared-secret key; therefore, specifying rpc_c_authn_default is equivalent to
specifying rpc_c_authn_dce_secret .

— authz_svc
Specifies the authorization service implemented by the server for the interface. The
validity and trustworthiness of authorization data, like any application data, is dependent
on the authentication service and protection level specified. The supported authorization
services are as follows:

• rpc_c_authz_none
Server performs no authorization. This is valid only if authn_svc is set to
rpc_c_authn_none (see above), specifying that no authentication is being performed.

• rpc_c_authz_name
Server performs authorization based on the client principal name. This value cannot
be used if authn_svc is rpc_c_authn_none (see above).

• rpc_c_authz_dce
Server performs authorization using the client’s DCE Extended Privilege Attribute
Certificate (EPAC) sent to the server with each RPC call made with this binding.
Generally, access is checked against DCE Access Control Lists (ACLs).

11.8.1.5 sec_attr_bind_type_t

The sec_attr_bind_type_t data type specifies the binding type for attribute operations.

typedef unsigned32 sec_attr_bind_type_t;
const unsigned32 sec_attr_bind_type_string = 0;
const unsigned32 sec_attr_bind_type_twrs = 1;
const unsigned32 sec_attr_bind_type_svrname = 2;

The following values are currently registered:

• sec_attr_bind_type_string
RPC string binding.

• sec_attr_bind_type_twrs
DCE protocol tower representation of bindings.

• sec_attr_bind_type_svrname
Name of trigger server for lookup in a directory service.

11.8.1.6 sec_attr_twr_ref_t

The sec_attr_twr_ref_t data type represents a pointer to an RPC protocol tower (twr_t, defined
in Appendix L, Protocol Tower Encoding, of the referenced X/Open DCE RPC Specification).

typedef [ptr] twr_t *sec_attr_twr_ref_t;

11.8.1.7 sec_attr_twr_set_t

The sec_attr_twr_set_t data type is a structure that defines an array of towers. This data is used
by the client to pass an unallocated array of towers, which the server must allocate.

Part 2 Security Services and Protocols 415



The rs_attr RPC Interface RS Editor RPC Interfaces

typedef struct {
unsigned32 count;
[size_is(count)] sec_attr_twr_ref_t towers[ ];

} sec_attr_twr_set_t;

typedef [ptr] sec_attr_twr_set_t *sec_attr_twr_set_p_t;

Its fields are the following:

• count
The number of towers in the array.

• towers[ ]
Pointers to RPC protocol towers.

11.8.1.8 sec_attr_bind_svrname

The sec_attr_bind_svrname data type specifies the name of the server for lookup in a directory
service.

typedef struct {
unsigned32 name_syntax;
[string, ptr] char *name;

} sec_attr_bind_svrname;

This data type contains the following elements:

• name_syntax
The binding type used for this server (see Section 11.8.1.5 on page 415).

• name
The actual string representation of the server name.

11.8.1.9 sec_attr_binding_t

The sec_attr_binding_t data type is the trigger server’s binding union.

typedef union
switch (sec_attr_bind_type_t bind_type)
tagged_union {

case sec_attr_bind_type_string:
[string, ptr] char *string_binding;

case sec_attr_bind_type_twrs:
[ptr] sec_attr_twr_set_t *twr_set;

case sec_attr_bind_type_svrname:
[ptr] sec_attr_bind_svrname *svrname;

} sec_attr_binding_t;

typedef [ptr] sec_attr_binding_t *sec_attr_binding_p_t;

This data type contains the following elements:

• string_binding
RPC string binding.

• twr_set
DCE protocol tower representation of binding.

416 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr RPC Interface

• svrname
Name of trigger server in directory namespace.

11.8.1.10 sec_attr_bind_info_t

The sec_attr_bind_info_t data type specifies attribute trigger binding information.

typedef struct {
sec_attr_bind_auth_info_t auth_info;
unsigned32 num_bindings;
[size_is(num_bindings)] sec_attr_binding_t bindings[ ];

} sec_attr_bind_info_t;

This data type contains the following elements:

• auth_info
The binding authorization information.

• num_bindings
The number of binding handles in bindings.

• bindings[ ]
An array of RPC binding handles.

11.8.1.11 sec_attr_enc_printstring_p_t

The sec_attr_enc_printstring_p_t data type is a pointer to a printstring encoding type structure.

typedef [string, ptr] unsigned char *sec_attr_enc_printstring_p_t;

11.8.1.12 sec_attr_enc_str_array_t

The sec_attr_enc_str_array_t data type defines a printstring array.

typedef struct {
unsigned32 num_strings;
[size_is(num_strings)]
sec_attr_enc_printstring_p_t strings[ ];

} sec_attr_enc_str_array_t;

This data type contains the following elements:

• num_strings
The number of strings in the array.

• strings[ ]
An array of pointers to printstrings.

11.8.1.13 sec_attr_enc_bytes_t

The sec_attr_enc_bytes_t data type defines the length of attribute encoding values for attributes
whose values are defined to be byte strings.

typedef struct {
unsigned32 length;
[size_is(length)] byte data[ ];

} sec_attr_enc_bytes_t;

This data type contains the following elements:

Part 2 Security Services and Protocols 417



The rs_attr RPC Interface RS Editor RPC Interfaces

• length
The size of the data array.

• data[ ]
The length of attribute encoding data.

11.8.1.14 sec_attr_i18n_data_t

The sec_attr_i18n_data_t data type defines the codeset and value length of the encoding values
of attributes whose values are defined to be internationalized byte strings.

typedef struct {
unsigned32 codeset;
unsigned32 length;
[size_is(length)] byte data[];

} sec_attr_i18n_data_t;

This data type contains the following elements:

• codeset
Identifier for the OSF-registered codeset used to encode the data.

• length
The size of the data array.

• data[ ]
The length of attribute encoding data.

11.8.1.15 sec_attr_enc_attr_set_t

The sec_attr_enc_attr_set_t data type supplies the UUIDs of each member of a set of attributes.

typedef struct {
unsigned32 num_members;
[size_is(num_members)] uuid_t members[ ];

} sec_attr_enc_attr_set_t;

This data type contains the following elements:

• num_members
The total number of attributes in the attribute set.

• members[ ]
An array containing the UUID for each member in the set.

11.8.1.16 sec_attr_encoding_t

The sec_attr_encoding_t data type is an enumerator that contains attribute encoding tags used
to define the legal encodings for attribute values.

418 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr RPC Interface

typedef enum {
sec_attr_enc_any,
sec_attr_enc_void,
sec_attr_enc_integer,
sec_attr_enc_printstring,
sec_attr_enc_printstring_array,
sec_attr_enc_bytes,
sec_attr_enc_confidential_bytes,
sec_attr_enc_i18n_data,
sec_attr_enc_uuid,
sec_attr_enc_attr_set,
sec_attr_enc_binding,
sec_attr_enc_trig_binding

} sec_attr_encoding_t;

This data type contains the following elements:

• sec_attr_enc_any
The attribute value can be of any legal encoding type. This encoding tag is legal for a schema
entry only; an attribute entry must contain a specified encoding type.

• sec_attr_enc_void
The attribute has no value.

• sec_attr_enc_integer
The attribute value is a signed 32-bit integer.

• sec_attr_enc_printstring
The attribute value is a printable IDL string in DCE Portable Character Set.

• sec_attr_enc_printstring_array
The attribute value is an array of printstrings.

• sec_attr_enc_bytes
The attribute value is a string of bytes. The string is assumed to be a pickle or some other
self-describing type.

• sec_attr_enc_confidential_bytes
The attribute value is a string of bytes that have been encrypted in the key of the principal
object to which the attribute is attached. The string is assumed to be a pickle or some other
self-describing type. This encoding type is useful only when attached to a principal object,
where it is decrypted and encrypted each time the principal’s password changes.

• sec_attr_enc_i18n_data
The attribute value is an internationalized string of bytes with a tag identifying the OSF-
registered codeset used to encode the data.

• sec_attr_enc_uuid
The attribute value is a UUID, of type uuid_t.

• sec_attr_enc_attr_set
The attribute value is an attribute set, a vector of attribute UUIDs used to associate multiple
related attribute instances which are members of the set.

• sec_attr_enc_binding
The attribute value is a sec_attr_bind_info_t data type that specifies DCE server binding
information.

Part 2 Security Services and Protocols 419



The rs_attr RPC Interface RS Editor RPC Interfaces

• sec_attr_enc_trig_binding
This encoding type, returned by an rs_attr_lookup call, informs the client agent of the trigger
binding information of an attribute with a query trigger.

Attribute values must conform to the attribute’s encoding type.

11.8.1.17 sec_attr_value_t

The sec_attr_value_t data type defines the values of attributes.

typedef union sec_attr_u
switch (sec_attr_encoding_t attr_encoding)
tagged_union {

case sec_attr_enc_void:
;

case sec_attr_enc_integer:
signed32 signed_int;

case sec_attr_enc_printstring:
sec_attr_enc_printstring_p_t printstring;

case sec_attr_enc_printstring_array:
[ptr] sec_attr_enc_str_array_t *string_array;

case sec_attr_enc_bytes:
case sec_attr_enc_confidential_bytes:

[ptr] sec_attr_enc_bytes_t *bytes;
case sec_attr_enc_i18n_data:

[ptr] sec_attr_i18n_data_t *idata;
case sec_attr_enc_uuid:

uuid_t uuid;
case sec_attr_enc_attr_set:

[ptr] sec_attr_enc_attr_set_t *attr_set;
case sec_attr_enc_binding:

[ptr] sec_attr_bind_info_t *binding;
} sec_attr_value_t;

This data type contains the following elements:

• attr_encoding
An attribute encoding tag that specifies the type of attribute value (see Section 11.8.1.16 on
page 418).

• tagged_union
A tagged union whose contents depend on attr_encoding as follows:

420 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr RPC Interface

If attr_encoding is... Then tagged_union contains...
sec_attr_enc_void NULL
sec_attr_enc_integer signed_int (32-bit signed integer)
sec_attr_enc_printstring printstring (string pointer)

string_array (pointer to an array of printstrings)sec_attr_enc_printstring_array

sec_attr_enc_bytes
sec_attr_enc_confidential_bytes

bytes (pointer to a structure of
type sec_attr_enc_bytes_t)

idata (pointer to a structure of
type sec_attr_i18n_data_t)

sec_attr_enc_i18n_data

sec_attr_enc_uuid uuid (UUID)
attr_set (pointer to a structure of type
sec_attr_enc_attr_set_t)

sec_attr_enc_attr_set

binding (pointer to a structure of
type sec_attr_binding_info_t)

sec_attr_enc_binding

11.8.1.18 sec_attr_t

The sec_attr_t data type defines an attribute.

typedef struct {
uuid_t attr_id;
sec_attr_value_t attr_value;

} sec_attr_t;

This data type contains the following elements:

• attr_id
The UUID of the attribute.

• attr_value
The attribute value.

11.8.1.19 sec_attr_vec_t

The sec_attr_vec_t data type defines an array of attributes.

typedef struct {
unsigned32 num_attrs;
[size_is(num_attrs), ptr]

sec_attr_t *attrs;
} sec_attr_vec_t;

This data type contains the following elements:

• num_attrs
The number of elements in the attrs array.

• attrs
An array of pointers to attributes.

Part 2 Security Services and Protocols 421



The rs_attr RPC Interface RS Editor RPC Interfaces

11.8.2 Interface UUID for rs_attr

The interface UUID for the rs_attr interface is given by the following:

[
uuid(a71fc1e8-567f-11cb-98a0-08001e04de8c)

]
interface rs_attr {

11.8.3 rs_attr_cursor_init( )

The rs_attr_cursor_init ( ) operation initializes a scan cursor.

void
rs_attr_cursor_init (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[out] unsigned32 *cur_num_attrs,
[out] rs_attr_cursor_t *cursor,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The component_name parameter identifies the RS object on which to perform this operation.

The cur_num_attrs parameter contains the current total number of attributes associated with the
RS object at the time of this call.

The cursor parameter contains the cursor initialized to the first attribute in the list of attributes
associated with this object.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.8.4 rs_attr_lookup_by_id( )

The rs_attr_lookup_by_id ( ) operation looks up (reads) attribute(s) by UUID.

void
rs_attr_lookup_by_id (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[in, out] rs_attr_cursor_t *cursor,
[in] unsigned32 num_attr_keys,
[in] unsigned32 space_avail,
[in, size_is(num_attr_keys)]

sec_attr_t attr_keys[ ],
[out] unsigned32 *num_returned,
[out, size_is(space_avail), length_is(*num_returned)]

sec_attr_t attrs[ ],
[out] unsigned32 *num_left,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

422 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr RPC Interface

The component_name parameter identifies the RS object on which to perform this lookup
operation.

As input, the cursor parameter is an initialized or uninitialized cursor to the RS object. As output,
cursor is positioned just past the attributes returned as output to this call.

The num_attr_keys parameter specifies the number of elements in the attr_keys array. If the
num_attr_keys is set to 0, this function will return all attributes that the caller is authorized to see.

The space_avail parameter specifies the size of the output attrs array.

The attr_keys[ ] parameter contains the attribute type UUIDs for the attribute instance(s)
requested by this lookup. If the requested attribute type is associated with a query trigger, the
*attr_keys.attr_value field may be used to pass in optional information required by the trigger
query. If no information is to be passed in the *attr_keys.attr_value field (whether the type
indicates a trigger query or not), the *attr_keys.attr_value encoding type should be set to
sec_attr_enc_void.

The num_returned parameter specifies the number of attribute instances returned in the attrs
array.

The attrs[ ] parameter contains the attributes retrieved by UUID.

The num_left parameter contains the approximate number of attributes matching the search
criteria that could not be returned due to space constraints in the attrs buffer. (This number may
not be precise if the server allows updates between successive query calls.)

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.8.5 rs_attr_lookup_no_expand( )

The rs_attr_lookup_no_expand ( ) operation reads attributes by UUID without expanding attribute
sets to their constituent member attributes.

void
rs_attr_lookup_no_expand (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[in, out] rs_attr_cursor_t *cursor,
[in] unsigned32 num_attr_keys,
[in] unsigned32 space_avail,
[in, size_is(num_attr_keys)]

sec_attr_t attr_keys[ ],
[out] unsigned32 *num_returned,
[out, size_is(space_avail), length_is(*num_returned)]

sec_attr_t attrs[ ],
[out] unsigned32 *num_left,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The component_name parameter identifies the RS object on which to perform this operation.

As input, the cursor parameter is an initialized or uninitialized cursor to the RS object. As output,
cursor is positioned just past the attributes returned as output to this call.

Part 2 Security Services and Protocols 423



The rs_attr RPC Interface RS Editor RPC Interfaces

The num_attr_keys parameter specifies the number of elements in the attr_keys array. If the
num_attr_keys is set to 0, this function will return all attributes that the caller is authorized to see.

The space_avail parameter specifies the size of the output attrs array.

The attr_keys[ ] parameter contains the attribute type UUIDs for the attribute instance(s)
requested by this lookup. If the requested attribute type is associated with a query trigger, the
*attr_keys.attr_value field may be used to pass in optional information required by the trigger
query. If no information is to be passed in the *attr_keys.attr_value field (whether the type
indicates a trigger query or not), the *attr_keys.attr_value encoding type should be set to
sec_attr_enc_void.

The num_returned parameter specifies the number of attribute instances returned in the attrs
array.

The attrs[ ] parameter contains the attributes retrieved by UUID.

The num_left parameter contains the approximate number of attributes matching the search
criteria that could not be returned due to space constraints in the attrs buffer. (This number may
not be precise if the server allows updates between successive query calls.)

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.8.6 rs_attr_lookup_by_name( )

The rs_attr_lookup_by_name ( ) operation looks up (reads) a single attribute by name.

void
rs_attr_lookup_by_name (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[in, string] char *attr_name,
[out] sec_attr_t *attr,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The component_name parameter identifies the RS object on which to perform this operation.

The attr_name parameter is the name of the attribute to be retrieved.

The attr parameter is the first attribute instance of the named type.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

424 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr RPC Interface

11.8.7 rs_attr_update( )

The rs_attr_update( ) operation writes (and/or creates) an attribute. All attributes are written
(created) or else none are modified.

void
rs_attr_update (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[in] unsigned32 num_to_write,
[in, size_is(num_to_write)]

sec_attr_t in_attrs[ ],
[out] signed32 *failure_index,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The component_name parameter identifies the RS object on which to perform this operation.

The num_to_write parameter specifies the number of attributes in the in_attrs array.

The in_attrs[ ] parameter contains the attribute instances to be written.

The failure_index parameter, in an error case, contains the array index of the element in in_attrs
that caused this update to fail. If the failure cannot be attributed to a specific attribute,
failure_index is set to -1.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.8.8 rs_attr_test_and_update( )

The rs_attr_test_and_update ( ) operation updates attributes if a set of control attributes retain
specified values.

void
rs_attr_test_and_update (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[in] unsigned32 num_to_test,
[in, size_is(num_to_test)]

sec_attr_t test_attrs[ ],
[in] unsigned32 num_to_write,
[in, size_is(num_to_write)]

sec_attr_t update_attrs[ ],
[out] signed32 *failure_index,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The component_name parameter identifies the RS object on which to perform this operation.

The num_to_test parameter specifies the number of control attributes in the test_attrs array.

The test_attrs[ ] parameter contains control attributes whose types and values must exactly
match those of instances on the RS object in order for the update to take place.

Part 2 Security Services and Protocols 425



The rs_attr RPC Interface RS Editor RPC Interfaces

The num_to_write parameter specifies the number of attributes in the update_attrs array.

The update_attrs[ ] parameter contains the attribute instances to be written.

The failure_index parameter, in an error case, contains the array index of the element in in_attrs
that caused this update to fail. If the failure cannot be attributed to a specific attribute,
failure_index is set to -1.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.8.9 rs_attr_delete( )

The rs_attr_delete( ) operation deletes attributes.

void
rs_attr_delete (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[in] unsigned32 num_to_delete,
[in, size_is(num_to_delete)]

sec_attr_t attrs[ ],
[out] signed32 *failure_index,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The component_name parameter identifies the RS object on which to perform this operation.

The num_to_delete parameter specifies the number of attributes in the attrs array.

The attrs[ ] parameter contains the attributes to be deleted.

The failure_index parameter, in an error case, contains the array index of the element in in_attrs
that caused this update to fail. If the failure cannot be attributed to a specific attribute,
failure_index is set to -1.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.8.10 rs_attr_get_referral( )

The rs_attr_get_referral( ) operation obtains a referral to an attribute update site.

void
rs_attr_get_referral (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[in] uuid_t *attr_id,
[out] sec_attr_twr_set_p_t *towers,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The component_name parameter identifies the RS object on which to perform this operation.

426 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr RPC Interface

The attr_id parameter specifies the UUID of the attribute for which a referral is being sought.

The towers parameter specifies the binding information for a suitable update site.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.8.11 rs_attr_get_effective( )

The rs_attr_get_effective( ) operation reads the effective attributes by UUID.

void
rs_attr_get_effective (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t component_name,
[in] unsigned32 num_attr_keys,
[in, size_is(num_attr_keys)]

sec_attr_t attr_keys[ ],
[out, ref] sec_attr_vec_t *attr_list,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The component_name parameter identifies the RS object on which to perform this operation.

The num_attr_keys parameter specifies the number of elements in the attr_keys array.

The attr_keys[ ] parameter contains the attribute type UUIDs for the attribute instance(s)
requested by this lookup.

The attr_list parameter contains an attribute vector allocated by the server containing all of the
attributes matching the search criteria.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Part 2 Security Services and Protocols 427



The rs_attr_schema RPC Interface RS Editor RPC Interfaces

11.9 The rs_attr_schema RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_attr_schema RPC interface.

11.9.1 Common Data Types and Constants for rs_attr_schema

The following are common data types and constants used in the rs_attr_schema interface.

11.9.1.1 sec_attr_acl_mgr_info_t

The sec_attr_acl_mgr_info_t structure contains the access control information defined in a
schema entry for an attribute.

typedef struct {
uuid_t acl_mgr_type;
sec_acl_permset_t query_permset;
sec_acl_permset_t update_permset;
sec_acl_permset_t test_permset;
sec_acl_permset_t delete_permset;

} sec_attr_acl_mgr_info_t;

typedef [ptr] sec_attr_acl_mgr_info_t *sec_attr_acl_mgr_info_p_t;

This data type contains the following elements:

• acl_mgr_type
The UUID of the ACL manager type that supports the object type to which the attribute can
be attached. See Table 11-1 on page 358 for a list of ACL Manager Types UUIDs.

• query_permset
The permission bits needed to access the attribute’s value.

• update_permset
The permission bits needed to update the attribute’s value.

• test_permset
The permission bits needed to test the attribute’s value.

• delete_permset
The permission bits needed to delete an attribute instance.

Refer to Chapter 7 for information on Access Control Lists and the definition of the
sec_acl_permset_t data type.

11.9.1.2 sec_attr_sch_entry_flags_t

The sec_attr_sch_entry_flags_t data type is a flag word used to specify schema entry flags.

typedef unsigned32 sec_attr_sch_entry_flags_t;
const unsigned32 sec_attr_sch_entry_none = 0x00000000;
const unsigned32 sec_attr_sch_entry_unique = 0x00000001;
const unsigned32 sec_attr_sch_entry_multi_inst = 0x00000002;
const unsigned32 sec_attr_sch_entry_reserved = 0x00000004;
const unsigned32 sec_attr_sch_entry_use_defaults = 0x00000008;

The following values are currently registered:

• sec_attr_sch_entry_none
No schema entry flags.

428 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr_schema RPC Interface

• sec_attr_sch_entry_unique
Each instance of this attribute type must have a unique value within the cell for the object
type implied by the ACL manager type. If this flag is not set, there is no check for uniqueness
during attribute writes.

• sec_attr_sch_entry_multi_inst
This attribute type may be multi-valued; in other words, multiple instances of the same
attribute type can be attached to a single object. If this flag is not set, only one instance of this
attribute can be attached to a given object.

• sec_attr_sch_entry_reserved
This schema entry can not be deleted through any interface or by any user. If this flag is not
set, then the entry can be deleted by any authorized user.

• sec_attr_sch_entry_use_defaults
The system-defined default value (if any) for this attribute will be returned on a client query
if an instance of this attribute doesn’t exist for the queried object. If this flag is not set, no
search/return of system default values will take place. (If the attribute does not not exist and
this flag is FALSE (0), then no attribute instance will be returned.)

11.9.1.3 sec_attr_intercell_action_t

The sec_attr_intercell_action_t data type specifies the action that should be taken by the
Privilege (PS) Service when it reads acceptable attributes from a foreign cell. A foreign attribute
is acceptable only if there is either a schema entry for the foreign cell or if
sec_attr_intercell_act_accept is set to TRUE.

typedef enum {
sec_attr_intercell_act_accept,
sec_attr_intercell_act_reject,
sec_attr_intercell_act_evaluate

} sec_attr_intercell_action_t;

This data type contains the following elements:

• sec_attr_intercell_act_accept
If the sec_attr_sch_entry_unique entry flag is set for this schema entry, retain the attribute
from the foreign cell only if its value is unique among all attribute instances of this attribute
type within the current cell. If sec_attr_sch_entry_unique is not set, retain the foreign
attribute.

• sec_attr_intercell_act_reject
Unconditionally discard the foreign attribute.

• sec_attr_intercell_act_evaluate
Use the binding information in the trig_binding field of the sec_attr_schema_entry_t for this
schema entry to make a sec_attr_trig_query( ) call to a trigger server. That server determines
whether to retain the attribute value, discard the attribute value, or map the attribute to
another value(s).

11.9.1.4 sec_attr_trig_type_flags_t

The sec_attr_trig_type_flags_t data type is a flag word used to indicate schema trigger types.

Part 2 Security Services and Protocols 429



The rs_attr_schema RPC Interface RS Editor RPC Interfaces

typedef unsigned32 sec_attr_trig_type_flags_t;
const unsigned32 sec_attr_trig_type_none = 0x00000000;
const unsigned32 sec_attr_trig_type_query = 0x00000001;
const unsigned32 sec_attr_trig_type_update = 0x00000002;

The following values are currently registered:

• sec_attr_trig_type_none
No trigger type entry flags.

• sec_attr_trig_type_query
Attribute type is configured with a query trigger. When this flag is set, the following things
happen during a lookup request for this attribute type:

— Client binds to the trigger server using the trig_binding field of the
sec_attr_schema_entry_t structure.

— Client issues a sec_attr_trig_query( ) call, passing in the attribute keys with the attr_value
fields provided by the calling routine that issued the lookup request.

— If the sec_attr_trig_query( ) call is successful, client returns output attributes to the caller.

If this flag is set and an update request is made for this attribute type, the input values of the
update request are ignored and the client creates a ‘‘stub’’ attribute instance as a marker.
Modifications to the attribute value must occur at the trigger server.

• sec_attr_trig_type_update
Attribute type is configured with an update trigger. When this flag is set, the following
things happen during an update request for this attribute type:

— Client binds to the trigger server using the trig_binding field of the
sec_attr_schema_entry_t structure.

— Client issues a sec_attr_trig_update( ) call, passing in the attributes provided by the calling
routine that issued the update request.

— If the sec_attr_trig_update( ) is successful, the client stores the output attribute(s) in the
ERA database and returns the output attribute(s) to the calling routine.

11.9.1.5 sec_attr_acl_mgr_info_set_t

The sec_attr_acl_mgr_info_set_t data type defines an attribute’s ACL manager set.

typedef struct {
unsigned32 num_acl_mgrs;
[size_is(num_acl_mgrs)]
sec_attr_acl_mgr_info_p_t mgr_info[ ];

} sec_attr_acl_mgr_info_set_t;

The structure consists of the following elements:

• num_acl_mgrs
Specifies the number of ACL managers in the ACL manager set.

• mgr_info[ ]
Pointers to a set of ACL manager types and their associated permission sets.

430 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr_schema RPC Interface

11.9.1.6 sec_attr_schema_entry_t

The sec_attr_schema_entry_t data type defines a complete attribute entry for the schema
catalog. The entry is identified by both name and UUID. Although either can be used as a
retrieval key, the name should be used for interactive access to the attribute and the UUID for
programmatic access.

typedef struct {
[string, ptr] char *attr_name;
uuid_t attr_id;
sec_attr_encoding_t attr_encoding;
[ptr] sec_attr_acl_mgr_info_set_t *acl_mgr_set;
sec_attr_sch_entry_flags_t schema_entry_flags;
sec_attr_intercell_action_t intercell_action;
sec_attr_trig_type_flags_t trig_types;
[ptr] sec_attr_bind_info_t *trig_binding;
[string, ptr] char *scope;
[string, ptr] char *comment;

} sec_attr_schema_entry_t;

This data type contains the following elements:

• attr_name
The name of the attribute type.

• attr_id
The UUID of the attribute type.

• attr_encoding
The encoding type for this attribute (see Section 11.8.1.16 on page 418 for a list and
description of attribute encoding tags).

• acl_mgr_set
The ACL manager types (and their associated permission bits) that support objects on which
attributes of this type can be created.

• schema_entry_flags
The schema entry flag settings for this attribute type (see Section 11.9.1.2 on page 428).

• intercell_action
Flag indicating how the Privilege Service will handle attributes from a foreign cell (see
Section 11.9.1.3 on page 429).

• trig_types
Flag indicating whether a trigger can perform update or query operations for this attribute
type (see Section 11.9.1.4 on page 429).

• trig_binding
Binding information for the attribute trigger.

• scope
Definition of the objects to which this attribute type can be attached.

• comment
Comment text.

Part 2 Security Services and Protocols 431



The rs_attr_schema RPC Interface RS Editor RPC Interfaces

11.9.1.7 sec_attr_schema_entry_parts_t

The sec_attr_schema_entry_parts_t data type is a flag word used during an update to specify
which fields of an input schema entry (of type sec_attr_schema_entry_t) contain modified
information for the update.

typedef unsigned32 sec_attr_schema_entry_parts_t;

const unsigned32 sec_attr_schema_part_name = 0x00000001;
const unsigned32 sec_attr_schema_part_acl_mgrs = 0x00000002;
const unsigned32 sec_attr_schema_part_unique = 0x00000004;
const unsigned32 sec_attr_schema_part_reserved = 0x00000008;
const unsigned32 sec_attr_schema_part_defaults = 0x00000010;
const unsigned32 sec_attr_schema_part_intercell = 0x00000020;
const unsigned32 sec_attr_schema_part_trig_types = 0x00000040;
const unsigned32 sec_attr_schema_part_trig_bind = 0x00000080;
const unsigned32 sec_attr_schema_part_comment = 0x00000100;

This data type contains the following flags:

• sec_attr_schema_part_name
Modified information for the attr_name field.

• sec_attr_schema_part_acl_mgrs
Modified information for the acl_mgr_set field.

• sec_attr_schema_part_unique
Not applicable in the current release.

• sec_attr_schema_part_reserved
Modified information for the sec_attr_sch_entry_reserved setting of the schema_entry_flags
field.

• sec_attr_schema_part_defaults
Modified information for the sec_attr_sch_entry_use_defaults setting of the
schema_entry_flags field.

• sec_attr_schema_part_intercell
Modified information for the intercell_action field.

• sec_attr_schema_part_trig_types
Not applicable in the current release.

• sec_attr_schema_part_trig_bind
Modified information for the trig_binding field.

• sec_attr_schema_part_comment
Modified information for the comment field.

432 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr_schema RPC Interface

11.9.2 Interface UUID for rs_attr_schema

The interface UUID for the rs_attr_schema interface is given by the following:

[
uuid(b47c9460-567f-11cb-8c09-08001e04de8c)

]
interface rs_attr_schema {

11.9.3 rs_attr_schema_create_entry( )

The rs_attr_schema_create_entry( ) operation creates a new schema entry.

void
rs_attr_schema_create_entry (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in] sec_attr_schema_entry_t *schema_entry,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

The schema_entry parameter identifies the schema entry to be created. Values must be supplied
for all of the fields of the input sec_attr_schema_entry_t structure, with the exception of the
trig_types, trig_bind, and comment fields, which are all optional.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.9.4 rs_attr_schema_delete_entry( )

The rs_attr_schema_delete_entry( ) operation deletes a schema entry. This is a radical operation
that will delete or invalidate any existing attributes of this type on nodes dominated by the
schema.

void
rs_attr_schema_delete_entry (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in] uuid_t *attr_id,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object to be deleted.

The attr_id parameter contains the UUID for the attribute type of the entry being deleted.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

Part 2 Security Services and Protocols 433



The rs_attr_schema RPC Interface RS Editor RPC Interfaces

11.9.5 rs_attr_schema_update_entry( )

The rs_attr_schema_update_entry( ) operation updates the modifiable fields of a schema entry.

void
rs_attr_schema_update_entry (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in] sec_attr_schema_entry_parts_t modify_parts,
[in] sec_attr_schema_entry_t *schema_entry,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

The modify_parts parameter is a flag which identifies which fields of the schema_entry parameter
are to be updated. Fields not indicated by modify_parts, or fields which are not permitted to be
modified, will retain their current values.

The schema_entry parameter specifies a sec_attr_schema_entry_t data structure whose fields are
NULL except for those fields which are being modified (as indicated by the modify_parts
parameter).

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

If a field is indicated by its flag in modify_parts, that field from the input schema entry will
completely replace the current field of the existing schema entry. All other fields will remain
untouched.

Note: Fields which are arrays of structures (such as acl_mgr_set) and trig_binding) will be
completely replaced by the new input array. This operation will not simply add one
more element to the existing array.

11.9.6 rs_attr_schema_cursor_init( )

The rs_attr_schema_cursor_init ( ) operation initializes a scan cursor.

void
rs_attr_schema_cursor_init (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[out] unsigned32 *cur_num_entries,
[out] rs_attr_cursor_t *cursor,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

The cur_num_entries parameter specifies the current total number of entries in the schema at the
time of this call.

The cursor parameter contains the cursor initialized to the first in the list of entries in the named
schema.

434 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr_schema RPC Interface

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.9.7 rs_attr_schema_scan( )

The rs_attr_schema_scan( ) operation reads a specified number of entries from the named schema
object.

void
rs_attr_schema_scan (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in, out] rs_attr_cursor_t *cursor,
[in] unsigned32 num_to_read,
[out] unsigned32 *num_read,
[out, size_is(num_to_read), length_is(*num_read)]

sec_attr_schema_entry_t schema_entries[ ]
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

As input, the cursor parameter is an initialized or uninitialized cursor to the schema object. As
output, cursor is positioned just past the attributes returned as output to this call.

The num_to_read parameter specifies the size of the schema_entries array; that is, the maximum
number of entries to be returned in this call.

The num_read parameter specifies the actual number of entries returned in the schema_entries
array.

The schema_entries[ ] array contains the entries read.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.9.8 rs_attr_schema_lookup_by_name( )

The rs_attr_schema_lookup_by_name ( ) operation performs a lookup (read) on a schema entry
identified by name.

void
rs_attr_schema_lookup_by_name (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in, string] char *attr_name,
[out] sec_attr_schema_entry_t *schema_entry,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

The attr_name parameter is the name that identifies the entry to be read.

Part 2 Security Services and Protocols 435



The rs_attr_schema RPC Interface RS Editor RPC Interfaces

The schema_entry parameter contains the entry identified by attr_name.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.9.9 rs_attr_schema_lookup_by_id( )

The rs_attr_schema_lookup_by_id ( ) operation performs a lookup (read) on a schema entry
identified by its UUID.

void
rs_attr_schema_lookup_by_id (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in] uuid_t *attr_id,
[out] sec_attr_schema_entry_t *schema_entry,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

The attr_id parameter contains the UUID of the attribute type identifying the entry to be read.

The schema_entry parameter contains the entry identified by attr_id.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.9.10 rs_attr_schema_get_referral( )

The rs_attr_schema_get_referral( ) operation obtains a referral to a schema update site. This
function is used when the current schema site yields a sec_schema_site_readonly error. Some
replication managers will require all updates for a given object to be directed to a given replica.
Clients of the generic schema interface may not know they are dealing with an object that is
replicated in this way. This function allows them to recover from this problem and rebind to the
proper update site.

void
rs_attr_schema_get_referral (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in] uuid_t *attr_id,
[out] sec_attr_twr_set_p_t *towers,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

The attr_id parameter contains the UUID that identifies the schema entry.

The towers parameter contains a pointer to an RPC protocol tower for the schema update site.

The status parameter returns the status of the operation.

436 CAE Specification (1997)



RS Editor RPC Interfaces The rs_attr_schema RPC Interface

11.9.11 rs_attr_schema_get_acl_mgrs( )

The rs_attr_schema_get_acl_mgrs ( ) operation retrieves a list of the ACL Manager types that
protect those objects that are associated with the named schema. The returned list is valid for
use in the acl_mgr_set field of a sec_attr_schema_entry_t schema entry.

void
rs_attr_schema_get_acl_mgrs (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in] unsigned32 size_avail,
[out] unsigned32 *size_used,
[out] unsigned32 *num_acl_mgr_types,
[out, size_is(size_avail), length_is(*size_used)]

uuid_t acl_mgr_types[ ]
[out] rs_cache_data_t *cache_info,
[outs error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

The size_avail parameter specifies the size of the acl_mgr_types array; that is, the maximum
number of ACL manager types that can be returned by this call.

The size_used parameter specifies the actual number of ACL Manager types returned in the array.

The num_acl_mgr_types parameter specifies the total number of ACL Manager types supported
for this schema. If this value is greater than size_used, this operation should be called again with
a larger acl_mgr_types buffer.

The acl_mgr_types[ ] array contains the UUIDs for the ACL Manager types that protect the objects
associated with this schema.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.9.12 rs_attr_schema_aclmgr_strings( )

The rs_attr_schema_aclmgr_strings( ) operation retrieves printable representations for each
permission bit that the input ACL Manager type will support.

Part 2 Security Services and Protocols 437



The rs_attr_schema RPC Interface RS Editor RPC Interfaces

void
rs_attr_schema_aclmgr_strings (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in, ref] uuid_t *acl_mgr_type,
[in] unsigned32 size_avail,
[out] uuid_t *acl_mgr_type_chain,
[out] sec_acl_printstring_t *acl_mgr_info,
[out, ref] boolean32 *tokenize,
[out] unsigned32 *total_num_printstrings,
[out, ref] unsigned32 *size_used,
[out, size_is(size_avail), length_is(*size_used)]

sec_acl_printstring_t permstrings[ ],
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter identifies the schema object on which to perform this operation.

The acl_mgr_type parameter contains the UUID of the ACL Manager type for which the
printstrings are to be returned.

The size_avail parameter specifies the size of the permstrings array; that is, the maximum number
of printstrings that can be returned by this call.

The acl_mgr_type_chain parameter, if not set to uuid_nil, identifies the UUID of the next ACL
Manager type in a chain supporting ACL Managers with more than 32 permission bits.

The acl_mgr_info parameter contains printstrings provides the name, help information, and
complete set of supported permission bits for this ACL Manager type.

If set, the tokenize parameter specifies that the permission bit strings should be tokenized.

The total_num_printstrings parameter specifies the total number of permission printstrings
supported by this ACL manager type. If this value is greater than size_avail, this function should
be invoked again with a buffer of the appropriate size.

The size_used parameter contains the number of printstrings returned in the permstrings array.

The permstrings[ ] array contains the printstrings for each permission supported by this ACL
manager type.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

There may be aliases for common permission combinations; by convention simple entries should
appear at the beginning of the array, and combinations should appear at the appear at the end.
When the tokenize flag is FALSE, the permission printstrings are unambiguous; therefore
printstrings for various permissions can be concatenated. When tokenize is TRUE, however, this
property does not hold and the strings should be tokenized before input or output.

If the ACL Manager type supports more than 32 permission bits, multiple manager types can be
used — one for each 32-bit wide slice of permissions. When this is the case, the
acl_mgr_type_chain parameter is set to the UUID of the next ACL Manager type in the set. The
final result for the chain returns uuid_nil in the manager_type_chain parameter.

438 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_acct RPC Interface

11.10 The rs_prop_acct RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_prop_acct RPC interface.

11.10.1 Common Data Types and Constants for rs_prop_acct

The following are common data types and constants used in the rs_prop_acct interface.

11.10.1.1 rs_prop_acct_add_data_t

The rs_prop_acct_add_data_t data type is used for bulk account add propagations during
replica initialization.

The RS server stores only the current key version for most principals. If the principal has
multiple key versions, the additional versions must be propagated using
rs_prop_acct_add_key_version( ) (defined in Section 11.10.7 on page 443). Only current keys may
be propagated via rs_prop_acct_add( ) (see Section 11.10.3 on page 441 for its definition).

typedef struct {
sec_rgy_login_name_t login_name;
sec_rgy_acct_user_t user_part;
sec_rgy_acct_admin_t admin_part;
rs_acct_key_transmit_t *key;
[ptr] rs_acct_key_transmit_t *unix_passwd;
sec_rgy_foreign_id_t client;
sec_passwd_type_t keytype;
} rs_prop_acct_add_data_t;

This data type contains the following elements:

• login_name
The principal name of the account.

• user_part
The user portion of the account (see Section 11.6.1.15 on page 397).

• admin_part
The administrative portion of the account (see Section 11.6.1.5 on page 392).

• key
Indicates a new long-term cryptographic key. (See the description of the key parameter of
rs_acct_add ( ).)

• unix_passwd
If not NULL, contains the pickled and encrypted UNIX password (generated by the UNIX
crypt( ) function). The plain arm of the decrypted and unpickled sec_passwd_rec_t contains
the UNIX passwd.

• client
During initialization, client is filled with nil_uuids to indicate that keys are encrypted under
a session key. For incremental add propagations, client identifies the principal under whose
key the account’s key is encrypted.

• keytype
Indicates the type of the long-term cryptographic key determined by key. (See the description
of the new_keytype parameter of rs_acct_add ( ).)

Part 2 Security Services and Protocols 439



The rs_prop_acct RPC Interface RS Editor RPC Interfaces

11.10.1.2 rs_prop_acct_key_data_t

The rs_prop_acct_key_data_t data type is used for bulking up multiple key propagations in the
rs_prop_acct_key_add_version( ) routine.

typedef struct {
rs_acct_key_transmit_t *key;
boolean32 current;
sec_timeval_sec_t garbage_collect;

} rs_prop_acct_key_data_t;

This data type contains the following elements:

• key
Indicates a new long-term cryptographic account key.

• current
If current is true the key is added as the current version and garbage_collect is ignored (current
keys are never garbage collected). If current is false, the key is stored as a back-version of the
account’s key using garbage_collect.

• garbage_collect
The expiration time of the key.

11.10.1.3 rs_replica_master_info_t and rs_replica_master_info_p_t

The rs_replica_master_info_t and rs_replica_master_info_p_t data type describes the current
master replica.

typedef struct
{

uuid_t master_id;
rs_update_seqno_t master_seqno;
unsigned32 master_compat_sw_rev;
sec_timeval_t update_ts;
rs_update_seqno_t update_seqno;
rs_update_seqno_t previous_update_seqno;

} rs_replica_master_info_t, *rs_replica_master_info_p_t;

This data type contains the following elements:

• master_id
The uuid_t of the current master replica.

• master_seqno
The current sequence number corresponding to database updates.

• master_compat_sw_rev
The software revision number that the master replica is compatible with.

• update_ts
Timestamp of the latest replica update. This would correspond to the time which the last
sequence number was propagated to replicas.

• update_seqno
The last sequence number to be propagated out to the slave replicas.

• previous_update_seqno
The previous sequence number that has been propagated to slave replicas.

440 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_acct RPC Interface

11.10.2 Interface UUID and Version Number for rs_prop_acct

The interface UUID and version number for the rs_prop_acct interface are given by the
following:

[
uuid(68097130-de43-11ca-a554-08001e0394c7),
version(1),
pointer_default(ptr)

]
interface rs_prop_acct {

11.10.3 rs_prop_acct_add( )

The rs_prop_acct_add ( ) operation will propagate account information in bulk to a security
replica.

void
rs_prop_acct_add (

[in] handle_t rpc_handle,
[in] unsigned32 num_accts,
[in, ref, size_is(num_accts)]

rs_prop_acct_add_data_t accts[ ],
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The num_accts parameter identifies the number of accounts described in the accts[ ] array.

The accts[ ] parameter provides num_accts security account descriptions.

The master_info parameter provides information on the current master replica (see Section
11.10.1.3 on page 440).

If the propq_only flag is set the propagation information will only be added to the propagation
queue. It will not be propagated.

The status parameter returns the status of the operation.

11.10.4 rs_prop_acct_delete( )

The rs_prop_acct_delete ( ) operation will propagate an account delete to a security replica.

void
rs_prop_acct_delete (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *login_name,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the principal name of the account to be deleted.

The master_info parameter provides the security master replica information to the security slave
replica.

Part 2 Security Services and Protocols 441



The rs_prop_acct RPC Interface RS Editor RPC Interfaces

If the propq_only flag is set the account delete operation is only added to the propagation queue.
It is not propagated to the replicas.

The status parameter returns the status of the operation.

11.10.5 rs_prop_acct_rename( )

The rs_prop_acct_rename( ) operation will propagate an account rename to security replicas.

void
rs_prop_acct_rename (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *old_login_name,
[in] sec_rgy_login_name_t *new_login_name,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The old_login_name parameter identifies the original principal name of the account to be
renamed.

The new_login_name parameter identifies the new principal name of the account.

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the rename information is only placed on the propagation queue. It is
not propagated to the security replicas.

The status parameter returns the status of the operation.

11.10.6 rs_prop_acct_replace( )

The rs_prop_acct_replace ( ) operation will propagate an account replace to security replicas.

void
rs_prop_acct_replace (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *login_name,
[in] rs_acct_parts_t modify_parts,
[in] sec_rgy_acct_user_t *user_part,
[in] sec_rgy_acct_admin_t *admin_part,
[in, ptr] rs_acct_key_transmit_t *key,
[in, ref] sec_rgy_foreign_id_t *client,
[in] sec_passwd_type_t new_keytype,
[in, ptr] rs_acct_key_transmit_t *unix_passwd,
[in, ref] sec_timeval_sec_t *time_now,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the account name to replace.

The modify_parts parameter is a flags describing the objects within the account to replace. (see
Section 11.6.1.16 on page 398).

442 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_acct RPC Interface

The user_part parameter describes the user portion of the account to be replaced (see Section
11.6.1.15 on page 397).

The admin_part parameter describes the admininstration portion of the account to be replaced
(see Section 11.6.1.5 on page 392).

The key parameter indicates a new long-term cryptographic key. (See the description of the key
parameter of rs_acct_add ( ).)

The client parameter identifies (by uuid) the principal under whose key the updated key and
unix_passwd are encrypted. If client_ids contains NIL uuids, key and unix_passwd are encrypted
under a session key.

The new_keytype parameter Indicates the type of the long-term cryptographic key determined by
key. (See the description of the new_keytype parameter of rs_acct_add ( ).)

The unix_passwd parameter if not NULL, contains the pickled and encrypted UNIX password
(generated by the UNIX crypt( ) function). The plain arm of the decrypted and unpickled
sec_passwd_rec_t contains the UNIX passwd.

The time_now parameter is used for garbage collecting expired versions of multi-version keys.

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the account replace information is only placed on the propagation
queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.10.7 rs_prop_acct_add_key_version( )

The rs_prop_acct_add_key_version ( ) operation adds specific versions of an account key. This
routine is used only during initialization to propagate all extant key types and versions from a
surrogate master to an initializing slave.

void
rs_prop_acct_add_key_version (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t *login_name,
[in] unsigned32 num_keys,
[in, ref, size_is(num_keys)]

rs_prop_acct_key_data_t keys[ ],
[in] rs_replica_master_info_t *master_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The login_name parameter identifies the account name to propagate the key types to.

The num_keys parameter identifies the number of entries in the keys[ ] array.

The keys[ ] parameter. If the current field of keys is TRUE, the key is added as the current version
and the garbage_collect field is ignored (current keys are never garbage collected). If current is
FALSE, the key is stored as a back-version of the account’s key using garbage_collect.

The master_info parameter provides information on the current master replica.

The status parameter returns the status of the operation.

Part 2 Security Services and Protocols 443



The rs_prop_acct RPC Interface RS Editor RPC Interfaces

} /* End rs_prop_acct interface */

444 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_acl RPC Interface

11.11 The rs_prop_acl RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_prop_acl RPC interface.

11.11.1 Common Data Types and Constants for rs_prop_acl

The following are common data types and constants used in the rs_prop_acl interface.

11.11.1.1 rs_prop_acl_data_t

The rs_prop_acl_data_t data type is used for bulk ACL replace propagations during
initialization.

typedef struct {
sec_acl_component_name_t component_name;
uuid_t manager_type;
sec_acl_type_t acl_type;
sec_acl_list_t *acl_list;

} rs_prop_acl_data_t;

This data type contains the following elements:

• component_name
The component name specifies the entity that the sec_acl is protecting.

• manager_type
Identifies the manager that is interpreting this sec_acl

• acl_type
Differentiates between the different types of sec_acls that an object can possess.

• acl_list
The list of acls for the component_name.

11.11.2 Interface UUID and Version Number for rs_prop_acl

The interface UUID and version number for the rs_prop_acl interface are given by the following:

[
uuid(591d87d0-de64-11ca-a11c-08001e0394c7),
version(1),
pointer_default(ptr)

]
interface rs_prop_acl {

11.11.3 rs_prop_acl_replace( )

The rs_prop_acl_replace ( ) operation will propagate acl replacements in bulk.

Part 2 Security Services and Protocols 445



The rs_prop_acl RPC Interface RS Editor RPC Interfaces

void
rs_prop_acl_replace (

[in] handle_t rpc_handle,
[in] unsigned32 num_acls,
[in, size_is(num_acls)]

rs_prop_acl_data_t acls[ ],
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The num_acls parameter identifies the number of entries in the acls[ ] array.

The acls[ ] parameter is an array of num_acls acls to replace.

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the acl replacement is only placed on the propagation queue. It is not
propagated to the security replicas.

The status parameter returns the status of the operation.

446 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_attr RPC Interface

11.12 The rs_prop_attr RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_prop_attr RPC interface.

11.12.1 Common Data Types and Constants for rs_prop_attr

The following are common data types and constants used in the rs_prop_attr interface.

11.12.1.1 rs_prop_attr_list_t

The rs_prop_attr_list_t data type contains an array of security attributes associated with a
security entry.

typedef struct {
unsigned32 num_attrs;
[size_is(num_attrs)]

sec_attr_t attrs[ ];
} rs_prop_attr_list_t;

This data type contains the following elements:

• num_attrs
The number of attributes within the attrs[ ] array

• attrs[ ]
An array of size num_attrs of security attributes.

11.12.1.2 rs_prop_attr_data_t

The rs_prop_attr_data_t data type contains a component name and property attributes for a
bulk propagation operation.

typedef struct {
sec_rgy_name_t component_name;
rs_prop_attr_list_t *attr_list;

} rs_prop_attr_data_t;

This data type contains the following elements:

• component_name
The component name for the attribute list.

• attr_list
The property attributes of component_name.

11.12.2 Interface UUID and Version Number for rs_prop_attr

The interface UUID and version number for the rs_prop_attr interface are given by the
following:

[
uuid(0eff23e6-555a-11cd-95bf-0800092784c3),
version(1),
pointer_default(ptr)

]
interface rs_prop_attr {

Part 2 Security Services and Protocols 447



The rs_prop_attr RPC Interface RS Editor RPC Interfaces

11.12.3 rs_prop_attr_update( )

The rs_prop_attr_update ( ) operation will propagate component property attributes in bulk.

void
rs_prop_attr_update (

[in] handle_t rpc_handle,
[in] unsigned32 num_prop_attrs,
[in, ref, size_is(num_prop_attrs)]

rs_prop_attr_data_t prop_attrs[ ],
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The num_prop_attrs parameter identifies the number of property attribute entries in the
prop_attrs[ ] array.

The prop_attrs[ ] parameter contains a component name and an array property attributes
associated with than name. There are num_prop_attrs entries in the array.

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the property attribute information is only placed on the propagation
queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.12.4 rs_prop_attr_delete( )

The rs_prop_attr_delete ( ) operation will

void
rs_prop_attr_delete (

[in] handle_t rpc_handle,
[in] unsigned32 num_prop_attrs,
[in, ref, size_is(num_prop_attrs)]

rs_prop_attr_data_t prop_attrs[ ],
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The num_prop_attrs parameter identifies the number of property attribute arrays in the
prop_attrs[ ] array.

The prop_attrs[ ] parameter contains a component name and an array property attributes
associated with than name. There are num_prop_attrs entries in the array.

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the property attribute delete information is only placed the
propagation queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

} /* End rs_prop_acl interface */

448 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_attr_schema RPC Interface

11.13 The rs_prop_attr_schema RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_prop_attr_schema RPC interface.

11.13.1 Common Data Types and Constants for rs_prop_attr_schema

The following are common data types and constants used in the rs_prop_attr_schema interface.

11.13.1.1 rs_prop_attr_sch_create_data_t

The rs_prop_attr_sch_create_data_t data type contains a component name and an attribute
schema definition for a propagation operation.

typedef struct {
sec_attr_component_name_t schema_name;
sec_attr_schema_entry_t schema_entry;

} rs_prop_attr_sch_create_data_t;

This data type contains the following elements:

• schema_name
The schema_name specifies the entity to which the schema_entry attribute is attached.

• schema_entry
Defines the attribute schema for schema_name.

11.13.2 Interface UUID and Version Number for rs_prop_attr_schema

The interface UUID and version number for the rs_prop_attr_schema interface are given by the
following:

[
uuid(0eff260c-555a-11cd-95bf-0800092784c3),
version(1),
pointer_default(ptr)

]
interface rs_prop_attr_sch {

11.13.3 rs_prop_attr_schema_create( )

The rs_prop_attr_schema_create ( ) operation propagates in bulk a newly created attribute schema.

void
rs_prop_attr_schema_create (

[in] handle_t rpc_handle,
[in] unsigned32 num_schemas,
[in, ref, size_is(num_schemas)]

rs_prop_attr_sch_create_data_t schemas[ ],
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The num_schemas parameter identifies the number of entries in the schemas array being
propagated.

The schemas[ ] parameter is an array of size num_schemas containing attribute names and
schemas.

Part 2 Security Services and Protocols 449



The rs_prop_attr_schema RPC Interface RS Editor RPC Interfaces

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the attribute schema create information is only placed on the
propagation queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.13.4 rs_prop_attr_schema_delete( )

The rs_prop_attr_schema_delete ( ) operation

void
rs_prop_attr_schema_delete (

[in] handle_t rpc_handle,
[in] sec_attr_component_name_t schema_name,
[in] uuid_t *attr_id,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The schema_name parameter specifies the entity to which the attribute is attached.

The attr_id parameter is the attribute type uuid identifying the schema entry to be deleted

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the attribute schema delete information is only placed on the
propagation queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.13.5 rs_prop_attr_schema_update( )

The rs_prop_attr_schema_update ( ) operation

void
rs_prop_attr_schema_update (

[in] handle_t rpc_handle,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the attribute schema update information is only placed on the
propagation queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

} /* End rs_prop_attr_sch interface */

450 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_pgo RPC Interface

11.14 The rs_prop_pgo RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_prop_pgo RPC interface.

11.14.1 Common Data Types and Constants for rs_prop_pgo

The following are common data types and constants used in the rs_prop_pgo interface.

11.14.1.1 rs_prop_pgo_add_data_t

The rs_prop_pgo_add_data_t data type is used for bulk pgo add propagations during
initialization.

typedef struct {
sec_rgy_name_t name;
sec_rgy_pgo_item_t item;
sec_rgy_foreign_id_t client;

} rs_prop_pgo_add_data_t;

This data type contains the following elements:

• name
The PGO name to add.

• item
The identifying information for the name to add.

• client
The client that originated the update.

11.14.2 Interface UUID and Version Number for rs_prop_pgo

The interface UUID and version number for the rs_prop_pgo interface are given by the
following:

[
uuid(c23626e8-de34-11ca-8cbc-08001e0394c7),
version(1),
pointer_default(ptr)

]
interface rs_prop_pgo {

11.14.3 rs_prop_pgo_add( )

The rs_prop_pgo_add ( ) operation propagates PGO add operations in bulk during replica
initializations.

void
rs_prop_pgo_add (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t domain,
[in] unsigned32 num_pgo_items,
[in, size_is(num_pgo_items)]

rs_prop_pgo_add_data_t pgo_items[ ],
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

Part 2 Security Services and Protocols 451



The rs_prop_pgo RPC Interface RS Editor RPC Interfaces

The rpc_handle parameter identifies the RS server.

The domain parameter identifies the PGO domain of the entries to add.

The num_pgo_items parameter is the number of entries in the pgo_items[ ] array.

The pgo_items[ ] parameter is num_pgo_items number of domain PGO items to add.

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the PGO add information is only placed on the propagation queue. It
is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.14.4 rs_prop_pgo_delete( )

The rs_prop_pgo_delete ( ) operation propagates a PGO delete to a security replica.

void
rs_prop_pgo_delete (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t domain,
[in, ref] sec_rgy_name_t name,
[in] sec_timeval_sec_t cache_info,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The domain parameter identifies the PGO domain of the entry to delete.

The name parameter identifies the PGO item to delete.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the PGO delete information is only placed on the propagation queue.
It is not propagated to security replicas.

The status parameter returns the status of the operation.

11.14.5 rs_prop_pgo_rename( )

The rs_prop_pgo_rename( ) operation propagates a PGO rename to a security replica.

void
rs_prop_pgo_rename (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t domain,
[in, ref] sec_rgy_name_t old_name,
[in, ref] sec_rgy_name_t new_name,
[in] sec_timeval_sec_t cache_info,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

452 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_pgo RPC Interface

The domain parameter identifies the PGO domain of the entry to rename.

The old_name parameter provides the name the PGO item is changing from.

The new_name parameter provides the name the PGO item is changing tp.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the PGO rename information is only placed on the propagation
queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.14.6 rs_prop_pgo_replace( )

The rs_prop_pgo_replace ( ) operation propagates a PGO replace to a security replica.

void
rs_prop_pgo_replace (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t domain,
[in, ref] sec_rgy_name_t name,
[in, ref] sec_rgy_pgo_item_t *item,
[in] sec_timeval_sec_t cache_info,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The domain parameter identifies the PGO domain of the entry to replace.

The name parameter provides the name the PGO item is replacing.

The item parameter identifies the replacement item information.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the PGO replace information is only placed on the propagation queue.
It is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.14.7 rs_prop_pgo_add_member( )

The rs_prop_pgo_add_member( ) operation propagates PGO add member information to a security
replica.

Part 2 Security Services and Protocols 453



The rs_prop_pgo RPC Interface RS Editor RPC Interfaces

void
rs_prop_pgo_add_member (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t domain,
[in] sec_rgy_name_t go_name,
[in] unsigned32 num_members,
[in, size_is(num_members)]

sec_rgy_member_t members[ ],
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The domain parameter identifies the PGO domain of the entry to add members to. This must be
either group or organization.

The go_name parameter provides the PGO name to add members to.

The num_members parameter identifies the number of entries in the members array.

The members[ ] parameter is an array of num_members members to add.

The master_info parameter provides information on the current master replica.

If the propq_only flage is set the PGO add member information is only placed on the propagation
queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.14.8 rs_prop_pgo_delete_member( )

The rs_prop_pgo_delete_member( ) operation propagates PGO member delete information to
security replica.

void
rs_prop_pgo_delete_member (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t domain,
[in, ref] sec_rgy_name_t go_name,
[in, ref] sec_rgy_name_t person_name,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The domain parameter identifies the PGO domain of the entry to delete a member from. This
must be either group or organization.

The go_name parameter identifies the PGO name to delete the member person_name from.

The person_name parameter identifies the member to to delete from the go_name PGO.

The master_info parameter provides information on the current master replica.

If the propq_only flag is set the PGO member delete information is only placed on the
propagation queue. It is not propagated to the security replicas.

The status parameter returns the status of the operation.

454 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_pgo RPC Interface

} /* End rs_prop_pgo interface */

Part 2 Security Services and Protocols 455



The rs_prop_plcy RPC Interface RS Editor RPC Interfaces

11.15 The rs_prop_plcy RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_prop_plcy RPC interface.

11.15.1 Interface UUID and Version Number for rs_prop_plcy

The interface UUID and version number for the rs_prop_plcy interface are given by the
following:

[
uuid(e6ac5cb8-de3e-11ca-9376-08001e0394c7),
version(1.1),
pointer_default(ptr)

]
interface rs_prop_plcy {

11.15.2 rs_prop_properties_set_info( )

The rs_prop_properties_set_info ( ) operation propagates registry property information changes to
replicas.

void
rs_prop_properties_set_info (

[in] handle_t rpc_handle,
[in, ref] sec_rgy_properties_t *properties,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The properties parameter contains the registry property information to be updated.

The master_info parameter contains the master registry information.

If the propq_only flag is set the property information is only placed on the propagation queue. It
is not propagated to the security replicas.

The status parameter returns the status of the operation.

11.15.3 rs_prop_plcy_set_info( )

The rs_prop_plcy_set_info ( ) operation propagates organzation policy information changes to
replicas.

void
rs_prop_plcy_set_info (

[in] handle_t rpc_handle,
[in, ref] sec_rgy_name_t organization,
[in, ref] sec_rgy_plcy_t *policy_data,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The organization parameter contains the organization name.

456 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_plcy RPC Interface

The policy_data parameter contains the organization policy information to be updated.

The master_info parameter contains the master registry information.

If the propq_only flag is set the policy information is only placed on the propagation queue. It is
not propagated to the security replicas.

The status parameter returns the status of the operation.

11.15.4 rs_prop_auth_plcy_set_info( )

The rs_prop_auth_plcy_set_info ( ) operation propagates account authentication policy to replicas.

void
rs_prop_auth_plcy_set_info (

[in] handle_t rpc_handle,
[in, ref] sec_rgy_login_name_t *account,
[in, ref] sec_rgy_plcy_auth_t *auth_policy,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The account parameter describes the account that the authentication policy belongs to.

The auth_policy parameter contains the account authentication policy to be updated.

The master_info parameter contains the master registry information.

If the propq_only flag is set the policy information is only placed on the propagation queue. It is
not propagated to the security replicas.

The status parameter returns the status of the operation.

11.15.5 rs_prop_plcy_set_dom_cache_info( )

The rs_prop_plcy_set_dom_cache_info ( ) operation is only used to send the domain cache_info to
initialize a slave. The update is not logged; the slave will checkpoint its database to disk when
initialization completes.

void
rs_prop_plcy_set_dom_cache_info (

[in] handle_t rpc_handle,
[in, ref] rs_cache_data_t *cache_info,
[in, ref] rs_replica_master_info_t *master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The master_info parameter contains the master registry information.

If the propq_only flag is set the policy information is only placed on the propagation queue. It is
not propagated to the security replicas.

The status parameter returns the status of the operation.

Part 2 Security Services and Protocols 457



The rs_prop_plcy RPC Interface RS Editor RPC Interfaces

} /* End rs_prop_plcy interface */

458 CAE Specification (1997)



RS Editor RPC Interfaces The rs_prop_replist RPC Interface

11.16 The rs_prop_replist RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_prop_replist RPC interface, which provides RS
operations to propagate replica list updates from master to slave.

11.16.1 Interface UUID and Version Number for rs_prop_replist

The interface UUID and version number for the rs_prop_replist interface are given by the
following:

[
uuid(B7FB9CE8-DFD4-11CA-8016-08001E02594C),
version(1.0),
pointer_default(ptr)

]
interface rs_prop_replist {

11.16.2 rs_prop_replist_add_replica( )

The rs_prop_replist_add_replica ( ) operation will add or replace a replica on the replist.

void
rs_prop_replist_add_replica(

[in] handle_t rpc_handle,
[in] uuid_p_t rep_id,
[in] rs_replica_name_p_t rep_name,
[in] rs_replica_twr_vec_p_t rep_twrs,
[in] rs_replica_master_info_p_t master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_id parameter is a pointer to the identifier of the replica to add to the replist.

The rep_name parameter is a pointer to the name of the replica to add to the replist.

The rep_twrs parameter is a pointer to the base tower of the replica to be added.

The master_info parameter is the master replica information.

If the propq_only flag is set the replica information is only placed on the propagation queue. It is
not propagated to the security replicas.

The status parameter returns the status of the operation.

11.16.3 rs_prop_replist_del_replica( )

The rs_prop_replist_del_replica ( ) operation will delete a replica from the replist.

void
rs_prop_replist_del_replica(

[in] handle_t rpc_handle,
[in] uuid_p_t rep_id,
[in] rs_replica_master_info_p_t master_info,
[in] boolean32 propq_only,
[out] error_status_t *status );

Part 2 Security Services and Protocols 459



The rs_prop_replist RPC Interface RS Editor RPC Interfaces

The rpc_handle parameter identifies the RS server.

The rep_id parameter is a pointer to the identifier of the replica to add to the replist.

The master_info parameter is the master replica information.

If the propq_only flag is set the replica information is only placed on the propagation queue. It is
not propagated to the security replicas.

The status parameter returns the status of the operation.

} /* End rs_prop_replist interface */

460 CAE Specification (1997)



RS Editor RPC Interfaces The rs_pwd_mgmt RPC Interface

11.17 The rs_pwd_mgmt RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_pwd_mgmt RPC interface, which provides
remote operations for password management between a client and the Security daemon.

11.17.1 Common Data Types and Constants for rs_pwd_mgmt

The following are common data types and constants used in the rs_pwd_mgmt interface.

11.17.1.1 rs_pwd_mgmt_plcy_t

The rs_pwd_mgmt_plcy_t data type specifies the policy attribute set used by the password
management server to determine the password policy.

typedef struct {
unsigned32 num_plcy_args;
[size_is(num_plcy_args)]sec_attr_t plcy[ ];

} rs_pwd_mgmt_plcy_t;

This data type contains the following elements:

• num_plcy_args
The number of policy attribute entries in the plcy array.

• plcy[ ]
An array of policy attributes for password management.

11.17.2 Interface UUID and Version Number for rs_pwd_mgmt

The interface UUID and version number for the rs_pwd_mgmt interface are given by the
following:

[
uuid(3139a0e2-68da-11cd-91c7-080009242444),
version(1.0),
pointer_default(ptr)

]
interface rs_pwd_mgmt {

11.17.3 rs_pwd_mgmt_setup( )

The rs_pwd_mgmt_setup( ) operation retrieves the values stored in the pwd_val_type and
pwd_mgmt_binding extended registry attributes (ERA), if these attributes exist.

void
rs_pwd_mgmt_setup (

[in] handle_t rpc_handle,
[in] sec_rgy_login_name_t login_name,
[out] sec_attr_bind_info_t **pwd_mgmt_bind_info,
[out] rs_pwd_mgmt_plcy_t **plcy_p,
[out,ref] signed32 *pwd_val_type,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The login_name parameter specifies the account that is requesting the information.

The pwd_mgmt_bind_info parameter specifies binding information contained in the
pwd_mgmt_binding ERA.

Part 2 Security Services and Protocols 461



The rs_pwd_mgmt RPC Interface RS Editor RPC Interfaces

The plcy_p parameter contains the attributes that indicate the password policy; that is, the
pwd_val_type and pwd_mgmt_binding ERAs.

The pwd_val_type parameter specifies the validation type contained in the pwd_val_type ERA,
which can be:

• 0 — none (user has no password policy)

• 1 — user_select (user must choose his or her own password)

• 2 — user_can_select (user can either choose his or her own password or request a system-
generated password)

• 3 — generation_required (user must use a system-generated password)

The status parameter returns the status of the operation.

} /* End rs_pwd_mgmt interface */

462 CAE Specification (1997)



RS Editor RPC Interfaces The rs_qry RPC Interface

11.18 The rs_qry RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_qry RPC interface.

11.18.1 Interface UUID and Version Number for rs_qry

The interface UUID and version number for the rs_qry interface are given by the following:

[
/* V1 format UUID: 3727ee604000.0d.00.00.87.84.00.00.00 */
uuid(3727EE60-4000-0000-0D00-008784000000),
version(1)

]
interface rs_query {

11.18.2 rs_query_are_you_there( )

The rs_query_are_you_there( ) operation finds an RS server.

[idempotent] void
rs_query_are_you_there (

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The status parameter returns the status of the operation.

} /* End rs_query interface */

Part 2 Security Services and Protocols 463



The rs_repadm RPC Interface RS Editor RPC Interfaces

11.19 The rs_repadm RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_repadm RPC interface that provide RS
administration operations.

11.19.1 Common Data Types and Constants for rs_repadm

The following are common data types and constants used in the rs_repadm interface.

11.19.1.1 rs_sw_version_t

The rs_sw_version_t data type specifies the software version of the name service.

typedef unsigned char rs_sw_version_t[64];

11.19.1.2 rs_replica_info_t

The rs_replica_info_t data type contains information about each replica.

typedef struct
{

unsigned32 rep_state;
uuid_t cell_sec_id;
uuid_t rep_id;
uuid_t init_id;
rs_update_seqno_t last_upd_seqno;
sec_timeval_t last_upd_ts;
rs_sw_version_t sw_rev;
unsigned32 compat_sw_rev;
rs_update_seqno_t base_propq_seqno;
boolean32 master;
boolean32 master_known;
uuid_t master_id;
rs_update_seqno_t master_seqno;

} rs_replica_info_t, *rs_replica_info_p_t;

This data type contains the following elements:

• rep_state
The current replica state (See Section 11.20.1.3 on page 470).

• cell_sec_id
The cell UUID.

• rep_id
Instance UUID.

• init_id
The UUID of the current master replica.

• last_upd_seqno
The replicas latest update sequence number.

• last_upd_ts
The last sequence update timestamp.

• sw_rev
The replica software revision number.

464 CAE Specification (1997)



RS Editor RPC Interfaces The rs_repadm RPC Interface

• compat_sw_rev
The compatible software revision number.

• base_propq_seqno
If this is info from the master, seqno of last update that has been propagated to all replicas.
Otherwise, this element is meaningless.

• master
TRUE, if master replica.

• master_known
TRUE, if master is known.

• master_id
The master replica identifier.

• master_seqno
Seqno when master was designated.

11.19.2 Interface UUID and Version Number for rs_repadm

The interface UUID and version number for the rs_repadm interface are given by the following:

[
uuid(5b8c2fa8-b60b-11c9-be0f-08001e018fa0),
version(1.1),
pointer_default(ptr)

]
interface rs_repadm {

11.19.3 rs_rep_admin_stop( )

The rs_rep_admin_stop( ) operation stops the replica identified by this handle.

void
rs_rep_admin_stop (

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The status parameter returns the status of the operation.

11.19.4 rs_rep_admin_maint( )

The rs_rep_admin_maint( ) operation puts the replica in or out of maintenance mode.

void
rs_rep_admin_maint(

[in] handle_t rpc_handle,
[in] boolean32 in_maintenance,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

If the in_maintenance flag is TRUE the replica is put into maintenance mode. If FALSE it is taken
out of maintenance mode.

The status parameter returns the status of the operation.

Part 2 Security Services and Protocols 465



The rs_repadm RPC Interface RS Editor RPC Interfaces

11.19.5 rs_rep_admin_mkey( )

The rs_rep_admin_mkey( ) operation changes the master key and re-encrypts the database.

void
rs_rep_admin_mkey(

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The status parameter returns the status of the operation.

11.19.6 rs_rep_admin_info( )

The rs_rep_admin_info ( ) operation gets basic information about a replica such as its state, UUID,
latest update sequence number and timestamp, and whether it is the master. This operation also
gets the replica’s information about the master’s UUID and the sequence number when the
master was designated.

void
rs_rep_admin_info(

[in] handle_t rpc_handle,
[out] rs_replica_info_t *rep_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_info parameter is a pointer to the replica information returned by call.

The status parameter returns the status of the operation.

11.19.7 rs_rep_admin_info_full( )

The rs_rep_admin_info_full ( ) operation gets complete information about a replica such as its
state, UUID, protocol towers, latest update sequence number and timestamp, and whether it is
the master. This operation also get the replica’s information about the master’s UUID, protocol
towers, and the sequence number when the master was designated.

void
rs_rep_admin_info_full(

[in] handle_t rpc_handle,
[out] rs_replica_info_t *rep_info,
[out] rs_replica_twr_vec_p_t *rep_twrs,
[out] rs_replica_twr_vec_p_t *master_twrs,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_info parameter is a pointer to the replica information returned by the call.

The rep_twrs parameter is a pointer to the replica towers returned by the call.

The master_twrs parameter is a pointer to the masters towers returned by the call.

The status parameter returns the status of the operation.

466 CAE Specification (1997)



RS Editor RPC Interfaces The rs_repadm RPC Interface

11.19.8 rs_rep_admin_destroy( )

The rs_rep_admin_destroy( ) operation is a drastic operation which tells a replica to destroy its
database and exit.

void
rs_rep_admin_destroy(

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The status parameter returns the status of the operation.

11.19.9 rs_rep_admin_init_replica( )

The rs_rep_admin_init_replica ( ) operation initializes or re-initializes the slave identified by rep_id.
This is a master-only operation.

void
rs_rep_admin_init_replica(

[in] handle_t rpc_handle,
[in] uuid_p_t rep_id,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_id parameter identifies the slave to be initialized/re-initialized.

The status parameter returns the status of the operation.

11.19.10 rs_rep_admin_change_master( )

The rs_rep_admin_change_master( ) operation changes the master to new_master_id. The master
gracefully passes its replica list state and propq to the new master. This is a master-only
operation.

void
rs_rep_admin_change_master(

[in] handle_t rpc_handle,
[in] uuid_p_t new_master_id,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The new_master_id parameter is the id of the replica to become the new master.

The status parameter returns the status of the operation.

Part 2 Security Services and Protocols 467



The rs_repadm RPC Interface RS Editor RPC Interfaces

11.19.11 rs_rep_admin_become_master( )

The rs_rep_admin_become_master( ) operation is a drastic operation to make a slave become the
master because the master has died. Normally, the rs_rep_admin_change_master( ) operation is
used to designate a new master; this operation can cause updates to be lost.

void
rs_rep_admin_become_master(

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The status parameter returns the status of the operation.

11.19.12 rs_rep_admin_become_slave( )

The rs_rep_admin_become_slave( ) operation is a drastic operation to make a replica which thinks
it’s the master become a slave.

void
rs_rep_admin_become_slave(

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The status parameter returns the status of the operation.

} /* End rs_repadm interface */

468 CAE Specification (1997)



RS Editor RPC Interfaces The rs_replist RPC Interface

11.20 The rs_replist RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_replist RPC interface. The

s_replist interfaces

provide RS replica list management services.

11.20.1 Common Data Types and Constants for rs_replist

The following are common data types and constants used in the rs_replist interface.

11.20.1.1 rs_replica_item_t and rs_replica_item_p_t

The rs_replica_item_t data type contains replica information.

typedef struct
{

uuid_t rep_id;
rs_replica_name_p_t rep_name;
boolean32 master;
boolean32 deleted;
rs_replica_twr_vec_p_t rep_twrs;

} rs_replica_item_t, *rs_replica_item_p_t;

This data type contains the following elements:

• rep_id
The UUID of the replica instance.

• rep_name
The (global) name service name.

• master
If TRUE, this is a master replica.

• deleted
If TRUE, this replica has been marked as deleted.

• rep_twrs
A pointer to the base replica tower type.

11.20.1.2 Replica States

The Replica State describes the current state for each replica.

const unsigned32 rs_c_state_unknown_to_master = 1;
const unsigned32 rs_c_state_uninitialized = 2;
const unsigned32 rs_c_state_initializing = 3;
const unsigned32 rs_c_state_in_service = 4;
const unsigned32 rs_c_state_renaming = 5;
const unsigned32 rs_c_state_copying_dbase = 6;
const unsigned32 rs_c_state_in_maintenance = 7;
const unsigned32 rs_c_state_mkey_changing = 8;
const unsigned32 rs_c_state_becoming_master = 9;
const unsigned32 rs_c_state_closed = 10;
const unsigned32 rs_c_state_deleted = 11;
const unsigned32 rs_c_state_becoming_slave = 12;
const unsigned32 rs_c_state_dup_master = 13;

This state contains the following elements:

Part 2 Security Services and Protocols 469



The rs_replist RPC Interface RS Editor RPC Interfaces

• rs_c_state_unknown_to_master
The current state of the replica is unknown to the master.

• rs_c_state_uninitialized
The replica remains uninitialized while the database is being created. This is generally a
temporary state during creation of a replica.

• rs_c_state_initializing
The replica is currently being inialized by another replica.

• rs_c_state_in_service
The replica is currently in service. The replica may either provide information for clients or
become the master.

• rs_c_state_renaming
This state is in effect during a renaming of the replica.

• rs_c_state_copying_dbase
This state is active when the database is in the process of being copied to a new replica or a
replica that has requested a new database.

• rs_c_state_in_maintenance
The replica is in maintenance mode.

• rs_c_state_mkey_changing
The current master key is in the process of being changed.

• rs_c_state_becoming_master
When a replica receives the request to become a slave, this state is active.

• rs_c_state_closed
A replica has closed its databases and is in the process of exiting.

• rs_c_state_deleted
The replica has been deleted from the replica list. rs_c_state_becoming_slave
During the time when a slave replica receives a request to become a master this state is
active.

• rs_c_state_dup_master
A replica that thinks it is the master has been informed by a slave that the slave believes a
different replica to be the legitimate masteer.

•

11.20.1.3 rs_replica_prop_t

The rs_replica_prop_t data type specifies the replica propagation state.

typedef unsigned32 rs_replica_prop_t;

const rs_replica_prop_t rs_c_replica_prop_init = 1;
const rs_replica_prop_t rs_c_replica_prop_initing = 2;
const rs_replica_prop_t rs_c_replica_prop_update = 3;
const rs_replica_prop_t rs_c_replica_prop_delete = 4;

The following values are currently registered:

• rs_c_replica_prop_init
An initialization request.

470 CAE Specification (1997)



RS Editor RPC Interfaces The rs_replist RPC Interface

• rs_c_replica_prop_initing
Replica is initializing.

• rs_c_replica_prop_update
An update request.

• rs_c_replica_prop_delete
A delete request to a slave.

11.20.1.4 rs_replica_prop_info_t

The rs_replica_prop_info_t data type contains information associated with a propagation
request.

typedef struct
{

rs_replica_prop_t prop_type;
boolean32 last_upd_inited;
rs_update_seqno_t last_upd_seqno;
sec_timeval_t last_upd_ts;
unsigned32 num_updates;

} rs_replica_prop_info_t, *rs_replica_prop_info_p_t;

This data type contains the following elements:

• prop_type
Type of propagation request.

• last_upd_inited
The last propagation updated has been processed.

• last_upd_seqno
The last propagation sequence number.

• last_upd_ts
The last propagation update time stamp.

• num_updates
Number of sequences updated in this propagation.

11.20.1.5 rs_replica_comm_t

The rs_replica_comm_t data type specifies the communication status between master and
replica.

typedef unsigned32 rs_replica_comm_t;

const rs_replica_comm_t rs_c_replica_comm_ok = 1;
const rs_replica_comm_t rs_c_replica_comm_short_failure = 2;
const rs_replica_comm_t rs_c_replica_comm_long_failure = 3;

The following values are currently registered:

• rs_c_replica_comm_ok
Communications between replicas is normal.

• rs_c_replica_comm_short_failure
Communications between replicas have failed but have not exceeded the maximum number
of retry attempts.

Part 2 Security Services and Protocols 471



The rs_replist RPC Interface RS Editor RPC Interfaces

• rs_c_replica_comm_long_failure
Communications between replicas have failed and exceeded the number of retry attempts.

11.20.1.6 rs_replica_comm_info_t

The rs_replica_comm_info_t data type contains summary information about the
communication state between the master and a replica.

typedef struct
{

rs_replica_comm_t comm_state;
error_status_t last_status;
signed32 twr_offset;

} rs_replica_comm_info_t, *rs_replica_comm_info_p_t;

This data type contains the following elements:

• comm_state
Replica communications state.

• last_status
Last known replica communications status.

• twr_offset
The offset in tower vector to current comm tower. If set to -1, there is no current comm
tower.

11.20.1.7 rs_replica_item_full_t

The rs_replica_item_full_t data type contains public information about a replica. This is the
information managed by the master.

typedef struct
{

uuid_t rep_id;
rs_replica_name_p_t rep_name;
boolean32 master;
boolean32 deleted;
rs_replica_prop_info_t prop_info;
rs_replica_comm_info_t comm_info;
rs_replica_twr_vec_p_t rep_twrs;

} rs_replica_item_full_t, *rs_replica_item_full_p_t;

This data type contains the following elements:

• rep_id
Instance UUID.

• rep_name
The (global) name service name.

• master
If TRUE, this is a master replica.

• deleted
If TRUE, this replica is marked as deleted.

• prop_info
Propagation information.

472 CAE Specification (1997)



RS Editor RPC Interfaces The rs_replist RPC Interface

• comm_info
Communication information.

• rep_twrs
A pointer to the base replica tower type.

11.20.2 Interface UUID and Version Number for rs_replist

The interface UUID and version number for the rs_replist interface are given by the following:

[
uuid(850446B0-E95B-11CA-AD90-08001E0145B1),
version(1.0),
pointer_default(ptr)

]
interface rs_replist {

11.20.3 rs_replist_add_replica( )

The rs_replist_add_replica ( ) operation adds a replica to the replica list. This is a master-only
operation.

void
rs_replist_add_replica(

[in] handle_t rpc_handle,
[in] uuid_p_t rep_id,
[in] rs_replica_name_p_t rep_name,
[in] rs_replica_twr_vec_p_t rep_twrs,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_id parameter provides the UUID identifier of the replica to add.

The rep_name parameter identifies the string name of the replica. The rep_twrs parameter
contains a pointer to the replica tower type.

The status parameter returns the status of the operation.

11.20.4 rs_replist_replace_replica( )

The rs_replist_replace_replica ( ) operation replaces information about replica rep_id on the replica
list. This is a master-only operation.

void
rs_replist_replace_replica(

[in] handle_t rpc_handle,
[in] uuid_p_t rep_id,
[in] rs_replica_name_p_t rep_name,
[in] rs_replica_twr_vec_p_t rep_twrs,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_id contains the UUID identifier of the replica to be replaced.

The rep_name contains the replica name.

Part 2 Security Services and Protocols 473



The rs_replist RPC Interface RS Editor RPC Interfaces

The rep_twrs parameter contains a pointer to the replica tower type.

The status parameter returns the status of the operation.

11.20.5 rs_replist_delete_replica( )

The rs_replist_delete_replica ( ) operation deletes the replica identified by rep_id The master may
not be deleted with this operation, which is a master-only operation.

void
rs_replist_delete_replica(

[in] handle_t rpc_handle,
[in] uuid_p_t rep_id,
[in] boolean32 force_delete,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_id parameter identifies the replica to be deleted.

If the force_delete parameter is FALSE, send the delete to the replica identified by rep_id as well as
the other replicas. If TRUE, do not send the delete to the replica identified by rep_id; it has been
killed off some other way.

The status parameter returns the status of the operation.

11.20.6 rs_replist_read( )

The rs_replist_read( ) operation reads the replica list.

void
rs_replist_read(

[in] handle_t rpc_handle,
[in, out] uuid_t *marker,
[in] unsigned32 max_ents,
[out] unsigned32 *n_ents,
[out, length_is(*n_ents), size_is(max_ents)]

rs_replica_item_t replist[ ],
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The marker parameter specifies the starting item in the replica list to be read. If marker is set to
uuid_nil, the read starts at the beginning of the replica list. Information about a specific replica
can be read by setting marker to its UUID and max_ents to 1.

The max_ents parameter specifies the number of entries to be read.

The n_ents parameter specifies the number of entries that have been read.

The replist[ ] array is a pointer array of n_ents rs_replica_item_ts.

The status parameter returns the status of the operation.

474 CAE Specification (1997)



RS Editor RPC Interfaces The rs_replist RPC Interface

11.20.7 rs_replist_read_full( )

The rs_replist_read_full ( ) operation reads the replica list, obtaining additional propagation
information about each replica.

void
rs_replist_read_full(

[in] handle_t rpc_handle,
[in, out] uuid_t *marker,
[in] unsigned32 max_ents,
[out] unsigned32 *n_ents,
[out, length_is(*n_ents), size_is(max_ents)]

rs_replica_item_full_t replist[ ],
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The marker parameter specifies the starting item in the replica list to be read. If marker is set to
uuid_nil, the read starts at the beginning of the replica list. Information about a specific replica
can be read by setting marker to its UUID and max_ents to 1. As output, marker contains the uuid
of the next replica on the list. When marker contains uuid_nil, there are no more replicas on the
list.

The max_ents parameter specifies the number of entries to be read.

The n_ents parameter specifies the number of entries that have been read.

The replist[ ] array is a pointer array of n_ents rs_replica_item_ts.

The status parameter returns the status of the operation.

} /* End rs_replistinterface */

Part 2 Security Services and Protocols 475



The rs_repmgr RPC Interface RS Editor RPC Interfaces

11.21 The rs_repmgr RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_repmgr RPC interface. The rs_repmgr interface
provides operations between RS replicas.

11.21.1 Common Data Types and Constants for rs_repmgr

The following are common data types and constants used in the rs_repmgr interface.

11.21.1.1 rs_replica_auth_t and rs_replica_auth_p_t

The rs_replica_auth_t data type contains authentication information used between replicas.

typedef struct
{

unsigned32 info_type;
unsigned32 info_len;
[size_is(info_len)] byte info[ ];

} rs_replica_auth_t, *rs_replica_auth_p_t;

This data type contains the following elements:

• info_type
The Privilege Ticket-Granting Ticket type. The only currently supported type is krb5.

• info_len
The Privilege Ticket-Granting Ticket byte length.

• info[ ]
This is an array of bytes containing the ticket data.

11.21.2 Interface UUID and Version Number for rs_repmgr

The interface UUID and version number for the rs_repmgr interface are given by the following:

[
uuid(B62DC198-DFD4-11CA-948F-08001E02594C),
version(2.0),
pointer_default(ptr)

]

11.21.3 rs_rep_mgr_get_info_and_creds( )

The rs_rep_mgr_get_info_and_creds ( ) operation gets a replica’s basic state information and
credentials in order to authenticate to the replica.

void
rs_rep_mgr_get_info_and_creds(

[in] handle_t rpc_handle,
[out] rs_replica_info_t *rep_info,
[out] rs_replica_auth_p_t *rep_auth_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_info pointer contains a structure describing the replica.

The rep_auth_info contains the information to authenticate the replica.

476 CAE Specification (1997)



RS Editor RPC Interfaces The rs_repmgr RPC Interface

The status parameter returns the status of the operation.

11.21.4 rs_rep_mgr_init( )

The rs_rep_mgr_init( ) operation tells a replica to initialize itself from another replica.

void
rs_rep_mgr_init(

[in] handle_t rpc_handle,
[in] uuid_p_t init_id,
[in] unsigned32 nreps,
[in, size_is(nreps)]

uuid_p_t init_from_rep_ids[ ],
[in, size_is(nreps)]

rs_replica_twr_vec_p_t init_from_rep_twrs[ ],
[in] rs_replica_master_info_p_t master_info,
[out] uuid_t *from_rep_id,
[out] rs_update_seqno_t *last_upd_seqno,
[out] sec_timeval_t *last_upd_ts,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The init_id parameter identifies the initialize event to prevent redundant initializations.

The nreps parameter specifies the number of replicas in the init_from_rep_ids array.

The init_from_rep_ids[ ] array contains a list of replicas from which the slave is to initialize.

The init_from_rep_twrs[ ] array contains a list of replicas from which the slave is to initialize.

The master_info parameter contains propagation information held by the master replica.

The from_rep_id parameter contains the id of the replica from which the slave has initialized.

The last_upd_seqno parameter contains the sequence number of the last update.

The last_upd_ts parameter contains the timestamp of the last update.

The status parameter returns the status of the operation.

11.21.5 rs_rep_mgr_init_done( )

The rs_rep_mgr_init_done( ) operation lets a slave tell a master that it has finished initializing
itself from another replica.

void
rs_rep_mgr_init_done(

[in] handle_t rpc_handle,
[in] uuid_p_t rep_id,
[in] uuid_p_t init_id,
[in] uuid_p_t from_rep_id,
[in] rs_update_seqno_t *last_upd_seqno,
[in] sec_timeval_t *last_upd_ts,
[in] error_status_t *init_st,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

Part 2 Security Services and Protocols 477



The rs_repmgr RPC Interface RS Editor RPC Interfaces

The rep_id parameter specifies the replica which has been initialized.

The init_id parameter rs_replist2_master_init_rep_don

The from_rep_id parameter contains the UUID of the replica from which the rep_id replica has
initialized.

The last_upd_seqno parameter indicates the last sequence number which was updated.

The last_upd_ts parameter indicates the timestamp the last sequence was updated.

The init_st parameter indicates whether or not the initialization actually succeeded.

The status parameter returns the status of the operation.

11.21.6 rs_rep_mgr_i_am_slave( )

The rs_rep_mgr_i_am_slave( ) operation sends a message from a slave to the master when the
slave restarts. The slave sends the master its current tower set and software compatability
version.

void
rs_rep_mgr_i_am_slave(

[in] handle_t rpc_handle,
[in] uuid_p_t rep_id,
[in] unsigned32 compat_sw_rev,
[in] rs_replica_twr_vec_p_t rep_twrs,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_id parameter specifies the UUID of the slave replica that has restarted.

The compat_sw_rev parameter contains the software compatibility version number.

The rep_twrs parameter is a pointer to the slaves tower set.

The status parameter returns the status of the operation.

11.21.7 rs_rep_mgr_i_am_master( )

The rs_rep_mgr_i_am_master( ) operation allows a new master to tell a slave that it is now the
master.

void
rs_rep_mgr_i_am_master(

[in] handle_t rpc_handle,
[in] rs_replica_master_info_p_t master_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The master_info parameter supplies the slave with all of the necessary master replica
information.

The status parameter returns the status of the operation.

478 CAE Specification (1997)



RS Editor RPC Interfaces The rs_repmgr RPC Interface

11.21.8 rs_rep_mgr_become_master( )

The rs_rep_mgr_become_master( ) operation lets a master replica tell a slave to become the new
master.

void
rs_rep_mgr_become_master(

[in] handle_t rpc_handle,
[in] rs_update_seqno_t base_prop_seqno,
[in] rs_replica_master_info_p_t old_master_info,
[out] rs_replica_master_info_t *new_master_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The base_prop_seqno parameter is the sequence number of the earliest update currently on the
prop queue.

The old_master_info parameter is the master replica information from the current master.

The new_master_info parameter is the master replica information from the new master.

The status parameter returns the status of the operation.

11.21.9 rs_rep_mgr_copy_all( )

The rs_rep_mgr_copy_all ( ) operation is a request sent from one replica to another asking the
latter replica to push its entire database to the requesting replica.

void
rs_rep_mgr_copy_all(

[in] handle_t rpc_handle,
[in] rs_replica_master_info_p_t copy_master_info,
[in] rs_replica_auth_p_t rep_auth_info,
[in, ptr] rs_acct_key_transmit_t *encryption_key,
[out] rs_update_seqno_t *last_upd_seqno,
[out] sec_timeval_t *last_upd_ts,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The copy_master_info parameter contains the master information that the providing replica
supplies along with the database updates.

The rep_auth_info parameter includes a session key which is used by the two replicas to
authenticate one other.

The encryption_key parameter is a key (pickled and encrypted with the session key) that the
providing replica will use to encrypt the account authentication keys during propagation.

If the update is successful, the last_upd_seqno parameter contains the sequence number of the last
update.

If the update is successful, the last_upd_ts parameter contains the timestamp of the last update.

The status parameter returns the status of the operation.

Part 2 Security Services and Protocols 479



The rs_repmgr RPC Interface RS Editor RPC Interfaces

11.21.10 rs_rep_mgr_copy_propq( )

The rs_rep_mgr_copy_propq( ) operation carries a request from a slave replica, which is becoming
the master, to the old master to send the new master the propagation queue.

void
rs_rep_mgr_copy_propq(

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The status parameter returns the status of the operation.

11.21.11 rs_rep_mgr_stop_until_compat_sw( )

The rs_rep_mgr_stop_until_compat_sw ( ) operation lets a master replica tell a slave not to run until
its software has been updated to the software version number contained in compat_sw_rev.

void
rs_rep_mgr_stop_until_compat_sw(

[in] handle_t rpc_handle,
[in] unsigned32 compat_sw_rev,
[in] rs_replica_master_info_p_t master_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The compat_sw_rev parameter specifies the software version number that the replica must have
in order to run.

The master_info parameter specifies all of the master replica information. This is necessary to
verify sequence updates.

The status parameter returns the status of the operation.

480 CAE Specification (1997)



RS Editor RPC Interfaces The rs_rpladmn RPC Interface

11.22 The rs_rpladmn RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_rpladmn RPC interface.

11.22.1 Interface UUID and Version Number for rs_rpladmn

The interface UUID and version number for the rs_rpladmn interface are given by the following:

[
uuid(5b8c2fa8-b60b-11c9-be0f-08001e018fa0),
version(1)

]
interface rs_rpladmn {

11.22.2 rs_rep_admin_stop( )

The rs_rep_admin_stop( ) operation stops the replica identified by rpc_handle.

void
rs_rep_admin_stop (

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifes the replica to be stopped.

The status parameter returns the status of the operation.

11.22.3 rs_rep_admin_maint( )

The rs_rep_admin_maint( ) operation puts a replica in or out of maintenance mode.

void
rs_rep_admin_maint(

[in] handle_t rpc_handle,
[in] boolean32 in_maintenance,
[out] error_status_t *status );

The rpc_handle parameter identifies the replica to be put into (or out of) maintenance mode.

The in_maintenance parameter specifies the mode in which the replica is to be placed.

The status parameter returns the status of the operation.

11.22.4 rs_rep_admin_mkey( )

The rs_rep_admin_mkey( ) operation changes the master key and re-encrypt the database.

void
rs_rep_admin_mkey(

[in] handle_t rpc_handle,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The status parameter returns the status of the operation.

} /* End rs_rpladmninterface */

Part 2 Security Services and Protocols 481



The rs_unix RPC Interface RS Editor RPC Interfaces

11.23 The rs_unix RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_unix RPC interface.

11.23.1 Common Data Types and Constants for rs_unix

The following are common data types and constants used in the rs_unix interface.

11.23.1.1 rs_unix_query_t

The rs_unix_query_t data type specifies the criteria used in a query to the RS for UNIX
information.

typedef enum {
rs_unix_query_name,
rs_unix_query_unix_num,
rs_unix_query_none

} rs_unix_query_t;

This data type contains the following elements:

• rs_unix_query_name
Query the RS server for the name of a principal.

• rs_unix_query_unix_num
Query the RS server for the local-ID of a principal.

• rs_unix_query_none
No query criteria.

11.23.1.2 rs_unix_query_key_t

The rs_unix_query_key_t data type provides a union to contain the key information for a UNIX
query.

typedef union switch (rs_unix_query_t query) {
case rs_unix_query_name:

struct {
signed32 name_len;
sec_rgy_name_t name;

} name;
case rs_unix_query_unix_num:

signed32 unix_num;
default:

; /* Empty default branch */
} rs_unix_query_key_t;

This data type contains the following elements:

• name_len
The length of the name element.

• name
The name of the principal.

• unix_num
The local-ID of the principal.

482 CAE Specification (1997)



RS Editor RPC Interfaces The rs_unix RPC Interface

11.23.1.3 sec_rgy_unix_login_name_t

The sec_rgy_unix_login_name_t data type contains a UNIX login name.

typedef [string] char sec_rgy_unix_login_name_t[sec_rgy_name_t_size];

11.23.1.4 sec_rgy_unix_gecos_t

The sec_rgy_unix_gecos_t data type contains UNIX gecos data.

typedef [string] char sec_rgy_unix_gecos_t[292];

11.23.1.5 sec_rgy_unix_passwd_t

The sec_rgy_unix_passwd_t data type contains UNIX account information associated with one
entry in the passwd data file.

typedef struct {
sec_rgy_unix_login_name_t name;
sec_rgy_unix_passwd_buf_t passwd;
signed32 uid;
signed32 gid;
signed32 oid;
sec_rgy_unix_gecos_t gecos;
sec_rgy_pname_t homedir;
sec_rgy_pname_t shell;

} sec_rgy_unix_passwd_t;

This data type contains the following elements:

• name
Principal or UNIX account name.

• passwd
The encrypted representation of the UNIX account password.

• uid
The UNIX user id for the account.

• gid
The UNIX primary group id for the account.

• oid
The account primary organization id.

• gecos
The UNIX gecos data for the account.

• homedir
The UNIX home directory for the account.

• shell
The UNIX primary shell for the account.

Part 2 Security Services and Protocols 483



The rs_unix RPC Interface RS Editor RPC Interfaces

11.23.1.6 sec_rgy_member_buf_t

The sec_rgy_member_buf_t data type contains a comma-separated ASCII list of group names.

typedef [string] char sec_rgy_member_buf_t[sec_rgy_name_t_size * 10];

11.23.1.7 sec_rgy_unix_group_t

The sec_rgy_unix_group_t data type contains a principal name and a primary and secondary list
of group names with which the principal is associated.

typedef struct {
sec_rgy_name_t name;
signed32 gid;
sec_rgy_member_buf_t members;

} sec_rgy_unix_group_t;

This data type contains the following elements:

• name
The principal name.

• gid
The principal’s primary group ID.

• members
The secondary group list of the principal.

11.23.2 Interface UUID and Version Number for rs_unix

The interface UUID and version number for the rs_unix interface are given by the following:

[
/* V1 format UUID: 361993c0b000.0d.00.00.87.84.00.00.00 */
uuid(361993C0-B000-0000-0D00-008784000000),
version(1)

]
interface rs_unix {

11.23.3 rs_unix_getpwents( )

The rs_unix_getpwents( ) operation returns an array of UNIX password account entries.

[idempotent] void
rs_unix_getpwents (

[in] handle_t rpc_handle,
[in] rs_unix_query_key_t *key,
[in] unsigned32 num,
[in,out] sec_rgy_cursor_t *cursor,
[out] unsigned32 *num_out,
[out, last_is(*num_out), max_is(num)]

sec_rgy_unix_passwd_t result[ ],
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The key parameter identifies the entries, either by principal name or by local-ID.

484 CAE Specification (1997)



RS Editor RPC Interfaces The rs_unix RPC Interface

The num parameter specifies the size of the result array; that is, the maximum number of entries
that can be returned by this call.

As input, the cursor parameter is an initialized or uninitialized cursor to the RS object. As output,
cursor is positioned just past the entries returned as output to this call.

The num_out parameter is the actual number of result entries returned in the result array.

The result[ ] array contains UNIX account information associated with UNIX passwd data file
entries.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The status parameter returns the status of the operation.

11.23.4 rs_unix_getmemberents( )

The rs_unix_getmemberents( ) operation returns an array of UNIX group or organization account
entries.

[idempotent] void
rs_unix_getmemberents (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t domain,
[in] rs_unix_query_key_t *key,
[in] signed32 max_num_results,
[in,out] sec_rgy_cursor_t *member_cursor,
[in,out] sec_rgy_cursor_t *cursor,
[out] signed32 *num_members,
[out, last_is(*num_members), max_is(max_num_results)]

sec_rgy_member_t members[ ],
[out] rs_cache_data_t *cache_info,
[out] sec_rgy_unix_group_t *result,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The domain parameter specifies whether the entries are person, group, or organization entries.

The key parameter identifies the entries, either by name or by local-ID.

The max_num_results parameter specifies the size of the members array; that is, the maximum
number of entries that can be returned by this call.

As input, the member_cursor parameter is an initialized or uninitialized cursor to the member list.
As output, member_cursor is positioned just past the current member entry returned as output to
this call.

As input, the cursor parameter is an initialized or uninitialized cursor to the attribute list. As
output, cursor is positioned just past the attributes returned as output to this call.

The num_members parameter is the actual number of member entries returned in the members
array.

The members[ ] array contains member entries.

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

The result parameter is a UNIX group describing a principal name and the associated primary
and secondary group list.

Part 2 Security Services and Protocols 485



The rs_unix RPC Interface RS Editor RPC Interfaces

The status parameter returns the status of the operation.

} /* End rs_unix interface */

486 CAE Specification (1997)



RS Editor RPC Interfaces The rs_update RPC Interface

11.24 The rs_update RPC Interface
This section specifies (in IDL/NDR) the RS’s rs_update RPC interface. This interface is
registered in the nameservice by the master replica so that clients can locate the master.

11.24.1 Interface UUID and Version Number for rs_update

The interface UUID and version number for the rs_update interface are given by the following:

[
uuid(3B11D6A8-2A9C-11CB-BE8A-08001E0238CA),
version(1.0),
pointer_default(ptr)

]
interface rs_update {

11.24.2 rs_rep_admin_info( )

The rs_rep_admin_info ( ) operation retrieves basic information about a replica.

void
rs_rep_admin_info(

[in] handle_t rpc_handle,
[out] rs_replica_info_t *rep_info,
[out] error_status_t *status );

The rpc_handle parameter identifies the RS server.

The rep_info parameter contains the information about the replica, including its state, UUID,
latest update sequence number and timestamp, whether the replica is a master replica, and
information about the replica’s master.

The status parameter returns the status of the operation.

} /* End rs_update interface */

Part 2 Security Services and Protocols 487



RS Editor RPC Interfaces

488 CAE Specification (1997)



Chapter 12

ID Map Facility RPC Interface

This chapter specifies the RPC interface supporting the ID Map Facility, namely the secidmap
RPC interface (the corresponding ID Map (or sec_id) API is specified in Chapter 17). See Section
1.13 on page 67 for the background to this chapter.

12.1 The secidmap RPC Interface
This section specifies (in IDL/NDR) the secidmap RPC interface, which is supported by every
RS server.

12.1.1 Common Data Types and Constants for the secidmap Interface

The following are common data types and constants used in the secidmap interface.

12.1.1.1 rsec_id_output_selector_t

The rsec_id_output_selector_t data type is used to control the services of the secidmap interface
operations.

typedef bitset rsec_id_output_selector_t;
const unsigned32 rsec_id_output_select_gname = 0x1;
const unsigned32 rsec_id_output_select_cname = 0x2;
const unsigned32 rsec_id_output_select_pname = 0x4;
const unsigned32 rsec_id_output_select_cuuid = 0x8;
const unsigned32 rsec_id_output_select_puuid = 0x10;

The following values are currently registered:

• rsec_id_output_select_gname
Return global PGO name.

• rsec_id_output_select_cname
Return cell name.

• rsec_id_output_select_pname
Return cell-relative PGO (principal, group or organisation) name.

• rsec_id_output_select_cuuid
Return cell UUID.

• rsec_id_output_select_puuid
Return PGO (principal, group or organisation) UUID.

Selectors (that is, parameters of type rsec_id_output_selector_t) occurring in the operations of
this chapter are to some extent considered to be ‘‘hints’’, informing the RS server what services
the client is interested in (that is, what information an operation should return in order to be
considered successful). Namely, selected bits (that is, set to 1) indicate information that the
client is interested in, and unselected bits (that is, set to 0) indicate information that the client is
not interested in.

However, there are some situations in which the RS server does or does not return the requested
information to clients — without reflecting an error to the client. For example, certain selections
do not make sense for certain operations, so the RS server does not return selected information

Part 2 Security Services and Protocols 489



The secidmap RPC Interface ID Map Facility RPC Interface

in those cases (this is indicated in the descriptions of the operations, below). Furthermore, in the
case of foreign cell referrals (see Section 12.1.1.2), RS servers are required to always return
certain information, whether the client has selected that information or not (this is also indicated
in the descriptions below). Finally, the RS server does not consider it an error if no bits at all are
selected by the client, or if bits that are currently unregistered are selected (this is not repeated in
the descriptions below).

12.1.1.2 Global PGO Names

Throughout this chapter the notion of global PGO name is used to mean a stringname of one of
the following (fully-qualified or partially-qualified) forms:

• /.../cell-name/cell-relative-pgo-name

• /.:/cell-relative-pgo-name

• cell-relative-pgo-name (see Section 11.2.4 on page 361).

Of course, the latter two forms listed here are to be interpreted in the context of (relative to the
home cell of) the user of these names.

Note that it is impossible to tell from the mere syntax of a global PGO name whether it names a
principal or group or organisation (it may even name all three) — to disambiguate it, a specified
PGO naming domain (see Section 11.5.1.1 on page 379) is required. (Concerning naming syntax,
see also Section 1.18 on page 84.)

12.1.1.3 Status Codes

The following status codes (transmitted as values of the type error_status_t) are specified for the
secidmap interface. Only their values and a short one-line description of them are specified here
— their detailed usage is specified in context elsewhere in this book.

Note: In cases where exception statuses are not currently described in this specification, it
is intended to supply them in the next revision of DCE.

Values:

const unsigned32 sec_id_e_name_too_long = 0x171220d4;
const unsigned32 sec_id_e_bad_cell_uuid = 0x171220d5;
const unsigned32 sec_id_e_foreign_cell_referral = 0x171220d6;

Descriptions:

• sec_id_e_name_too_long
A presented name is too long to be processed by RS server’s internal datastore
implementation.

For example, the DCE global naming syntax uses an initial /.../, but this may be converted for
storage in the RS datastore (depending on the implementation) with an initial krbtgt/ instead;
in this case, 2 extra characters are needed to represent the name, so if the name were already
at the RS datastore’s length limit prior to conversion, it would exceed the limit after the
conversion. (In practical implementations, this event is negligible.)

• sec_id_e_bad_cell_uuid
A presented cell UUID is not known to an RS server.

• sec_id_e_foreign_cell_referral
This status code is not considered a hard failure error; rather, it triggers a foreign cell referral
action to occur, as follows. (See also Section 1.11 on page 55 for the general idea of a junction
architecture for federated namespace organisation.)

490 CAE Specification (1997)



ID Map Facility RPC Interface The secidmap RPC Interface

Namely, when an RS server processes a client request naming a (purported) PGO item that
the RS server does not hold in its own datastore, but which it does hold a referral to (referring
to another RS server), it resolves the name as far as it can, and returns to the client the
required referral information together with a sec_id_e_foreign_cell_referral status code.
The client is then expected to retry the operation at the referred-to RS server. This ritual may
be iterated.

Commonly, this referral activity arises when an RS server detects that a prefix of a presented
name appears as a KDS principal or cell principal (that is, a principal which is a descendant of
the RS server’s krbtgt top-level directory of the principal domain). In this case the RS server
returns this foreign cell name to the client with a sec_id_e_foreign_cell_referral status code,
so the client can bind to an RS server in the foreign cell and retry the operation. (For RS
binding, see Section 1.12.2 on page 61 and Chapter 16.)

This discussion of referrals has been a general one, necessarily leaving some details vague.
Those details are to be supplied in explicit instances of referrals (as, for example, the
operations specified in this chapter).

12.1.2 Interface UUID and Version Number for the secidmap Interface

The interface UUID and version number for the secidmap interface are given by the following:

[uuid(0d7c1e50-113a-11ca-b71f-08001e01dc6c), version(1.0)]
interface secidmap
{
/* begin running listing of secidmap interface */

12.1.3 rsec_id_parse_name( )

The rsec_id_parse_name( ) operation parses a global PGO name into its cell name and a cell-
relative PGO name constituents, together with the UUIDs associated with them (depending on
selected options).

void
rsec_id_parse_name (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t global_name,
[in] rsec_id_output_selector_t selector,
[out] sec_rgy_name_t cell_namep,
[out] uuid_t *cell_idp,
[out] sec_rgy_name_t princ_namep,
[out] uuid_t *princ_idp,
[out] error_status_t *status );

The rpc_handle parameter identifies the target RS server.

The name_domain parameter indicates the PGO domain of interest.

The global_name parameter indicates the global PGO name to be parsed.

The selector parameter indicates the information to be returned:

• If the rsec_id_output_select_gname bit is selected, it is ignored.

• If the rsec_id_output_select_cname bit is selected, then the parsed cell name is returned in
cell_namep.

Part 2 Security Services and Protocols 491



The secidmap RPC Interface ID Map Facility RPC Interface

• If the rsec_id_output_select_pname bit is selected, then the parsed cell-relative PGO name is
returned in princ_namep.

• If the rsec_id_output_select_cuuid bit is selected, then the parsed cell UUID is returned in
cell_idp.

• If the rsec_id_output_select_puuid bit is selected, then the parsed PGO UUID is returned in
princ_idp.

The cell_namep parameter indicates the parsed cell name. In the case of a foreign cell referral, it
indicates the referred-to foreign cell.

The cell_idp parameter indicates the parsed cell UUID.

The princ_namep parameter indicates the parsed cell-relative PGO name.

The princ_idp parameter indicates the parsed PGO name.

The status parameter returns the status of the operation.

Required rights: No permissions are required, unless the rsec_id_output_select_puuid bit is
selected; in that case, this operation succeeds only if the calling client has some permission (of
any kind) on the PGO item indicated by name_domain and global_name (and if the client does not
have such permission, the operation fails completely; that is, the RS server does not fill in all but
the princ_idp parameter).

12.1.4 rsec_id_gen_name( )

The rsec_id_gen_name( ) operation generates a global PGO name, and parses it into its associated
cell name and cell-relative name, from specified cell and PGO UUIDs (depending on selected
options).

void
rsec_id_gen_name (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] uuid_t *cell_idp,
[in] uuid_t *princ_idp,
[in] rsec_id_output_selector_t selector,
[out] sec_rgy_name_t global_name,
[out] sec_rgy_name_t cell_namep,
[out] sec_rgy_name_t princ_namep,
[out] error_status_t *status );

The rpc_handle parameter identifies the target RS server.

The name_domain parameter indicates the PGO domain of interest.

The cell_idp parameter indicates the cell UUID.

The princ_idp parameter indicates the PGO UUID.

The selector parameter indicates the information to be returned:

• If the rsec_id_output_select_gname bit is selected, then the generated global PGO name is
returned in global_name.

• If the rsec_id_output_select_cname bit is selected, then the generated cell name is returned
in cell_namep.

492 CAE Specification (1997)



ID Map Facility RPC Interface The secidmap RPC Interface

• If the rsec_id_output_select_pname bit is selected, then the generated cell-relative PGO
name is returned in princ_namep.

• If the rsec_id_output_select_cuuid bit is selected, it is ignored.

• If the rsec_id_output_select_puuid bit is selected, it is ignored.

The global_name parameter indicates the generated global PGO name.

The cell_namep parameter indicates the generated cell name. In the case of a foreign cell referral,
it indicates the referred-to foreign cell.

The princ_namep parameter indicates the generated PGO name.

The status parameter returns the status of the operation.

Note: A sec_id_e_foreign_cell_referral status is generated by this operation only if one of
the bits rsec_id_output_select_gname or rsec_id_output_select_pname is selected.
Otherwise, the RS server either already holds the required information, or it doesn’t
hold enough information to generate a referral.

Required rights: This operation succeeds only if the calling client has some permission (of any
kind) on the PGO item determined by the specified UUIDs (cell_idp, princ_idp).

12.1.5 rsec_id_parse_name_cache( )

The rsec_id_parse_name_cache( ) operation is identical to rsec_id_parse_name( ), with the addition
of cache management.

void
rsec_id_parse_name_cache (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] sec_rgy_name_t global_name,
[in] rsec_id_output_selector_t selector,
[out] sec_rgy_name_t cell_namep,
[out] uuid_t *cell_idp,
[out] sec_rgy_name_t princ_namep,
[out] uuid_t *princ_idp,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

Required rights: Same as rsec_id_parse_name( ).

12.1.6 rsec_id_gen_name_cache( )

The rsec_id_gen_name_cache( ) operation is identical to rsec_id_gen_name( ), with the addition of
cache management.

Part 2 Security Services and Protocols 493



The secidmap RPC Interface ID Map Facility RPC Interface

void
rsec_id_gen_name_cache (

[in] handle_t rpc_handle,
[in] sec_rgy_domain_t name_domain,
[in] uuid_t *cell_idp,
[in] uuid_t *princ_idp,
[in] rsec_id_output_selector_t selector,
[out] sec_rgy_name_t global_name,
[out] sec_rgy_name_t cell_namep,
[out] sec_rgy_name_t princ_namep,
[out] rs_cache_data_t *cache_info,
[out] error_status_t *status );

} /* end running listing of secidmap interface */

The cache_info parameter indicates cache information (see Section 11.2.8 on page 363).

Required rights: Same as rsec_id_gen_name( ).

494 CAE Specification (1997)



Chapter 13

Key Management Facility RPC Interface

This chapter specifies the RPC interface supporting the Key Management Facility (the
corresponding Key Management — or sec_key_mgmt — API is specified in Chapter 18). See
Section 1.14 on page 69 for the background to this chapter.

13.1 The Key Management RPC Interface
There are no special RPC interfaces (beyond those already specified elsewhere in this
specification) to support the Key Management Facility.

13.1.1 Common Data Types and Constants for Key Management

The following are common data types and constants used for key management.

13.1.1.1 Status Codes

The following status codes (transmitted as values of the type error_status_t) are specified for
key management. Only their values are specified here — their use is specified in context
elsewhere in this specification.

const unsigned32 sec_key_mgmt_e_key_unavailable = 0x17122043;
const unsigned32 sec_key_mgmt_e_authn_invalid = 0x17122044;
const unsigned32 sec_key_mgmt_e_auth_unavailable = 0x17122045;
const unsigned32 sec_key_mgmt_e_unauthorized = 0x17122046;
const unsigned32 sec_key_mgmt_e_key_unsupported = 0x17122047;
const unsigned32 sec_key_mgmt_e_key_version_ex = 0x17122048;
const unsigned32 sec_key_mgmt_e_not_implemented = 0x17122049;
const unsigned32 sec_key_mgmt_e_keytab_not_found = 0x1712204a;
const unsigned32 sec_key_mgmt_e_ktfile_err = 0x1712204b;

Part 2 Security Services and Protocols 495



Key Management Facility RPC Interface

496 CAE Specification (1997)



Chapter 14

Login Facility and Security Client Daemon (SCD) RPC
Interface

This chapter specifies the RPC interface supporting the Login Facility, namely the scd RPC
interface supported by the Security Client Daemon (the corresponding Login (or sec_login) API
is specified in Chapter 19). See Section 1.15 on page 71 for the background to this chapter.

14.1 The scd RPC Interface
This section specifies (in IDL/NDR) the SCD’s scd RPC interface.

14.1.1 Common Data Types and Constants for scd Interface

The following are common data types and constants used in the Login Facility and scd RPC
interface.

14.1.1.1 Status Codes

The following status codes (transmitted as values of the type error_status_t) are specified for the
Login Facility and scd RPC interface. Only their values are specified here — their use is
specified in context elsewhere in this specification.

const unsigned32 sec_login_s_no_memory = 0x171220e8;
const unsigned32 sec_login_s_auth_local = 0x171220e9;
const unsigned32 sec_login_s_handle_invalid = 0x171220ea;
const unsigned32 sec_login_s_context_invalid = 0x171220eb;
const unsigned32 sec_login_s_no_current_context = 0x171220ec;
const unsigned32 sec_login_s_groupset_invalid = 0x171220ed;
const unsigned32 sec_login_s_info_not_avail = 0x171220ee;
const unsigned32 sec_login_s_already_valid = 0x171220ef;
const unsigned32 sec_login_s_default_use = 0x171220f0;
const unsigned32 sec_login_s_privileged = 0x171220f1;
const unsigned32 sec_login_s_not_certified = 0x171220f2;
const unsigned32 sec_login_s_config = 0x171220f3;
const unsigned32 sec_login_s_internal_error = 0x171220f4;
const unsigned32 sec_login_s_acct_invalid = 0x171220f6;
const unsigned32 sec_login_s_null_password = 0x171220f7;
const unsigned32 sec_login_s_unsupp_passwd_type = 0x171220f8;
const unsigned32 sec_login_s_refresh_ident_bad = 0x171220fa;

14.1.2 Interface UUID and Version Number for scd Interface

The interface UUID and version number for the scd interface are given by the following:

[uuid(c57e83f0-58be-11ca-901c-08001e039448), version(1.0)]
interface scd

Part 2 Security Services and Protocols 497



The scd RPC Interface Login Facility and Security Client Daemon (SCD) RPC Interface

14.1.3 scd_protected_noop( )

The scd_protected_noop ( ) operation determines whether or not the calling client can
‘‘successfully’’ (in the sense of authentication) execute a protected ‘‘dummy’’ operation
(actually, a ‘‘no-op’’) on an SCD server — that is, whether or not the client and SCD server are
authenticated to one another. This operation is used to support the notion of certification (see
Section 1.15.2 on page 77): to the extent that the client trusts that its invocation of
scd_protected_noop ( ) has actually been handled by the genuine SCD server on its local host
(which is in the local host’s TCB), successful execution of this operation has the semantic of
‘‘certifying’’ (in the sense of Section 1.15.2 on page 77) to the client the login context it used in
invoking scd_protected_noop ( ).

{ /* begin running listing of scd interface */
void
scd_protected_noop (

[in] handle_t rpc_handle,
[out] error_status_t *status );

} /* end running listing of scd interface */

The rpc_handle parameter identifies the SCD server.

The status parameter returns the status of the operation. (See description below.)

Required rights: None (but see below).

The SCD’s handler (manager routine) of scd_protected_noop ( ) always returns error_status_ok in
the status parameter (though this may not always be returned to the client; it may be overridden
in the RPC runtime system; for example, by an authentication failure). Similarly, no specific
permissions are required by the manager routine itself; however, the SCD server registers itself
(see rpc_server_register_auth_info ( ) in the referenced X/Open DCE RPC Specification) under its
principal name and with an appropriate authentication service (only rpc_c_authn_dce_secret
(Kerberos) is currently supported) and authorisation service (rpc_c_authz_dce, so that the
client’s PAC is transmitted to the server), and the client invokes scd_protected_noop ( ) on a
binding that is protected (see rpc_binding_set_auth_info ( ) in the referenced X/Open DCE RPC
Specification) at protection level rpc_c_protect_level_pkt_integ — it is the responsibility of the
RPC runtime system to report to the client (via the status parameter) whether or not this
operation succeeds (that is, whether the client and SCD server are authenticated to one another
via the same authentication service (Kerberos)).

498 CAE Specification (1997)



CAE Specification

Part 3

Security Application Programming Interface

The Open Group

Part 3 Security Application Programming Interface 499



500 CAE Specification (1997)



Chapter 15

Access Control List API

15.1 Introduction
The routines in the ACL Editor API are distinguished with names having the prefix ‘‘sec_acl_’’.

Background is given in Chapter 1, especially Section 1.11 on page 55.

Note: The sec_acl API is designed to be a general programming interface for managing all
ACLs in such a way that the client is unaware of the principal identity of the server
that controls the objects protected by the ACLs. As such, the server’s principal name
does not occur as a parameter to the sec_acl API (see, for example, sec_acl_bind( )).
This implies, in particular, that the sec_acl API supports only one-way (client-to-
server) authentication, not mutual (server-to-client) authentication. Applications
that require mutual authentication should use the ‘‘raw’’ rdacl RPC protocol, not the
sec_acl API. (Mutual authentication may be added to the sec_acl API in a future
revision of DCE.)

Part 3 Security Application Programming Interface 501



<dce/aclbase.h> Access Control List API

NAME
<dce/aclbase.h> — Header for sec_acl API.

SYNOPSIS
#include <dce/aclbase.h>

DESCRIPTION

Data Types and Constants

The following data types (listed in alphabetical order) are used in the sec_acl API.

unsigned char *sec_acl_component_name_t
Server-supported namespace component.

struct sec_acl_entry_t
This data type represents an ACLE. It contains the following fields:

sec_acl_permset_t perms
The permissions granted to the principals identified by this ACL entry.

struct entry_info
Identifies the principals to which this ACLE ‘‘applies’’ (that is, which ‘‘match’’ this
ACLE for the purposes of an access decision). It contains the following fields:

sec_acl_entry_type_t entry_type
The type of this ACLE.

union tagged_union
Information further identifying (or ‘‘tagging’’) this ACLE. It contains the following
fields:

sec_id_t id
Local principal, local group or foreign cell to which this ACLE applies. This
union arm is selected if entry_type is sec_acl_e_type_user,
sec_acl_e_type_group, sec_acl_e_type_foreign_other
sec_acl_e_type_user_deleg, sec_acl_e_type_group_deleg, or
sec_acl_e_type_for_other_deleg.

sec_id_foreign_t foreign_id
Foreign principal or foreign group to which this ACLE applies. This union
arm is selected if entry_type is sec_acl_e_type_foreign_user,
sec_acl_e_type_foreign_group, sec_acl_e_type_for_user_deleg, or
sec_acl_e_type_for_group_deleg.

sec_acl_extend_info_t *extended_info
Contents of an extended ACLE. This union arm is selected if entry_type is
sec_acl_e_type_extended.

/*empty*/
The tagged_union field contains no valid information for any other value of
entry_type.

enum sec_acl_entry_type_t
The ACLE type of an ACLE. It can take the following values (see Section 1.8.1 on page 40
for discussion):

sec_acl_e_type_user_obj
USER_OBJ

502 CAE Specification (1997)



Access Control List API <dce/aclbase.h>

sec_acl_e_type_group_obj
GROUP_OBJ

sec_acl_e_type_other_obj
OTHER_OBJ

sec_acl_e_type_user_obj_deleg
USER_OBJ_DEL

sec_acl_e_type_group_obj_deleg
GROUP_OBJ_DEL

sec_acl_e_type_other_obj_deleg
OTHER_OBJ_DEL

sec_acl_e_type_user
USER

sec_acl_e_type_group
GROUP

sec_acl_e_type_user_deleg
USER_DEL

sec_acl_e_type_group_deleg
GROUP_DEL

sec_acl_e_type_mask_obj
MASK_OBJ

sec_acl_e_type_foreign_user
FOREIGN_USER

sec_acl_e_type_foreign_group
FOREIGN_GROUP

sec_acl_e_type_foreign_other
FOREIGN_OTHER

sec_acl_e_type_for_user_deleg
FOREIGN_USER_DEL

sec_acl_e_type_for_group_deleg
FOREIGN_GROUP_DEL

sec_acl_e_type_for_other_deleg
FOREIGN_OTHER_DEL

sec_acl_e_type_any_other
ANY_OTHER

sec_acl_e_type_unauthenticated
UNAUTHENTICATED

sec_acl_e_type_extended
EXTENDED

struct sec_acl_extend_info_t
Extended ACL information (see Section 7.1.4 on page 313 for discussion). It contains the
following fields:

Part 3 Security Application Programming Interface 503



<dce/aclbase.h> Access Control List API

uuid_t extension_type
The type of extension this is, indicating to ACL managers whether or not they can
interpret it. (ACL managers must reject any extended ACLEs they cannot interpret.)

ndr_format_t format_label
NDR format label.

unsigned32 num_bytes
Number of bytes in pickled_data[] array.

unsigned char pickled_data[]
The actual extended ACL information itself.

sec_acl_handle_t
An opaque (to the client) data type representing a handle to a protected object. The handle
is bound to the protected object with sec_acl_bind( ) or sec_acl_bind_to_addr ( ). The
distinguished value sec_acl_default_handle signifies an unbound handle.

sec_acl_id_t
This data type is equivalent to the sec_id_t data type (that is, they may be used
interchangeably).

unsigned32 sec_acl_permset_t
Permission bits. The following values are currently defined (see Section 1.9 on page 46 for
discussion):

sec_acl_perm_read
Read. (Conventional value: 0x00000001.)

sec_acl_perm_write
Write. (Conventional value: 0x00000002.)

sec_acl_perm_execute
Execute. (Conventional value: 0x00000004.)

sec_acl_perm_control
Control (or Change, or Write-ACL). (Conventional value: 0x00000008.)

sec_acl_perm_insert
Insert. (Conventional value: 0x00000010.)

sec_acl_perm_delete
Delete. (Conventional value: 0x00000020.)

sec_acl_perm_test
Test. (Conventional value: 0x00000040.)

sec_acl_perm_unused_00000080 to sec_acl_perm_unused_80000000
Application-defined. There are 25 of these bits, the last 8 characters of whose names
correspond to the bit-value identifiers 0x00000080−0x80000000 (and which by
convention have these same bit-values).

struct sec_acl_t
This data type represents an ACL. It contains the following fields:

sec_acl_id_t default_realm
The default cell (or realm) for this ACL.

uuid_t sec_acl_manager_type
The ACL manager that can interpret this ACL.

504 CAE Specification (1997)



Access Control List API <dce/aclbase.h>

unsigned32 num_entries
Number of ACLEs in this ACL.

sec_acl_entry_t *sec_acl_entries[]
An array containing num_entries pointers to the ACLEs of this ACL.

struct sec_acl_list_t
A list of ACLs. It contains the following fields:

unsigned32 num_acls
The number of ACLs contained in this list.

sec_acl_p_t sec_acls[]
Pointers to the actual ACLs in this list.

sec_acl_t *sec_acl_p_t
Pointer to a sec_acl_t.

struct sec_id_foreign_t
Identities of ‘‘foreign’’ entities (see Section 5.2.2 on page 279). It contains the following
fields:

sec_id_t id
Identifier of the entity within its cell.

sec_id_t realm
Identifier of the entity’s cell (or ‘‘realm’’ in security-specific terminology).

struct sec_id_t
Identities of cells and ‘‘local’’ entities, suitable for DCE authorisation architecture (see
Section 5.2.1 on page 277). (Compare sec_id_foreign_t.) It contains the following fields:

uuid_t uuid
Definitive identifier of the entity.

unsigned char *name
Advisory (‘‘optional’’) identifier of the entity.

struct sec_acl_printstring_t
Information about permission bits, and about ACL managers as a whole (see Section 8.1.2
on page 319 and Section 10.1.10 on page 352 for discussion). It contains the following fields:

unsigned char *printstring
Printstring (a character string of maximum length signed32 sec_acl_printstring_len).

unsigned char *helpstring
Helpstring (a character string of maximum length signed32
sec_acl_printstring_help_len).

sec_acl_permset_t permissions
Bit representation of permission(s).

enum sec_acl_type_t
The ACL’s type (see Section 1.8.2 on page 44 for discussion). The following values are
currently defined:

sec_acl_type_object
Protection ACL.

sec_acl_type_default_object
Default object creation ACL.

Part 3 Security Application Programming Interface 505



<dce/aclbase.h> Access Control List API

sec_acl_type_default_container
Default container creation ACL.

sec_acl_type_unspecified_3, ⋅⋅⋅, sec_acl_type_unspecified_7
Application defined. (There are 5 of these identifiers; each is 26 characters long. Their
first 25 characters are ‘‘sec_acl_type_unspecified_’’, and their last characters are,
respectively: ‘‘3’’, ‘‘4’’, ‘‘5’’, ‘‘6’’, ‘‘7’’.)

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_acl API.

sec_acl_bad_acl_syntax
ACL has invalid semantics (not ‘‘syntax’’).

sec_acl_bad_key
The ACLE tag (key) is not valid.

sec_acl_bad_parameter
Parameter passed is invalid.

sec_acl_bind_error
Unable to get binding to protected object.

sec_acl_cant_allocate_memory
Requested operation requires more memory than is available.

sec_acl_duplicate_entry
ACL has duplicate entries.

sec_acl_expected_group_obj
ACLE is not of type GROUP_OBJ.

sec_acl_expected_user_obj
ACLE is not of type USER_OBJ.

sec_acl_invalid_entry_name
Requested namespace entry is invalid. For example, purported component name contains
an illegal character.

sec_acl_invalid_entry_type
ACLE type is not valid.

sec_acl_invalid_manager_type
Manager type is not valid.

sec_acl_invalid_permission
Permissions for this ACL are invalid.

sec_acl_invalid_site_name
Site (server instance) name is not valid.

sec_acl_invalid_acl_type
ACL type is not valid.

sec_acl_missing_required_entry
ACL is missing a required entry.

sec_acl_name_resolution_failed
Name requested in the operation cannot be resolved.

506 CAE Specification (1997)



Access Control List API <dce/aclbase.h>

sec_acl_no_acl_found
Requested ACL was not present.

sec_acl_no_owner
Requested operation requires owner permission.

sec_acl_not_authorized
Requested operation is not allowed.

sec_acl_not_implemented
Unwilling to perform requested operation (or, colloquially, requested operation has ‘‘not
been implemented’’).

sec_acl_no_update sites
No update site for this ACL operation.

sec_acl_object_not_found
Requested protected object could not be found.

sec_acl_read_only
ACL is read-only.

sec_acl_rpc_error
Operation requested failed in RPC.

sec_acl_site_read_only
ACL is read-only at this site.

sec_acl_unable_to_authenticate
Requested operation requires authentication.

sec_acl_unknown_manager_type
Manager type selected is not an available option.

sec_invalid_acl_handle
ACL binding handle is invalid.

Part 3 Security Application Programming Interface 507



sec_acl_bind( ) Access Control List API

NAME
sec_acl_bind — Obtain (‘‘bind’’) handle to a protected object identified by name.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_bind(
unsigned char * name,
boolean32 bind_to_namespace_entry ,
sec_acl_handle_t * prot_obj_handle ,
error_status_t * status );

PARAMETERS

Input

name
Full name (a CDS namespace entry name concatenated with a server-supported namespace
name) of the protected object to which a security handle is desired.

bind_to_namespace_entry
Boolean switch, for disambiguating the cases where name ambiguously refers to both a (leaf)
entry in the DCE namespace (as for protected object managed by a DCE namespace server),
and also an application-level (that is, non-DCE-namespace-)server-supported protected
object (the root of a server-supported namespace). If non-0 (‘‘true’’), the DCE namespace
entry is indicated; if 0 (‘‘false’’), the (non-DCE namespace) server’s protected object is
indicated.

Output

prot_obj_handle
Handle to the specified protected object.

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_bind( ) routine returns an opaque (to the client) handle, bound to (that is, referring to)
the protected object indicated by name. This handle is used subsequently by other sec_acl
routines to refer to the protected object (instead of referring to it by name).

NOTES
If the specified name is a ‘‘junction point’’ between the DCE namespace and an application
server’s namespace of protected objects (that is, name is the application server’s
registered/exported RPC server entry in the DCE namespace), then name ambiguously identifies
two protected objects: the (leaf) DCE namespace entry itself, and the protected object at the root
of the server’s namespace of protected objects (that is, the server’s protected object with empty
stringname). The bind_to_namespace_entry flag resolves such an ambiguity. Note that if name
refers to a DCE namespace internal node (that is, to a DCE namespace directory, not a leaf node),
then there is no ambiguity (the protected object to which a handle is returned is the DCE
directory, managed by a DCE namespace server).

Implementations of sec_acl_bind( ) must be based on a namespace ‘‘resolution-with-residual’’
runtime support routine that resolves a full name to the junction point in the namespace, and
returns to the client the unresolved, ‘‘residual’’, part of the name, supported by the application
server. The client then queries the resolved name for the server’s binding information, binds to

508 CAE Specification (1997)



Access Control List API sec_acl_bind( )

the server, and presents to it the residual name for the server’s internal resolution. Such a
suitable CDS namespace runtime support routine is provided by rpc_ns_entry_inq_resolution( ).

ERRORS
error_status_ok, sec_acl_object_not_found, sec_acl_no_acl_found.

SEE ALSO
Functions: sec_acl_bind_to_addr ( ), sec_acl_release_handle ( ).

Protocols: rpc_ns_entry_inq_resolution( ), rpc_ns_binding_*( ).

Part 3 Security Application Programming Interface 509



sec_acl_bind_to_addr( ) Access Control List API

NAME
fsec_acl_bind_to_addr — Obtain (‘‘bind’’) handle to a protected object identified by address and
name.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_bind_to_addr(
unsigned char * addr ,
sec_acl_component_name_t component_name ,
sec_acl_handle_t * prot_obj_handle ,
error_status_t * status );

PARAMETERS

Input

addr
Fully qualified RPC string binding (‘‘address’’) to the server managing the protected object
to which a security handle is desired.

component_name
Server-supported namespace name of the protected object to which a security handle is
desired.

Output

prot_obj_handle
Handle to the specified protected object.

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_bind_to_addr ( ) routine is identical to sec_acl_bind( ), except that it identifies the
protected object by server address and server-supported name (addr and component_name),
instead of by full name.

NOTES
Unlike sec_acl_bind( ), there can be no ambiguity about the protected object that
sec_acl_bind_to_addr ( ) refers to, because the target server is referred to unambiguously by its
address (RPC string binding).

ERRORS
error_status_ok, sec_acl_object_not_found, sec_acl_no_acl_found,
sec_acl_unable_to_authenticate, sec_acl_bind_error, sec_acl_invalid_site_name,
sec_acl_cant_allocate_memory.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_release_handle ( ).

510 CAE Specification (1997)



Access Control List API sec_acl_calc_mask( )

NAME
sec_acl_calc_mask — Obtain MASK_OBJ from an ACL.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_calc_mask(
sec_acl_list_t acl_list ,
error_status_t * status );

PARAMETERS

Input/Output

acl_list
An ACL list.

Output

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_calc_mask ( ) routine sets the permission bits of the (sec_acl_e_type_mask_obj) entry
(creating it first, if necessary) of each of the ACLs in the specified ACL list (acl_list), to the
‘‘union’’ (bitwise OR) of the permissions of all the ACL entries in the ACL of types USER,
FOREIGN_USER, GROUP_OBJ, GROUP, FOREIGN_GROUP, FOREIGN_OTHER and
ANY_OTHER (but not USER_OBJ, OTHER_OBJ, UNAUTHENTICATED, EXTENDED or
MASK_OBJ, if these exist).

ERRORS
error_status_ok, sec_acl_cant_allocate_memory.

SEE ALSO
Functions: sec_acl_get_manager_types_semantics ( ).

Part 3 Security Application Programming Interface 511



sec_acl_get_access( ) Access Control List API

NAME
sec_acl_get_access — Obtain calling client’s permissions to a protected object.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_get_access(
sec_acl_handle_t prot_obj_handle ,
uuid_t * manager_type ,
sec_acl_permset_t * access_rights ,
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

manager_type
An ACL manager type UUID of the protected object.

Output

access_rights
Calling client’s access rights to the specified protected object.

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_get_access( ) routine obtains (a local copy of) the complete set of access rights the
calling client has to the specified protected object.

NOTES
Implementations layer this routine over the rdacl RPC interface operation rdacl_get_access ( ).

ERRORS
error_status_ok.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr ( ), sec_acl_get_manager_types ( ),
sec_acl_get_manager_types_semantics ( ), sec_acl_test_access( ), sec_acl_test_access_on_behalf ( ).

Protocols: rdacl_get_access ( ).

512 CAE Specification (1997)



Access Control List API sec_acl_get_error_info( )

NAME
sec_acl_get_error_info — Obtain fine-grained error information related to sec_acl API.

SYNOPSIS
#include <dce/daclif.h>

error_status_t sec_acl_get_error_info(
sec_acl_handle_t prot_obj_handle );

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

RETURN VALUES
The error_status_t return value indicates the last error issued by DCE runtime support routines
supporting the sec_acl API.

DESCRIPTION
The sec_acl_get_error_info ( ) routine returns DCE runtime routine error information (as opposed
to sec_acl API error status information) associated with sec_acl calls to the (server managing
the) indicated protected object.

NOTES
Some implementations of the sec_acl API may map certain DCE runtime routine errors (for
example, RPC runtime errors) into certain sec_acl error status values. This routine recovers
those runtime support errors. It is provided for those applications that require the finer-grained
information provided by the routine support error values.

The specification of the service provided by this routine is implementation-specific; it is
incumbent on implementations of DCE to provide such information.

ERRORS
DCE runtime support routine errors, sec_acl_invalid_handle.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr ( ).

Part 3 Security Application Programming Interface 513



sec_acl_get_manager_types( ) Access Control List API

NAME
sec_acl_get_manager_types — Obtain list of ACL manager types on a protected object.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_get_manager_types(
sec_acl_handle_t prot_obj_handle ,
sec_acl_type_t acl_type ,
unsigned32 count_max ,
unsigned32 * count ,
unsigned32 * num_manager_types ,
uuid_t manager_types [ ],
error_status_t *status);

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

acl_type
An ACL type of the protected object.

count_max
Maximum number of elements the calling client is prepared to receive in its manager_types[ ]
array.

Output

count
Actual number of elements returned to the calling client in its manager_types[ ] array.

num_manager_types
Total number of ACL manager types, of ACL type acl_type, at the heads of chains (see
sec_acl_get_printstring( )), protecting the protected object.

manager_types[ ]
Array of size count, of ACL manager types managing ACLs of ACL type acl_type on the
protected object.

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_get_manager_types( ) routine returns a list of distinct UUIDs of different ACL
manager types managing ACLs of ACL type acl_type that are protecting the object identified by
prot_obj_handle. In the case of a chain of ACL managers (each supporting ≤ 32 permission bits),
only the first ACL manager in the chain is returned in this way, and the rest are returned by calls
to sec_acl_get_printstring( ).

The sec_acl_get_manager_types( ) routine also returns, in num_manager_types, the total number of
ACL manager types, of ACL type acl_type, at the heads of chains, protecting the protected object.
An invocation of this routine is completely successful only if count = num_manager_types.

514 CAE Specification (1997)



Access Control List API sec_acl_get_manager_types( )

NOTES
Implementations layer this routine over the rdacl RPC interface operation
rdacl_get_manager_types( ).

ERRORS
error_status_ok.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr( ), sec_acl_get_printstring( ).

Protocols: rdacl_get_manager_types( ).

Part 3 Security Application Programming Interface 515



sec_acl_get_mgr_types_semantics( ) Access Control List API

NAME
sec_acl_get_mgr_types_semantics — Obtain list of ACL manager types on a protected object,
together with information about the POSIX semantics they support.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_get_mgr_types_semantics(
sec_acl_handle_t prot_obj_handle ,
sec_acl_type_t acl_type ,
unsigned32 count_max ,
unsigned32 * count ,
unsigned32 * num_manager_types ,
uuid_t manager_types [ ],
sec_acl_posix_semantics_t posix_semantics [ ],
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle referring to a protected object.

acl_type
An ACL type of the protected object.

count_max
Maximum number of elements the calling client is prepared to receive In its manager_types[]
and posix_semantics[] arrays.

Output

count
Actual number of elements returned to the calling client in its manager_types[] and
posix_semantics[] arrays.

num_manager_types
Total number of ACL manager types, of ACL type acl_type, at the heads of chains (see
sec_acl_get_printstring ( )), protecting the protected object.

manager_types[ ]
Array of size count, of ACL manager types managing ACLs of ACL type acl_type on the
protected object.

posix_semantics[ ]
Array of size count, indicating the ‘‘POSIX-specific’’ semantics supported by the
corresponding ACL manager in the manager_types array.

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_get_mgr_types_semantics( ) routine is identical to sec_acl_get_manager_types ( ), except
that it returns the additional posix_semantics[] array parameter. That array consists of flag words,
each bit of which identifies a ‘‘POSIX-specific’’ semantic that the corresponding ACL manager in
the manager_types array supports (posix_semantics[k] corresponds to manager_types[k]). See

516 CAE Specification (1997)



Access Control List API sec_acl_get_mgr_types_semantics( )

Section 10.1.2.7 on page 347 for discussion.

NOTES
Implementations layer this routine over the rdacl RPC interface operation
rdacl_get_mgr_types_semantics( ).

ERRORS
error_status_ok.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr ( ), sec_acl_get_printstring ( ).

Protocols: rdacl_get_mgr_types_semantics( ).

Part 3 Security Application Programming Interface 517



sec_acl_get_printstring( ) Access Control List API

NAME
sec_acl_get_printstring — Obtain human-readable representations of permissions supported by
an ACL manager.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_get_printstring(
sec_acl_handle_t prot_obj_handle ,
uuid_t * manager_type ,
unsigned32 count_max ,
uuid_t * manager_type_next ,
sec_acl_printstring_t * manager_info ,
boolean32 * tokenize ,
unsigned32 * num_printstrings ,
unsigned32 * count ,
sec_acl_printstring_t printstrings [ ],
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle referring to a protected object.

manager_type
An ACL manager type UUID of the protected object.

count_max
Maximum number of elements the calling client is prepared to receive in its printstrings[ ]
array.

Output

manager_type_next
Identifies the next ACL manager type in a linked list or ‘‘chain’’ of ACL manager types,
which can be successively followed until the chain is exhausted (for example, such a chain
can be used to support > 32 permission bits). The end of an ACL manager chain is indicated
by uuid_nil.

manager_info
Name and help information for the ACL manager, as well as a complete set of supported
permission bits.

tokenize
Identifies potential ambiguity in the concatenation of permission printstrings (that is, in the
printstring fields of the elements of the printstrings[] array).

num_printstrings
Total number (1, ⋅⋅⋅, 32) of permission bits and printstrings supported by the ACL manager.

count
Actual number of printstrings returned (in printstrings[]).

printstrings[ ]
Array of size count, of printstrings representing the permission bits supported by the ACL
manager.

518 CAE Specification (1997)



Access Control List API sec_acl_get_printstring( )

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_get_printstring ( ) routine returns information about the ACL manager specified by
manager_type, managing an ACL of the protected object specified by prot_obj_handle. This
information is returned in the printstrings[] array, which contains one or more entry for each
distinct permission the ACL manager supports.

The sec_acl_get_printstring ( ) routine also returns, in num_printstrings, the total number of
printstrings supported by the ACL manager. An invocation of this routine is completely
successful only if count = num_printstrings.

In addition to returning information about the permissions themselves, this routine returns
instructions in the tokenize parameter about concatenating the printstrings associated with them
(this is useful for user interfaces to ACL editors). When tokenize is 0 (‘‘false’’), the permission
printstrings may be concatenated without ambiguity (for example, in a user interface to an ACL
editor); when non-0 (‘‘true’’), this property does not hold and the permission printstrings must
be ‘‘tokenised’’ (that is, separated by disambiguating characters; for example, non-alphanumeric
characters, such as whitespace) to avoid ambiguity when concatenated.

The ACL manager must support at least one printstring[] array element pertaining to each
permission supported by the ACL manager. If it supports more than one (‘‘aliases’’) for a given
permission, by convention the simpler entries appear toward the beginning of the printstring[]
array.

For more information (and an example), see rdacl_get_printstring ( ) (Section 10.1.10 on page 352).

NOTES
Implementations layer this routine over the rdacl RPC interface operation rdacl_get_printstring ( ).

ERRORS
error_status_ok, sec_acl_unknown_manager_type.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_get_manager_types ( ), sec_acl_get_manager_types_semantics ( ).

Protocols: rdacl_get_printstring ( ).

Part 3 Security Application Programming Interface 519



sec_acl_lookup( ) Access Control List API

NAME
sec_acl_lookup — Retrieve (‘‘read’’) ACLs from a protected object, creating a copy locally on the
client.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_lookup(
sec_acl_handle_t prot_obj_handle ,
uuid_t * manager_type ,
sec_acl_type_t acl_type ,
sec_acl_list_t * acl_list ,
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

manager_type
An ACL manager type UUID of the protected object.

acl_type
An ACL type of the protected object.

Output

acl_list
Copy of retrieved ACL.

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_lookup ( ) routine loads into local memory a copy of the specified protected object’s
ACLs, managed by the specified ACL manager.

NOTES
The local memory containing the retrieved ACL is dynamically allocated (see sec_acl_release( )).

Implementations layer this routine over the rdacl RPC interface operation rdacl_lookup ( ).

ERRORS
error_status_ok, sec_acl_unknown_manager_type, sec_acl_cant_allocate_memory.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr ( ), sec_acl_get_manager_types ( ),
sec_acl_get_manager_types_semantics ( ), sec_acl_release( ), sec_acl_replace ( ).

Protocols: rdacl_lookup ( ).

520 CAE Specification (1997)



Access Control List API sec_acl_release( )

NAME
sec_acl_release — Free (local copy of) ACLs.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_release(
sec_acl_handle_t prot_obj_handle ,
sec_acl_t * acl ,
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

acl
ACL to be released.

Output

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_release( ) routine releases local copies of ACLs which had previously been obtained
by sec_acl_lookup( ).

NOTES
This is a local memory management operation, and has no effect on the protected object to
which prot_obj_handle is bound, or to its ACLs.

Note: Note that sec_acl_lookup( ) returns a list of ACLs, while sec_acl_release( ) releases ACLs
only one at a time. This allows applications to retain only those ACLs of interest to
them, without tying up memory for ACLs it isn’t interested in.

ERRORS
error_status_ok.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr( ), sec_acl_lookup( ).

Part 3 Security Application Programming Interface 521



sec_acl_release_handle( ) Access Control List API

NAME
sec_acl_release_handle — Release handle to a protected object.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_release_handle(
sec_acl_handle_t * prot_obj_handle ,
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

Output

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_release_handle ( ) routine releases a handle which had previously been obtained by
sec_acl_bind( ) or sec_acl_bind_to_addr ( ).

NOTES
This is a local memory management operation, and has no effect on the protected object to
which prot_obj_handle is bound, or to its ACLs, or to the server managing them.

ERRORS
error_status_ok.

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr ( ).

522 CAE Specification (1997)



Access Control List API sec_acl_replace( )

NAME
sec_acl_replace — Apply (‘‘write’’) ACLs to a protected object.

SYNOPSIS
#include <dce/daclif.h>

void sec_acl_replace(
sec_acl_handle_t prot_obj_handle ,
uuid_t * manager_type ,
sec_acl_type_t acl_type ,
sec_acl_list_t * acl_list ,
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

manager_type
An ACL manager type UUID to the protected object.

acl_type
An ACL type of the protected object.

acl_list
New ACLs to be applied.

Output

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

DESCRIPTION
The sec_acl_replace ( ) routine replaces the ACL managed by the specified ACL manager on the
specified protected object, by the new ACL.

NOTES
The sec_acl_replace ( ) routine replaces the currently existing ACLs on the protected object with
the specified new ones.

It is to be noted that the ‘‘currently existing ACLs’’ may not be the same as the ‘‘old ACLs’’
previously returned by sec_acl_lookup ( ), because an intervening sec_acl_replace ( ) may have
already replaced the old ACL on the protected object (that is, no locking/transactional semantics
are supported to prevent this from happening).

This routine is ‘‘atomic’’, in the sense that it deals with whole ACLs at a time, not with
individual ACLEs. Also, this routine is uninterruptible by other invocations of itself (because
interruptibility could compromise consistency of ACLs).

Implementations layer this routine over the rdacl RPC interface operation rdacl_replace ( ).

ERRORS
error_status_ok, sec_acl_unknown_manager_type.

Part 3 Security Application Programming Interface 523



sec_acl_replace( ) Access Control List API

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr ( ), sec_acl_get_manager_types ( ),
sec_acl_get_manager_types_semantics ( ), sec_acl_lookup ( ).

Protocols: sec_acl_replace ( ).

524 CAE Specification (1997)



Access Control List API sec_acl_test_access( )

NAME
sec_acl_test_access — Determine whether calling client has permission to access a protected
object.

SYNOPSIS
#include <dce/daclif.h>

boolean32 sec_acl_test_access(
sec_acl_handle_t prot_obj_handle ,
uuid_t * manager_type ,
sec_acl_permset_t access_rights ,
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

manager_type
An ACL manager type UUID of the protected object.

access_rights
Set of access rights to the protected object.

Output

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

RETURN VALUES
The boolean32 return value of this routine is valid if and only if the returned status value is
error_status_ok.

This routine returns non-0 (‘‘true’’) if the calling client is granted the specified access rights to
the protected object by the specified ACL manager; it returns 0 (‘‘false’’) otherwise.

DESCRIPTION
The sec_acl_test_access( ) routine determines whether or not the calling client is granted or denied
the specified access rights to the specified protected object by the specified ACL manager.

NOTES
As an example usage, a client could invoke this routine to determine the minimal access rights it
needs to accomplish a proposed task, then use that information to acquire (from the DCE PS) a
minimal set of credentials authorising it to actually perform the task (this implements a security
policy known as ‘‘least privilege’’).

Implementations layer this routine over the rdacl RPC interface operation rdacl_test_access( ).

ERRORS
error_status_ok, sec_acl_unknown_manager_type.

Part 3 Security Application Programming Interface 525



sec_acl_test_access( ) Access Control List API

SEE ALSO
Functions: sec_acl_bind( ), sec_acl_bind_to_addr( ), sec_acl_get_manager_types( ),
sec_acl_get_manager_types_semantics( ), sec_acl_get_access( ), sec_acl_test_access_on_behalf( ).

Protocols: rdacl_test_access( ).

526 CAE Specification (1997)



Access Control List API sec_acl_test_access_on_behalf( )

NAME
sec_acl_test_access_on_behalf — Determine whether a specified ‘‘third-party’’ subject (not
necessarily the calling client) has permission to access a protected object.

SYNOPSIS
#include <dce/daclif.h>

boolean32 sec_acl_test_access_on_behalf(
sec_acl_handle_t prot_obj_handle ,
uuid_t * manager_type ,
sec_id_pac_t * subject_pac ,
sec_acl_permset_t access_rights ,
error_status_t * status );

PARAMETERS

Input

prot_obj_handle
Handle to a protected object.

manager_type
An ACL manager type UUID of the protected object.

subject_pac
Privilege attribute certificate (PAC) of a ‘‘third-party’’ subject.

access_rights
Set of access rights to the protected object.

Output

status
Completion status. On successful completion, error_status_ok is returned. Otherwise, an
error (≠ error_status_ok) is returned.

RETURN VALUES
The boolean32 return value of this routine is valid if and only if the returned status value is
error_status_ok.

This routine returns non-0 (‘‘true’’) if the specified third-party subject PAC (typically obtained
by rpc_binding_inq_auth_client ( )) grants the specified access rights to the protected object by the
specified ACL manager (the calling client must also be granted some degree of ‘‘read-ACL’’
access to determine this — this is dependent on application security policy). It returns 0
(‘‘false’’) otherwise.

DESCRIPTION
The sec_acl_test_access_on_behalf ( ) routine determines whether or not the specified third-party
subject is granted the specified access rights to the specified protected object by the specified
ACL manager.

NOTES
A client can combine this routine with sec_acl_test_access( ) and use the combined information to
implement (a rather primitive form of) delegation (schematically characterised as: ‘‘third-party-
subject (delegator) → calling-client (delegatee) → server’’).

It is anticipated that a future revision of DCE will support ‘‘true delegation’’, and for that reason
rdacl_test_access_on_behalf ( ) is considered obsolescent.

Part 3 Security Application Programming Interface 527



sec_acl_test_access_on_behalf( ) Access Control List API

Implementations layer this routine over the rdacl RPC interface operation
rdacl_test_access_on_behalf ( ).

ERRORS
error_status_ok, sec_acl_unknown_manager_type.

SEE ALSO
Functions: rpc_binding_inq_auth_client ( ), sec_acl_bind( ), sec_acl_bind_to_addr ( ),
sec_acl_get_manager_types ( ), sec_acl_get_manager_types_semantics ( ), sec_acl_get_access( ),
sec_acl_test_access( ).

Protocols: rdacl_test_access_on_behalf ( ).

528 CAE Specification (1997)



Chapter 16

Registry API

16.1 Introduction
The routines in the Registry API are distinguished with names having the prefix sec_rgy.

Background is given in Chapter 1, especially Section 1.12 on page 60. In particular, the concepts
of RS site, and of query and update sites, are defined there.

The routines of the Registry API are:

Binding APIs
Routines used to bind to and communicate with a Registry server have the prefix
sec_rgy_site or (in one instance) sec_rgy_cell.

PGO APIs
Routines used to create and maintain PGO items in the Registry database have the prefix
sec_rgy_pgo.

Account APIs
Routines used to create and maintain accounts in the Registry database have the prefix
sec_rgy_acct.

Properties and Policies APIs
Routines used to manipulate cell-wide properties and policies have the prefixes
sec_rgy_auth_plcy, sec_rgy_plcy, and sec_rgy_properties.

UNIX Structure APIs
Routines used to obtain Registry entries in a UNIX-style structure have the prefix
sec_rgy_unix.

Extended Registry Attribute APIs
These routines are used to create and maintain extensions to the DCE Registry database.
These include all routines with the prefix of sec_rgy_attr, except those with the prefix
sec_rgy_attr_sch (see the following item).

DCE Attribute APIs
These routines are used to create and maintain data repositories other than the DCE
Registry database, and have the prefix sec_rgy_attr_sch.

Miscellaneous Registry APIs
The Registry API includes the following miscellaneous routines:

• sec_rgy_cursor_reset( )

• sec_rgy_login_get_info( )

• sec_rgy_login_get_effective( )

• sec_rgy_wait_until_consistent( )

Part 3 Security Application Programming Interface 529



<dce/acct.h> Registry API

NAME
<dce/acct.h> — Header file for the sec_rgy_acct API

SYNOPSIS
#include <dce/acct.h>

DESCRIPTION
Header file for the Registry API used to create and maintain accounts in the Registry database.
All of these routines have the prefix sec_rgy_acct.

Data Types and Constants

There are no particular data types or constants specific to the sec_rgy_acct API (other than those
that have already been introduced in this specification).

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_rgy_acct API.

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the list of projects.

sec_rgy_not_authorized
Client program is not authorized to add an account to the registry.

sec_rgy_object_not_found
The registry server could not find the specified name.

sec_rgy_not_member_group
The indicated principal is not a member of the indicated group.

sec_rgy_not_member_org
The indicated principal is not a member of the indicated organization.

sec_rgy_not_member_group_org
The indicated principal is not a member of the indicated group or organization.

sec_rgy_object_exists
The account to be added already exists.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

530 CAE Specification (1997)



Registry API <dce/binding.h>

NAME
<dce/binding.h> — Header file for the Registry bind (sec_rgy_bind) routines

SYNOPSIS
#include <dce/binding.h>

DESCRIPTION
Header file for the Registry API used to bind to and communicate with a Registry server. These
routines have the prefix sec_rgy_site or, in one case, sec_rgy_cell.

Data Types and Constants

The following data types (listed in alphabetical order) are used in the sec_rgy_bind API.

idl_void_p_t sec_login_handle_t
See <dce/sec_login.h> on page 736.

struct sec_rgy_bind_auth_info_t
Represents security context information pertaining to an RS session. Namely, it indicates
the subject data, authentication service, authorisation service and protection level
associated with protected RPCs to the RS site/server associated with an RS context handle
(sec_rgy_handle_t). (Conceptually, the RPC binding handle to the RS server is annotated
with this security information — see rpc_binding_set_auth_info( ) in the referenced X/Open
DCE RPC Specification.) It contains the following fields:

sec_rgy_bind_auth_info_type_t info_type
The kind of information contained in dce_info.

union tagged_union
The actual security context information. It contains the following fields:

/*empty*/
If info_type = sec_rgy_bind_auth_none, then tagged_union is empty.

struct dce_info
If info_type = sec_rgy_bind_auth_dce, then tagged_union holds a struct dce_info,
which contains the following fields:

unsigned32 authn_level
Protection level.

unsigned32 authn_svc
Authentication service.

unsigned32 authz_svc
Authorisation service.

sec_login_handle_t identity
The login context in effect. If NULL, it refers to the default login context.

enum sec_rgy_bind_auth_info_type_t
Represents the kind of security context pertaining to an RS session. Its currently
registered values are the following:

sec_rgy_bind_auth_none = 0
No security.

sec_rgy_bind_auth_dce = 1
Security based on the security services currently supported by DCE.

Part 3 Security Application Programming Interface 531



<dce/binding.h> Registry API

idl_void_p_t sec_rgy_handle_t
An RS site handle. This is a pointer to a data structure representing a client’s RS
(session) context (the pointed-to structure is not further specified; that is,
sec_rgy_handle_t is an opaque pointer).

The RS context contains all the information relevant to the client’s session with an RS
site (as defined above). In typical implementations, this includes (among other things)
an RPC binding handle to an RS server. (Intuitively, this notion of RS site handle or RS
session context amounts to an API-level analog of the RPC-level notion of RS server
binding.)

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_rgy_bind API.

error_status_ok
Routine completed successfully.

sec_login_s_no_current_context
No currently established network identity for which context exists.

sec_rgy_cant_allocate_memory
Can’t allocate memory.

sec_rgy_object_not_found
Registry object not found.

sec_rgy_server_unavailable
Server unavailable.

532 CAE Specification (1997)



Registry API <dce/misc.h>

NAME
<dce/misc.h> — Header file for miscellaneous Registry APIs

SYNOPSIS
#include <dce/misc.h>

DESCRIPTION
Header file for the following miscellaneous Registry routines:

• sec_rgy_cursor_reset( )

• sec_rgy_login_get_info( )

• sec_rgy_login_get_effective( )

• sec_rgy_wait_until_consistent( )

Data Types and Constants

There are no particular data types or constants specified to these miscellaneous routines (other
than those that have already been introduced in this specification).

Status Codes

The following status codes (listed in alphabetical order) are used in the miscellaneous Registry
API.

error_status_ok
The call was successful.

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_read_only
The Registry is read only; updates are not allowed.

sec_rgy_server_unavailable
The Registry server is unavailable.

Part 3 Security Application Programming Interface 533



<dce/pgo.h> Registry API

NAME
<dce/pgo.h> — Header file for the sec_rgy_pgo API

SYNOPSIS
#include <dce/pgo.h>

DESCRIPTION
Header file for the Registry API used to create and maintain PGO items in the Registry database.
All of these routines have the prefix sec_rgy_pgo.

Data Types and Constants

There are no particular data types or constants specific to the sec_rgy_pgo API (other than those
that have already been introduced in this specification).

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_rgy_pgo API.

error_status_ok
The call was successful.

sec_rgy_bad_domain
An invalid domain was specified.

sec_rgy_no_more_entries
The cursor is at the end of the list of entries.

sec_rgy_not_authorized
The client is not authorized to add, delete, or modify the specified record.

sec_rgy_object_exists
An object of that name already exists.

sec_rgy_object_not_found
The Registry server could not find the specified name.

sec_rgy_server_unavailable
The Registry server is unavailable.

sec_rgy_unix_id_changed
The UNIX number of the item was changed.

534 CAE Specification (1997)



Registry API <dce/policy.h>

NAME
<dce/policy.h> — Header file for the Registry properties and policies API

SYNOPSIS
#include <dce/policy.h>

DESCRIPTION
Header file for the Registry API used to manipulate cell-wide properties and policies. These
routines have the prefixes sec_rgy_auth_plcy, sec_rgy_plcy, and sec_rgy_properties.

Data Types and Constants

There are no particular data types or constants specific to the security properties and policy API
(other than those that have already been introduced in this specification).

Status Codes

The following status codes (listed in alphabetical order) are used in the properties and policies
API.

error_status_ok
The call was successful.

sec_rgy_not_authorized
User is not authorized to update record.

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The Registry server is unavailable.

Part 3 Security Application Programming Interface 535



<dce/rgynbase.h> Registry API

NAME
<dce/rgynbase.h> — Header file for the sec_rgy_unix API

SYNOPSIS
#include <dce/rgynbase.h>

DESCRIPTION
Header file for the Registry API used to obtain Registry entries in a UNIX-style structure. All of
these routines have the prefix sec_rgy_unix.

Data Types and Constants

There are no particular data types or constants specific to the sec_rgy_unix API (other than
those that have already been introduced in this specification).

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_rgy_unix API.

error_status_ok
The call was successful.

sec_rgy_bad_data
The name supplied as input was too long.

sec_rgy_no_more_entries
The end of the list of entries has been reached.

sec_rgy_server_unavailable
The Registry server is unavailable.

536 CAE Specification (1997)



Registry API <dce/sec_rgy_attr.h>

NAME
<dce/sec_rgy_attr.h> — Header file for the sec_rgy_attr API

SYNOPSIS
#include <dce/sec_rgy_attr.h>

DESCRIPTION
Header file for the Registry API used to create and maintain extensions to the DCE Registry
database. This API includes all routines with the prefix of sec_rgy_attr, except those with the
prefix sec_rgy_attr_sch (see <dce/sec_rgy_attr_sch.h> on page 538).

Data Types and Constants

There are no particular data types or constants specific to the sec_rgy_attr API (other than those
that have already been introduced in this specification).

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_rgy_attr API.

error_status_ok
The call was successful.

sec_attr_bad_encoding_type
Invalid encoding type specified.

sec_attr_bad_type
Invalid or unsupported attribute type.

sec_attr_inst_exists
Attribute instance already exists.

sec_attr_not_unique
Attribute value is not unique.

sec_attr_rgy_obj_not_found
Registry object not found.

sec_attr_svr_read_only
Server is read only.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_trig_svr_unavailable
Trigger server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

Part 3 Security Application Programming Interface 537



<dce/sec_rgy_attr_sch.h> Registry API

NAME
<dce/sec_rgy_attr_sch.h> — Header file for the sec_rgy_attr_sch API

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

DESCRIPTION
Header file for the Registry API used to create and maintain data repositories other than the
DCE Registry database. This API includes all routines with the prefix of sec_rgy_attr_sch.

Data Types and Constants

There are no particular data types or constants specific to the sec_rgy_attr_sch API (other than
those that have already been introduced in this specification).

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_rgy_attr_sch API.

error_status_ok
The call was successful.

sec_attr_bad_acl_mgr_set
Invalid acl_mgr_set specified.

sec_attr_bad_acl_mgr_type
Invalid acl manager type.

sec_attr_bad_bind_authn_svc
Invalid authentication service specified in binding auth_info.

sec_attr_bad_bind_authz_svc
Invalid authorization service specified in binding auth_info.

sec_attr_bad_bind_info
Invalid binding information.

sec_attr_bad_bind_prot_level
Invalid protection level specified in binding auth_info.

sec_attr_bad_bind_svr_name
Invalid server name specified in binding auth_info.

sec_attr_bad_comment
Invalid comment text specified.

sec_attr_bad_cursor
Invalid cursor.

sec_attr_bad_encoding_type
Invalid encoding type specified.

sec_attr_bad_intercell_action
Invalid intercell action specified.

sec_attr_bad_name
Invalid attribute name specified.

sec_attr_bad_permset
Invalid permission set.

538 CAE Specification (1997)



Registry API <dce/sec_rgy_attr_sch.h>

sec_attr_bad_scope
Invalid scope specified.

sec_attr_bad_uniq_query_accept
Invalid combination of unique_flag=true, query trigger, and intercell_action=accept.

sec_attr_field_no_update
Field not modifiable.

sec_attr_name_exists
Attribute name already exists.

sec_attr_no_memory
Unable to allocate memory.

sec_attr_sch_entry_not_found
Schema entry not found.

sec_attr_svr_read_only
Server is read only.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_trig_bind_info_missing
Trigger binding info must be specified.

sec_attr_type_id_exists
Attribute type id already exists.

sec_attr_unauthorized
Unauthorized to perform this operation.

Part 3 Security Application Programming Interface 539



sec_rgy_acct_add( ) Registry API

NAME
sec_rgy_acct_add — Adds an account for a login name

SYNOPSIS
#include <dce/acct.h>

void sec_rgy_acct_add(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
sec_rgy_acct_key_t * key_parts ,
sec_rgy_acct_user_t * user_part ,
sec_rgy_acct_admin_t * admin_part ,
sec_passwd_rec_t * caller_key ,
sec_passwd_rec_t * new_key ,
sec_passwd_type_t new_keytype ,
sec_passwd_version_t * new_key_version ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

login_name
A pointer to the account login name. A login name is composed of three character strings,
containing the principal, group, and organization (PGO) names corresponding to the
account. All three names must be completely specified.

key_parts
A pointer to the minimum abbreviation allowed when logging in to the account.
Abbreviations are not currently implemented and the only legal value is
sec_rgy_acct_key_person.

user_part
A pointer to the sec_rgy_acct_user_t structure containing the user part of the account data.
This represents such information as the account password, home directory, and default
shell.

admin_part
A pointer to the sec_rgy_acct_admin_t structure containing the administrative part of an
account’s data. This information includes the account creation and expiration dates and
flags describing limits to the use of privilege attribute certificates, among other information.

caller_key
A key to use to encrypt new_key for transmission to the registry server.

new_key
The password for the new account. During transmission to the registry server, it is
encrypted with caller_key.

new_keytype
The type of the new key. The server uses this parameter to decide how to encode new_key if
it is sent as plain text.

540 CAE Specification (1997)



Registry API sec_rgy_acct_add( )

Output

new_key_version
The key version number returned by the server. If the client requests a particular key
version number (via the version_number field of the new_key input parameter), the server
returns the requested version number back to the client.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_add( ) routine adds an account with the specified login name. The login name is
given in three parts, corresponding to the principal, group, and organization names for the
account.

The key_parts variable specifies the minimum login abbreviation for the account. If the requested
abbreviation duplicates an existing abbreviation for another account, the routine supplies the
next shortest unique abbreviation and returns this abbreviation in key_parts. Abbreviations are
not currently implemented.

Permissions Required

The sec_rgy_acct_add( ) routine requires the following permissions on the account (principal) that
is to be added:

• The m (mgmt_info) permission to change management information.

• The a (auth_info) permission to change authentication information.

• The u (user_info) permission to change user information.

NOTES
The constituent principal, group, and organization (PGO) items for an account must be added
before the account can be created. (See the sec_rgy_pgo_add( ) routine). Also, the principal must
have been added as a member of the specified group and organization. (See the
sec_rgy_pgo_add_member( ) routine).

FILES

/usr/include/dce/acct.idl The idl file from which dce/acct.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to add an account to the registry.

sec_rgy_not_member_group
The indicated principal is not a member of the indicated group.

sec_rgy_not_member_org
The indicated principal is not a member of the indicated organization.

sec_rgy_not_member_group_org
The indicated principal is not a member of the indicated group or organization.

sec_rgy_object exists
The account to be added already exists.

Part 3 Security Application Programming Interface 541



sec_rgy_acct_add( ) Registry API

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_acct_delete( ), sec_rgy_login_get_info ( ), sec_rgy_pgo_add ( ),
sec_rgy_pgo_add_member( ), sec_rgy_site_open( ).

542 CAE Specification (1997)



Registry API sec_rgy_acct_admin_replace( )

NAME
sec_rgy_acct_admin_replace — Replaces administrative account data

SYNOPSIS
#include <dce/acct.h>

void sec_rgy_acct_admin_replace(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
sec_rgy_acct_key_t * key_parts ,
sec_rgy_acct_admin_t * admin_part ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

login_name
A pointer to the account login name. A login name is composed of three character strings,
containing the principal, group, and organization (PGO) names corresponding to the
account. For the group and organization names, blank strings can serve as wildcards,
matching any entry. The principal name must be input.

key_parts
A pointer to the minimum abbreviation allowed when logging in to the account.
Abbreviations are not currently implemented and the only legal value is
sec_rgy_acct_key_person.

admin_part
A pointer to the sec_rgy_acct_admin_t structure containing the administrative part of an
account’s data. This information includes the account creation and expiration dates and
flags describing limits to the use of privilege attribute certificates, among other information,
and can be modified only by an administrator. The sec_rgy_acct_admin_t structure contains
the following fields:

creator
The identity of the principal who created this account in sec_rgy_foreign_id_t form.
This field is set by the registry server.

creation_date
The date (sec_timeval_sec_t) the account was created. This field is set by the registry
server.

last_changer
The identity of the principal who last modified any of the account information (user or
administrative). This field is set by the registry server.

change_date
The date (sec_timeval_sec_t) the account was last modified (either user or
administrative data). This field is set by the registry server.

expiration_date
The date (sec_timeval_sec_t) the account will cease to be valid.

Part 3 Security Application Programming Interface 543



sec_rgy_acct_admin_replace( ) Registry API

good_since_date
This date (sec_timeval_sec_t) is for Kerberos-style, ticket-granting ticket revocation.
Ticket-granting tickets issued before this date will not be honored by authenticated
network services.

flags
Contains administration flags used as part of the administrator’s information for any
registry account. This field is in sec_rgy_acct_admin_flags_t form.

authentication_flags
Contains flags controlling use of authentication services. This field is in
sec_rgy_acct_auth_flags_t form.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_admin_replace( ) routine replaces the administrative information in the account
record specified by the input login name. The administrative information contains limitations on
the account’s use and privileges. It can be modified only by a registry administrator; that is, a
user with the auth_info (abbreviated as a) privilege for an account.

The key_parts variable identifies how many of the login_name parts to use as the unique
abbreviation for the account. If the requested abbreviation duplicates an existing abbreviation
for another account, the routine supplies the next shortest unique abbreviation and returns this
abbreviation using key_parts.

Permissions Required

The sec_rgy_acct_admin_replace( ) routine requires the following permissions on the account
principal:

• The m (mgmt_info) permission, if flags or expiration_date is to be changed.

• The a (auth_info) permission, if authentication_flags or good_since_date is to be changed.

NOTES
All users need the w (write) privilege in the appropriate ACL entry to modify any account
information.

FILES

/usr/include/dce/acct.idl
The idl file from which dce/acct.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to change the administrative information for the
specified account.

sec_rgy_object_not_found
The registry server could not find the specified name.

544 CAE Specification (1997)



Registry API sec_rgy_acct_admin_replace( )

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_acct_user_replace( ), sec_rgy_acct_replace_all ( ), sec_rgy_acct_lookup ( ).

Part 3 Security Application Programming Interface 545



sec_rgy_acct_delete( ) Registry API

NAME
sec_rgy_acct_delete — Deletes an account

SYNOPSIS

#include <dce/acct.h>

void sec_rgy_acct_delete(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

login_name
A pointer to the account login name. A login name is composed of three character strings,
containing the principal, group, and organization (PGO) names corresponding to the
account. Only the principal name is required to perform the deletion.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_delete( ) routine deletes from the registry the account corresponding to the
specified login name.

Permissions Required

The sec_rgy_acct_delete( ) routine requires the following permissions on the account principal:

• The m (mgmt_info) permission to remove management information.

• The a (auth_info) permission to remove authentication information.

• The u (user_info) permission to remove user information.

NOTES
Even though the account is deleted, the PGO items corresponding to the account remain. These
must be deleted with separate calls to sec_rgy_pgo_delete( ).

FILES

/usr/include/dce/acct.idl
The idl file from which dce/acct.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to delete the specified account.

546 CAE Specification (1997)



Registry API sec_rgy_acct_delete( )

sec_rgy_object_not_found
No PGO item was found with the given name.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_acct_add ( ), sec_rgy_pgo_delete ( ).

Part 3 Security Application Programming Interface 547



sec_rgy_acct_get_projlist( ) Registry API

NAME
sec_rgy_acct_get_projlist — Returns the projects in an account’s project list

SYNOPSIS

#include <dce/acct.h>

void sec_rgy_acct_get_projlist(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
sec_rgy_cursor_t * projlist_cursor ,
signed32 max_number ,
signed32 * supplied_number ,
uuid_t id_projlist [ ],
signed32 unix_projlist [ ],
signed32 * num_projects ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

login_name
A pointer to the account login name. A login name is composed of three character strings,
containing the principal, group, and organization (PGO) names corresponding to the
account. For the group and organization names, blank strings can serve as wildcards,
matching any entry. The principal name must be input.

max_number
The maximum number of projects to be returned by the call. This must be no larger than the
allocated size of the projlist[ ] arrays.

Input/Output

projlist_cursor
An opaque pointer indicating a specific project in an account’s project list. The
sec_rgy_acct_get_projlist( ) routine returns the project indicated by projlist_cursor, and
advances the cursor to point to the next project in the list. When the end of the list is
reached, the routine returns the value sec_rgy_no_more_entries in the status parameter.
Use sec_rgy_cursor_reset( ) to reset the cursor.

Output

supplied_number
A pointer to the actual number of projects returned. This will always be less than or equal to
the max_number supplied on input. If there are more projects in the account list,
sec_rgy_acct_get_projlist( ) sets projlist_cursor to point to the next entry after the last one in
the returned list.

id_projlist[ ]
An array to receive the UUID of each project returned. The size allocated for the array is
given by max_number. If this value is less than the total number of projects in the account
project list, multiple calls must be made to return all of the projects.

548 CAE Specification (1997)



Registry API sec_rgy_acct_get_projlist( )

unix_projlist[ ]
An array to receive the UNIX number of each project returned. The size allocated for the
array is given by max_number. If this value is less than the total number of projects in the
account project list, multiple calls must be made to return all of the projects.

num_projects
A pointer indicating the total number of projects in the specified account’s project list.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_get_projlist( ) routine returns members of the project list for the specified
account. It returns the project information in two arrays. The id_projlist[ ] array contains the
UUIDs for the returned projects. The unix_projlist[ ] array contains the UNIX numbers for the
returned projects.

The project list cursor, projlist_cursor, provides an automatic place holder in the project list. The
sec_rgy_acct_get_projlist( ) routine automatically updates this variable to point to the next project
in the project list. To return an entire project list, reset projlist_cursor with sec_rgy_cursor_reset( )
on the initial call and then issue successive calls until all the projects are returned.

Permissions Required

The sec_rgy_acct_get_projlist( ) routine requires the r (read) permission on the account principal
for which the project list data is to be returned.

CAUTIONS
There are several different types of cursors used in the registry API. Some cursors point to PGO
items, others point to members in a membership list, and others point to account data. Do not
use a cursor for one sort of object in a call expecting another sort of object. For example, you
cannot use the same cursor on a call to sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ).
The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of the registry
database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset( ) to refresh a cursor for use with another call or for another server.

FILES

/usr/include/dce/acct.idl
The idl file from which dce/acct.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the list of projects.

sec_rgy_not_authorized
The client program is not authorized to see a project list for this principal.

sec_rgy_object exists
The account to be added already exists.

Part 3 Security Application Programming Interface 549



sec_rgy_acct_get_projlist( ) Registry API

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_cursor_reset( ), sec_rgy_pgo_get_next ( ).

550 CAE Specification (1997)



Registry API sec_rgy_acct_lookup( )

NAME
sec_rgy_acct_lookup — Returns data for a specified account

SYNOPSIS
#include <dce/acct.h>

void sec_rgy_acct_lookup(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * name_key ,
sec_rgy_cursor_t * account_cursor ,
sec_rgy_login_name_t * name_result ,
sec_rgy_sid_t * id_sid ,
sec_rgy_unix_sid_t * unix_sid ,
sec_rgy_acct_key_t * key_parts ,
sec_rgy_acct_user_t * user_part ,
sec_rgy_acct_admin_t * admin_part ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_key
A pointer to the account login name. A login name is composed of three character strings,
containing the principal, group, and organization (PGO) names corresponding to the
account. Blank strings serve as wildcards, matching any entry.

Input/Output

account_cursor
An opaque pointer to a specific account in the registry database. If name_key is blank,
sec_rgy_acct_lookup( ) returns information about the account to which the cursor is pointing.
On return, the cursor points to the next account in the database after the returned account. If
name_key is blank and the account_cursor has been reset with sec_rgy_cursor_reset( ),
sec_rgy_acct_lookup( ) returns information about the first account in the database. When the
end of the list of accounts in the database is reached, the routine returns the value
sec_rgy_no_more_entries in the status parameter. Use sec_rgy_cursor_reset( ) to refresh the
cursor.

Output

name_result
A pointer to the full login name of the account (including all three names) for which the
information is returned. The remaining parameters contain the information belonging to the
returned account.

id_sid
A structure containing the three UUIDs of the principal, group, and organization for the
account.

Part 3 Security Application Programming Interface 551



sec_rgy_acct_lookup( ) Registry API

unix_sid
A structure containing the three UNIX numbers of the principal, group, and organization
for the account.

key_parts
A pointer to the minimum abbreviation allowed when logging in to the account.
Abbreviations are not currently implemented and the only legal value is
sec_rgy_acct_key_person.

user_part
A pointer to the sec_rgy_acct_user_t structure containing the user part of the account data.
This represents such information as the account password, home directory, and default
shell, all of which are accessible to, and may be modified by, the account owner.

admin_part
A pointer to the sec_rgy_acct_admin_t structure containing the administrative part of an
account’s data. This information includes the account creation and expiration dates and
flags describing limits to the use of privilege attribute certificates, among other information,
and can be modified only by an administrator.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_lookup( ) routine returns all the information about an account in the registry
database. The account can be specified either with name_key or account_cursor. If name_key is
completely blank, the routine uses the account_cursor value instead.

For name_key, a zero-length principal, group, or organization key serves as a wildcard. For
example, a login name key with the principal and organization fields blank returns the next
(possibly first) account whose group matches the input group field. The full login name of the
returned account is passed back in name_result.

The account_cursor provides an automatic place holder in the registry database. The routine
automatically updates this variable to point to the next account in the database, after the account
for which the information was returned. If name_key is blank and the account_cursor has been
reset with sec_rgy_cursor_reset( ), sec_rgy_acct_lookup( ) returns information about the first
account in the database.

Permissions Required

The sec_rgy_acct_lookup( ) routine requires the r (read) permission on the account principal to be
viewed.

CAUTIONS
There are several different types of cursors used in the registry API. Some cursors point to PGO
items, others point to members in a membership list, and others point to account data. Do not
use a cursor for one sort of object in a call expecting another sort of object. For example, you
cannot use the same cursor on a call to sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ). The
behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of the registry
database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset( ) to renew a cursor for use with another call or for another server.

552 CAE Specification (1997)



Registry API sec_rgy_acct_lookup( )

FILES

/usr/include/dce/acct.idl
The idl file from which dce/acct.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the accounts in the registry.

sec_rgy_object_not_found
The input account could not be found by the registry server.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_cursor_reset( ), sec_rgy_acct_replace_all ( ), sec_rgy_acct_admin_replace ( ),
sec_rgy_acct_user_replace( ).

Part 3 Security Application Programming Interface 553



sec_rgy_acct_passwd( ) Registry API

NAME
sec_rgy_acct_passwd — Changes the password for an account

SYNOPSIS
#include <dce/acct.h>

void sec_rgy_acct_passwd(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
sec_passwd_rec_t * caller_key ,
sec_passwd_rec_t * new_key ,
sec_passwd_type_t new_keytype ,
sec_passwd_version_t * new_key_version ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

login_name
A pointer to the account login name. A login name is composed of three character strings,
containing the principal, group, and organization (PGO) names corresponding to the
account. All three strings must be completely specified.

caller_key
A key to use to encrypt the key for transmission to the registry server. If communications
secure to the rpc_c_authn_level_pkt_privacy level are available on a system, then this
parameter is not necessary, and the packet encryption is sufficient to ensure security.

new_key
The password for the new account. During transmission to the registry server, it is
encrypted with caller_key.

new_keytype
The type of the new key. The server uses this parameter to decide how to encode new_key if
it is sent as plain text.

Output

new_key_version
The key version number returned by the server. If the client requests a particular key
version number (via the version_number field of the new_key input parameter), the server
returns the requested version number back to the client.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_passwd( ) routine changes an account password to the input password character
string. Wildcards (blank fields) are not permitted in the specified account name; the principal,
group, and organization names of the account must be completely specified.

554 CAE Specification (1997)



Registry API sec_rgy_acct_passwd( )

Permissions Required

The sec_rgy_acct_passwd( ) routine requires the u (user_info) permission on the account principal
whose password is to be changed.

FILES

/usr/include/dce/acct.idl
The idl file from which dce/acct.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to change the password of this account.

sec_rgy_object_not_found
The account to be modified was not found by the registry server.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

Part 3 Security Application Programming Interface 555



sec_rgy_acct_rename( ) Registry API

NAME
sec_rgy_acct_rename — Changes an account login name

SYNOPSIS

#include <dce/acct.h>

void sec_rgy_acct_rename(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * old_login_name ,
sec_rgy_login_name_t * new_login_name ,
sec_rgy_acct_key_t * new_key_parts ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

old_login_name
A pointer to the current account login name. The login name is composed of three character
strings, containing the principal, group, and organization (PGO) names corresponding to
the account. All three strings must be completely specified.

new_login_name
A pointer to the new account login name. Again, all three component names must be
completely specified.

Input/Output

new_key_parts
A pointer to the minimum abbreviation allowed when logging in to the account.
Abbreviations are not currently implemented and the only legal value is
sec_rgy_acct_key_person.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_rename( ) routine changes an account login name from old_login_name to
new_login_name. Wildcards (empty fields) are not permitted in either input name; both the old
and new login names must completely specify their component principal, group, and
organization names. Note, though, that the principal component in a login name cannot be
changed.

The new_key_parts variable identifies how many of the new_login_name parts to use as the unique
abbreviation for the account. If the requested abbreviation duplicates an existing abbreviation
for another account, the routine identifies the next shortest unique abbreviation and returns this
abbreviation using new_key_parts.

556 CAE Specification (1997)



Registry API sec_rgy_acct_rename( )

Permissions Required

The sec_rgy_acct_rename( ) routine requires the m (mgmt_info) permission on the account
principal to be renamed.

NOTES
The sec_rgy_acct_rename( ) routine does not affect any of the registry PGO data. The constituent
principal, group, and organization items for an account must be added before the account can be
created. (See the sec_rgy_pgo_add( ) routine). Also, the principal must have been added as a
member of the specified group and organization. (See the sec_rgy_pgo_add_member( ) routine).

FILES

/usr/include/dce/acct.idl
The idl file from which dce/acct.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to make the changes.

sec_rgy_object_not_found
The account to be modified was not found by the registry server.

sec_rgy_name_exists
The new account name is already in use by another account.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_acct_add ( ).

Part 3 Security Application Programming Interface 557



sec_rgy_acct_replace_all( ) Registry API

NAME
sec_rgy_acct_replace_all — Replaces all account data for an account

SYNOPSIS
#include <dce/acct.h>

void sec_rgy_acct_replace_all(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
sec_rgy_acct_key_t * key_parts ,
sec_rgy_acct_user_t * user_part ,
sec_rgy_acct_admin_t * admin_part ,
boolean32 set_password ,
sec_passwd_rec_t * caller_key ,
sec_passwd_rec_t * new_key ,
sec_passwd_type_t new_keytype ,
sec_passwd_version_t * new_key_version ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

login_name
A pointer to the account login name. A login name is composed of three character strings,
containing the principal, group, and organization (PGO) names corresponding to the
account. For the group and organization names, blank strings can serve as wildcards,
matching any entry. The principal name must be input.

user_part
A pointer to the sec_rgy_acct_user_t structure containing the user part of the account data.
This represents such information as the account password, home directory, and default
shell, all of which are accessible to, and may be modified by, the account owner.

admin_part
A pointer to the sec_rgy_acct_admin_t structure containing the administrative part of an
account’s data. This information includes the account creation and expiration dates and
flags describing limits to the use of privilege attribute certificates, among other information,
and can be modified only by an administrator.

set_passwd
The password reset flag. If you set this parameter to TRUE, the account’s password will be
changed to the value specified in new_key.

caller_key
A key to use to encrypt the key for transmission to the registry server. If communications
secure to the rpc_c_authn_level_pkt_privacy level are available on a system, then this
parameter is not necessary, and the packet encryption is sufficient to ensure security.

new_key
The password for the new account. During transmission to the registry server, it is
encrypted with caller_key.

558 CAE Specification (1997)



Registry API sec_rgy_acct_replace_all( )

new_keytype
The type of the new key. The server uses this parameter to decide how to encode the
plaintext key.

Input/Output

key_parts
A pointer to the minimum abbreviation allowed when logging in to the account.
Abbreviations are not currently implemented and the only legal value is
sec_rgy_acct_key_person.

Output

new_key_version
The key version number returned by the server. If the client requests a particular key
version number (via the version_number field of the new_key input parameter), the server
returns the requested version number back to the client.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_replace_all( ) routine replaces both the user and administrative information in
the account record specified by the input login name. The administrative information contains
limitations on the account’s use and privileges. The user information contains such information
as the account home directory and default shell. Typically, the administrative information can
only be modified by a registry administrator (users with auth_info (a) privileges for an account),
while the user information can be modified by the account owner (users with user_info (u)
privileges for an account).

Use the set_passwd parameter to reset the account password. If you set this parameter to TRUE,
the account’s password is changed to the value specified in new_key.

The key_parts variable identifies how many of the login_name parts to use as the unique
abbreviation for the replaced account. If the requested abbreviation duplicates an existing
abbreviation for another account, the routine identifies the next shortest unique abbreviation
and returns this abbreviation using key_parts.

Permissions Required

The sec_rgy_acct_replace_all( ) routine requires the following permissions on the account
principal:

• The m (mgmt_info) permission, if flags or expiration_date is to be changed.

• The a (auth_info) permission, if authentication_flags or good_since_date is to be changed.

• The u (user_info) permission, if user flags, gecos, homedir (home directory), shell, or
passwd (password) are to be changed.

NOTES
All users need the w (write) privilege to modify any account information.

FILES

/usr/include/dce/acct.idl
The idl file from which dce/acct.h was derived.

Part 3 Security Application Programming Interface 559



sec_rgy_acct_replace_all( ) Registry API

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to change account information.

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_acct_add ( ), sec_rgy_acct_admin_replace ( ), sec_rgy_acct_rename( ),
sec_rgy_acct_user_replace( ).

560 CAE Specification (1997)



Registry API sec_rgy_acct_user_replace( )

NAME
sec_rgy_acct_user_replace — Replaces user account data

SYNOPSIS
#include <dce/acct.h>

void sec_rgy_acct_user_replace(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
sec_rgy_acct_user_t * user_part ,
boolean32 set_passwd ,
sec_passwd_rec_t * caller_key ,
sec_passwd_rec_t * new_key ,
sec_passwd_type_t new_keytype ,
sec_passwd_version_t * new_key_version ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

login_name
A pointer to the account login name. A login name is composed of three character strings,
containing the principal, group, and organization (PGO) names corresponding to the
account. For the group and organization names, blank strings can serve as wildcards,
matching any entry. The principal name must be input.

user_part
A pointer to the sec_rgy_acct_user_t structure containing the user part of the account data.
This represents such information as the account password, home directory, and default
shell, all of which are accessible to, and may be modified by, the account owner. The
structure contains the following fields:

gecos
A character string containing information about the account owner. This often includes
such information as their name and telephone number.

homedir
The default directory upon login for the account.

shell
The default shell to use upon login.

passwd_version_number
The password version number, a 32-bit unsigned integer, set by the registry server.

passwd_dtm
The date and time of the last password change (in sec_timeval_sec_t form), also set by
the registry server.

flags
A flag set of type sec_rgy_acct_user_flags_t.

Part 3 Security Application Programming Interface 561



sec_rgy_acct_user_replace( ) Registry API

passwd
The account’s encrypted password.

set_passwd
The password reset flag. If you set this parameter to TRUE, the user’s password will be
changed to the value specified in new_key.

caller_key
A key to use to encrypt the key for transmission to the registry server. If communications
secure to the rpc_c_authn_level_pkt_privacy level are available on a system, then this
parameter is not necessary, and the packet encryption is sufficient to ensure security.

new_key
The password for the new account. During transmission to the registry server, it is
encrypted with caller_key.

new_keytype
The type of the new key. The server uses this parameter to decide how to encode the
plaintext key.

Output

new_key_version
The key version number returned by the server. If the client requests a particular key
version number (via the version_number field of the new_key input parameter), the server
returns the requested version number back to the client.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_acct_user_replace( ) routine replaces the user information in the account record
specified by the input login name. The user information contains such information as the
account home directory and default shell. Typically, the the user information can be modified by
the account owner (users with user_info (u) privileges for an account).

Use the set_passwd parameter to reset the user’s password. If you set this parameter to TRUE, the
user’s password is changed to the value specified in new_key.

Permissions Required

The sec_rgy_acct_user_replace( ) routine requires the u (user_info) permission on the account
principal.

NOTES
All users need the w (write) privilege to modify any account information.

FILES

/usr/include/dce/acct.idl
The idl file from which dce/acct.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to modify the account data.

562 CAE Specification (1997)



Registry API sec_rgy_acct_user_replace( )

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_acct_add ( ), sec_rgy_acct_admin_replace ( ), sec_rgy_acct_rename( ),
sec_rgy_acct_replace_all ( ).

Part 3 Security Application Programming Interface 563



sec_rgy_attr_cursor_alloc( ) Registry API

NAME
sec_rgy_attr_cursor_alloc — Allocates resources to a cursor used by the
sec_rgy_attr_lookup_by_id( ) call

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_cursor_alloc(
sec_attr_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Output

cursor
A pointer to a sec_attr_cursor_t.

status
A pointer to the completion status. On successful completion, the call returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_cursor_alloc( ) call allocates resources to a cursor used with the
sec_rgy_attr_lookup_by_id( ) call. This routine, which is a local operation, does not initialize cursor.

The sec_rgy_attr_cursor_init( ) routine, which makes a remote call, allocates and initializes the
cursor. In addition, sec_rgy_attr_cursor_init( ) returns the total number of attributes attached to
the object as an output parameter; sec_rgy_attr_cursor_alloc( ) does not.

Permissions Required

None

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
Registry object not found.

SEE ALSO
Functions: sec_rgy_attr_cursor_init ( ), sec_rgy_attr_cursor_release( ), sec_rgy_attr_cursor_reset( ),
sec_rgy_attr_lookup_by_id ( ).

564 CAE Specification (1997)



Registry API sec_rgy_attr_cursor_init( )

NAME
sec_rgy_attr_cursor_init — Initialize a cursor used by the sec_rgy_attr_lookup_by_id( ) call

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_cursor_init (
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
unsigned32 *cur_num_attrs ,
sec_attr_cursor_t *cursor ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in which the object
specified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist.

name
A pointer to a sec_rgy_name_t character string containing the name of the person, group, or
organization to which the attribute to be scanned is attached.

Output

cur_num_attrs
A pointer to an unsigned 32-bit integer that specifies the number of attributes currently
attached to the object.

cursor
A pointer to a sec_rgy_cursor_t positioned at the first attribute in the list of the object’s
attributes.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_cursor_init( ) routine initializes a cursor of type sec_attr_cursor_t (used with the
sec_rgy_attr_lookup_by_id( ) call) and initializes the cursor to the first attribute in the specified
object’s list of attributes. This call also supplies the total number of attributes attached to the

Part 3 Security Application Programming Interface 565



sec_rgy_attr_cursor_init( ) Registry API

object as part of its output. The cursor allocation is a local operation. The cursor initialization is
a remote operation and makes a remote call to the Registry.

Use the sec_rgy_attr_cursor_release( ) call to release all resources allocated to a sec_attr_cursor_t
cursor.

Permissions Required

The sec_rgy_attr_cursor_init( ) routine requires at least one permission (of any type) on the
person, group, or organization to which the attribute to be scanned is attached.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
Registry object not found.

SEE ALSO
Functions: sec_rgy_attr_lookup_by_id ( ), sec_rgy_attr_cursor_release( ).

566 CAE Specification (1997)



Registry API sec_rgy_attr_cursor_release( )

NAME
sec_rgy_attr_cursor_release — Release a cursor of type sec_attr_cursor_t that was allocated with
either the sec_rgy_attr_cursor_init( ) or sec_rgy_attr_cursor_alloc( ) call

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_cursor_release (
sec_attr_cursor_t *cursor ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

Input/Output

cursor
As an input parameter, a pointer to an uninitialized cursor of type sec_attr_cursor_t. As an
output parameter, a pointer to an uninitialized cursor of type sec_attr_cursor_t with all
resources released.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_cursor_release( ) routine releases all resources allocated to a sec_attr_cursor_t by
the sec_rgy_attr_cursor_init( ) or sec_rgy_attr_cursor_alloc( ) call.

This is a local-only operation and makes no remote calls.

Permissions Required

None.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
Registry object not found.

SEE ALSO
Functions: sec_rgy_attr_cursor_init ( ), sec_rgy_attr_cursor_alloc ( ), sec_rgy_attr_lookup_by_id ( ).

Part 3 Security Application Programming Interface 567



sec_rgy_attr_cursor_reset( ) Registry API

NAME
sec_rgy_attr_cursor_reset — Reinitializes a cursor that has been allocated with either
sec_rgy_attr_cursor_init( ) or sec_rgy_attr_cursor_alloc( )

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_attr_cursor_reset(
sec_attr_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input/Output

cursor
A pointer to a sec_attr_cursor_t. As an input parameter, an initialized cursor. As an output
parameter, cursor is reset to the first attribute in the schema.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_cursor_reset( ) routine resets a dce_attr_cursor_t that has been allocated by
either a sec_rgy_attr_cursor_init( ) or sec_rgy_attr_cursor_alloc( ) call. The reset cursor can then be
used to process a new sec_rgy_attr_lookup_by_id( ) query by reusing the cursor instead of
releasing and re-allocating it. This is a local operation and makes no remote calls.

Permissions Required

None.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

SEE ALSO
Functions: sec_rgy_attr_cursor_init ( ), sec_rgy_attr_cursor_alloc ( ), sec_rgy_attr_lookup_by_id ( ).

568 CAE Specification (1997)



Registry API sec_rgy_attr_delete( )

NAME
sec_rgy_attr_delete — Deletes specified attributes for a specified object

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_delete (
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
unsigned32 num_to_delete ,
sec_attr_t attrs [ ],
signed32 * failure_index ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in which the object
identified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist.

name
A character string of type sec_rgy_name_t specifying the name of the person, group, or
organization to which the attributes are attached.

num_to_delete
A 32-bit integer that specifies the number of elements in the attrs array. This integer must be
greater than 0.

attrs[ ]
An array of values of type sec_attr_t that specifies the attribute instances to be deleted. The
size of the array is determined by num_to_delete.

Part 3 Security Application Programming Interface 569



sec_rgy_attr_delete( ) Registry API

Output

failure_index
In the event of an error, failure_index is a pointer to the element in the attrs array that caused
the update to fail. If the failure cannot be attributed to a specific attribute, the value of
failure_index is -1.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_delete( ) routine deletes attributes. This is an atomic operation: if the deletion of
any attribute in the attrs array fails, all deletions are aborted. The attribute causing the delete to
fail is identified in failure_index. If the failure cannot be attributed to a given attribute,
failure_index contains -1.

The attrs array, which specifies the attributes to be deleted, contains values of type sec_attr_t.
These values consist of:

• attr_id, a UUID that identifies the attribute type

• attr_value, values of sec_attr_value_t that specify the attribute’s encoding type and values.

To delete attributes that are not multi-valued and to delete all instances of a multi-valued
attribute, an attribute UUID is all that is required. For these attribute instances, supply the
attribute UUID in the input array and set the attribute encoding (in sec_attr_encoding_t) to
sec_attr_enc_void.

To delete a specific instance of a multi-valued attribute, supply the UUID and value that
uniquely identify the multi-valued attribute instance in the input array.

Note that if the deletion of any attribute instance in the array fails, all fail. However, to help
pinpoint the cause of the failure, the call identifies the first attribute whose deletion failed in a
failure index by array element number.

Permissions Required

The sec_rgy_attr_delete( ) routine requires the delete permission set for each attribute type
identified in the attrs array. These permissions are defined as part of the ACL manager set in the
schema entry for the attribute type.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_bad_type
Invalid or unsupported attribute type.

sec_attr_svr_read_only
Server is read only.

sec_attr_svr_unavailable
Server is unavailable.

570 CAE Specification (1997)



Registry API sec_rgy_attr_delete( )

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_update ( ).

Part 3 Security Application Programming Interface 571



sec_rgy_attr_get_e ffective( ) Registry API

NAME
sec_rgy_attr_get_effective — Reads effective attributes by ID

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_get_effective(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
unsigned32 num_attr_keys ,
sec_attr_t attr_keys [ ],
sec_attr_vec_t * attr_list ,
error_status_t status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
A value of type sec_rgy_domain_t that identifies the domain in which the named object
resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist.

name
A pointer to a sec_rgy_name_t character string containing the name of the person, group, or
organization to which the attribute is attached.

num_attr_keys
An unsigned 32-bit integer that specifies the number of elements in the the attr_keys array. If
num_attr_keys is set to 0, all of the effective attributes that the caller is authorized to see are
returned.

attr_keys[ ]
An array of values of type sec_attr_t that specify the UUIDs of the attributes to be returned
if they are effective. If the attribute type is associated with a query attribute trigger, the
sec_attr_t attr_value field can be used to pass in optional information required by the
attribute trigger query. If no information is to be passed in the attr_value field (whether the
type indicates an attribute trigger query or not), set the attribute’s encoding type to
sec_rgy_attr_enc_void. The size of the attr_keys array is determined by the num_attr_keys
parameter.

572 CAE Specification (1997)



Registry API sec_rgy_attr_get_e ffective( )

Output

attr_list
A pointer an attribute vector allocated by the server containing all of the effective attributes
matching the search criteria (defined in num_attr_keys or attr_keys). The server allocates a
buffer large enough to return all the requested attributes so that subsequent calls are not
necessary.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_get_effective( ) routine returns the UUIDs of a specified object’s effective
attributes. Effective attributes are determined by setting of the schema entry
sec_attr_sch_entry_use_defaults flag:

• If the flag is set off, only the attributes directly attached to the object are effective.

• If the flag is set on, the effective attributes are obtained by performing the following steps for
each attribute identified by UUID in the attr_keys array:

1. If the object named by name is a principal and if the a requested attribute exists on the
principal, that attribute is effective and is returned. If it does not exist, the search
continues.

2. The next step in the search depends on the type of object:

For principals with accounts:

a. The organization named in the principal’s account is examined to see if an
attribute of the requested type exists. If it does, it is effective and is returned; then
the search for that attribute ends. If it does not exist, the search for that attribute
continues to the policy object as described in b, below.

b. The registry policy object is examined to see if an attribute of the requested type
exits. If it does, it is returned. If it does not, a message indicating the no attribute
of the type exists for the object is returned.

For principals without accounts, for groups, and for organizations:

The registry policy object is examined to see if an attribute of the requested type exits.
If it does, it is returned. If it does not, a message indicating the no attribute of the type
exists for the object is returned.

For multi-valued attributes, the call returns a sec_attr_t for each value as an individual attribute
instance. For attribute sets, the call returns a sec_attr_t for each member of the set; it does not
return the set instance.

If the attribute instance to be read is associated with a query attribute trigger that requires
additional information before it can process the query request, use a sec_attr_value_t to supply
the requested information. To do this:

• Set the sec_attr_encoding_t to an encoding type that is compatible with the information
required by the query attribute trigger.

• Set the sec_attr_value_t to hold the required information.

Part 3 Security Application Programming Interface 573



sec_rgy_attr_get_e ffective( ) Registry API

If the attribute instance to be read is not associated with a query trigger or no additional
information is required by the query trigger, an attribute UUID is all that is required. For these
attribute instances, supply the attribute UUID in the input array and set the attribute encoding
(in sec_attr_encoding_t) to sec_attr_enc_void.

If the requested attribute type is associated with a query trigger, the value returned for the
attribute will be the binding (as set in the schema entry) of the trigger server. The caller must
bind to the trigger server and pass the original input query attribute to the sec_attr_trig_query( )
call in order to retrieve the attribute value.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

574 CAE Specification (1997)



Registry API sec_rgy_attr_lookup_by_id( )

NAME
sec_rgy_attr_lookup_by_id — Reads a specified object’s attribute(s), expanding attribute sets
into individual member attributes

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_lookup_by_id (
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
sec_attr_cursor_t * cursor ,
unsigned32 num_attr_keys ,
unsigned32 space_avail ,
sec_attr_t attr_keys [ ],
unsigned32 * num_returned ,
sec_attr_t attrs [ ],
unsigned32 * num_left ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in which the object
specified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist.

name
A pointer to a sec_rgy_name_t character string containing the name of the person, group, or
organization to which the attribute is attached.

num_attr_keys
An unsigned 32-bit integer that specifies the number of elements in the attr_keys array. Set
this parameter to 0 to return all of the object’s attributes that the caller is authorized to see.

space_avail
An unsigned 32-bit integer that specifies the size of the attr_keys array.

attr_keys[ ]
An array of values of type sec_attr_t that identify the attribute type ID of the attribute
instance(s) to be looked up. If the attribute type is associated with a query attribute trigger,
the sec_attr_t attr_value field can be used to pass in optional information required by the

Part 3 Security Application Programming Interface 575



sec_rgy_attr_lookup_by_id( ) Registry API

attribute trigger query. If no information is to be passed in the attr_value field (whether the
type indicates an attribute trigger query or not), set the attribute’s encoding type to
sec_rgy_attr_enc_void.

The size of the attr_keys array is determined by the num_attr_keys parameter.

Input/Output

cursor
A pointer to a sec_attr_cursor_t. As an input parameter, cursor is a pointer to a
sec_attr_cursor_t initialized by a sec_rgy_attr_srch_cursor_init( ) call. As an output
parameter, cursor is a pointer to a sec_attr_cursor_t that is positioned past components
returned in this call.

Output

num_returned
A pointer to a 32-bit unsigned integer that specifies the number of attribute instances
returned in the attrs array.

attrs[ ]
An array of values of type sec_attr_t that contains the attributes retrieved by UUID. The size
of the array is determined by space_avail and the length by num_returned.

num_left
A pointer to a 32-bit unsigned integer that supplies the number of attributes that were
found but could not be returned because of space constraints in the attrs buffer. To ensure
that all the attributes will be returned, increase the size of the attrs array by increasing the
size of space_avail and num_returned.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok, or, if the requested attributes were not available, it returns the message
not_all_available. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_lookup_by_id( ) function reads those attributes specified by UUID for an object
specified by name. This routine is similar to the sec_rgy_attr_lookup_no_expand( ) routine with
one exception: for attribute sets, the sec_rgy_attr_lookup_no_expand( ) routine returns a sec_attr_t
for the set instance only; it does not expand the set and return a sec_attr_t for each member in
the set. This call expands attribute sets and returns a sec_attr_t for each member in the set.

If the num_attr_keys parameter is set to 0, all of the object’s attributes that the caller is authorized
to see are returned. This routine is useful for programmatic access.

For multi-valued attributes, the call returns a sec_attr_t for each value as an individual attribute
instance. For attribute sets, the call returns a sec_attr_t for each member of the set; it does not
return the set instance.

The attr_keys array, which specifies the attributes to be returned, contains values of type
sec_attr_t. These values consist of:

• attr_id, a UUID that identifies the attribute type

• attr_value, values of sec_attr_value_t that specify the attribute’s encoding type and values.

Use the attr_id field of each attr_keys array element, to specify the UUID that identifies the
attribute type to be returned.

576 CAE Specification (1997)



Registry API sec_rgy_attr_lookup_by_id( )

If the attribute instance to be read is not associated with a query trigger or no additional
information is required by the query trigger, an attribute UUID is all that is required. For these
attribute instances, supply the attribute UUID in the input array and set the attribute encoding
(in sec_attr_encoding_t) to sec_attr_enc_void.

If the attribute instance to be read is associated with a query attribute trigger that requires
additional information before it can process the query request, use a sec_attr_value_t to supply
the requested information. To do this:

• Set the sec_attr_encoding_t to an encoding type that is compatible with the information
required by the query attribute trigger.

• Set the sec_attr_value_t to hold the required information.

Note that if you set num_attr_keys to zero to return all of the object’s attributes and that attribute
is associated with a query attribute trigger, the attribute trigger will be called with no input
attribute information (that would normally have been passed in via the attr_value field).

The cursor parameter specifies a cursor of type sec_attr_cursor_t initialized to the point in the
attribute list at which to start processing the query. Use the sec_attr_cursor_init( ) function to
initialize cursor. If cursor is uninitialized, the server begins processing the query at the first
attribute that satisfies the search criteria.

The num_left parameter contains the number of attributes that were found but could not be
returned because of space constraints of the attrs array. (Note that this number may be
inaccurate if the target server allows updates between successive queries.) To obtain all of the
remaining attributes, set the size of the attrs array so that it is large enough to hold the number of
attributes listed in num_left.

Permissions Required

The sec_rgy_attr_lookup_by_id( ) routine requires the query permission set for each attribute type
identified in the attr_keys array. These permissions are defined as part of the ACL manager set in
the schema entry of each attribute type.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_trig_svr_unavailable
Trigger server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_lookup_no_expand ( ), sec_rgy_attr_attr_lookup_by_name ( ).

Part 3 Security Application Programming Interface 577



sec_rgy_attr_lookup_by_name( ) Registry API

NAME
sec_rgy_attr_lookup_by_name — Read a single attribute instance for a specific object

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_lookup_by_name(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
char * attr_name ,
sec_attr_t * attr ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
A value of type sec_rgy_domain_t that identifies the domain in which the named object
resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist.

name
A pointer to a sec_rgy_name_t character string containing the name of the person, group, or
organization to which the attribute is attached.

attr_name
An pointer to a character string that specifies the name of the attribute to be retrieved.

Output

attr
A pointer to a sec_attr_t that contains the first instance of the named attribute.

status
A pointer to the completion status. The completion status can be one of the following:

• error_status_ok if all instances of the value are returned with no errors.

• more_available if a multi-valued attribute was specified as name and the routine
completed successfully. For multi-valued attributes, this routine returns the first
instance of the attribute.

• attribute_set_instance if an attribute set was specified as name and the routine
completed successfully.

578 CAE Specification (1997)



Registry API sec_rgy_attr_lookup_by_name( )

• An error message if the routine did not complete successfully.

DESCRIPTION
The sec_rgy_attr_lookup_by_name( ) routine returns the named attribute for a named object. This
routine is useful for an interactive editor.

For multi-valued attributes, this routine returns the first instance of the attribute. To retrieve
every instance of the attribute, use the sec_rgy_attr_lookup_by_id( ) call, supplying the attribute
UUID returned in the attr parameter.

For attribute sets, the routine returns the attribute set instance, not the member instances. To
retrieve all members of the set, use the sec_rgy_attr_lookup_by_id( ) call, supplying the the
attribute set UUID returned in the attr parameter.

Warning

This routine does not provide for input data to an attribute trigger query operation. If the named
attribute is associated with a query attribute trigger, the attribute trigger will be called with no
input attribute value information.

Permissions Required

The sec_rgy_attr_lookup_by_name( ) routine requires the query permission set for the attribute
type of the attribute instance identified by attr_name. These permissions are defined as part of
the ACL manager set in the schema entry of each attribute type.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_trig_svr_unavailable
Trigger server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_lookup_by_id ( ), sec_rgy_attr_lookup_no_expand ( ).

Part 3 Security Application Programming Interface 579



sec_rgy_attr_lookup_no_expand( ) Registry API

NAME
sec_rgy_attr_lookup_no_expand — Reads a specified object’s attribute(s), without expanding
attribute sets into individual member attributes

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_lookup_no_expand(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
sec_attr_cursor_t * cursor ,
unsigned32 num_attr_keys ,
unsigned32 space_avail ,
uuid_t attr_keys [ ],
unsigned32 * num_returned ,
sec_attr_t attr_sets [ ],
unsigned32 * num_left ,
error_status_t status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
A value of type sec_rgy_domain_t that identifies the domain in which the named object
resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist.

name
A pointer to a sec_rgy_name_t character string containing the name of the person, group, or
organization to which the attribute is attached.

num_attr_keys
An unsigned 32-bit integer that specifies the number of elements in the the attr_keys array. If
num_attr_keys is set to 0, all attribute sets that the caller is authorized to see are returned.

space_avail
An unsigned 32-bit integer that specifies the size of the attrs_sets array.

attr_keys[ ]
An array of values of type uuid_t that specify the UUIDs of the attribute sets to be returned.
The size of the attr_keys array is determined by the num_attr_keys parameter.

580 CAE Specification (1997)



Registry API sec_rgy_attr_lookup_no_expand( )

Input/Output

cursor
A pointer to a sec_attr_cursor_t. As an input parameter, cursor is a pointer to a
sec_attr_cursor_t that is initialized by the sec_rgy_attr_cursor_init( ) routine. As an output
parameter, cursor is a pointer to a sec_attr_cursor_t that is positioned past the attribute sets
returned in this call.

Output

num_returned
A pointer to a 32-bit integer that specifies the number of attribute sets returned in the attrs
array.

attr_sets
An array of values of type sec_attr_t that contains the attribute sets retrieved by UUID. The
size of the array is determined by space_avail and the length by num_returned.

num_left
A pointer to a 32-bit unsigned integer that supplies the number of attribute sets that were
found but could not be returned because of space constraints in the attr_sets buffer. To
ensure that all the attributes will be returned, increase the size of the attr_sets array by
increasing the size of space_avail and num_returned.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_lookup_no_expand( ) routine reads attribute sets. This routine is similar to the
sec_rgy_attr_lookup_by_id( ) routine with one exception: for attribute sets,
sec_rgy_attr_lookup_by_id( ) expands attribute sets and returns a sec_attr_t for each member in
the set. This call does not. Instead it returns a sec_attr_t for the set instance only. The
sec_rgy_attr_lookup_no_expand( ) routine is useful for programmatic access.

cursor is a cursor of type sec_attr_cursor_t that establishes the point in the attribute set list from
which the server should start processing the query. Use the sec_rgy_attr_cursor_init( ) function to
initialize cursor. If cursor is uninitialized, the server begins processing the query with the first
attribute that satisfies the search criteria.

The num_left parameter contains the number of attribute sets that were found but could not be
returned because of space constraints of the attr_sets array. (Note that this number may be
inaccurate if the target server allows updates between successive queries.) To obtain all of the
remaining attribute sets, set the size of the attr_sets array so that it is large enough to hold the
number of attributes listed in num_left.

Permissions Required

The sec_rgy_attr_lookup_no_expand( ) routine requires the query permission set for each attribute
type identified in the attr_keys array. These permissions are defined as part of the ACL manager
set in the schema entry of each attribute type.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

Part 3 Security Application Programming Interface 581



sec_rgy_attr_lookup_no_expand( ) Registry API

ERRORS

error_status_ok
The call was successful.

sec_attr_bad_type
Invalid or unsupported attribute type.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_lookup_by_id ( ), sec_rgy_attr_lookup_by_name ( ).

582 CAE Specification (1997)



Registry API sec_rgy_attr_sch_aclmgr_strings( )

NAME
sec_rgy_attr_sch_aclmgr_strings — Returns printable ACL strings associated with an ACL
manager protecting a bound to schema object

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_aclmgr_strings(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
uuid_t * acl_mgr_type ,
unsigned32 size_avail ,
*uuid_t * acl_mgr_type_chain ,
sec_acl_printstring_t * acl_mgr_info ,
boolean32 * tokenize ,
unsigned32 * total_num_printstrings ,
unsigned32 * size_used ,
sec_acl_printstring_t permstrings [ ],
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

acl_manager_type
A pointer to the UUID identifying the type of the ACL manager in question. There may be
more than one type of ACL manager protecting the schema object whose ACL is bound to
the input handle. Use this parameter to distinguish them. Use
sec_rgy_attr_sch_get_acl_mgrs( ) to acquire a list of the manager types protecting a given
schema object.

size_avail
An unsigned 32-bit integer containing the allocated length of the permstrings array.

Output

acl_mgr_type_chain
If the target object ACL contains more than 32 permission bits, chains of manager types are
used: each manager type holds one 32-bit segment of permissions. The UUID returned in
acl_mgr_type_chain refers to the next ACL manager in the chain. If there are no more ACL
managers in the chain, uuid_nil is returned.

acl_mgr_info
A pointer to a printstring that contains the ACL manager type’s name, help information,
and set of supported of permission bits.

tokenize
A pointer to a variable that specifies whether or not printstrings will be passed separately:

Part 3 Security Application Programming Interface 583



sec_rgy_attr_sch_aclmgr_strings( ) Registry API

• TRUE indicates that the printstrings must be printed or passed separately.

• FALSE indicates that the printstrings are unambiguous and can be concatenated when
printed without confusion.

total_num_printstrings
A pointer to an unsigned 32-bit integer containing the total number of permission entries
supported by this ACL manager type.

size_used
A pointer to an unsigned 32-bit integer containing the number of permission entries
returned in the permstrings array.

permstrings[ ]
An array of printstrings of type sec_acl_printstring_t. Each entry of the array is a structure
containing the following three components:

printstring
A character string of maximum length sec_acl_printstring_len describing the printable
representation of a specified permission.

helpstring
A character string of maximum length sec_acl_printstring_help_len containing some
text that can be used to describe the specified permission.

permissions
A sec_acl_permset_t permission set describing the permissions that are represented
with the companion printstring.

The array consists of one such entry for each permission supported by the ACL manager
identified by acl_mgr_type.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_aclmgr_strings( ) routine returns an array of printable representations (called
‘‘printstrings’’) for each permission bit or combination of permission bits the specified ACL
manager supports. The ACL manager type specified by acl_mgr_type must be one of the types
protecting the schema object bound to by context.

In addition to returning the printstrings, this routine also returns instructions about how to print
the strings in the tokenize variable. If this variable is set to FALSE, the printstrings can be
concatenated. If it is set to TRUE, the printstrings cannot be concatenated. For example a
printstrings of r or w could be concatenated as rw without any confusion. However,
printstrings in a form of read or write , should not be concatenated.

ACL managers often define aliases for common permission combinations. By convention, simple
entries appear at the beginning of the printstrings[ ] array, and combinations appear at the end.

584 CAE Specification (1997)



Registry API sec_rgy_attr_sch_aclmgr_strings( )

Permissions Required

The sec_rgy_attr_sch_aclmgr_strings( ) routine requires the r permission on the schema object.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_no_memory
Unable to allocate memory.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_get_acl_mgrs ( ).

Part 3 Security Application Programming Interface 585



sec_rgy_attr_sch_create_entry( ) Registry API

NAME
sec_rgy_attr_sch_create_entry — Create a schema entry

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_create_entry(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
sec_attr_schema_entry_t * schema_entry ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

schema_entry
A pointer to a sec_attr_schema_entry_t that contains the schema entry values for the
schema in which the entry is to be created.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_create_entry( ) routine creates schema entries that define attribute types.

Permissions Required

The sec_rgy_attr_sch_create_entry( ) routine requires i permission on the schema object.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_bad_acl_mgr_set
Invalid acl_mgr_set specified.

sec_attr_bad_acl_mgr_type
Invalid acl manager type.

sec_attr_bad_bind_authn_svc
Invalid authentication service specified in binding auth_info.

586 CAE Specification (1997)



Registry API sec_rgy_attr_sch_create_entry( )

sec_attr_bad_bind_authz_svc
Invalid authorization service specified in binding auth_info.

sec_attr_bad_bind_info
Invalid binding information.

sec_attr_bad_bind_prot_level
Invalid protection level specified in binding auth_info.

sec_attr_bad_bind_svr_name
Invalid server name specified in binding auth_info.

sec_attr_bad_comment
Invalid comment text specified.

sec_attr_bad_encoding_type
Invalid encoding type specified.

sec_attr_bad_intercell_action
Invalid intercell action specified.

sec_attr_bad_name
Invalid attribute name specified.

sec_attr_bad_permset
Invalid permission set.

sec_attr_bad_scope
Invalid scope specified.

sec_attr_bad_uniq_query_accept
Invalid combination of unique_flag=true, query trigger, and intercell_action=accept.

sec_attr_name_exists
Attribute name already exists.

sec_attr_no_memory
Unable to allocate memory.

sec_attr_svr_read_only
Server is read only.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_trig_bind_info_missing
Trigger binding info must be specified.

sec_attr_type_id_exists
Attribute type id already exists.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_delete_entry( ), sec_rgy_attr_sch_update ( ).

Part 3 Security Application Programming Interface 587



sec_rgy_attr_sch_cursor_alloc( ) Registry API

NAME
sec_rgy_attr_sch_cursor_alloc — Allocates resources to a cursor used with the
sec_rgy_attr_sch_scan( ) call

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_cursor_alloc(
dce_attr_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Output

cursor
A pointer to a sec_attr_cursor_t.

status
A pointer to the completion status. On successful completion, the call returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_cursor_alloc( ) call allocates resources to a cursor used with the
sec_rgy_attr_sch_scan( ) call. This routine, which is a local operation, does not initialize cursor.

The sec_rgy_attr_sch_cursor_init( ) routine, which makes a remote call, allocates and initializes the
cursor. In addition, sec_rgy_attr_sch_cursor_init( ) returns the total number of entries found in the
schema as an output parameter; sec_rgy_attr_sch_cursor_alloc( ) does not.

Permissions Required

None.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.id was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_no_memory
Unable to allocate memory.

SEE ALSO
Functions: sec_rgy_attr_sch_cursor_init ( ), sec_rgy_attr_sch_cursor_release( ),
sec_rgy_attr_sch_scan( ).

588 CAE Specification (1997)



Registry API sec_rgy_attr_sch_cursor_init( )

NAME
sec_rgy_attr_sch_cursor_init — Initialize and allocate a cursor used with the
sec_rgy_attr_sch_scan( ) call

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_cursor_init(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
unsigned32 * cur_num_entries ,
sec_attr_cursor_t * cursor ,
error_status_t status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

Output

cur_num_entries
A pointer to an unsigned 32-bit integer that specifies the total number of entries contained
in the schema at the time of this call.

cursor
A pointer to a sec_attr_cursor_t that is initialized to the first entry in the the schema.

status
A pointer to the completion status. On successful completion, the call returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_cursor_init( ) call initializes and allocates resources to a cursor used with the
sec_rgy_attr_sch_scan( ) call. This call makes remote calls to initialize the cursor. To limit the
number of remote calls, use the sec_rgy_attr_sch_cursor_alloc( ) call to allocate cursor, but not
initialize it. Be aware, however, that the the sec_rgy_attr_sch_cursor_init( ) call supplies the total
number of entries found in the schema as an output parameter; the
sec_rgy_attr_sch_cursor_alloc( ) call does not.

If the cursor input to sec_rgy_attr_sch_scan( ) has not been initialized, the sec_rgy_attr_sch_scan( )
call will initialize it; if it has been initialized, sec_rgy_attr_sch_scan( ) advances it.

Part 3 Security Application Programming Interface 589



sec_rgy_attr_sch_cursor_init( ) Registry API

Permissions Required

None.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_no_memory
Unable to allocate memory.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_cursor_release( ), sec_rgy_attr_sch_scan( ),
sec_rgy_attr_sch_cursor_alloc ( ).

590 CAE Specification (1997)



Registry API sec_rgy_attr_sch_cursor_release( )

NAME
sec_rgy_attr_sch_cursor_release — Release states associated with a cursor used by the
sec_rgy_attr_sch_scan( ) routine

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_cursor_release(
sec_attr_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input/Output

cursor
A pointer to a sec_attr_cursor_t. As an input parameter, cursor must have been initialized
to the first entry in a schema. As an output parameter, cursor is uninitialized with all
resources releases.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The sec_rgy_attr_sch_cursor_init( ) routine releases the resources allocated to the cursor used by
the sec_rgy_attr_sch_scan( ) routine. This call is a local operation and makes no remote calls.

Permissions Required

None.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

SEE ALSO
Functions: sec_rgy_attr_sch_cursor_init ( ), sec_rgy_attr_sch_cursor_allocate ( ),
sec_rgy_attr_sch_scan( ).

Part 3 Security Application Programming Interface 591



sec_rgy_attr_sch_cursor_reset( ) Registry API

NAME
sec_rgy_attr_sch_cursor_reset — Resets a cursor that has been allocated with either
sec_rgy_attr_sch_cursor_init( ) or sec_rgy_attr_sch_cursor_alloc( )

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void dce_attr_cursor_reset(
sec_attr_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input/Output

cursor
A pointer to a sec_attr_cursor_t. As an input parameter, an initialized cursor. As an output
parameter, cursor is reset to the first attribute in the schema.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_cursor_reset( ) routine resets a dce_attr_cursor_t that has been allocated by
either a sec_rgy_attr_sch_cursor_init( ) or sec_rgy_attr_sch_cursor_alloc( ). The reset cursor can then
be used to process a new sec_rgy_attr_sch_scan query by reusing the cursor instead of releasing
and re-allocating it. This is a local operation and makes no remote calls.

Permissions Required

None.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_bad_cursor
Invalid cursor.

SEE ALSO
Functions: sec_rgy_attr_sch_cursor_init ( ), sec_rgy_attr_sch_cursor_alloc ( ), sec_rgy_attr_sch_scan( ).

592 CAE Specification (1997)



Registry API sec_rgy_attr_sch_delete_entry( )

NAME
sec_rgy_attr_sch_delete_entry — Delete a schema entry

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_delete_entry(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
uuid_t * attr_id ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

attr_id
A pointer to a uuid_t that identifies the schema entry to be deleted.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_delete_entry( ) routine deletes a schema entry. Because this is a radical
operation that invalidates any existing attributes of this type on objects dominated by the
schema, access to this operation should be severely limited.

Permissions Required

The sec_rgy_attr_sch_delete_entry( ) routine requires the d permission on the schema object.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_no_memory
Unable to allocate memory.

sec_attr_sch_entry_not_found
Schema entry not found.

sec_attr_svr_read_only
Server is read only.

Part 3 Security Application Programming Interface 593



sec_rgy_attr_sch_delete_entry( ) Registry API

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_create_entry( ), sec_rgy_attr_sch_update_entry ( ).

594 CAE Specification (1997)



Registry API sec_rgy_attr_sch_get_acl_mgrs( )

NAME
sec_rgy_attr_sch_get_acl_mgrs — Retrieve the manager types of the ACLs protecting the objects
dominated by a named schema

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_get_acl_mgrs(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
unsigned32 size_avail ,
unsigned32 * size_used ,
unsigned32 * num_acl_mgr_types ,
uuid_t acl_mgr_types [ ],
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

size_avail
An unsigned 32-bit integer containing the allocated length of the acl_manager_types array.

Output

size_used
An unsigned 32-bit integer containing the number of output entries returned in the
acl_mgr_types[ ] array.

num_acl_mgr_types
An unsigned 32-bit integer containing the number of types returned in the acl_mgr_types
array. This may be greater than size_used if there was not enough space allocated by
size_avail for all the manager types in the acl_manager_types array.

acl_mgr_types[ ]
An array of the length specified in size_avail to contain UUIDs (of type uuid_t) identifying
the types of ACL managers protecting the target object.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_get_acl_mgrs( ) routine returns a list of the manager types protecting the
schema object identified by context.

ACL editors and browsers can use this operation to determine the ACL manager types
protecting a selected schema object. Then, using the sec_rgy_attr_sch_aclmgr_strings( ) routine,
they can determine how to format for display the permissions supported by that ACL manager
type.

Part 3 Security Application Programming Interface 595



sec_rgy_attr_sch_get_acl_mgrs( ) Registry API

Permissions Required

The sec_rgy_attr_sch_get_acl_mgrs( ) routine requires the r permission on the schema object.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_no_memory
Unable to allocate memory.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_aclmgr_strings ( ).

596 CAE Specification (1997)



Registry API sec_rgy_attr_sch_lookup_by_id( )

NAME
sec_rgy_attr_sch_lookup_by_id — Read a schema entry identified by UUID

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_lookup_by_id(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
uuid_t * attr_id ,
sec_attr_schema_entry_t * schema_entry ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

attr_id
A pointer to a uuid_t that identifies a schema entry.

Output

schema_entry
A sec_attr_schema_entry_t that contains an entry identified by attr_id.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_lookup_by_id( ) routine reads a schema entry identified by attr_id. This
routine is useful for programmatic access.

Permissions Required

The sec_rgy_attr_sch_lookup_by_id( ) routine requires the r permission on the schema object.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_no_memory
Unable to allocate memory.

sec_attr_sch_entry_not_found
Schema entry not found.

Part 3 Security Application Programming Interface 597



sec_rgy_attr_sch_lookup_by_id( ) Registry API

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_lookup_by_name ( ), sec_rgy_attr_sch_scan( ).

598 CAE Specification (1997)



Registry API sec_rgy_attr_sch_lookup_by_name( )

NAME
sec_rgy_attr_sch_lookup_by_name — Read a schema entry identified by name

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_lookup_by_name(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
char * attr_name ,
sec_attr_schema_entry_t * schema_entry ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

attr_name
A pointer to a character string that identifies the schema entry.

Output

schema_entry
A sec_attr_schema_entry_t that contains the schema entry identified by attr_name.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_lookup_by_name( ) routine reads a schema entry identified by name. This
routine is useful for use with an interactive editor.

Permissions Required

The sec_rgy_attr_sch_lookup_by_name( ) routine requires the r permission on the schema object.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_bad_name
Invalid attribute name specified.

sec_attr_no_memory
Unable to allocate memory.

Part 3 Security Application Programming Interface 599



sec_rgy_attr_sch_lookup_by_name( ) Registry API

sec_attr_sch_entry_not_found
Schema entry not found.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_lookup_by_id ( ), sec_rgy_attr_sch_scan( ).

600 CAE Specification (1997)



Registry API sec_rgy_attr_sch_scan( )

NAME
sec_rgy_attr_sch_scan — Read a specified number of schema entries

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_scan(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
sec_attr_cursor_t * cursor ,
unsigned32 num_to_read ,
unsigned32 * num_read ,
sec_attr_schema_entry_t schema_entries [ ],
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

num_to_read
An unsigned 32-bit integer specifying the size of the schema_entries[ ] array and the
maximum number of entries to be returned.

Input/Output

cursor
A pointer to a sec_attr_cursor_t. As input cursor must be allocated and can be initialized. If
cursor is not initialized, sec_rgy_attr_sch_scan( ) will initialize. As output, cursor is positioned
at the first schema entry after the returned entries.

Output

num_read
A pointer an unsigned 32-bit integer specifying the number of entries returned in
schema_entries.

schema_entries[ ]
A sec_attr_schema_entry_t that contains an array of the returned schema entries.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_scan( ) routine reads schema entries. The read begins at the entry at which
the input cursor is positioned and ends after the number of entries specified in num_to_read.

The input cursor must have been allocated by either the sec_rgy_attr_sch_cursor_init( ) or the
sec_rgy_attr_sch_cursor_alloc( ) call. If the input cursor is not initialized, sec_rgy_attr_sch_scan( )
initializes it; if cursor is initialized, sec_rgy_attr_sch_scan( ) simply advances it.

Part 3 Security Application Programming Interface 601



sec_rgy_attr_sch_scan( ) Registry API

To read all entries in a schema, make successive sec_rgy_attr_sch_scan( ) calls. When all entries
have been read, the call returns the message no_more_entries.

This routine is useful as a browser.

Permissions Required

The sec_rgy_attr_sch_scan( ) routine requires r permission on the schema object.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_bad_cursor
Invalid cursor.

sec_attr_no_memory
Unable to allocate memory.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_cursor_init ( ), sec_rgy_attr_sch_cursor_alloc ( ),
sec_rgy_attr_sch_cursor_release( ).

602 CAE Specification (1997)



Registry API sec_rgy_attr_sch_update_entry( )

NAME
sec_rgy_attr_sch_update_entry — Update a schema entry

SYNOPSIS
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_update_entry(
sec_rgy_handle_t context ,
sec_attr_component_name_t schema_name,
sec_attr_schema_entry_parts_t modify_parts ,
sec_attr_schema_entry_t * schema_entry ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

schema_name
Reserved for future use.

modify_parts
A value of type sec_attr_schema_entry_parts_t that identifies the fields in schema_entry that
can be modified.

schema_entry
A pointer to a sec_attr_schema_entry_t that contains the schema entry values for the
schema entry to be updated.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_sch_update_entry( ) routine modifies schema entries. Only those schema entry
fields set to be modified in the sec_attr_schema_entry_parts_t data type can be modified.

Some schema entry components can never be modified. Instead to make any changes to these
components, the schema entry must be deleted (which deletes all attribute instances of that
type) and recreated. The schema entry components that can never be modified are listed below:

• Attribute name

• Reserved flag

• Apply defaults flag

• Intercell action flag

• Trigger binding

• Comment

Part 3 Security Application Programming Interface 603



sec_rgy_attr_sch_update_entry( ) Registry API

Fields that are arrays of structures (such as acl_mgr_set and trig_binding) are completely
replaced by the new input array. This operation cannot be used to add a new element to the
existing array.

Permissions Required

The sec_rgy_attr_sch_update_entry( ) routine requires the M permission on the schema object.

FILES

/usr/include/dce/sec_rgy_attr_sch.idl
The idl file from which dce/sec_rgy_attr_sch.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_bad_acl_mgr_set
Invalid acl_mgr_set specified.

sec_attr_bad_acl_mgr_type
Invalid acl manager type.

sec_attr_bad_bind_authn_svc
Invalid authentication service specified in binding auth_info.

sec_attr_bad_bind_authz_svc
Invalid authorization service specified in binding auth_info.

sec_attr_bad_bind_info
Invalid binding information.

sec_attr_bad_bind_prot_level
Invalid protection level specified in binding auth_info.

sec_attr_bad_bind_svr_name
Invalid server name specified in binding auth_info.

sec_attr_bad_comment
Invalid comment text specified.

sec_attr_bad_intercell_action
Invalid intercell action specified.

sec_attr_bad_name
Invalid attribute name specified.

sec_attr_bad_permset
Invalid permission set.

sec_attr_bad_uniq_query_accept
Invalid combination of unique_flag=true, query trigger, and intercell_action=accept.

sec_attr_field_no_update
Field not modifiable.

sec_attr_name_exists
Attribute name already exists.

sec_attr_no_memory
Unable to allocate memory.

604 CAE Specification (1997)



Registry API sec_rgy_attr_sch_update_entry( )

sec_attr_sch_entry_not_found
Schema entry not found.

sec_attr_svr_read_only
Server is read only.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_trig_bind_info_missing
Trigger binding info must be specified.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_sch_delete_entry( ), sec_rgy_attr_sch_create_entry( ).

Part 3 Security Application Programming Interface 605



sec_rgy_attr_test_and_update( ) Registry API

NAME
sec_rgy_attr_test_and_update — Updates specified attribute instances for a specified object only
if a set of control attribute instances match the object’s existing attribute instances

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_test_and_update (
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
unsigned32 num_to_test ,
sec_attr_t test_attrs [ ],
unsigned32 num_to_write ,
sec_attr_t update_attrs [ ],
signed32 * failure_index ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in which the object
specified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist.

name
A character string of type sec_rgy_name_t specifying the name of the person, group, or
organization to which the attribute is attached.

num_to_test
An unsigned 32-bit integer that specifies the number of elements in the test_attrs array. This
integer must be greater than 0.

test_attrs[ ]
An array of values of type sec_attr_t that specifies the control attributes. The update takes
place only if the types and values of the control attributes exactly match those of the
attribute instances on the named registry object. The size of the array is determined by
num_to_test.

num_to_write
A 32-bit integer that specifies the number of attribute instances returned in the update_attrs
array.

606 CAE Specification (1997)



Registry API sec_rgy_attr_test_and_update( )

update_attrs
An array of values of type sec_attr_t that specifies the attribute instances to be updated. The
size of the array is determined by num_to_write.

Output

failure_index
In the event of an error, failure_index is a pointer to the element in the update_attrs array that
caused the update to fail. If the failure cannot be attributed to a specific attribute, the value
of failure_index is -1.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_test_and_update( ) routine updates an attribute only if the set of control
attributes specified in the test_attrs match attributes that already exist for the object.

This update is an atomic operation: if any of the control attributes do not match existing
attributes, none of the updates are performed, and if an update should be performed, but the
write cannot occur for whatever reason to any member of the update_attrs array, all updates are
aborted. The attribute causing the update to fail is identified in failure_index. If the failure cannot
be attributed to a given attribute, failure_index contains -1.

If an attribute instance already exists which is identical in both attr_id and attr_value to an
attribute specified in in_attrs, the existing attribute information is overwritten by the new
information. For multi-valued attributes, every instance with the same attr_id is overwritten
with the supplied values.

If an attribute instance does not exist, it is created.

If you specify an attribute set for updating, the update applies to the set instance, the set itself,
not the members of the set. To update a member of an attribute set, supply the UUID of the set
member.

If an input attribute is associated with an update attribute trigger server, the attribute trigger
server is invoked (by the sec_attr_trig_update( ) function) and the in_attr array is supplied as
input. The output attributes from the update attribute trigger server are stored in the registry
database and returned in the out_attrs array. Note that the update attribute trigger server may
modify the values before they are used to update the registry database. This is the only
circumstance under which the values in the out_attrs array differ from the values in the in_attrs
array.

Permissions Required

The sec_rgy_attr_test_and_update( ) routine requires the test permission and the update
permission set for each attribute type identified in the test_attrs array. These permissions are
defined as part of the ACL manager set in the schema entry of each attribute type.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

Part 3 Security Application Programming Interface 607



sec_rgy_attr_test_and_update( ) Registry API

sec_attr_bad_encoding_type
Invalid encoding type specified.

sec_attr_bad_type
Invalid or unsupported attribute type.

sec_attr_not_unique
Attribute value is not unique.

sec_rgy_read_only
Registry is read only.

sec_attr_svr_read_only
Server is read only.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_trig_svr_unavailable
Trigger server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_update ( ), sec_rgy_attr_delete( ).

608 CAE Specification (1997)



Registry API sec_rgy_attr_update( )

NAME
sec_rgy_attr_update — Creates and updates attribute instances for a specified object

SYNOPSIS
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_update (
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
unsigned32 num_to_write ,
unsigned32 space_avail ,
sec_attr_t in_attrs [ ],
unsigned32 *num_returned ,
sec_attr_t out_attrs [ ],
unsigned32 *num_left ,
signed32 * failure_index ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in which the object
specified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist.

name
A character string of type sec_rgy_name_t specifying the name of the person, group, or
organization to which the attribute is attached.

num_to_write
A 32-bit unsigned integer that specifies the number of elements in the in_attrs array. This
integer must be greater than 0.

space_avail
A 32-bit unsigned integer that specifies the size of the out_attrs array. This integer must be
greater than 0.

in_attrs[ ]
An array of values of type sec_attr_t that specifies the attribute instances to be updated. The
size of the array is determined by num_to_write.

Part 3 Security Application Programming Interface 609



sec_rgy_attr_update( ) Registry API

Output

num_returned
A pointer to an unsigned 32-bit integer that specifies the number of attribute instances
returned in the out_attrs array.

out_attrs[ ]
An array of values of type sec_attr_t that specifies the updated attribute instances. Not that
only if these attributes were processed by an update attribute trigger server will they differ
from the attributes in the in_attrs array. The size of the array is determined by space_avail
and the length by num_returned.

num_left
A pointer to an unsigned 32-bit integer that supplies the number of attributes that could not
be returned because of space constraints in the out_attrs buffer. To ensure that all the
attributes will be returned, increase the size of the out_attrs array by increasing the size of
space_avail and num_returned.

failure_index
In the event of an error, failure_index is a pointer to the element in the in_attrs array that
caused the update to fail. If the failure cannot be attributed to a specific attribute, the value
of failure_index is -1.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_attr_update( ) routine creates new attribute instances and updates existing attribute
instances attached to a object specified by name and Registry domain. The instances to be
created or updated are passed as an array of sec_attr_t data types. This is an atomic operation: if
the creation of any attribute in the in_attrs array fails, all updates are aborted. The attribute
causing the update to fail is identified in failure_index. If the failure cannot be attributed to a
given attribute, failure_index contains -1.

The in_attrs array, which specifies the attributes to be created, contains values of type sec_attr_t.
These values are:

• attr_id, a UUID that identifies the attribute type

• attr_value, values of sec_attr_value_t that specify the attribute’s encoding type and values.

If an attribute instance already exists which is identical in both attr_id and attr_value to an
attribute specified in in_attrs, the existing attribute information is overwritten by the new
information. For multi-valued attributes, every instance with the same attr_id is overwritten
with the supplied values.

If an attribute instance does not exist, it is created.

For multi-valued attributes, because every instance of the multi-valued attribute is identified by
the same UUID, every instance is overwritten with the supplied value. To change only one of the
values, you must supply the values that should be unchanged as well as the new value.

To create instances of multi-valued attributes, create individual sec_attr_t data types to define
each multi-valued attribute instance and then pass all of them in in the input array.

If an input attribute is associated with an update attribute trigger server, the attribute trigger
server is invoked (by the sec_attr_trig_update( ) function) and the in_attr array is supplied as
input. The output attributes from the update attribute trigger server are stored in the registry

610 CAE Specification (1997)



Registry API sec_rgy_attr_update( )

database and returned in the out_attrs array. Note that the update attribute trigger server may
modify the values before they are used to update the registry database. This is the only
circumstance under which the values in the out_attrs array differ from the values in the in_attrs
array.

Permissions Required

The sec_rgy_attr_update( ) routine requires the update permission set for each attribute type
identified in the in_attrs array. These permissions are defined as part of the ACL manager set in
the schema entry of each attribute type.

FILES

/usr/include/dce/sec_rgy_attr.idl
The idl file from which dce/sec_rgy_attr.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_attr_bad_encoding_type
Invalid encoding type specified.

sec_attr_bad_type
Invalid or unsupported attribute type.

sec_attr_inst_exists
Attribute instance already exists.

sec_attr_not_unique
Attribute value is not unique.

sec_rgy_read_only
Registry is read only.

sec_attr_svr_read_only
Server is read only.

sec_attr_svr_unavailable
Server is unavailable.

sec_attr_trig_svr_unavailable
Trigger server is unavailable.

sec_attr_unauthorized
Unauthorized to perform this operation.

SEE ALSO
Functions: sec_rgy_attr_delete( ), sec_rgy_attr_test_and_update ( ).

Part 3 Security Application Programming Interface 611



sec_rgy_auth_plcy_get_e ffective( ) Registry API

NAME
sec_rgy_auth_plcy_get_effective — Returns the effective authentication policy for an account

SYNOPSIS
#include <dce/policy.h>

void sec_rgy_auth_plcy_get_effective(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * account ,
sec_rgy_plcy_auth_t * auth_policy ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

account
A pointer to the account login name (type sec_rgy_login_name_t). A login name is
composed of three character strings, containing the principal, group, and organization
(PGO) names corresponding to the account. If all three fields contain empty strings, the
authentication policy returned is that of the registry.

Output

auth_policy
A pointer to the sec_rgy_plcy_auth_t structure to receive the authentication policy. The
authentication policy structure contains the maximum lifetime for an authentication ticket,
and the maximum amount of time for which one can be renewed.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_auth_plcy_get_effective( ) routine returns the effective authentication policy for the
specified account. The authentication policy in effect is the more restrictive of the registry and
the account policies for each policy category. If no account is specified, the registry’s
authentication policy is returned.

Permissions Required

The sec_rgy_auth_plcy_get_effective( ) routine requires the r (read) permission on the policy object
from which the data is to be returned. If an account is specified and an account policy exists, the
routine also requires the r (read) permission on the account principal.

FILES

/usr/include/dce/policy.idl
The idl file from which dce/policy.h was derived.

ERRORS

error_status_ok
The call was successful.

612 CAE Specification (1997)



Registry API sec_rgy_auth_plcy_get_e ffective( )

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_auth_plcy_get_info ( ), sec_rgy_auth_plcy_set_info ( ).

Part 3 Security Application Programming Interface 613



sec_rgy_auth_plcy_get_info( ) Registry API

NAME
sec_rgy_auth_plcy_get_info — Returns the authentication policy for an account

SYNOPSIS
#include <dce/policy.h>

void sec_rgy_auth_plcy_get_info(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * account ,
sec_rgy_plcy_auth_t * auth_policy ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

account
A pointer to the account login name (type sec_rgy_login_name_t). A login name is
composed of three character strings, containing the principal, group, and organization
(PGO) names corresponding to the account.

Output

auth_policy
A pointer to the sec_rgy_plcy_auth_t structure to receive the authentication policy. The
authentication policy structure contains the maximum lifetime for an authentication ticket,
and the maximum amount of time for which one can be renewed.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_auth_plcy_get_info( ) routine returns the authentication policy for the specified
account. If no account is specified, the registry’s authentication policy is returned.

Permissions Required

The sec_rgy_auth_plcy_get_info( ) routine requires the r (read) permission on the policy object or
account principal from which the data is to be returned.

NOTES
The actual policy in effect will not correspond precisely to what is returned by this call if the
overriding registry authentication policy is more restrictive than the policy for the specified
account. Use sec_rgy_auth_plcy_get_effective( ) to return the policy currently in effect for the given
account.

FILES

/usr/include/dce/policy.idl
The idl file from which dce/policy.h was derived.

614 CAE Specification (1997)



Registry API sec_rgy_auth_plcy_get_info( )

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
No account with the given login name could be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_auth_plcy_get_effective( ), sec_rgy_auth_plcy_set_info ( ).

Part 3 Security Application Programming Interface 615



sec_rgy_auth_plcy_set_info( ) Registry API

NAME
sec_rgy_auth_plcy_set_info — Sets the authentication policy for an account

SYNOPSIS
#include <dce/policy.h>

void sec_rgy_auth_plcy_set_info(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * account ,
sec_rgy_plcy_auth_t * auth_policy ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

account
A pointer to the account login name (type sec_rgy_login_name_t). A login name is
composed of three character strings, containing the principal, group, and organization
(PGO) names corresponding to the account. All three names must be completely specified.

auth_policy
A pointer to the sec_rgy_plcy_auth_t structure containing the authentication policy. The
authentication policy structure contains the maximum lifetime for an authentication ticket,
and the maximum amount of time for which one can be renewed.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_auth_plcy_set_info( ) routine sets the indicated authentication policy for the specified
account. If no account is specified, the authentication policy is set for the registry as a whole.

Permissions Required

The sec_rgy_auth_plcy_set_info( ) routine requires the a (auth_info) permission on the policy
object or account principal for which the data is to be set.

NOTES
The policy set on an account may be less restrictive than the policy set for the registry as a
whole. In this case, the change in policy has no effect, since the effective policy is the most
restrictive combination of the principal and registry authentication policies. (See the
sec_rgy_auth_plcy_get_effective( ) routine).

FILES

/usr/include/dce/policy.idl
The idl file from which dce/policy.h was derived.

616 CAE Specification (1997)



Registry API sec_rgy_auth_plcy_set_info( )

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The user is not authorized to update the specified record.

sec_rgy_object_not_found
No account with the given login name could be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_auth_plcy_get_effective( ), sec_rgy_auth_plcy_get_info ( ).

Part 3 Security Application Programming Interface 617



sec_rgy_cell_bind( ) Registry API

NAME
sec_rgy_cell_bind — Binds to a registry in a cell

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_cell_bind(
unsigned_char_t * cell_name ,
sec_rgy_bind_auth_info_t * auth_info ,
sec_rgy_handle_t * context ,
error_status_t * status );

PARAMETERS

Input

cell_name
A character string (type unsigned_char_t) containing the name of the cell in question. Upon
return, a Security Server for that cell is associated with context, the registry server handle.
The cell must be specified completely and precisely. This routine offers none of the
pathname resolving services of sec_rgy_site_bind( ).

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the authentication
protocol, protection level, and authorization protocol to use in establishing the binding. (See
the rpc_binding_set_auth_info( ) routine).

Output

context
A pointer to a sec_rgy_handle_t variable. Upon return, this contains a registry server
handle indicating (bound to) the desired registry site.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_cell_bind( ) routine establishes a relationship with a registry site at an arbitrary level
of security. The cell_name parameter identifies the target cell.

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_site_bind( ).

618 CAE Specification (1997)



Registry API sec_rgy_cursor_reset( )

NAME
sec_rgy_cursor_reset — Resets the registry database cursor

SYNOPSIS
#include <dce/misc.h>

void sec_rgy_cursor_reset(
sec_rgy_cursor_t * cursor );

PARAMETERS

Input/Output

cursor
A pointer into the registry database.

DESCRIPTION
The sec_rgy_cursor_reset( ) routine resets the database cursor to return the first suitable entry. A
cursor is a pointer into the registry. It serves as a place holder when returning successive items
from the registry.

A cursor is bound to a particular server. In other words, a cursor that is in use with one replica of
the registry has no meaning for any other replica. If a calling program attempts to use a cursor
from one replica with another, the cursor is reset and the routine for which the cursor was
specified returns the first item in the database.

A cursor that is in use with one call cannot be used with another. For example, you cannot use
the same cursor on a call to sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ). The behavior
in this case is undefined.

FILES

/usr/include/dce/misc.idl
The idl file from which dce/misc.h was derived.

EXAMPLES
The following example illustrates use of the cursor within a loop. The initial
sec_rgy_cursor_reset( ) call resets the cursor to point to the first item in the registry. Successive
calls to sec_rgy_pgo_get_next( ) return the next PGO item and update the cursor to reflect the last
item returned. When the end of the list of PGO items is reached, the routine returns the value
sec_rgy_no_more_entries in the status parameter.

sec_rgy_cursor_reset(&cursor);
do {

sec_rgy_pgo_get_next(context, domain, scope, &cursor,
&item, name &status);

if (status == error_status_ok) {
/* Print formatted PGO item info */

}
}while (status == error_status_ok);

SEE ALSO
Functions: sec_rgy_acct_get_projlist ( ), sec_rgy_acct_lookup ( ), sec_rgy_pgo_get_by_id ( ),
sec_rgy_pgo_get_by_name( ), sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_get_members( ),
sec_rgy_pgo_get_next ( ).

Part 3 Security Application Programming Interface 619



sec_rgy_login_get_e ffective( ) Registry API

NAME
sec_rgy_login_get_effective — Returns the effective login data for an account

SYNOPSIS
#include <dce/misc.h>

void sec_rgy_login_get_effective(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
sec_rgy_acct_key_t * key_parts ,
sec_rgy_sid_t * sid ,
sec_rgy_unix_sid_t * unix_sid ,
sec_rgy_acct_user_t * user_part ,
sec_rgy_acct_admin_t * admin_part ,
sec_rgy_plcy_t * policy_data ,
signed32 max_number ,
signed32 * supplied_number ,
uuid_t id_projlist [ ],
signed32 unix_projlist [ ],
signed32 * num_projects ,
sec_rgy_name_t cell_name ,
uuid_t * cell_uuid ,
sec_override_fields_t * overridden ,
error_status_t * status );

PARAMETERS

Input

context
The registry server handle.

max_number
The maximum number of projects to be returned by the call. This must be no larger than the
allocated size of the projlist arrays.

Input/Output

login_name
A pointer to the account login name. A login name is composed of the names for the
account’s principal, group, and organization (PGO) items.

Output

key_parts
A pointer to the minimum abbreviation allowed when logging in to the account.
Abbreviations are not currently implemented and the only legal value is
sec_rgy_acct_key_person.

sid
A pointer to a sec_rgy_sid_t structure to receive the returned Subject Identifier (SID) for the
account. This structure consists of the UUIDs for the account’s PGO items.

620 CAE Specification (1997)



Registry API sec_rgy_login_get_e ffective( )

unix_sid
A pointer to a sec_rgy_unix_sid_t structure to receive the returned UNIX Subject Identifier
(SID) for the account. This structure consists of the UNIX numbers for the account’s PGO
items.

user_part
A pointer to a sec_rgy_acct_user_t structure to receive the returned user data for the
account.

admin_part
A pointer to a sec_rgy_acct_admin_t structure to receive the returned administrative data
for the account.

policy_data
A pointer to a sec_rgy_policy_t structure to receive the policy data for the account. The
policy data is associated with the account’s organization, as identified in the login name.

supplied_number
A pointer to the actual number of projects returned. This will always be less than or equal to
the max_number supplied on input.

id_projlist[ ]
An array to receive the UUID of each project returned. The size allocated for the array is
given by max_number. If this value is less than the total number of projects in the account
project list, multiple calls must be made to return all of the projects.

unix_projlist[ ]
An array to receive the UNIX number of each project returned. The size allocated for the
array is given by max_number. If this value is less than the total number of projects in the
account project list, multiple calls must be made to return all of the projects.

num_projects
A pointer indicating the total number of projects in the specified account’s project list.

cell_name
The name of the account’s cell.

cell_uuid
The UUID for the account’s cell.

overridden
A pointer to a 32-bit set of flags identifying the local overrides, if any, for the account login
information.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_login_get_effective( ) routine returns effective login information for the specified
account. Login information is extracted from the account’s entry in the registry database.
Effective login information is a combination of the login information from the registry database
and any login overrides defined for the account on the local machine.

The overridden parameter indicates which, if any, of the following local overrides have been
defined for the account:

• The UNIX user ID

Part 3 Security Application Programming Interface 621



sec_rgy_login_get_e ffective( ) Registry API

• The group ID

• The encrypted password

• The account’s miscellaneous information (gecos) field

• The account’s home directory

• The account’s login shell

Local overrides for account login information are defined in the /etc/passwd_override file and
apply only to the local machine.

FILES

/usr/include/dce/misc.idl
The idl file from which dce/misc.h was derived.

/etc/passwd_override
The file that defines local overrides for account login information.

ERRORS

error_status_ok
The call was successful.

sec_rgy__object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_acct_add ( ), sec_rgy_login_get_info ( ).

622 CAE Specification (1997)



Registry API sec_rgy_login_get_info( )

NAME
sec_rgy_login_get_info — Returns login information for an account

SYNOPSIS
#include <dce/misc.h>

void sec_rgy_login_get_info(
sec_rgy_handle_t context ,
sec_rgy_login_name_t * login_name ,
sec_rgy_acct_key_t * key_parts ,
sec_rgy_sid_t * sid ,
sec_rgy_unix_sid_t * unix_sid ,
sec_rgy_acct_user_t * user_part ,
sec_rgy_acct_admin_t * admin_part ,
sec_rgy_plcy_t * policy_data ,
signed32 max_number ,
signed32 * supplied_number ,
uuid_t id_projlist [ ],
signed32 unix_projlist [ ],
signed32 * num_projects ,
sec_rgy_name_t cell_name ,
uuid_t * cell_uuid ,
error_status_t * status );

PARAMETERS

Input

context
The registry server handle.

max_number
The maximum number of projects to be returned by the call. This must be no larger than the
allocated size of the projlist arrays.

Input/Output

login_name
A pointer to the account login name. A login name is composed of the names for the
account’s principal, group, and organization (PGO) items.

Output

key_parts
A pointer to the minimum abbreviation allowed when logging in to the account.
Abbreviations are not currently implemented and the only legal value is
sec_rgy_acct_key_person.

sid
A pointer to a sec_rgy_sid_t structure to receive the UUID’s representing the account’s PGO
items.

unix_sid
A pointer to a sec_rgy_unix_sid_t structure to receive the UNIX numbers for the account’s
PGO items.

Part 3 Security Application Programming Interface 623



sec_rgy_login_get_info( ) Registry API

user_part
A pointer to a sec_rgy_acct_user_t structure to receive the returned user data for the
account.

admin_part
A pointer to a sec_rgy_acct_admin_t structure to receive the returned administrative data
for the account.

policy_data
A pointer to a sec_rgy_policy_t structure to receive the policy data for the account. The
policy data is associated with the account’s organization, as identified in the login name.

supplied_number
A pointer to the actual number of projects returned. This will always be less than or equal to
the max_number supplied on input.

id_projlist[ ]
An array to receive the UUID of each project returned. The size allocated for the array is
given by max_number. If this value is less than the total number of projects in the account
project list, multiple calls must be made to return all of the projects.

unix_projlist[ ]
An array to receive the UNIX number of each project returned. The size allocated for the
array is given by max_number. If this value is less than the total number of projects in the
account project list, multiple calls must be made to return all of the projects.

num_projects
A pointer indicating the total number of projects in the specified account’s project list.

cell_name
The name of the account’s cell.

cell_uuid
The UUID for the account’s cell.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_login_get_info( ) routine returns login information for the specified account. This
information is extracted from the account’s entry in the registry database. To return any local
overrides for the account’s login data, use sec_rgy_login_get_effective( ).

Permissions Required

The sec_rgy_login_get_info( ) routine requires the r (read) permission on the account principal
from which the data is to be returned.

FILES

/usr/lib/dce/misc.idl
The idl file from which dce/misc.h was derived.

ERRORS

error_status_ok
The call was successful.

624 CAE Specification (1997)



Registry API sec_rgy_login_get_info( )

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_acct_add ( ), sec_rgy_login_get_effective( ).

Part 3 Security Application Programming Interface 625



sec_rgy_pgo_add( ) Registry API

NAME
sec_rgy_pgo_add — Adds a PGO item to the registry database

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_add(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
sec_rgy_pgo_item_t * pgo_item ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

name
A pointer to a sec_rgy_name_t character string containing the name of the new PGO item.

pgo_item
A pointer to a sec_rgy_pgo_item_t structure containing the data for the new PGO item. The
data in this structure includes the PGO item’s name, UUID, UNIX number (if any), and
administrative data, such as whether the item may have (or belong to) a concurrent group
set.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_add( ) routine adds a PGO item to the registry database.

The PGO data consists of the following:

• The Universal Unique Identifier (UUID) of the PGO item. Specify NULL to have the registry
server create a new UUID for an item.

626 CAE Specification (1997)



Registry API sec_rgy_pgo_add( )

• The UNIX number for the PGO item. If the registry uses embedded UNIX IDs (where a
subset of the UUID bits represent the UNIX ID), then the specified ID must match the UUID,
if both are specified. Use a value of -1 for the UNIX number to match any value.

• The quota for subaccounts allowed for this item entry.

• The full name of the PGO item.

• Flags (in the sec_rgy_pgo_flags_t format) indicating whether

— A principal item is an alias.

— The PGO item can be deleted from the registry.

— A principal item can have a concurrent group set.

— A group item can appear in a concurrent group set.

Permissions Required

The sec_rgy_pgo_add( ) routine requires the i (insert) permission on the parent directory in which
the the PGO item is to be created.

NOTES
An account can be added to the registry database only when all its constituent PGO items are
already in the database, and the appropriate membership relationships between them are
established. For example, to establish an account with principal name tom, group name writers,
and organization name hp, all three names must exist as independent PGO items in the
database. Furthermore, tom must be a member of writers, which must be a member of hp. (See
sec_rgy_acct_add( ) to add an account to the registry.)

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to add the specified PGO item.

sec_rgy_object_exists
A PGO item already exists with the name given in name.

sec_rgy_server_unavailable
The Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_delete ( ), sec_rgy_pgo_rename( ), sec_rgy_pgo_replace ( ), sec_rgy_acct_add ( ).

Part 3 Security Application Programming Interface 627



sec_rgy_pgo_add_member( ) Registry API

NAME
sec_rgy_pgo_add_member — Adds a person to a group or organization

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_add_member(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t go_name,
sec_rgy_name_t person_name ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the person, group, or organization (PGO) item identified
by the given name. The valid values are as follows:

sec_rgy_domain_group
The go_name parameter identifies a group.

sec_rgy_domain_org
The go_name parameter identifies an organization.

go_name
A character string (type sec_rgy_name_t) containing the name of the group or organization
to which the specified person will be added.

person_name
A character string (type sec_rgy_name_t) containing the name of the person to be added to
the membership list of the group or organization specified by go_name.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_add_member( ) routine adds a member to the membership list of a group or
organization in the registry database.

628 CAE Specification (1997)



Registry API sec_rgy_pgo_add_member( )

Permissions Required

The sec_rgy_pgo_add_member( ) routine requires the M (Member_list) permission on the group or
organization item specified by go_name. If go_name specifies a group, the routine also requires
the g (groups) permission on the principal person_name.

NOTES

An account can be added to the registry database only when all its constituent PGO items are
already in the database, and the appropriate membership relationships between them are
established. For example, to establish an account with person name tom, group name writers,
and organization name hp, all three names must exist as independent PGO items in the
database. Furthermore, tom must be a member of writers, which must be a member of hp (See
the sec_rgy_acct_add( ) routine to add an account to the registry.)

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_bad_domain
An invalid domain was specified. A member can be added only to a group or organization,
not a person.

sec_rgy_not_authorized
The client program is not authorized to add members to the specified group or
organization.

sec_rgy_object_not_found
The registry server could not find the specified name.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_delete_member( ), sec_rgy_pgo_get_members( ),
sec_rgy_pgo_is_member( ).

Part 3 Security Application Programming Interface 629



sec_rgy_pgo_delete( ) Registry API

NAME
sec_rgy_pgo_delete — Deletes a PGO item from the registry database

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_delete(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t name,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of principal, group, or organization (PGO) item identified
by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

name
A pointer to a sec_rgy_name_t character string containing the name of the PGO item to be
deleted.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_delete( ) routine deletes a PGO item from the registry database. Any account
depending on the deleted PGO item is also deleted.

Permissions Required

The sec_rgy_pgo_delete( ) routine requires the following permissions:

• The d (delete) permission on the parent directory that contains the the PGO item to be
deleted.

• The D (Delete_object) permission on the PGO item itself.

630 CAE Specification (1997)



Registry API sec_rgy_pgo_delete( )

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to delete the specified item.

sec_rgy_object_not_found
The registry server could not find the specified item.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ).

Part 3 Security Application Programming Interface 631



sec_rgy_pgo_delete_member( ) Registry API

NAME
sec_rgy_pgo_delete_member — Deletes a member of a group or organization

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_delete_member(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t go_name,
sec_rgy_name_t person_name ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the person, group, or organization (PGO) item identified
by the given name. The valid values are as follows:

sec_rgy_domain_group
The go_name parameter identifies a group.

sec_rgy_domain_org
The go_name parameter identifies an organization.

go_name
A character string (type sec_rgy_name_t) containing the name of the group or organization
from which the specified person will be deleted.

person_name
A character string (type sec_rgy_name_t) containing the name of the person to be deleted
from the membership list of the group or organization specified by go_name.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The sec_rgy_pgo_delete_member( ) routine deletes a member from the membership list of a group
or organization. Any accounts in which the person holds the deleted group or organization
membership are also deleted.

632 CAE Specification (1997)



Registry API sec_rgy_pgo_delete_member( )

Permissions Required

The sec_rgy_pgo_delete_member( ) routine requires the M (Member_list) permission on the group
or organization item specified by go_name.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_bad_domain
An invalid domain was specified. Members can exist only for groups and organizations, not
for persons.

sec_rgy_not_authorized
The client program is not authorized to delete the specified member.

sec_rgy_object_not_found
The specified group or organization was not found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_add_member( ).

Part 3 Security Application Programming Interface 633



sec_rgy_pgo_get_by_e ff_unix_num( ) Registry API

NAME
sec_rgy_pgo_get_by_eff_unix_num — Returns the name and data for a PGO item identified by
its effective UNIX number

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_get_by_eff_unix_num(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t scope ,
signed32 unix_id ,
boolean32 allow_aliases ,
sec_rgy_cursor_t * item_cursor ,
sec_rgy_pgo_item_t * pgo_item ,
sec_rgy_name_t name,
boolean32 * overridden ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The UNIX number identifies a principal.

sec_rgy_domain_group
The UNIX number identifies a group.

Note that this function does not support the value sec_rgy_domain_org.

scope
A character string (type sec_rgy_name_t) containing the scope of the desired search. The
registry database is designed to accommodate a tree-structured name hierarchy. The scope
of a search is the name of the branch under which the search takes place. For example, all
names in a registry might start with /alpha, and be divided further into /beta or /gamma. To
search only the part of the database under /beta, the scope of the search would be
/alpha/beta, and any resulting PGO items would have names beginning with this string.
Note that these naming conventions need not have anything to do with group or
organization PGO item membership lists.

unix_id
The UNIX number of the desired registry PGO item.

allow_aliases
A boolean32 value indicating whether to search for a primary PGO item, or whether the
search can be satisfied with an alias. If TRUE, the routine returns the next entry found for
the PGO item. If FALSE, the routine returns only the primary entry.

634 CAE Specification (1997)



Registry API sec_rgy_pgo_get_by_e ff_unix_num( )

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_pgo_get_next( ) routine returns the PGO item indicated by item_cursor, and advances
the cursor to point to the next item in the database. When the end of the list of entries is
reached, the routine returns the value sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset( ) to reset the cursor.

Output

pgo_item
A pointer to a sec_rgy_pgo_item_t structure to receive the data for the returned PGO item.
The data in this structure includes the PGO item’s name, UUID, UNIX number (if any), and
administrative data, such as whether the item, if a principal, may have a concurrent group
set. The data is as it appears in the registry, for that UNIX number, even though some of the
fields may have been overridden locally.

name
A pointer to a sec_rgy_name_t character string containing the returned name for the PGO
item. This string might contain a local override value if the supplied UNIX number is found
in the passwd_override or group_override file.

overridden
A pointer to a boolean32 value indicating whether or not the supplied UNIX number has an
entry in the local override file (passwd_override or group_override).

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The sec_rgy_pgo_get_by_eff_unix_num( ) routine returns the name and data for a PGO item. The
desired item is identified by its type (domain) and its UNIX number.

This routine is similar to the sec_rgy_pgo_get_by_unix_num( ) routine. The difference between the
routines is that sec_rgy_pgo_get_by_eff_unix_num( ) first searches the local override files for the
respective name_domain for a match with the supplied UNIX number. If an override match is
found, and an account or group name is found in that entry, then that name is used to obtain
PGO data from the registry and the value of the overridden parameter is set to TRUE.

The item_cursor parameter specifies the starting point for the search through the registry
database. It provides an automatic place holder in the database. The routine automatically
updates this variable to point to the next PGO item after the returned item. The returned cursor
location can be supplied on a subsequent database access call that also uses a PGO item cursor.

Permissions Required

The sec_rgy_pgo_get_by_eff_unix_num( ) routine requires the r (read) permission on the PGO item
to be viewed.

CAUTIONS
There are several different types of cursors used in the registry Application Programmer
Interface (API). Some cursors point to PGO items, others point to members in a membership list,
and others point to account data. Do not use a cursor for one sort of object in a call expecting
another sort of object. For example, you cannot use the same cursor on a call to
sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ). The behavior in this case is undefined.

Part 3 Security Application Programming Interface 635



sec_rgy_pgo_get_by_e ff_unix_num( ) Registry API

Furthermore, cursors are specific to a server. A cursor pointing into one replica of the registry
database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset( ) to renew a cursor for use with another call or for another server.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

group_override
The local group override file.

passwd_override
The local password override file.

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_object_not_found
The specified PGO item was not found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_name( ),
sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_get_next ( ), sec_rgy_pgo_id_to_name ( ),
sec_rgy_pgo_id_to_unix_num ( ), sec_rgy_pgo_name_to_id ( ), sec_rgy_pgo_unix_num_to_id ( ),
sec_rgy_cursor_reset( ).

636 CAE Specification (1997)



Registry API sec_rgy_pgo_get_by_id( )

NAME
sec_rgy_pgo_get_by_id — Returns the name and data for a PGO item identified by its UUID

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_get_by_id(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t scope ,
uuid_t * item_id ,
boolean32 allow_aliases ,
sec_rgy_cursor_t * item_cursor ,
sec_rgy_pgo_item_t * pgo_item ,
sec_rgy_name_t name,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The UUID identifies a principal.

sec_rgy_domain_group
The UUID identifies a group.

sec_rgy_domain_org
The UUID identifies an organization.

scope
A character string (type sec_rgy_name_t) containing the scope of the desired search. The
registry database is designed to accommodate a tree-structured name hierarchy. The scope
of a search is the name of the branch under which the search takes place. For example, all
names in a registry might start with /alpha, and be divided further into /beta or /gamma. To
search only the part of the database under /beta, the scope of the search would be
/alpha/beta, and any resulting PGO items would have names beginning with this string.
Note that these naming conventions need not have anything to do with group or
organization PGO item membership lists.

item_id
A pointer to the uuid_t variable containing the UUID (Unique Universal Identifier) of the
desired PGO item.

allow_aliases
A boolean32 value indicating whether to search for a primary PGO item, or whether the
search can be satisfied with an alias. If TRUE, the routine returns the next entry found for
the PGO item. If FALSE, the routine returns only the primary entry.

Part 3 Security Application Programming Interface 637



sec_rgy_pgo_get_by_id( ) Registry API

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_pgo_get_by_id( ) routine returns the PGO item indicated by item_cursor, and
advances the cursor to point to the next item in the database. When the end of the list of
entries is reached, the routine returns sec_rgy_no_more_entries in the status parameter.
Use sec_rgy_cursor_reset( ) to reset the cursor.

Output

pgo_item
A pointer to a sec_rgy_pgo_item_t structure to receive the data for the returned PGO item.
The data in this structure includes the PGO item’s name, UUID, UNIX number (if any), and
administrative data, such as whether the item, if a principal, may have a concurrent group
set.

name
A pointer to a sec_rgy_name_t character string containing the returned name for the PGO
item.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_get_by_id( ) routine returns the name and data for a PGO item. The desired item
is identified by its type (domain) and its UUID.

The item_cursor parameter specifies the starting point for the search through the registry
database. It provides an automatic place holder in the database. The routine automatically
updates this variable to point to the next PGO item after the returned item. The returned cursor
location can be supplied on a subsequent database access call that also uses a PGO item cursor.

Permissions Required

The sec_rgy_pgo_get_by_id( ) routine requires the r (read) permission on the PGO item to be
viewed.

CAUTIONS
There are several different types of cursors used in the registry API. Some cursors point to PGO
items, others point to members in a membership list, and others point to account data. Do not
use a cursor for one sort of object in a call expecting another sort of object. For example, you
cannot use the same cursor on a call to sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ).
The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of the registry
database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset( ) to renew a cursor for use with another call or for another server.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

638 CAE Specification (1997)



Registry API sec_rgy_pgo_get_by_id( )

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_object_not_found
The specified PGO item was not found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_name( ), sec_rgy_pgo_get_by_unix_num( ),
sec_rgy_pgo_get_next ( ), sec_rgy_pgo_id_to_name ( ), sec_rgy_pgo_id_to_unix_num ( ),
sec_rgy_pgo_name_to_id ( ), sec_rgy_pgo_unix_num_to_id ( ), sec_rgy_cursor_reset( ).

Part 3 Security Application Programming Interface 639



sec_rgy_pgo_get_by_name( ) Registry API

NAME
sec_rgy_pgo_get_by_name — Returns the data for a named PGO item

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_get_by_name(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t pgo_name,
sec_rgy_cursor_t * item_cursor ,
sec_rgy_pgo_item_t * pgo_item ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

pgo_name
A character string (type sec_rgy_name_t) containing the name of the principal, group, or
organization to search for.

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_pgo_get_by_name( ) routine returns the PGO item indicated by item_cursor, and
advances the cursor to point to the next item in the database. When the end of the list of
entries is reached, the routine returns the value sec_rgy_no_more_entries in the status
parameter. Use sec_rgy_cursor_reset( ) to reset the cursor.

Output

pgo_item
A pointer to a sec_rgy_pgo_item_t structure to receive the data for the returned PGO item.
The data in this structure includes the PGO item’s name, UUID, UNIX number (if any), and
administrative data, such as whether the item, if a principal, may have a concurrent group
set.

640 CAE Specification (1997)



Registry API sec_rgy_pgo_get_by_name( )

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_get_by_name( ) routine returns the data for a named PGO item from the registry
database. The desired item is identified by its type (name_domain) and name.

The item_cursor parameter specifies the starting point for the search through the registry
database. It provides an automatic place holder in the database. The routine automatically
updates this variable to point to the next PGO item after the returned item. The returned cursor
location can be supplied on a subsequent database access call that also uses a PGO item cursor.

Permissions Required

The sec_rgy_pgo_get_by_name( ) routine requires the r (read) permission on the PGO item to be
viewed.

CAUTIONS
There are several different types of cursors used in the registry API. Some cursors point to PGO
items, others point to members in a membership list, and others point to account data. Do not
use a cursor for one sort of object in a call expecting another sort of object. For example, you
cannot use the same cursor on a call to sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ). The
behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of the registry
database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset( ) to renew a cursor for use with another call or for another server.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_object_not_found
The specified PGO item was not found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_unix_num( ),
sec_rgy_pgo_get_next ( ), sec_rgy_pgo_id_to_name ( ), sec_rgy_pgo_id_to_unix_num ( ),
sec_rgy_pgo_name_to_id ( ), sec_rgy_pgo_unix_num_to_id ( ), sec_rgy_cursor_reset( ).

Part 3 Security Application Programming Interface 641



sec_rgy_pgo_get_by_unix_num( ) Registry API

NAME
sec_rgy_pgo_get_by_unix_num — Returns the name and data for a PGO item identified by its
UNIX ID

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_get_by_unix_num(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t scope ,
signed32 unix_id ,
boolean32 allow_aliases ,
sec_rgy_cursor_t * item_cursor ,
sec_rgy_pgo_item_t * pgo_item ,
sec_rgy_name_t name,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The UNIX number identifies a principal.

sec_rgy_domain_group
The UNIX number identifies a group.

sec_rgy_domain_org
The UNIX number identifies an organization.

scope
A character string (type sec_rgy_name_t) containing the scope of the desired search. The
registry database is designed to accommodate a tree-structured name hierarchy. The scope
of a search is the name of the branch under which the search takes place. For example, all
names in a registry might start with /alpha, and be divided further into /beta or /gamma. To
search only the part of the database under /beta, the scope of the search would be
/alpha/beta, and any resulting PGO items would have names beginning with this string.
Note that these naming conventions need not have anything to do with group or
organization PGO item membership lists.

unix_id
The UNIX number of the desired registry PGO item.

allow_aliases
A boolean32 value indicating whether to search for a primary PGO item, or whether the
search can be satisfied with an alias. If TRUE, the routine returns the next entry found for
the PGO item. If FALSE, the routine returns only the primary entry.

642 CAE Specification (1997)



Registry API sec_rgy_pgo_get_by_unix_num( )

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_pgo_get_by_unix_num( ) routine returns the PGO item indicated by item_cursor, and
advances the cursor to point to the next item in the database. When the end of the list of
entries is reached, the routine returns the value sec_rgy_no_more_entries in the status
parameter. Use sec_rgy_cursor_reset( ) to reset the cursor.

Output

pgo_item
A pointer to a sec_rgy_pgo_item_t structure to receive the data for the returned PGO item.
The data in this structure includes the PGO item’s name, UUID, UNIX number (if any), and
administrative data, such as whether the item, if a principal, may have a concurrent group
set.

name
A pointer to a sec_rgy_name_t character string containing the returned name for the PGO
item.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_get_by_unix_num( ) routine returns the name and data for a PGO item. The
desired item is identified by its type (domain) and its UNIX number.

The item_cursor parameter specifies the starting point for the search through the registry
database. It provides an automatic place holder in the database. The routine automatically
updates this variable to point to the next PGO item after the returned item. The returned cursor
location can be supplied on a subsequent database access call that also uses a PGO item cursor.

Permissions Required

The sec_rgy_pgo_get_by_unix_num( ) routine requires the r (read) permission on the PGO item to
be viewed.

CAUTIONS
There are several different types of cursors used in the registry API. Some cursors point to PGO
items, others point to members in a membership list, and others point to account data. Do not
use a cursor for one sort of object in a call expecting another sort of object. For example, you
cannot use the same cursor on a call to sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ).
The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of the registry
database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset( ) to renew a cursor for use with another call or for another server.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

Part 3 Security Application Programming Interface 643



sec_rgy_pgo_get_by_unix_num( ) Registry API

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_object_not_found
The specified PGO item was not found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_name( ),
sec_rgy_pgo_get_next ( ), sec_rgy_pgo_id_to_name ( ), sec_rgy_pgo_id_to_unix_num ( ),
sec_rgy_pgo_name_to_id ( ), sec_rgy_pgo_unix_num_to_id ( ), sec_rgy_cursor_reset( ).

644 CAE Specification (1997)



Registry API sec_rgy_pgo_get_members( )

NAME
sec_rgy_pgo_get_members — Returns the membership list for a specified group or organization
or returns the set of groups in which the specified principal is a member

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_get_members(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t go_name,
sec_rgy_cursor_t * member_cursor ,
signed32 max_members,
sec_rgy_member_t member_list [ ],
signed32 * number_supplied ,
signed32 * number_members ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a secd server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable specifies whether go_name identifies a principal, group, or organization. The
valid values are as follows:

sec_rgy_domain_group
The go_name parameter identifies a group.

sec_rgy_domain_org
The go_name parameter identifies an organization.

sec_rgy_domain_person
The go_name parameter identifies an principal.

go_name
A character string (type sec_rgy_name_t) that contains the name of a group, organization,
or principal. If go_name is the name of a group or organization, the call returns the group’s
or organization’s member list. If go_name is the name of a principal, the call returns a list of
all groups in which the principal is a member. (Contrast this with the sec_rgy_acct_get_proj( )
call, which returns only those groups in which the principal is a member and that have been
marked to be included in the principal’s project list.)

max_members
A signed32 variable containing the allocated dimension of the member_list[ ] array. This is
the maximum number of members or groups that can be returned by a single call.

Part 3 Security Application Programming Interface 645



sec_rgy_pgo_get_members( ) Registry API

Input/Output

member_cursor
An opaque pointer to a specific entry in the membership list or list of groups. The returned
list begins with the entry specified by member_cursor. Upon return, the cursor points to the
next entry after the last one returned. If there are no more entries, the routine returns the
value sec_rgy_no_more_entries in the status parameter. Use sec_rgy_cursor_reset( ) to reset
the cursor to the beginning of the list.

Output

member_list[ ]
An array of character strings to receive the returned member or group names. The size
allocated for the array is given by max_number. If this value is less than the total number of
members or group names, multiple calls must be made to return all of the members or
groups.

number_supplied
A pointer to a signed32 variable to receive the number of members or groups actually
returned in member_list.

number_members
A pointer to a signed32 variable to receive the total number of members or groups. If this
number is greater than number_supplied, multiple calls to sec_rgy_pgo_get_members( ) are
necessary. Use the member_cursor parameter to coordinate successive calls.

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_get_members( ) routine returns a list of the members in the specified group or
organization, or a list of groups in which a specified principal is a member.

The member_cursor parameter specifies the starting point for the search through the registry
database. It provides an automatic place holder in the database. The routine automatically
updates member_cursor to point to the next member or group (if any) after the returned list. If not
all of the members or groups are returned, the updated cursor can be supplied on successive
calls to return the remainder of the list.

Permissions Required

The sec_rgy_pgo_get_members( ) routine requires the r (read) permission on the group,
organization, or principal object specified by go_name.

CAUTIONS
There are several different types of cursors used in the registry API. Some cursors point to PGO
items, others point to members in a membership list, and others point to account data. Do not
use a cursor for one sort of object in a call expecting another sort of object. For example, you
cannot use the same cursor on a call to sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ).
The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of the registry
database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset( ) to renew a cursor for use with another call or for another server.

646 CAE Specification (1997)



Registry API sec_rgy_pgo_get_members( )

RETURN VALUES
The routine returns:

• The names of the groups or members in member_list

• The number of members or groups returned by the call in number_supplied

• The total number of members in the group or organization, or the total number of groups in
which the principal is a member in number_members

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor points to the end of the membership list for a group or organization or to the end
of the list of groups for a principal.

sec_rgy_object_not_found
The specified group, organization, or principal could not be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add_member( ), sec_rgy_cursor_reset( ), sec_rgy_pgo_is_member( ),
sec_rgy_acct_get_proj ( ).

Part 3 Security Application Programming Interface 647



sec_rgy_pgo_get_next( ) Registry API

NAME
sec_rgy_pgo_get_next — Returns the next PGO item in the registry database

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_get_next(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t scope ,
sec_rgy_cursor_t * item_cursor ,
sec_rgy_pgo_item_t * pgo_item ,
sec_rgy_name_t name,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
Returns the next principal item.

sec_rgy_domain_group
Returns the next group item.

sec_rgy_domain_org
Returns the next organization item.

scope
A character string (type sec_rgy_name_t) containing the scope of the desired search. The
registry database is designed to accommodate a tree-structured name hierarchy. The scope
of a search is the name of the branch under which the search takes place. For example, all
names in a registry might start with /alpha, and be divided further into /beta or /gamma. To
search only the part of the database under /beta, the scope of the search would be
/alpha/beta, and any resulting PGO items would have names beginning with this string.
Note that these naming conventions need not have anything to do with group or
organization PGO item membership lists.

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_pgo_get_next( ) routine returns the PGO item indicated by item_cursor, and advances
the cursor to point to the next item in the database. When the end of the list of entries is
reached, the routine returns the value sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset( ) to reset the cursor.

648 CAE Specification (1997)



Registry API sec_rgy_pgo_get_next( )

Output

pgo_item
A pointer to a sec_rgy_pgo_item_t structure to receive the data for the returned PGO item.
The data in this structure includes the PGO item’s name, UUID, UNIX number (if any), and
administrative data, such as whether the item, if a principal, may have a concurrent group
set.

name
A pointer to a sec_rgy_name_t character string containing the name of the returned PGO
item.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_get_next( ) routine returns the data and name for the PGO in the registry
database indicated by item_cursor. It also advances the cursor to point to the next PGO item in
the database. Successive calls to this routine return all the PGO items in the database of the
specified type (given by name_domain), in storage order.

The PGO data consists of the following:

• The Universal Unique Identifier (UUID) of the PGO item.

• The UNIX number for the PGO item.

• The quota for subaccounts.

• The full name of the PGO item.

• Flags indicating whether

— A principal item is an alias.

— The PGO item can be deleted.

— A principal item can have a concurrent group set.

— A group item can appear on a concurrent group set.

Permissions Required

The sec_rgy_pgo_get_next( ) routine requires the r (read) permission on the PGO item to be
viewed.

CAUTIONS
There are several different types of cursors used in the registry API. Some cursors point to PGO
items, others point to members in a membership list, and others point to account data. Do not
use a cursor for one sort of object in a call expecting another sort of object. For example, you
cannot use the same cursor on a call to sec_rgy_acct_get_projlist( ) and sec_rgy_pgo_get_next( ).
The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of the registry
database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset( ) to renew a cursor for use with another call or for another server.

RETURN VALUES
The routine returns the data for the returned PGO item in pgo_item and the name in name.

Part 3 Security Application Programming Interface 649



sec_rgy_pgo_get_next( ) Registry API

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_cursor_reset( ), sec_rgy_pgo_get_by_id ( ),
sec_rgy_pgo_get_by_name( ), sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_id_to_unix_num ( ),
sec_rgy_pgo_unix_num_to_id ( ).

650 CAE Specification (1997)



Registry API sec_rgy_pgo_id_to_name( )

NAME
sec_rgy_pgo_id_to_name — Returns the name for a PGO item identified by its UUID

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_id_to_name(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
uuid_t * item_id ,
sec_rgy_name_t pgo_name,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The item_id parameter identifies a principal.

sec_rgy_domain_group
The item_id parameter identifies a group.

sec_rgy_domain_org
The item_id parameter identifies an organization.

item_id
A pointer to the uuid_t variable containing the input UUID (Unique Universal Identifier).

Output

pgo_name
A character string (type sec_rgy_name_t) containing the name of the principal, group, or
organization with the input UUID.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_id_to_name( ) routine returns the name of the PGO item having the specified
UUID.

Part 3 Security Application Programming Interface 651



sec_rgy_pgo_id_to_name( ) Registry API

Permissions Required

The sec_rgy_pgo_id_to_name( ) routine requires at least one permission of any kind on the PGO
item to be viewed.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
No item with the specified UUID could be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_name( ),
sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_id_to_unix_num ( ), sec_rgy_pgo_name_to_id ( ),
sec_rgy_pgo_unix_num_to_id ( ).

652 CAE Specification (1997)



Registry API sec_rgy_pgo_id_to_unix_num( )

NAME
sec_rgy_pgo_id_to_unix_num — Returns the UNIX number for a PGO item identified by its
UUID

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_id_to_unix_num(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
uuid_t * item_id ,
signed32 * item_unix_id ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The item_id parameter identifies a principal.

sec_rgy_domain_group
The item_id parameter identifies a group.

sec_rgy_domain_org
The item_id parameter identifies an organization.

item_id
A pointer to the uuid_t variable containing the input UUID (Unique Universal Identifier).

Output

item_unix_id
A pointer to the signed32 variable to receive the returned UNIX number for the PGO item.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_id_to_unix_num( ) routine returns the UNIX number for the PGO item having
the specified UUID.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

Part 3 Security Application Programming Interface 653



sec_rgy_pgo_id_to_unix_num( ) Registry API

sec_rgy_object_not_found
No item with the specified UUID could be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_name( ),
sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_id_to_name ( ), sec_rgy_pgo_name_to_id ( ),
sec_rgy_pgo_unix_num_to_id ( ).

654 CAE Specification (1997)



Registry API sec_rgy_pgo_is_member( )

NAME
sec_rgy_pgo_is_member — Checks group or organization membership

SYNOPSIS
#include <dce/pgo.h>

boolean32 sec_rgy_pgo_is_member(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t go_name,
sec_rgy_name_t person_name ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_group
The go_name parameter identifies a group.

sec_rgy_domain_org
The go_name parameter identifies an organization.

go_name
A character string (type sec_rgy_name_t) containing the name of the group or organization
whose membership list is in question.

person_name
A character string (type sec_rgy_name_t) containing the name of the principal whose
membership in the group or organization specified by go_name is in question.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_is_member( ) routine tests whether the specified principal is a member of the
named group or organization.

Part 3 Security Application Programming Interface 655



sec_rgy_pgo_is_member( ) Registry API

Permissions Required

The sec_rgy_pgo_is_member( ) routine requires the t (test) permission on the group or
organization item specified by go_name.

RETURN VALUES

The routine returns TRUE if the principal is a member of the named group or organization. If the
principal is not a member, the routine returns FALSE.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
The named group or organization was not found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add_member( ), sec_rgy_pgo_get_members( ).

656 CAE Specification (1997)



Registry API sec_rgy_pgo_name_to_id( )

NAME
sec_rgy_pgo_name_to_id — Returns the UUID for a named PGO item

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_name_to_id(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t pgo_name,
uuid_t * item_id ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

pgo_name
A character string (type sec_rgy_name_t) containing the name of the principal, group, or
organization whose UUID is desired.

Output

item_id
A pointer to the uuid_t variable containing the UUID (Unique Universal Identifier) of the
resulting PGO item.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_name_to_id( ) routine returns the UUID associated with the named PGO item.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

Part 3 Security Application Programming Interface 657



sec_rgy_pgo_name_to_id( ) Registry API

sec_rgy_object_not_found
The specified PGO item could not be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_name( ),
sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_id_to_name ( ), sec_rgy_pgo_id_to_unix_num ( ),
sec_rgy_pgo_unix_num_to_id ( ).

658 CAE Specification (1997)



Registry API sec_rgy_pgo_name_to_unix_num( )

NAME
sec_rgy_pgo_name_to_unix_num — Returns the UNIX number for a PGO item identified by its
name

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_name_to_unix_num(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t pgo_name,
signed32 * item_unix_id ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

pgo_name
A character string containing the name of the PGO item in question.

Output

item_unix_id
A pointer to the signed32 variable to receive the returned UNIX number for the PGO item.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_name_to_unix_num( ) routine returns the UNIX number for the PGO item having
the specified name.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

Part 3 Security Application Programming Interface 659



sec_rgy_pgo_name_to_unix_num( ) Registry API

sec_rgy_object_not_found
No item with the specified UUID could be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_name( ),
sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_id_to_name ( ), sec_rgy_pgo_name_to_id ( ),
sec_rgy_pgo_unix_num_to_id ( ).

660 CAE Specification (1997)



Registry API sec_rgy_pgo_rename( )

NAME
sec_rgy_pgo_rename — Changes the name of a PGO item in the registry database

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_rename(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t old_name ,
sec_rgy_name_t new_name,
error_status_t *status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

old_name
A pointer to a sec_rgy_name_t character string containing the existing name of the PGO
item.

new_name
A pointer to a sec_rgy_name_t character string containing the new name for the PGO item.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_rename( ) routine renames a PGO item in the registry database.

Part 3 Security Application Programming Interface 661



sec_rgy_pgo_rename( ) Registry API

Permissions Required

If the sec_rgy_pgo_rename( ) routine is performing a rename within a directory, it requires the n
(name) permission on the old name of the PGO item. If the routine is performing a move
between directories, it requires the following permissions:

• The d (delete) permission on the parent directory that contains the PGO item.

• The n (name) permission on the old name of the PGO item.

• The i (insert) permission on the parent directory in which the PGO item is to be added under
the new name.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to change the name of the specified PGO item.

sec_rgy_object_not_found
The registry server could not find the specified PGO item.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_replace ( ).

662 CAE Specification (1997)



Registry API sec_rgy_pgo_replace( )

NAME
sec_rgy_pgo_replace — Replaces the data in an existing PGO item

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_replace(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
sec_rgy_name_t pgo_name,
sec_rgy_pgo_item_t * pgo_item ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

pgo_name
A character string (type sec_rgy_name_t) containing the name of the principal, group, or
organization whose data is to be replaced.

pgo_item
A pointer to a sec_rgy_pgo_item_t structure containing the new data for the PGO item. The
data in this structure includes the PGO item’s name, UUID, UNIX number (if any), and
administrative data, such as whether the item, if a principal, may have a concurrent group
set.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_replace( ) routine replaces the data associated with a PGO item in the registry
database.

The UNIX ID and UUID of a PGO item cannot be replaced. To change the UNIX ID or UUID, the
existing PGO item must be deleted and a new PGO item added in its place. The one exception to
this rule is that the UNIX ID can be replaced in the PGO item for a cell principal. The reason for
this exception is that the UUID for a cell principal does not contain an embedded UNIX ID.

Part 3 Security Application Programming Interface 663



sec_rgy_pgo_replace( ) Registry API

Permissions Required

The sec_rgy_pgo_replace( ) routine requires at least one of the following permissions:

• The m (mgmt_info) permission on the PGO item, if quota or flags is being set.

• The f (fullname) permission on the PGO item, if fullname is being set.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The client program is not authorized to replace the specified PGO item.

sec_rgy_object_not_found
No PGO item was found with the given name.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

sec_rgy_unix_id_changed
The UNIX number of the PGO item was changed.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_delete ( ), sec_rgy_pgo_rename( ).

664 CAE Specification (1997)



Registry API sec_rgy_pgo_unix_num_to_id( )

NAME
sec_rgy_pgo_unix_num_to_id — Returns the UUID for a PGO item identified by its UNIX
number

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_unix_num_to_id(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
signed32 item_unix_id ,
uuid_t * item_id ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
This variable identifies the type of the principal, group, or organization (PGO) item
identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The item_unix_id parameter identifies a principal.

sec_rgy_domain_group
The item_unix_id parameter identifies a group.

sec_rgy_domain_org
The item_unix_id parameter identifies an organization.

item_unix_id
The signed32 variable containing the UNIX number for the PGO item.

Output

item_id
A pointer to the uuid_t variable containing the UUID (Unique Universal Identifier) of the
resulting PGO item.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_unix_num_to_id( ) routine returns the Universal Unique Identifier (UUID) for a
PGO item that has the specified UNIX number.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

Part 3 Security Application Programming Interface 665



sec_rgy_pgo_unix_num_to_id( ) Registry API

ERRORS

sec_rgy_object_not_found
No item with the specified UNIX number could be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

error_status_ok
The call was successful.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_name( ),
sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_id_to_name ( ), sec_rgy_pgo_id_to_unix_num ( ),
sec_rgy_pgo_name_to_id ( ).

666 CAE Specification (1997)



Registry API sec_rgy_pgo_unix_num_to_name( )

NAME
sec_rgy_pgo_unix_num_to_name — Returns the name for a PGO item identified by its UNIX
number

SYNOPSIS
#include <dce/pgo.h>

void sec_rgy_pgo_unix_num_to_name(
sec_rgy_handle_t context ,
sec_rgy_domain_t name_domain ,
signed32 item_unix_id ,
sec_rgy_name_t pgo_name,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name_domain
The type of the principal, group, or organization (PGO) item identified by item_unix_id.
Valid values are as follows:

sec_rgy_domain_person
The item_unix_id parameter identifies a principal.

sec_rgy_domain_group
The item_unix_id parameter identifies a group.

sec_rgy_domain_org
The item_unix_id parameter identifies an organization.

item_unix_id
The signed32 variable containing the UNIX number for the PGO item.

Output

pgo_name
A character string containing the name of the PGO item in question.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_pgo_unix_num_to_name( ) routine returns the name for a PGO item that has the
specified UNIX number.

Part 3 Security Application Programming Interface 667



sec_rgy_pgo_unix_num_to_name( ) Registry API

Permissions Required

The sec_rgy_pgo_unix_num_to_name( ) routine requires at least one permission of any kind on the
PGO item identified by item_unix_id.

FILES

/usr/include/dce/pgo.idl
The idl file from which dce/pgo.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
No item with the specified UNIX number could be found.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_pgo_add ( ), sec_rgy_pgo_get_by_id ( ), sec_rgy_pgo_get_by_name( ),
sec_rgy_pgo_get_by_unix_num( ), sec_rgy_pgo_id_to_name ( ), sec_rgy_pgo_id_to_unix_num ( ),
sec_rgy_pgo_name_to_id ( ).

668 CAE Specification (1997)



Registry API sec_rgy_plcy_get_e ffective( )

NAME
sec_rgy_plcy_get_effective — Returns the effective policy for an organization

SYNOPSIS
#include <dce/policy.h>

void sec_rgy_plcy_get_effective(
sec_rgy_handle_t context ,
sec_rgy_name_t organization ,
sec_rgy_plcy_t * policy_data ,
or_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

organization
A character string (type sec_rgy_name_t) containing the name of the organization for which
the policy data is to be returned. If this string is empty, the routine returns the registry’s
policy data.

Output

policy_data
A pointer to the sec_rgy_plcy_t structure to receive the authentication policy. This structure
contains the minimum length of a user’s password, the lifetime of a password, the
expiration date of a password, the lifetime of the entire account, and some flags describing
limitations on the password spelling.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_plcy_get_effective( ) routine returns the effective policy for the specified organization.

The effective policy data is the most restrictive combination of the registry and the organization
policies.

The policy data consists of the following:

• The password expiration date. This is the date on which account passwords will expire.

• The minimum length allowed for account passwords.

• The period of time (life span) for which account passwords will be valid.

• The period of time (life span) for which accounts will be valid.

• Flags indicating whether account passwords can consist entirely of spaces or entirely of
alphanumeric characters.

Part 3 Security Application Programming Interface 669



sec_rgy_plcy_get_e ffective( ) Registry API

Permissions Required

The sec_rgy_plcy_get_effective( ) routine requires the r (read) permission on the policy object from
which the data is to be returned. If an organization is specified, the routine also requires the r
(read) permission on the organization.

NOTES
If no organization is specified, the routine returns the registry’s policy data. To return the
effective policy, an organization must be specified. This is because the routine compares the
registry’s policy data with that of the organization to determine which is more restrictive.

FILES

/usr/include/dce/policy.idl
The idl file from which dce/policy.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
The registry server could not find the specified organization.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_plcy_get_info ( ), sec_rgy_plcy_set_info ( ).

670 CAE Specification (1997)



Registry API sec_rgy_plcy_get_info( )

NAME
sec_rgy_plcy_get_info — Returns the policy for an organization

SYNOPSIS
#include <dce/policy.h>

void sec_rgy_plcy_get_info(
sec_rgy_handle_t context ,
sec_rgy_name_t organization ,
sec_rgy_plcy_t * policy_data ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

organization
A character string (type sec_rgy_name_t) containing the name of the organization for which
the policy data is to be returned. If this string is empty, the routine returns the registry’s
policy data.

Output

policy_data
A pointer to the sec_rgy_plcy_t structure to receive the authentication policy. This structure
contains the minimum length of a user’s password, the lifetime of a password, the
expiration date of a password, the lifetime of the entire account, and some flags describing
limitations on the password spelling.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_plcy_get_info( ) routine returns the policy data for the specified organization. If no
organization is specified, the registry’s policy data is returned.

The policy data consists of the following:

• The password expiration date. This is the date on which account passwords will expire.

• The minimum length allowed for account passwords.

• The period of time (life span) for which account passwords will be valid.

• The period of time (life span) for which accounts will be valid.

• Flags indicating whether account passwords can consist entirely of spaces or entirely of
alphanumeric characters.

Part 3 Security Application Programming Interface 671



sec_rgy_plcy_get_info( ) Registry API

Permissions Required

The sec_rgy_plcy_get_info( ) routine requires the r (read) permission on the policy object or
organization from which the data is to be returned.

NOTES
The returned policy may not be in effect if the overriding registry authorization policy is more
restrictive. (See the sec_rgy_auth_plcy_get_effective( ) routine.)

FILES

/usr/include/dce/policy.idl
The idl file from which dce/policy.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_object_not_found
The registry server could not find the specified organization.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_plcy_get_effective_info ( ), sec_rgy_plcy_set_info ( ).

672 CAE Specification (1997)



Registry API sec_rgy_plcy_set_info( )

NAME
sec_rgy_plcy_set_info — Sets the policy for an organization

SYNOPSIS
#include <dce/policy.h>

void sec_rgy_plcy_set_info(
sec_rgy_handle_t context ,
sec_rgy_name_t organization ,
sec_rgy_plcy_t * policy_data ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

organization
A character string (type sec_rgy_name_t) containing the name of the organization for which
the policy data is to be returned. If this string is empty, the routine sets the registry’s policy
data.

policy_data
A pointer to the sec_rgy_plcy_t structure containing the authentication policy. This
structure contains the minimum length of a user’s password, the lifetime of a password, the
expiration date of a password, the lifetime of the entire account, and some flags describing
limitations on the password spelling.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_plcy_set_info( ) routine sets the authentication policy for a specified organization. If
no organization is specified, the registry’s policy data is set.

Policy data can be returned or set for individual organizations and for the registry as a whole.

Permissions Required

The sec_rgy_plcy_set_info( ) routine requires the m (mgmt_info) permission on the policy object
or organization for which the data is to be set.

NOTES
The policy set on an account may be less restrictive than the policy set for the registry as a
whole. In this case, the changes in policy have no effect, since the effective policy is the most
restrictive combination of the organization and registry authentication policies. (See the
sec_rgy_auth_plcy_get_effective( ) routine.)

FILES

/usr/include/dce/policy.idl
The idl file from which dce/policy.h was derived.

Part 3 Security Application Programming Interface 673



sec_rgy_plcy_set_info( ) Registry API

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The user is not authorized to perform this operation.

sec_rgy_object_not_found
The registry server could not find the specified organization.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_plcy_get_effective( ), sec_rgy_plcy_get_info ( ).

674 CAE Specification (1997)



Registry API sec_rgy_properties_get_info( )

NAME
sec_rgy_properties_get_info — Returns registry properties

SYNOPSIS
#include <dce/policy.h>

void sec_rgy_properties_get_info(
sec_rgy_handle_t context ,
sec_rgy_properties_t * properties ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

Output

properties
A pointer to a sec_rgy_properties_t structure to receive the returned property information.
A registry’s property information contains information such as the default and minimum
lifetime and other restrictions on privilege attribute certificates, the realm authentication
name, and whether or not this replica of the registry supports updates.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_properties_get_info( ) routine returns a list of the registry properties.

The property information consists of the following:

read_version
A stamp specifying the earliest version of the registry server software that can read from
this registry.

write_version
A stamp specifying the earliest version of the registry server software that can write to this
registry.

minimum_ticket_lifetime
The minimum period of time for which an authentication ticket remains valid.

default_certificate_lifetime
The default period of time for which an authentication certificate (ticket-granting ticket)
remains valid. A process can request an authentication certificate with a longer lifetime.
Note that the maximum lifetime for an authentication certificate cannot exceed the lifetime
established by the effective policy for the requesting account.

low_unix_id_person
The lowest UNIX ID that can be assigned to a principal in the registry.

low_unix_id_group
The lowest UNIX ID that can be assigned to a group in the registry.

Part 3 Security Application Programming Interface 675



sec_rgy_properties_get_info( ) Registry API

low_unix_id_org
The lowest UNIX ID that can be assigned to an organization in the registry.

max_unix_id
The maximum UNIX ID that can be used for any item in the registry.

realm
A character string naming the cell controlled by this registry.

realm_uuid
The UUID of the cell controlled by this registry.

flags
Flags indicating whether:

sec_rgy_prop_readonly
If TRUE, the registry database is read-only.

sec_rgy_prop_auth_cert_unbound
If TRUE, privilege attribute certificates can be generated for use at any site.

sec_rgy_prop_shadow_passwd
If FALSE, passwords can be distributed over the network. If this flag is TRUE,
passwords will be stripped from the returned data to the sec_rgy_acct_lookup( ), and
other calls that return an account’s encoded password.

sec_rgy_prop_embedded_unix_id
All registry UUIDs contain embedded UNIX IDs. This implies that the UNIX ID of any
registry object cannot be changed, since UUIDs are immutable.

Permissions Required

The sec_rgy_properties_get_info( ) routine requires the r (read) permission on the policy object
from which the property information is to be returned.

FILES

/usr/include/dce/policy.idl
The idl file from which dce/policy.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_properties_set_info ( ).

676 CAE Specification (1997)



Registry API sec_rgy_properties_set_info( )

NAME
sec_rgy_properties_set_info — Sets registry properties

SYNOPSIS
#include <dce/policy.h>

void sec_rgy_properties_set_info(
sec_rgy_handle_t context ,
sec_rgy_properties_t * properties ,
error_status_t * status );

PARAMETERS

Input

context
The registry server handle. An opaque handle bound to a registry server. Use
sec_rgy_site_open( ) to acquire a bound handle.

properties
A pointer to a sec_rgy_properties_t structure containing the registry property information
to be set. A registry’s property information contains information such as the default and
minimum lifetime and other restrictions on privilege attribute certificates, the realm
authentication name, and whether or not this replica of the registry supports updates.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The sec_rgy_properties_set_info( ) routine sets the registry properties.

The property information consists of the following:

read_version
A stamp specifying the earliest version of the registry server software that can read from
this registry.

write_version
A stamp specifying the earliest version of the registry server software that can write to this
registry.

minimum_ticket_lifetime
The minimum period of time for which an authentication ticket remains valid.

default_certificate_lifetime
The default period of time for which an authentication certificate (ticket-granting ticket)
remains valid. A process can request an authentication certificate with a longer lifetime.
Note that the maximum lifetime for an authentication certificate cannot exceed the lifetime
established by the effective policy for the requesting account.

low_unix_id_person
The lowest UNIX ID that can be assigned to a principal in the registry.

low_unix_id_group
The lowest UNIX ID that can be assigned to a group in the registry.

Part 3 Security Application Programming Interface 677



sec_rgy_properties_set_info( ) Registry API

low_unix_id_org
The lowest UNIX ID that can be assigned to an organization in the registry.

max_unix_id
The maximum UNIX ID that can be used for any item in the registry.

realm
A character string naming the cell controlled by this registry.

realm_uuid
The UUID of the cell controlled by this registry.

flags
Flags indicating whether:

sec_rgy_prop_readonly
If TRUE, the registry database is read-only.

sec_rgy_prop_auth_cert_unbound
If TRUE, privilege attribute certificates can be generated for use at any site.

sec_rgy_prop_shadow_passwd
If FALSE, passwords can be distributed over the network. If this flag is TRUE,
passwords will be stripped from the returned data to the sec_rgy_acct_lookup( ), and
other calls that return an account’s encoded password.

sec_rgy_prop_embedded_unix_id
All registry UUIDs contain embedded UNIX IDs. This implies that the UNIX ID of any
registry object cannot be changed, since UUIDs are immutable.

Permissions Required

The sec_rgy_properties_set_info( ) routine requires the m (mgmt_info) permission on the policy
object for which the property information is to be set.

FILES

/usr/include/dce/policy.idl
The idl file from which dce/policy.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_not_authorized
The user is not authorized to change the registry properties.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_properties_get_info ( ).

678 CAE Specification (1997)



Registry API sec_rgy_site_bind( )

NAME
sec_rgy_site_bind — Binds to a registry site

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_site_bind(
unsigned_char_t * site_name ,
sec_rgy_bind_auth_info_t * auth_info ,
sec_rgy_handle_t * context ,
error_status_t * status );

PARAMETERS

Input

site_name
A character string (type unsigned_char_t) containing the name of the registry site to bind
to. Supply this name in any of the following forms:

• To randomly choose a site to bind to in the named cell, specify a cell name (for example,
/.../r_d.com or /.: for the local cell)

• To bind to a specific site in a specific cell, specify either the site’s global name (for
example, /.../r_d.com/subsys/dce/sec/rs_server_250_2) or the site’s network address (for
example, ncadg_ip_udp:15.22.144.248)

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the authentication
protocol, protection level, and authorization protocol to use in establishing the binding. (See
the rpc_binding_set_auth_info( ) routine). If the sec_rgy_bind_auth_info_t structure specifies
authenticated RPC, the caller must have established a valid network identity for this call to
succeed.

Output

context
A pointer to a sec_rgy_handle_t variable. Upon return, this contains a registry server
handle indicating (bound to) the desired registry site.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_site_bind( ) call binds to a registry site at the security level specified by the auth_info
parameter. The site_name parameter identifies the registry to use. If site_name is NULL, or a
zero-length string, a registry site in the local cell is selected by the client agent.

NOTES
This routine binds arbitrarily to either an update or query site. Although update sites can accept
queries, query sites cannot accept updates. To specifically select an update site, use
sec_rgy_site_bind_update( ).

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

Part 3 Security Application Programming Interface 679



sec_rgy_site_bind( ) Registry API

ERRORS

error_status_ok
The call was successful.

sec_login_s_no_current_context
The caller does not have a valid network login context.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_site_open( ), sec_rgy_cell_bind( ).

680 CAE Specification (1997)



Registry API sec_rgy_site_bind_update( )

NAME
sec_rgy_site_bind_update — Binds to a registry update site

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_site_bind_update(
unsigned_char_t * site_name ,
sec_rgy_bind_auth_info_t * auth_info ,
sec_rgy_handle_t * context ,
error_status_t * status );

PARAMETERS

Input

site_name
A character string (type unsigned_char_t) containing the name of the registry site to bind
to. Supply this name in any of the following forms:

• To choose the update site to bind to in the named cell, specify a cell name (for example,
/.../r_d.com or /.: for the local cell)

• To start the search for the update site at a specific replica in the replica’s cell, specify
either the replica’s global name (for example,
/.../r_d.com/subsys/dce/sec/rs_server_250_2) or the replica’s network address (for
example, ncadg_ip_udp:15.22.144.248)

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the authentication
protocol, protection level, and authorization protocol to use in establishing the binding. (See
the rpc_binding_set_auth_info( ) routine). If the sec_rgy_bind_auth_info_t structure specifies
authenticated RPC, the caller must have established a valid network identity for this call to
succeed.

Output

context
A pointer to a sec_rgy_handle_t variable. Upon return, this contains a registry server
handle indicating (bound to) the desired registry site.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_site_bind_update( ) routine binds to a registry update site. A registry update site is a
master server that may control several satellite (query) servers. To change the registry database,
it is necessary to change a registry update site, which then automatically updates its associated
query sites. No changes can be made directly to a registry query database.

The site_name parameter identifies either the cell in which to find the update site or the replica at
which to start the search for the update site. If site_name is NULL, or a zero-length string, an
update site in the local cell is selected by the client agent.

The handle for the associated registry server is returned in context. The handle is to an update
site. Use this registry context handle in subsequent calls that update or query the the registry
database (for example, the sec_rgy_pgo_add( ) or sec_rgy_acct_lookup( ) call).

Part 3 Security Application Programming Interface 681



sec_rgy_site_bind_update( ) Registry API

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_login_s_no_current_context
The caller does not have a valid network login context.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_site_open( ), sec_rgy_site_bind( ), sec_rgy_site_open( ).

682 CAE Specification (1997)



Registry API sec_rgy_site_binding_get_info( )

NAME
sec_rgy_site_binding_get_info — Returns information from the registry binding handle

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_site_binding_get_info(
sec_rgy_handle_t context ,
unsigned_char_t ** cell_name ,
unsigned_char_t ** server_name ,
unsigned_char_t ** string_binding ,
sec_rgy_bind_auth_info_t * auth_info ,
error_status_t * status );

PARAMETERS

Input

context
A sec_rgy_handle_t variable that contains a registry server handle indicating (bound to) the
desired registry site. To obtain information on the default binding handle, initialize context
to sec_rgy_default_handle. A valid login context must be set for the process if context is set
to sec_rgy_default_handle; otherwise the error sec_under_login_s_no_current_context is
returned.

Output

cell_name
The name of the home cell for this registry.

server_name
The name of the node on which the server is resident. This name is either a global name or a
network address, depending on the form in which the name was input to the call that
bound to the site.

string_binding
A string containing binding information from sec_rgy_handle_t.

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the authentication
protocol, protection level, and authorization protocol to use in establishing the binding. (See
the rpc_binding_set_auth_info( ) routine).

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_site_binding_get_info( ) routine returns the site name and authentication information
associated with the context parameter. If the context is the default context, the information for
the default binding is returned. Passing in a NULL value for any of the output values (except for
status) will prevent that value from being returned. Memory is allocated for the string returned
in the cell_name, server_name, and string_binding parameters. The application calls the
rpc_string_free( ) routine to deallocate that memory.

Part 3 Security Application Programming Interface 683



sec_rgy_site_binding_get_info( ) Registry API

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_login_s_no_current_context
No currently established network identity for which context exists.

sec_rgy_server_unavailable
Server unavailable.

SEE ALSO
Functions: sec_rgy_site_open( ), sec_rgy_site_bind( ).

684 CAE Specification (1997)



Registry API sec_rgy_site_close( )

NAME
sec_rgy_site_close — Frees the binding handle for a registry server

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_site_close(
sec_rgy_handle_t context ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle indicating (bound to) a registry server. Use sec_rgy_site_open( ) to acquire
a bound handle.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_site_close( ) routine frees the memory occupied by the specified handle and destroys
its binding with the registry server.

NOTES
A handle cannot be used after it is freed.

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

ERRORS

error_status_ok
The call was successful.

SEE ALSO
Functions: sec_rgy_site_get( ), sec_rgy_site_is_readonly ( ), sec_rgy_site_open( ),
sec_rgy_site_open_query( ), sec_rgy_site_open_update ( ).

Part 3 Security Application Programming Interface 685



sec_rgy_site_get( ) Registry API

NAME
sec_rgy_site_get — Returns the string representation for a bound registry site

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_site_get(
sec_rgy_handle_t context ,
unsigned_char_t ** site_name ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle indicating (bound to) a registry server. Use sec_rgy_site_open( ) to acquire
a bound handle. To obtain information on the default binding handle, initialize context to
sec_rgy_default_handle. A valid login context must be set for the process if context is set to
sec_rgy_default_handle; otherwise the error sec_login_s_no_current_context is returned.

Output

site_name
A pointer to a character string (type unsigned_char_t) containing the returned name of the
registry site associated with context, the given registry server handle.

The name is either a global name or a network address, depending on the form in which the
name was input to the call that bound to the site.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_site_get( ) routine returns the name of the registry site associated with the specified
handle. If the handle is the default context, the routine returns the name of the default context’s
site. Memory is allocated for the string returned in the site_name parameter. The application calls
the rpc_string_free( ) routine to deallocate that memory.

NOTES
To obtain binding information, the use of the sec_rgy_site_binding_get_info( ) call is recommended
in place of this call.

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_login_s_no_current_context
No currently established network identity for which context exists.

sec_rgy_server_unavailable
Server unavailable.

686 CAE Specification (1997)



Registry API sec_rgy_site_get( )

SEE ALSO
Functions: sec_rgy_site_open( ).

Part 3 Security Application Programming Interface 687



sec_rgy_site_is_readonly( ) Registry API

NAME
sec_rgy_site_is_readonly — Checks whether a registry site is read-only

SYNOPSIS
#include <dce/binding.h>

boolean32 sec_rgy_site_is_readonly(
sec_rgy_handle_t context );

PARAMETERS

Input

context
An opaque handle indicating (bound to) a registry server. Use sec_rgy_site_open( ) to acquire
a bound handle.

DESCRIPTION
The sec_rgy_site_is_readonly( ) routine checks whether the registry site associated with the
specified handle is a query site or an update site. A query site is a read-only replica of a master
registry database. The update site accepts changes to the registry database, and duplicates the
changes in its associated query sites.

RETURN VALUES
The routine returns:

• TRUE if the registry site is read-only or if there was an error using the specified handle

• FALSE if the registry site is an update site

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

SEE ALSO
Functions: sec_rgy_site_open( ), sec_rgy_site_open_query( ).

688 CAE Specification (1997)



Registry API sec_rgy_site_open( )

NAME
sec_rgy_site_open — Binds to a registry site

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_site_open(
unsigned_char_t * site_name ,
sec_rgy_handle_t * context ,
error_status_t * status );

PARAMETERS

Input

site_name
A pointer to a character string (type unsigned_char_t) containing the name of the registry
site to bind to. Supply this name in any of the following forms:

• To randomly choose a site to bind to in the named cell, specify a cell name (for example,
/.../r_d.com or /.: for the local cell)

• To bind to a specific site in a specific cell, specify either the site’s global name (for
example, /.../r_d.com/subsys/dce/sec/rs_server_250_2) or the site’s network address (for
example, ncadg_ip_udp:15.22.144.248)

Note that if you specify the name of a specific secd to bind to and the name is not valid, the
call will bind to a random site in the cell if the specified cell name is valid.

Output

context
A pointer to a sec_rgy_handle_t variable. Upon return, this contains a registry server
handle indicating (bound to) the desired registry site.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_site_open( ) routine binds to a registry site at the level of security specified in the
rpc_binding_set_auth_info( ) call. The site_name parameter identifies the registry to use. If
site_name is NULL, or a zero-length string, a registry site in the local cell is selected by the client
agent. The caller must have established a valid network identity for this call to succeed.

NOTES
To bind to a registry site, the use of the sec_rgy_site_bind( ) call is recommended in place of this
call.

Like sec_rgy_site_open_query( ) routine, this routine binds arbitrarily to either an update or query
site. Although update sites can accept queries, query sites cannot accept updates. To specifically
select an update site, use sec_rgy_site_open_update( ).

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

Part 3 Security Application Programming Interface 689



sec_rgy_site_open( ) Registry API

ERRORS

error_status_ok
The call was successful.

sec_login_s_no_current_context
No currently established network identity for which context exists.

sec_rgy_server_unavailable
Server unavailable.

SEE ALSO
Functions: sec_rgy_site_close( ), sec_rgy_site_is_readonly ( ), sec_rgy_site_open_query( ),
sec_rgy_site_open_update ( ).

690 CAE Specification (1997)



Registry API sec_rgy_site_open_query( )

NAME
sec_rgy_site_open_query — Binds to a registry query site

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_site_open_query(
unsigned_char_t * site_name ,
sec_rgy_handle_t * context ,
error_status_t * status );

PARAMETERS

Input

site_name
A character string (type unsigned_char_t) containing the name of the registry query site to
bind to. Supply this name in any of the following forms:

• To randomly choose a site to bind to in the named cell, specify a cell name (for example,
/.../r_d.com or /.: for the local cell)

• To bind to a specific site in a specific cell, specify either the site’s global name (for
example, /.../r_d.com/subsys/dce/sec/rs_server_250_2) or the site’s network address (for
example, ncadg_ip_udp:15.22.144.248)

Output

context
A pointer to a sec_rgy_handle_t variable. Upon return, this contains a registry server
handle indicating (bound to) the desired registry site.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_site_open_query( ) routine binds to a registry query site. A registry query site is a
satellite server that operates on a periodically updated copy of the main registry database. To
change the registry database, it is necessary to change a registry update site, which then
automatically updates its associated query sites. No changes can be made directly to a registry
query database.

The site_name parameter identifies the query site to use. If site_name is NULL, or a zero-length
string, a query site in the local cell is selected by the client agent.

The handle for the associated registry server is returned in context.

The caller must have established a valid network identity for this call to succeed.

NOTES
To bind to a registry query site, the use of the sec_rgy_site_bind_query( ) call is recommended in
place of this call.

Like sec_rgy_site_open( ) routine, this routine binds arbitrarily to either an update or query site.
Although update sites can accept queries, query sites cannot accept updates. To specifically
select an update site, use sec_rgy_site_open_update( ).

Part 3 Security Application Programming Interface 691



sec_rgy_site_open_query( ) Registry API

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_login_s_no_current_context
No currently established network identity for which context exists.

sec_rgy_server_unavailable
Server unavailable.

SEE ALSO
Functions: sec_rgy_site_close( ), sec_rgy_site_get( ), sec_rgy_site_is_readonly ( ), sec_rgy_site_open( ),
sec_rgy_site_open_update ( ).

692 CAE Specification (1997)



Registry API sec_rgy_site_open_update( )

NAME
sec_rgy_site_open_update — Binds to a registry update site

SYNOPSIS
#include <dce/binding.h>

void sec_rgy_site_open_update(
unsigned_char_t * site_name ,
sec_rgy_handle_t * context ,
error_status_t * status );

PARAMETERS

Input

site_name
A character string (type unsigned_char_t) containing the name of an update registry site to
bind to. Supply this name in any of the following forms:

• To choose the update site to bind to in the named cell, specify a cell name (for example,
/.../r_d.com or /.: for the local cell)

• To start the search for the update site at a specific replica in the replica’s cell, specify
either the site’s global name (for example, /.../r_d.com/subsys/dce/sec/rs_server_250_2)
or the site’s network address (for example, ncadg_ip_udp:15.22.144.248)

Output

context
A pointer to a sec_rgy_handle_t variable. Upon return, this contains a registry server
handle indicating (bound to) the desired registry site.

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_site_open_update( ) routine binds to a registry update site. A registry update site is a
master server that may control several satellite (query) servers. To change the registry database,
it is necessary to change a registry update site, which then automatically updates its associated
query sites. No changes can be made directly to a registry query database.

The site_name parameter identifies either the cell in which to find the update site or the replica at
which to start the search for the update site. If site_name is NULL, or a zero-length string, an
update site in the local cell is selected by the client agent.

The handle for the associated registry server is returned in context. The handle is to an update
site. Use this registry context handle in subsequent calls that update or query the the registry
database (for example, the sec_rgy_pgo_add( ) or sec_rgy_acct_lookup( ) call). The caller must have
established a valid network identity for this call to succeed.

NOTES
To bind to a registry update site, the use of the sec_rgy_site_bind_update( ) call is recommended in
place of this call.

FILES

/usr/include/dce/binding.idl
The idl file from which dce/binding.h was derived.

Part 3 Security Application Programming Interface 693



sec_rgy_site_open_update( ) Registry API

ERRORS

error_status_ok
The call was successful.

sec_login_s_no_current_context
No currently established network identity for which context exists.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_rgy_site_close( ), sec_rgy_site_get( ), sec_rgy_site_is_readonly ( ), sec_rgy_site_open( ),
sec_rgy_site_open_query( ).

694 CAE Specification (1997)



Registry API sec_rgy_unix_getgrgid( )

NAME
sec_rgy_unix_getgrgid — Returns a UNIX style group entry for the account matching the
specified group ID

SYNOPSIS
#include <dce/rgynbase.h>

void sec_rgy_unix_getgrgid(
sec_rgy_handle_t context ,
signed32 gid ,
signed32 max_number ,
sec_rgy_cursor_t * item_cursor ,
sec_rgy_unix_group_t * group_entry ,
signed32 * number_members ,
sec_rgy_member_t member_list [ ],
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

gid
A 32-bit integer specifying the group ID to match.

max_number
The maximum number of members to be returned by the call. This must be no larger than
the allocated size of the member_list array.

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_unix_getgrgid( ) routine returns the PGO item indicated by item_cursor, and advances
the cursor to point to the next item in the database. When the end of the list of entries is
reached, the routine returns sec_rgy_no_more_entries. Use sec_rgy_cursor_reset( ) to refresh
the cursor.

Output

group_entry
A UNIX style group entry structure returned with information about the account matching
gid.

number_members
An signed 32-bit integer containing the total number of member names returned in the
member_list array.

member_list[ ]
An array of character strings to receive the returned member names. The size allocated for
the array is given by max_number. If this value is less than the total number of members in
the membership list, multiple calls must be made to return all of the members.

Part 3 Security Application Programming Interface 695



sec_rgy_unix_getgrgid( ) Registry API

status
On successful completion, the routine returns error_status_ok. Otherwise, it returns an
error.

DESCRIPTION
The sec_rgy_unix_getgrgid( ) routine returns the next UNIX group structure that matches the
input UNIX group ID. The structure is in the following form:

typedef struct {
sec_rgy_name_t name;
signed32 gid;
sec_rgy_member_buf_t members;

} sec_rgy_unix_group_t;

The structure includes

• The name of the group.

• The group’s UNIX ID.

• A string containing the names of the group members. This string is limited in size by the size
of the sec_rgy_member_buf_t type defined in rgynbase.h.

The routine also returns an array of member names, limited in size by the number_members
parameter.

This call is supplied in source code form.

FILES

/usr/include/dce/rgynbase.idl
The idl file from which dce/rgynbase.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The cursor is at the end of the list of entries.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

696 CAE Specification (1997)



Registry API sec_rgy_unix_getgrnam( )

NAME
sec_rgy_unix_getgrnam — Returns a UNIX style group entry for the account matching the
specified group name

SYNOPSIS
#include <dce/rgynbase.h>

void sec_rgy_unix_getgrnam(
sec_rgy_handle_t context ,
sec_rgy_name_t name,
signed32 name_length ,
signed32 max_num_members,
sec_rgy_cursor_t item_cursor ,
sec_rgy_unix_group_t group_entry ,
signed32 number_members ,
sec_rgy_member_t member_list [ ],
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name
A character string (of type sec_rgy_name_t) specifying the group name to be matched.

name_length
A signed 32-bit integer specifying the length of name in characters.

max_num_members
The maximum number of members to be returned by the call. This must be no larger than
the allocated size of the member_list array.

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_unix_getgrnam( ) routine returns the PGO item indicated by item_cursor, and
advances the cursor to point to the next item in the database. When the end of the list of
entries is reached, the routine returns sec_rgy_no_more_entries. Use sec_rgy_cursor_reset( )
to refresh the cursor.

Output

group_entry
A UNIX style group entry structure returned with information about the account matching
name.

number_members
An signed 32-bit integer containing the total number of member names returned in the
member_list array.

member_list[ ]
An array of character strings to receive the returned member names. The size allocated for

Part 3 Security Application Programming Interface 697



sec_rgy_unix_getgrnam( ) Registry API

the array is given by max_number. If this value is less than the total number of members in
the membership list, multiple calls must be made to return all of the members.

status
On successful completion, the routine returns error_status_ok. Otherwise, it returns an
error.

DESCRIPTION
The sec_rgy_unix_getgrnam( ) routine looks up the next group entry in the registry that matches
the input group name and returns the corresponding UNIX style group structure. The structure
is in the following form:

typedef struct {
sec_rgy_name_t name;
signed32 gid;
sec_rgy_member_buf_t members;

} sec_rgy_unix_group_t;

The structure includes:

• The name of the group.

• The group’s UNIX ID.

• A string containing the names of the group members. This string is limited in size by the size
of the sec_rgy_member_buf_t type defined in rgynbase.h.

The routine also returns an array of member names, limited in size by the number_members
parameter. Note that the array contains only the names explicitly specified as members of the
group. A principal that was made a member of the group because that group was assigned as
the principal’s primary group will not appear in the array.

This call is provided in source code form.

FILES

/usr/include/dce/rgynbase.idl
The idl file from which dce/rgynbase.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy bad_data
The name supplied as input was too long.

sec_rgy_no_more_entries
The cursor is at the end of the list of entries.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

698 CAE Specification (1997)



Registry API sec_rgy_unix_getpwnam( )

NAME
sec_rgy_unix_getpwnam — Returns a UNIX-style password structure for account matching the
specified name

SYNOPSIS
#include <dce/rgynbase.h>

void sec_rgy_unix_getpwnam (
sec_rgy_handle_t context ,
sec_rgy_name_t name,
unsigned32 name_len ,
sec_rgy_cursor_t * item_cursor ,
sec_rgy_unix_passwd_t * passwd_entry ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

name
A character string (of type sec_rgy_name_t) containing the name of the person, group, or
organization whose name entry is desired.

name_len
A 32-bit integer representing the length of the name in characters.

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_unix_getpwnam( ) routine returns the PGO item indicated by item_cursor, and
advances the cursor to point to the next item in the database. When the end of the list of
entries is reached, the routine returns sec_rgy_no_more_entries. Use sec_rgy_cursor_reset( )
to refresh the cursor.

Output

passwd_entry
A UNIX-style password structure returned with information about the account matching
name.

status
On successful completion, the routine returns error_status_ok. Otherwise, it returns an
error.

DESCRIPTION
The sec_rgy_unix_getpwnam( ) routine returns the next UNIX-style password structure that
matches the input name. The structure is in the form:

Part 3 Security Application Programming Interface 699



sec_rgy_unix_getpwnam( ) Registry API

typedef struct {
sec_rgy_unix_login_name_t name;
sec_rgy_unix_passwd_buf_t passwd;
signed32 uid;
signed32 gid;
signed32 oid;
sec_rgy_unix_gecos_t gecos;
sec_rgy_pname_t homedir;
sec_rgy_pname_t shell;

} sec_rgy_unix_passwd_t;

The structure includes:

• The account’s login name.

• The account’s password.

• The account’s UNIX ID.

• The UNIX ID of group and organization associated with the account.

• The account’s GECOS information.

• The account’s home directory.

• The account’s login shell

This call is provided in source code form.

FILES

/usr/include/dce/rgynbase.idl
The idl file from which rgynbase.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_bad_data
The name supplied as input was too long.

sec_rgy_no_more_entries
The end of the list of entries has been reached.

700 CAE Specification (1997)



Registry API sec_rgy_unix_getpwuid( )

NAME
sec_rgy_unix_getpwuid — Returns a UNIX-style password structure for the account matching
the specified UUID

SYNOPSIS
#include <dce/rgynbase.h>

void sec_rgy_unix_getpwuid(
sec_rgy_handle_t context ,
signed32 uid ,
sec_rgy_cursor_t * item_cursor ,
sec_rgy_unix_passwd_t * passwd_entry ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

uid
A 32-bit integer UNIX ID.

Input/Output

item_cursor
An opaque pointer indicating a specific PGO item entry in the registry database. The
sec_rgy_unix_getpwuid( ) routine returns the PGO item indicated by item_cursor, and
advances the cursor to point to the next item in the database. When the end of the list of
entries is reached, the routine returns sec_rgy_no_more_entries. Use sec_rgy_cursor_reset( )
to refresh the cursor.

Output

passwd_entry
A UNIX style password structure returned with information about the account matching
uid.

status
On successful completion, the routine returns error_status_ok. Otherwise, it returns an
error.

DESCRIPTION
The sec_rgy_unix_getpwuid( ) routine looks up the next password entry in the registry that
matches the input UNIX ID and returns the corresponding sec_rgy_unix_passwd_t structure.
The structure is in the following form:

Part 3 Security Application Programming Interface 701



sec_rgy_unix_getpwuid( ) Registry API

typedef struct {
sec_rgy_unix_login_name_t name;
sec_rgy_unix_passwd_buf_t passwd;
signed32 Vuid;
signed32 Vgid;
signed32 oid
sec_rgy_unix_gecos_t gecos;
sec_rgy_pname_t homedir;
sec_rgy_pname_t shell;

} sec_rgy_unix_passwd_t;

The structure includes:

• The account’s login name.

• The account’s password.

• The account’s UNIX ID.

• The UNIX ID of group and organization associated with the account.

• The account’s GECOS information.

• The account’s home directory.

• The account’s login shell

This call is provided in source code form.

FILES

/usr/include/dce/rgynbase.idl
The idl file from which dce/rgynbase.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The end of the list of entries has been reached.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

702 CAE Specification (1997)



Registry API sec_rgy_wait_until_consistent( )

NAME
sec_rgy_wait_until_consistent — Blocks the caller while prior updates are propagated to the
registry replicas

SYNOPSIS
#include <dce/misc.h>

boolean32 sec_rgy_wait_until_consistent(
sec_rgy_handle_t context ,
error_status_t * status );

PARAMETERS

Input

context
The registry server handle associated with the master registry.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_rgy_wait_until_consistent( ) routine blocks callers until all prior updates to the master
registry have been propagated to all active registry replicas.

RETURN VALUES
The routine returns TRUE when all active replicas have received the prior updates. It returns
FALSE if at least one replica did not receive the updates.

FILES

/usr/include/dce/misc.idl
The idl file from which dce/misc.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_rgy_read_only
Either the master site is in maintenance mode or the site associated with the handle is a
read-only (query) site.

sec_rgy_server_unavailable
The server for the master registry is not available.

Part 3 Security Application Programming Interface 703



Registry API

704 CAE Specification (1997)



Chapter 17

ID Map API

17.1 Introduction
The routines in the ID Map API are distinguished with names having the prefix sec_id_.

Background is given in Chapter 1, especially Section 1.13 on page 67.

Part 3 Security Application Programming Interface 705



<dce/secidmap.h> ID Map API

NAME
<dce/secidmap.h> — Header for sec_id API

SYNOPSIS
#include <dce/secidmap.h>

DESCRIPTION

Data Types and Constants

There are no particular data types or constants specific to the sec_id API (other than those that
have already been introduced in this specification).

In particular, concerning naming syntax as used in this chapter (such as the notion of global PGO
name), see Section 12.1.1.2 on page 490 (and the other sections referenced there). (Note
especially that the name components /principal/ and /group/, which are used to identify RS
naming domain junction points for the purpose of ACL management, do not occur in the cell-
relative PGO names of the present chapter.)

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_id API.

sec_id_e_bad_cell_uuid
Cell UUID is not valid.

sec_id_e_foreign_cell_referral
Global name yields an entity in foreign cell — use referral to that cell.

sec_id_e_name_too_long
Name too long (for the implementation).

706 CAE Specification (1997)



ID Map API sec_id_gen_group( )

NAME
sec_id_gen_group — Generate a global group name from cell and group UUIDs.

SYNOPSIS
#include <dce/secidmap.h>

void sec_id_gen_group(
sec_rgy_handle_t context ,
uuid_t * cell_idp ,
uuid_t * group_idp ,
sec_rgy_name_t global_name ,
sec_rgy_name_t cell_namep ,
sec_rgy_name_t group_namep ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

cell_idp
A pointer to the UUID of the home cell of the group whose name is in question.

group_idp
A pointer to the UUID of the group whose name is in question.

Input/Output

global_name
The global (full) name of the group in sec_rgy_name_t form (see Section 12.1.1.2 on page
490).

cell_namep
The name of the group’s home cell in sec_rgy_name_t form.

group_namep
The local (with respect to the home cell) name of the group in sec_rgy_name_t form.

Output

status
A pointer to the completion status. On successful completion, the function returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_id_gen_group( ) routine generates a global name from input cell and group UUIDs. For
example, given a UUID specifying the cell /.../world/hp/brazil, and a UUID specifying a group
resident in that cell named writers, the routine would return the global name of that group, in
this case, /.../world/hp/brazil/writers. It also returns the simple names of the cell and group,
translated from the UUIDs.

The routine will not produce translations to any name for which a NULL pointer has been
supplied.

Part 3 Security Application Programming Interface 707



sec_id_gen_group( ) ID Map API

FILES

/usr/include/dce/secidmap.idl
The idl file from which dce/secidmap.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_id_e_bad_cell_uuid
The cell UUID is not valid.

sec_id_e_name_too_long
The name is too long for current implementation.

sec_rgy_object_not_found
The registry server could not find the specified group.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_id_gen_name( ), sec_id_parse_group ( ), sec_id_parse_name( ).

Protocols: rsec_id_gen_name( ).

708 CAE Specification (1997)



ID Map API sec_id_gen_name( )

NAME
sec_id_gen_name — Generate a global principal name from cell and principal UUIDs

SYNOPSIS
#include <dce/secidmap.h>

void sec_id_gen_name (
sec_rgy_handle_t context ,
uuid_t * cell_idp ,
uuid_t * princ_idp ,
sec_rgy_name_t global_name ,
sec_rgy_name_t cell_namep ,
sec_rgy_name_t princ_namep ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

cell_idp
A pointer to the UUID of the home cell of the principal whose name is in question.

princ_idp
A pointer to the UUID of the principal whose name is in question.

Input/Output

global_name
The global (full) name of the principal in sec_rgy_name_t form (see Section 12.1.1.2 on page
490).

cell_namep
The name of the principal’s home cell in sec_rgy_name_t form.

princ_namep
The local (with respect to the home cell) name of the principal in sec_rgy_name_t form.

Output

status
A pointer to the completion status. On successful completion, the function returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_id_gen_name( ) routine generates a global name from input cell and principal UUIDs. For
example, given a UUID specifying the cell /.../world/hp/brazil, and a UUID specifying a principal
resident in that cell named writers/tom, the routine would return the global name of that
principal, in this case, /.../world/hp/brazil/writers/tom. It also returns the simple names of the
cell and principal, translated from the UUIDs.

The routine will not produce translations to any name for which a NULL pointer has been
supplied.

Part 3 Security Application Programming Interface 709



sec_id_gen_name( ) ID Map API

Permissions Required

The sec_id_gen_name( ) routine requires at least one permission of any kind on the account
associated with the input cell and principal UUIDs.

FILES

/usr/include/dce/secidmap.idl
The idl file from which dce/secidmap.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_id_e_bad_cell_uuid
The cell UUID is not valid.

sec_id_e_name_too_long
The name is too long for current implementation.

sec_rgy_object_not_found
The registry server could not find the specified principal.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_id_gen_group( ), sec_id_parse_group ( ), sec_id_parse_name( ).

Protocols: rsec_id_gen_name( ).

710 CAE Specification (1997)



ID Map API sec_id_parse_group( )

NAME
sec_id_parse_group — Translates a global group name into cell name, cell-relative group name
and UUIDs

SYNOPSIS
#include <dce/secidmap.h>

void sec_id_parse_group(
sec_rgy_handle_t context ,
sec_rgy_name_t global_name ,
sec_rgy_name_t cell_namep ,
uuid_t * cell_idp ,
sec_rgy_name_t group_namep ,
uuid_t * group_idp ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

global_name
The global (full) name of the group in sec_rgy_name_t form (see Section 12.1.1.2 on page
490).

Input/Output

cell_namep
The output name of the group’s home cell in sec_rgy_name_t form (see Section 12.1.1.2 on
page 490).

cell_idp
A pointer to the UUID of the home cell of the group whose name is in question.

group_namep
The local (with respect to the home cell) name of the group in sec_rgy_name_t form (see
Section 12.1.1.2 on page 490).

group_idp
A pointer to the UUID of the group whose name is in question.

Output

status
A pointer to the completion status. On successful completion, the function returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_id_parse_group ( ) routine translates a global group name into a cell name and a cell-
relative group name. It also returns the UUIDs associated with the group and its home cell.

A NULL input to any Input/Output parameter suppresses parsing of that parameter.

Part 3 Security Application Programming Interface 711



sec_id_parse_group( ) ID Map API

FILES

/usr/include/dce/secidmap.idl
The idl file from which dce/secidmap.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_id_e_bad_cell_uuid
The cell UUID is not valid.

sec_id_e_name_too_long
The name is too long for current implementation.

sec_rgy_object_not_found
The registry server could not find the specified group.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_id_gen_group( ), sec_id_gen_name( ), sec_id_parse_name( ).

Protocols: rsec_id_parse_name( ).

712 CAE Specification (1997)



ID Map API sec_id_parse_name( )

NAME
sec_id_parse_name — Translates a global name into principal and cell names and UUIDs

SYNOPSIS
#include <dce/secidmap.h>

void sec_id_parse_name(
sec_rgy_handle_t context ,
sec_rgy_name_t global_name ,
sec_rgy_name_t cell_namep ,
uuid_t * cell_idp ,
sec_rgy_name_t princ_namep ,
uuid_t * princ_idp ,
error_status_t * status );

PARAMETERS

Input

context
An opaque handle bound to a registry server. Use sec_rgy_site_open( ) to acquire a bound
handle.

global_name
The global (full) name of the principal in sec_rgy_name_t form (see Section 12.1.1.2 on page
490).

Input/Output

cell_namep
The output name of the principal’s home cell in sec_rgy_name_t form (see Section 12.1.1.2
on page 490).

cell_idp
A pointer to the UUID of the home cell of the principal whose name is in question.

princ_namep
The local (with respect to the home cell) name of the principal in sec_rgy_name_t form (see
Section 12.1.1.2 on page 490).

princ_idp
A pointer to the UUID of the principal whose name is in question.

Output

status
A pointer to the completion status. On successful completion, the function returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_id_parse_name( ) routine translates a global principal name into a cell name and a cell-
relative principal name. It also returns the UUIDs associated with the principal and its home
cell.

A NULL input to any Input/Output parameter suppresses parsing of that parameter.

Part 3 Security Application Programming Interface 713



sec_id_parse_name( ) ID Map API

Permissions Required

Only if princ_idp is requested as output does the sec_id_parse_name( ) routine require a
permission. In this case, the routine requires at least one permission of any kind on the account
whose global principal name is to be translated.

FILES

/usr/include/dce/secidmap.idl
The idl file from which dce/secidmap.h was derived.

ERRORS

error_status_ok
The call was successful.

sec_id_e_bad_cell_uuid
The cell UUID is not valid.

sec_id_e_name_too_long
The name is too long for current implementation.

sec_rgy_object_not_found
The registry server could not find the specified principal.

sec_rgy_server_unavailable
The DCE Registry Server is unavailable.

SEE ALSO
Functions: sec_id_gen_name( ).

Protocols: rsec_id_parse_name( ).

714 CAE Specification (1997)



Chapter 18

Key Management API

18.1 Introduction
The routines in the Key Management API are distinguished with names having the prefix
‘‘sec_key_mgmt’’.

Background is given in Chapter 1, especially Section 1.14 on page 69.

On input, those routines in this API that take a keydata argument expect a value of data type
sec_passwd_rec_t *, and those that take a keytype argument expect a value of data type
sec_passwd_type_t *; furthermore, both of these arguments must be non-NULL pointers to
single values (not arrays). On output, those operations that give a keydata argument yield a
value of data type sec_passwd_rec_t *, this being a pointer to the first element of an array; this
array is terminated by an element whose key_type is sec_passwd_none.

Those routines in this API that take a void *get_key_fn_arg argument expect a specification of
‘‘local key storage management’’, as defined in this paragraph. Any value of get_key_fn_arg
other than the two special ones specified in the remainder of this paragraph indicates a (single)
argument to be passed to an application-defined ‘‘key acquisition routine’’ (a value of type
rpc_auth_key_retrieval_fn_t; that is, an arg as for rpc_server_register_auth_info ( ) in the
referenced X/Open DCE RPC Specification; see also Section D.7, Authentication, Authorisation
and Protection-level Arguments of that specification). If get_key_fn_arg is a string value (of type
idl_char *) that begins with the substring FILE: (that is, is of the form ‘‘FILE:xy⋅⋅⋅z’’ where xy⋅⋅⋅z
denotes a substring of arbitrary non-zero length) this indicates that local key storage is
implemented via a default implicit implementation-defined key acquisition routine (not further
specified in this specification) in the local key table file whose full pathname (in the local
system’s file namespace) is xy⋅⋅⋅z. A NULL value of get_key_fn_arg indicates the default implicit
implementation-defined key acquisition routine (defined in the previous sentence), using an
implementation-defined default key table file (typically, on POSIX systems, this default key table
file is named /krb/v5srvtab; that is, this case corresponds to the previous case with argument
FILE:/krb/v5srvtab).

Note: Access to local resources is subject to implementation and local system access control
policies. This is not further mentioned in the entries for these routines, though it
does have implications for implementations. For example, local key storage
implemented in a local file, such as /krb/v5srvtab, is subject to local access control
considerations. As such, implementations should exercise due caution in protecting
such files (for example, such files should not be located on partitions that can be
remotely mounted in an unprotected manner via a network filesystem).

Part 3 Security Application Programming Interface 715



<dce/keymgmt.h> Key Management API

NAME
<dce/keymgmt.h> — Header for sec_key_mgmt API.

SYNOPSIS
#include <dce/keymgmt.h>

DESCRIPTION

Data Types

The following data types (listed in alphabetical order) are used in the sec_key_mgmt API.

idl_byte sec_passwd_des_key_t[8]
Indicates a DES key, represented in big/big-endian order (see Section 2.1.4.3 on page 130).

enum sec_passwd_type_t
Indicates key type. The currently registered values are:

sec_passwd_none
Indicates that no key type is present.

sec_passwd_plain
Indicates that the key is plaintext (that is, unencrypted).

sec_passwd_des
Indicates that the key is DES-encrypted.

struct sec_passwd_rec_t
Indicates a password. It contains the following fields:

unsigned32 version_number
Version number.

idl_char *pepper
A character string, to be appended to the password (key.plain) before an encryption
key is derived from it.

struct key
A structure representing the actual password. It contains the following fields:

sec_passwd_type_t key_type
Indicates the kind of password contained in tagged_union.

union tagged_union
Indicates the actual password. It contains the following fields:

(No password is present)
(No password is present if key_type = sec_passwd_none.)

idl_char *plain
A plaintext (that is, unencrypted) password (this option occurs if key_type =
sec_passwd_plain).

sec_passwd_des_key_t des_key
A DES-encrypted password (this option occurs if key_type =
sec_passwd_des).

unsigned32 sec_key_mgmt_authn_service
Indicates the authentication service in use. The currently registered values are:

rpc_c_authn_none
No authentication.

716 CAE Specification (1997)



Key Management API <dce/keymgmt.h>

rpc_c_authn_dce_secret
DCE secret key authentication, as specified in

Status Codes

The following status codes (listed in alphabetical order) are used in the sec_key_mgmt API.

error_status_ok
The call was successful.

sec_key_mgmt_e_authn_invalid
Requested authentication service not valid.

sec_key_mgmt_e_auth_unavailable
Authentication service is unavailable.

sec_key_mgmt_e_key_unavailable
Principal’s current key is unavailable.

sec_key_mgmt_e_key_unsupported
Requested key type is not supported.

sec_key_mgmt_e_key_version_ex
Key with specified version number already exists in key store.

sec_key_mgmt_e_not_implemented
Unwilling to perform requested operation (or, colloquially, requested operation has ‘‘not
been implemented’’).

sec_key_mgmt_e_unauthorized
Caller has insufficient authorisation to perform operation.

sec_login_s_no_memory
A memory allocation error occurred.

sec_rgy_object_not_found
No principal was found with the given name.

sec_rgy_server_unavailable
The RS server is unavailable.

sec_s_no_key_seed
Initialisation of random number generator has not been accomplished.

sec_s_no_memory
Unable to allocate memory.

Part 3 Security Application Programming Interface 717



sec_key_mgmt_change_key( ) Key Management API

NAME
sec_key_mgmt_change_key — Change (‘‘write’’) a principal’s key in local key storage and in RS
datastore.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_change_key(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
unsigned32 key_vno ,
void * keydata ,
sec_timeval_period_t * garbage_collect_time ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for this key.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal whose key is to be changed.

key_vno
Version number of the new key.

keydata
The supplied key data (see <dce/keymgmt.h>).

Output

garbage_collect_time
Number of seconds (from ‘‘now’’), by which time all currently usable tickets (which are
protected with the current or previous keys) will have expired (and can therefore be
‘‘garbage collected’’ by the application).

status
The completion status.

DESCRIPTION
The sec_key_mgmt_change_key ( ) routine performs all activities necessary to update a principal’s
key, both locally and remotely (that is, in local key storage and in the RS datastore), to the
specified value. Old keys for the principal are also garbage collected, if appropriate. For more
discussion, see Section 1.14 on page 69.

If key_vno is specified as 0 (zero), an appropriate non-zero key version number will be selected in
an implementation-defined manner.

Any error (that is, status ≠ error_status_ok) will leave the key state unchanged.

ERRORS
sec_key_mgmt_e_key_unavailable, sec_key_mgmt_e_authn_invalid,
sec_key_mgmt_e_auth_unavailable, sec_key_mgmt_e_unauthorized,

718 CAE Specification (1997)



Key Management API sec_key_mgmt_change_key( )

sec_key_mgmt_e_key_unsupported, sec_key_mgmt_e_key_version_ex,
sec_rgy_server_unavailable, sec_rgy_object_not_found, sec_login_s_no_memory,
error_status_ok.

SEE ALSO
Functions: sec_key_mgmt_generate_key( ), sec_key_mgmt_set_key( ).

Protocols: rs_acct_replace( ).

Part 3 Security Application Programming Interface 719



sec_key_mgmt_delete_key( ) Key Management API

NAME
sec_key_mgmt_delete_key — Delete specified keys from local key store.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_delete_key(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
unsigned32 key_vno ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for the keys to be deleted.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal whose key is to be deleted.

key_vno
Version number of key to be deleted.

Output

status
The completion status.

DESCRIPTION
The sec_key_mgmt_delete_key( ) routine deletes the specified keys (namely, those of the specified
key version number, of all key types) from the local key store, thereby ‘‘revoking’’ all extant
tickets protected with those keys.

Any error condition leaves the key state unchanged.

ERRORS
error_status_ok, sec_key_mgmt_e_authn_invalid, sec_key_mgmt_e_key_unavailable,
sec_key_mgmt_e_unauthorized.

SEE ALSO
Functions: sec_key_mgmt_delete_key_type( ), sec_key_mgmt_garbage_collect( ).

720 CAE Specification (1997)



Key Management API sec_key_mgmt_delete_key_type( )

NAME
sec_key_mgmt_delete_key_type — Delete a key version of a specified key type from local key
store.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_delete_key_type(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
void * keytype ,
unsigned32 key_vno ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for the key to be deleted.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal whose key type is to be deleted.

keytype
Indicates the key type (see <dce/keymgmt.h>).

key_vno
Version number of the key to be deleted.

Output

status
The completion status.

DESCRIPTION
The sec_key_mgmt_delete_key_type ( ) routine deletes the specified key version of the specified key
type from the local key store, thereby ‘‘revoking’’ all extant tickets protected with those keys.

Any error condition leaves the key state unchanged.

ERRORS
error_status_ok, sec_key_mgmt_e_authn_invalid, sec_key_mgmt_e_key_unavailable,
sec_key_mgmt_e_unauthorized.

SEE ALSO
Functions: sec_key_mgmt_delete_key( ), sec_key_mgmt_garbage_collect ( ).

Part 3 Security Application Programming Interface 721



sec_key_mgmt_free_key( ) Key Management API

NAME
sec_key_mgmt_free_key — Free the memory used by a key value.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_free_key(
void * keydata ,
error_status_t * status );

PARAMETERS

Input

keydata
The key data to be freed (see <dce/keymgmt.h>).

Output

status
The completion status.

DESCRIPTION
The sec_key_mgmt_free_key( ) routine releases any memory allocated for the indicated key data.

ERRORS
error_status_ok.

SEE ALSO
Functions: sec_key_mgmt_get_key( ).

722 CAE Specification (1997)



Key Management API sec_key_mgmt_garbage_collect( )

NAME
sec_key_mgmt_garbage_collect — Delete unusable keys from local key store.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_garbage_collect(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for the keys to be garbage-collected.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal whose keys are to be garbage collected.

Output

status
The completion status.

DESCRIPTION
The sec_key_mgmt_garbage_collect( ) routine discards unusable keys (that is, keys for which there
can be no outstanding ticket protected with that key) for the specified principal from local key
store.

ERRORS
error_status_ok, sec_login_s_no_memory, sec_key_mgmt_e_authn_invalid,
sec_key_mgmt_e_unauthorized, sec_key_mgmt_e_key_unavailable,
sec_rgy_object_not_found, sec_rgy_server_unavailable.

SEE ALSO
Functions: sec_key_mgmt_delete_key( ), sec_key_mgmt_delete_key_type( ).

Part 3 Security Application Programming Interface 723



sec_key_mgmt_gen_rand_key( ) Key Management API

NAME
sec_key_mgmt_gen_rand_key — Generate a new random key of specified key type.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_gen_rand_key(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
void * keytype ,
unsigned32 key_vno ,
void ** keydata ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for the generated key.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of a principal. (This argument is for future extensibility, and is currently ignored.)

keytype
Indicates the key type (see <dce/keymgmt.h>).

key_vno
Version number of the new key.

Output

keydata
The generated key data (see <dce/keymgmt.h>).

status
The completion status.

DESCRIPTION
The sec_key_mgmt_gen_rand_key( ) routine generates a new random key for a specified key type.
This routine does not actually change any keys, either locally or remotely, though the generated
key is suitable for use with sec_key_mgmt_set_key( ) and sec_key_mgmt_change_key( ).

The storage for keydata is allocated dynamically; this storage may be freed with the
sec_key_mgmt_free_key( ) function.

As an initialisation requirement (to ‘‘seed the random number generator’’), the caller of this
routine must have previously made a successful protected RPC call (where ‘‘successful’’ is to be
interpreted in the sense of the caller’s security runtime library; that is, it is allowed to have failed
‘‘on the network’’ or ‘‘at the server’’).

ERRORS
sec_key_mgmt_e_not_implemented, sec_s_no_key_seed, sec_s_no_memory, error_status_ok.

724 CAE Specification (1997)



Key Management API sec_key_mgmt_gen_rand_key( )

SEE ALSO
Functions: sec_key_mgmt_change_key( ), sec_key_mgmt_set_key( ).

Part 3 Security Application Programming Interface 725



sec_key_mgmt_get_key( ) Key Management API

NAME
sec_key_mgmt_get_key — Retrieve a principal’s key from local storage.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_get_key(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
unsigned32 key_vno ,
void ** keydata ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for this key.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal to whom the key belongs.

key_vno
The version number of the desired key.

Output

keydata
The returned key data (see <dce/keymgmt.h>).

status
The completion status.

DESCRIPTION
The sec_key_mgmt_get_key( ) routine retrieves the specified key from the local key store.

The memory for keydata is dynamically allocated, and is to be freed by sec_key_mgmt_free_key( ).

ERRORS
error_status_ok, sec_key_mgmt_e_authn_invalid, sec_key_mgmt_e_key_unavailable,
sec_key_mgmt_e_unauthorized, sec_s_no_memory.

SEE ALSO
Functions: sec_key_mgmt_free_key( ).

726 CAE Specification (1997)



Key Management API sec_key_mgmt_get_next_key( )

NAME
sec_key_mgmt_get_next_key — Retrieve key indicated by cursor from the local key storage.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_get_next_key(
void * cursor ,
idl_char ** principal_name ,
unsigned32 * key_vno ,
void ** keydata ,
error_status_t * status );

PARAMETERS

Input

cursor
The current retrieval position in the local key storage.

Output

principal_name
Name of the principal associated with the retrieved key.

key_vno
The version number of the extracted key.

keydata
The retrieved key data (see <dce/keymgmt.h>).

status
The completion status.

DESCRIPTION

The sec_key_mgmt_get_next_key( ) routine retrieves the key indicated by the cursor in the local
key store, and updates the cursor to point to the next key. The entire local key store can be
scanned by a series of calls to this routine.

ERRORS
error_status_ok, sec_key_mgmt_e_key_unavailable, sec_key_mgmt_e_unauthorized,
sec_s_no_memory.

SEE ALSO
Functions: sec_key_mgmt_get_key( ), sec_key_mgmt_initialize_cursor( ).

Part 3 Security Application Programming Interface 727



sec_key_mgmt_get_next_kvno( ) Key Management API

NAME
sec_key_mgmt_get_next_kvno — Retrieve the next eligible key version number for a key.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_get_next_kvno(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
void * keytype ,
unsigned32 * key_vno ,
unsigned32 * next_key_vno ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for this key.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal associated with the key.

keytype
Indicates the key type (see <dce/keymgmt.h>).

Input/Output

key_vno
The current version number of the key. Specifying NULL prevents this value from being
returned.

next_key_vno
The next eligible version number for the key. Specifying NULL prevents this value from
being returned.

Output

status
The completion status.

DESCRIPTION
The sec_key_mgmt_get_next_kvno ( ) routine returns the current and next eligible version numbers
for a key from the registry server (not from the local key table).

ERRORS
error_status_ok, sec_key_mgmt_e_authn_invalid, sec_key_mgmt_e_key_unavailable,
sec_key_mgmt_e_unauthorized, sec_rgy_object_not_found, sec_rgy_server_unavailable.

SEE ALSO
Protocols: rs_acct_lookup ( ).

728 CAE Specification (1997)



Key Management API sec_key_mgmt_initialize_cursor( )

NAME
sec_key_mgmt_initialize_cursor — Initialise cursor in local key store.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_initialize_cursor(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
void * keytype ,
void ** cursor ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for this key.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal whose key is to be changed.

keytype
Indicates the key type (see <dce/keymgmt.h>).

Output

cursor
The returned cursor value.

status
The completion status.

DESCRIPTION
The sec_key_mgmt_initialize_cursor( ) routine initialises the cursor in the local key store. This
prepares the cursor for a scan of the local key store via a series of calls to
sec_key_mgmt_get_next_key( ).

The storage for the cursor information is allocated dynamically, so the returned pointer actually
indicates a pointer to the cursor value. The storage for this data may be freed with the
sec_key_mgmt_release_cursor( ) routine.

ERRORS
error_status_ok, sec_key_mgmt_e_authn_invalid, sec_key_mgmt_e_unauthorized,
sec_s_no_memory.

SEE ALSO
Functions: sec_key_mgmt_get_next_key( ), sec_key_mgmt_release_cursor( ).

Part 3 Security Application Programming Interface 729



sec_key_mgmt_manage_key( ) Key Management API

NAME
sec_key_mgmt_manage_key — Automatically change a principal’s key on a periodic basis.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_manage_key(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for this key.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal whose key is to be managed.

Output

status
The completion status.

DESCRIPTION
The sec_key_mgmt_manage_key( ) routine changes (both locally and remotely) the specified
principal’s key on a periodic basis, as determined by the local cell’s policy. It runs indefinitely,
never returning during normal operation (and therefore should be invoked only from a
dedicated ‘‘key management thread’’).

Conceptually, this routine operates as follows (this description imposes no requirements on
implementations). First it queries the login context to determine the password expiration date
that applies to the named principal. It then idles until a ‘‘short time’’ (implementation-
dependent) before the current key is due to expire, and then calls sec_key_mgmt_gen_rand_key( )
(or similar functionality), thereby changing both the local key store and the RS datastore to a
new random key. This routine may also call sec_key_mgmt_garbage_collect ( ) (or similar
functionality) as needed to discard unusable keys from the local key store.

ERRORS
error_status_ok, sec_rgy_object_not_found, sec_key_mgmt_e_authn_invalid,
sec_key_mgmt_e_key_unavailable, sec_key_mgmt_e_key_unsupported,
sec_key_mgmt_e_unauthorized, sec_rgy_server_unavailable.

SEE ALSO
Functions: sec_key_mgmt_change_key ( ), sec_key_mgmt_gen_rand_key( ),
sec_key_mgmt_garbage_collect ( ).

730 CAE Specification (1997)



Key Management API sec_key_mgmt_release_cursor( )

NAME
sec_key_mgmt_release_cursor — Release memory used by a cursor.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_release_cursor(
void ** cursor ,
error_status_t * status );

PARAMETERS

Input

cursor
Cursor value for which the memory is to be released.

Output

status
The completion status.

DESCRIPTION
The sec_key_mgmt_release_cursor( ) routine releases any memory allocated for the indicated
cursor.

ERRORS
error_status_ok, sec_key_mgmt_e_unauthorized.

SEE ALSO
Functions: sec_key_mgmt_initialize_cursor ( ).

Part 3 Security Application Programming Interface 731



sec_key_mgmt_set_key( ) Key Management API

NAME
sec_key_mgmt_set_key — Insert a key value into local storage.

SYNOPSIS
#include <dce/keymgmt.h>

void sec_key_mgmt_set_key(
sec_key_mgmt_authn_service authn_service ,
void * get_key_fn_arg ,
idl_char * principal_name ,
unsigned32 key_vno ,
void * keydata ,
error_status_t * status );

PARAMETERS

Input

authn_service
Identifies the authentication service appropriate for this key.

get_key_fn_arg
Key acquisition routine argument (see <dce/keymgmt.h>).

principal_name
Name of the principal associated with the key to be set.

key_vno
Version number of the key to be set.

keydata
The key to be stored (see <dce/keymgmt.h>).

Output

status
The completion status.

DESCRIPTION
The sec_key_mgmt_set_key( ) routine sets a specified key value in local key storage. This routine
does not update the RS.

There exist circumstances in which a server may only wish to change its key in the local key
storage, and not in the RS datastore. For one example, when a new server principal is created, its
initial key must be set in local key store ‘‘manually’’ (that is, via sec_key_mgmt_set_key( )). For
another example, a database system may have several replicas of a master database, each
managed by a server running on a different machine. Since these servers together represent only
one ‘‘service’’, they may (depending on policy) all share the same key. This way, a client with a
ticket to use the database can, for example, choose whichever server is least busy. To change the
key of such a replicated ‘‘service’’, the master server could signal all the ‘‘slave’’ (‘‘secondary’’)
servers to change the current key in their local key storage. Each of them would use
sec_key_mgmt_set_key( ) (which does not update the key in the RS). Once all the slaves have
complied, the master server can then change its own local key and the RS key.

The storage for keydata is allocated dynamically; this storage may be freed with
sec_key_mgmt_free_key( ).

732 CAE Specification (1997)



Key Management API sec_key_mgmt_set_key( )

ERRORS
error_status_ok, sec_key_mgmt_e_authn_invalid, sec_key_mgmt_e_key_unavailable,
sec_key_mgmt_e_key_unsupported, sec_key_mgmt_e_key_version_ex,
sec_key_mgmt_e_unauthorized.

SEE ALSO
Functions: sec_key_mgmt_change_key ( ), sec_key_mgmt_gen_rand_key( ).

Part 3 Security Application Programming Interface 733



Key Management API

734 CAE Specification (1997)



Chapter 19

Login API

19.1 Introduction
The routines in the Login API are distinguished with names having the prefix ‘‘sec_login_’’.

Background is given in Chapter 1, especially Section 1.15 on page 71.

Part 3 Security Application Programming Interface 735



<dce/sec_login.h> Login API

NAME
<dce/sec_login.h> — Header for sec_login API.

SYNOPSIS
#include <dce/sec_login.h>

DESCRIPTION

Data Types

The following data types (listed in alphabetical order) are used in sec_login API.

enum sec_login_auth_src_t
Indicates the source of authentication or certification (that is, the ‘‘certification authority’’)
of a login context. The following values are currently registered:

sec_login_auth_src_network
Login context certified by ‘‘network authority’’ (that is, KDS/PS, in ‘‘network TCB’’).
Such a login context contains usable network credentials; that is, it can be used to make
protected RPCs to any other DCE subject.

sec_login_auth_src_local
Login context certified by ‘‘local authority’’ (that is, local TCB). Such a login context
does not contain usable network credentials; that is, it can be used to make protected
RPCs only within the context of the local TCB (that is, only to subjects represented by
other processes co-located on the same host as the caller).

unsigned32 sec_login_flags_t
A flag word describing attributes of a login context. The following flag is currently
registered:

sec_login_credentials_private
This login context is restricted to the current process. If this flag is not set, this login
context may be shared with other processes (via sec_login_export_context ( ) and
sec_login_import_context ( )).

Additionally, the value sec_login_no_flags of sec_login_flags_t indicates that no flags are
set.

idl_void_p_t sec_login_handle_t
This is a pointer to a data structure representing an account’s (‘‘network’’) login context (the
pointed-to structure is not further specified; that is, sec_login_handle_t is an ‘‘opaque
pointer’’).

Conceptually, the login context contains a copy of all the account’s information contained in
the RS datastore relevant to the accounts operating in a DCE security environment (as
specified in this document), appropriately protected. In the case of the Kerberos
authentication service (the only authentication service currently supported by DCE), a login
context conceptually contains, among other things, TGTs and PTGTs (targeted to the
account’s local KDS as well as to remote KDSs) — also referred to colloquially as ‘‘network
credentials’’.

struct sec_login_net_info_t
Indicates certain ‘‘network information’’ associated with a login context. It includes the
following fields:

sec_id_pac_t pac
The login context’s PAC.

736 CAE Specification (1997)



Login API <dce/sec_login.h>

unsigned32 acct_expiration_date
The login context’s account expiration date (measured in seconds from midnight
January 1, 1970 UTC).

unsigned32 passwd_expiration_date
The login context’s long-term key expiration date (measured in seconds from midnight
January 1, 1970 UTC).

unsigned32 identity_expiration_date
The login context’s expiration date (measured in seconds from midnight January 1,
1970 UTC). Conceptually, this is the expiration date of the TGT to the local KDS held in
the login context.

A value of 0 for any of the above expiration dates means ‘‘forever’’; that is, the information
does not expire — it remains usable indefinitely.

idl_void_p_t sec_login_passwd_t
Pointer to data structure (whose internal structure is not further specified; that is,
sec_login_passwd_t is an ‘‘opaque pointer’’) representing a password structure, used for
local host purposes.

The detailed content of this structure is implementation-dependent. As an example, on
POSIX-compliant operating systems, it will typically contain fields such as, or similar to, the
following:

char *pw_name
User’s name.

char *pw_passwd
Encrypted password.

int pw_uid
User’s POSIX UID (local host user identity).

int pw_gid
User’s POSIX GID (local host principal group identity).

time_t pw_change
Password expiration date.

char *pw_gecos
User’s fullname (or other account information).

char *pw_dir
Home directory.

char *pw_shell
Default shell.

time_t pw_expire
Account expiration date.

struct sec_login_tkt_info_t
The structure of optional AS ticket request flags and associated data. It includes the
following fields:

sec_login_tkt_flags_t options
The types of ticket options (requested). The options are listed in the Constants section
for type sec_login_tkt_flags_t.

Part 3 Security Application Programming Interface 737



<dce/sec_login.h> Login API

sec_timeval_period_t postdated_dormanttime
A time period expressed in seconds relative to some other well known base time. In
this instance, it indicates the dormant time to be permitted. If the ticket optionf1 field
specifies a postdated ticket (flag sec_login_tkt_postdated is set), this field must be
specified.

sec_timeval_period_t renewable_lifetime
The renewable lifetime of the ticket if the options field specifies a renewable ticket. It
must be specified if a renewable ticket is being requested (if the
sec_login_tkt_renewable flag is set in the options field).

sec_timeval_period_t lifetime
A non-default ticket lifetime that is specified (in seconds) and which must be specified
if a non-default ticket lifetime (sec_login_tkt_lifetime flag is set in the options field.

Constants

The following constants are used in sec_login_ calls:

sec_login_handle_t sec_login_default_handle
The value of a login context handle before setup or validation.

sec_login_flags_t sec_login_no_flags
No flags are set.

sec_login_flags_t sec_login_credentials_private
Restricts the validated network credentials to the current process. If this flag is not set,
it is permissible to share credentials with descendents of current process.

sec_login_flags_t sec_login_external_tgt
Specifies that externally obtained TGTs are to be used. This is a simple proxy
mechanism.

sec_login_flags_t sec_login_machine_princ
Specifies that the login context is being created or validated by the machine principal.

In addition to those already listed above, the following constants are used in sec_login_
calls to request various attributes associated with tickets (TGTs):

sec_login_tkt_flags_t sec_login_tkt_renewable
Request for a renewable ticket.

sec_login_tkt_flags_t sec_login_tkt_postdated
Request for a postdated ticket.

sec_login_tkt_flags_t sec_login_tkt_allow_postdate
Permit postdated tickets to be used.

sec_login_tkt_flags_t sec_login_tkt_proxiable
Permit proxiable tickets to be used.

sec_login_tkt_flags_t sec_login_tkt_forwardable
Request for a forwardable ticket.

sec_login_tkt_flags_t sec_login_tkt_renewable_ok
Instructions to accept a renewable ticked if a real ticket cannot be granted.

sec_login_tkt_flags_t sec_login_tkt_lifetime
Request for a non-default ticket lifetime.

738 CAE Specification (1997)



Login API <dce/sec_login.h>

Status Codes

The following status codes, listed in alphabetical order, are used in sec_login calls. The
status codes used in delegation are listed separately after this list:

error_status_ok
Routine completed successfully.

sec_login_s_acct_invalid
Account is invalid.

sec_login_s_already_valid
Login context has already been validated.

sec_login_s_auth_local
Operation not valid on local context.

sec_login_s_config
Bad configuration file (or SCD could not validate the TGT).

sec_login_s_context_invalid
Context has not been validated.

sec_login_s_default_use
Illegal use of default sec_login handle.

sec_login_s_groupset_invalid
The group set is not valid.

sec_login_s_handle_invalid
Context handle not valid.

sec_login_s_info_not_avail
Information not available.

sec_login_s_internal_error
Internal error (for example, unexpected violation of internal invariants, I/O problems,
and so on).

sec_login_s_no_current_context
No currently established network identity for which context exists.

sec_login_s_no_memory
No memory available.

sec_login_s_not_certified
Login context is (validated but) not certified.

Note: This status value is considered ‘‘advisory’’ only (advising the caller that the
login context in use is not certified). Routines that return this status value
are not considered to have ‘‘failed’’ (unless the caller requires a certified
login context); in particular, valid data may be returned to the caller with
this status value.

sec_login_s_null_password
Password is a NULL password.

sec_login_s_privileged
Caller is not ‘‘privileged’’, in some implementation-specific (local operating system)
sense.

Part 3 Security Application Programming Interface 739



<dce/sec_login.h> Login API

The routines currently specified in this chapter that can return this status value are the
following: sec_login_init_first( ), sec_login_setup_first( ), sec_login_valid_and_cert_ident ( ),
sec_login_validate_first( ). Thus, these routines fail unless the caller is ‘‘privileged’’ (in a
local-operating-system sense that must be documented in implementation-specific
documentation).

In the case of POSIX-compliant operating systems, the ‘‘classical’’ interpretation of
‘‘privileged’’ is that the caller’s effective POSIX UID is 0 (but note that this ‘‘classical’’
interpretation is undergoing transformation as POSIX standardisation progresses).
Thus on such systems, implementations of these routines fail unless the caller has
effective POSIX UID 0.

sec_login_s_refresh_ident_bad
This indicates that the calling identity has changed since the login context was created
or last refreshed, in one of the following senses:

1. principal UUID or primary group UUID has changed

2. groupset UUIDs have been added to. (Deletions from the groupset are okay; if
the intersection of the old and new groupsets is empty, the refreshed context will
have an empty groupset.)

sec_login_s_unsupp_passwd_type
The password is an unsupported type.

Status Codes Specific to Delegation

The following status codes, listed in alphabetical order, are used in sec_login calls dealing
with delegation:

error_status_ok
Routine completed successfully.

err_sec_login_invalid_delegate_restriction
This self-descriptive status code is reserved for future use.

err_sec_login_invalid_target_restriction
This self-descriptive status code is reserved for future use.

err_sec_login_invalid_opt_restriction
This self-descriptive status code is reserved for future use.

err_sec_login_invalid_req_restriction
This self-descriptive status code is reserved for future use.

sec_login_s_compound_delegate
Login context already specifies a delegation chain.

sec_login_s_default_use
Invalid use of default sec_login handle

sec_login_s_invalid_context
Context has not been validated. (Not a valid login context.)

sec_login_s_invalid_compat_mode
Invalid compatibility mode selection.

sec_cred_s_invalid_cursor
Invalid credential cursor.

740 CAE Specification (1997)



Login API <dce/sec_login.h>

sec_login_s_invalid_deleg_type
Invalid delegation type selection.

sec_login_s_deleg_not_enabled
Delegation has not been enabled.

sec_login_s_no_memory
No memory available (Unable to allcoate memory).

sec_cred_s_no_more_entries
No more entries available.

Part 3 Security Application Programming Interface 741



sec_login_become_delegate( ) Login API

NAME
sec_login_become_delegate — Causes an intermediate server to become a delegate in
traced delegation chain

SYNOPSIS

#include <dce/sec_login.h>

sec_login_handle_t sec_login_become_delegate (
rpc_authz_cred_handle_t callers_identity ,
sec_login_handle_t my_login_context ,
sec_id_delegation_type_t delegation_type_permitted ,
sec_id_restriction_set_t * delegate_restrictions ,
sec_id_restriction_set_t * target_restrictions ,
sec_id_opt_req_t * optional_restrictions ,
sec_id_opt_req_t * required_restrictions ,
sec_id_compatibility_mode_t compatibility_mode ,
error_status_t * status );

PARAMETERS

Input

callers_identity
A handle of type rpc_authz_cred_handle_t to the authenticated identity of the
previous delegate in the delegation chain. The handle is supplied by the
rpc_binding_inq_auth_caller( ) call.

my_login_context
A value of sec_login_handle_t that provides an opaque handle to the identity of
the client that is becoming the intermediate delegate. The sec_login_handle_t that
specifies the client’s identity is supplied as output of the following calls:

• sec_login_get_current_context( ), if the client inherited the identity of the current
context

• The sec_login_setup_identity( ) and the sec_login_validate_identity( ) pair that
together establish an authenticated identity if a new identity was established

Note that this identity specified by sec_login_handle_t must be a simple login
context; it cannot be a compound identity created by a previous
sec_login_become_delegate( ) call.

delegation_type_permitted
A value of sec_id_delegation_type_t that specifies the type of delegation to be
enabled. The types available are as follows:

sec_id_deleg_type_none
No delegation.

sec_id_deleg_type_traced
Traced delegation.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation.

Note that the initiating client sets the type of delegation. If it is set as traced, all
delegates must also specify traced delegation; they cannot specify simple

742 CAE Specification (1997)



Login API sec_login_become_delegate( )

delegation. The same is true if the initiating client sets the delegation type as
simple; all subsequent delegates must also specify simple delegation. The
intermediate delegates can, however, specify no delegation to indicate that the
delegation chain can proceed no further.

delegate_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that can act as
delegates for the intermediate client identified by my_login_context. These servers
are added to delegates permitted by the delegate_restrictions parameter of the
sec_login_become_initiator( ) call.

target_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that can act as
targets for the intermediate client identified by my_login_context. These servers are
added to targets specified by the target_restrictions parameter of the
sec_login_become_initiator( ) call.

optional_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined optional
restrictions that apply to the intermediate client identified by my_login_context.
These restrictions are added to the restrictions identified by the optional_restrictions
parameter of the sec_login_become_initiator( ) call.

required_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined required
restrictions that apply to the intermediate client identified by my_login_context.
These restrictions are added to the restrictions identified required_restrictions
parameter of the sec_login_become_initiator( ) call.

compatibility_mode
A value of sec_id_compatibility_mode_t that specifies the compatibility mode to
be used when the intermediate client operates on pre-1.1 servers. The modes
available are as follows:

sec_id_compat_mode_none
Compatibility mode is off.

sec_id_compat_mode_initiator
Compatibility mode is on. The pre-1.1 PAC data is extracted from the EPAC
of the initiating client.

sec_id_compat_mode_caller
Compatibility mode is on. The pre-1.1 PAC data extracted from the EPAC of
the last client in the delegation chain.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

Part 3 Security Application Programming Interface 743



sec_login_become_delegate( ) Login API

DESCRIPTION

The sec_login_become_delegate( ) is used by intermediate servers to become a delegate for
the client identified by callers_identity. The routine returns a new login context (of type
sec_login_handle_t) that carries delegation information. This information includes the
delegation type, delegate and target restrictions, and any application-defined optional
and required restrictions.

The new login context created by this call can then used to to set up authenticated rpc
with an intermediate or target server using the rpc_binding_set_auth_info( ) call.

Any delegate, target, required, or optional restrictions specified in this call are added to
the restrictions specified by the initiating client and any intermediate clients.

The sec_login_become_delegate( ) call is run only if the initiating client enabled traced
delegation by setting the delegation_type_permitted parameter in the
sec_login_become_initiator( ) call to sec_id_deleg_type_traced.

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

err_sec_login_invalid_delegate_restriction

err_sec_login_invalid_target_restriction

err_sec_login_invalid_opt_restriction

err_sec_login_invalid_req_restriction

sec_login_s_invalid_context

sec_login_s_compound_delegate

sec_login_s_invalid_deleg_type

sec_login_s_invalid_compat_mode

sec_login_s_deleg_not_enabled

error_status_ok

RELATED INFORMATION

Functions: rpc_binding_inq_auth_caller ( ), sec_login_become_impersonator ( ),
sec_login_become_initiator ( ), sec_login_get_current_context ( ), sec_login_setup_identity ( ),
sec_login_validate_identity ( ).

744 CAE Specification (1997)



Login API sec_login_become_impersonator( )

NAME
sec_login_become_impersonator — Causes an intermediate server to become a
delegate in a simple delegation chain

SYNOPSIS

#include <dce/sec_login.h>

sec_login_handle_t sec_login_become_impersonator (
rpc_authz_cred_handle_t callers_identity ,
sec_id_delegation_type_t delegation_type_permitted ,
sec_id_restriction_set_t * delegate_restrictions ,
sec_id_restriction_set_t * target_restrictions ,
sec_id_opt_req_t * optional_restrictions ,
sec_id_opt_req_t * required_restrictions ,
error_status_t * status );

PARAMETERS

Input

callers_identity
A handle of type rpc_authz_cred_handle_t to the authenticated identity of the
previous delegate in the delegation chain. The handle is supplied by the
rpc_binding_inq_auth_caller( ) call.

delegation_type_permitted
A value of sec_id_delegation_type_t that specifies the type of delegation to be
enabled. The types available are as follows:

sec_id_deleg_type_none
No delegation.

sec_id_deleg_type_traced
Traced delegation.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation.

The initiating client sets the type of delegation. If it is set as traced, all delegates
must also specify traced delegation; they cannot specify simple delegation. The
same is true if the initiating client sets the delegation type as simple; all subsequent
delegates must also specify simple delegation. The intermediate delegates can,
however, specify no delegation to indicate that the delegation chain can proceed
no further.

delegate_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that can act as
delegates for the client becoming the delegate. These servers are added to the
delegates permitted by the delegate_restrictions argument of the
sec_login_become_initiator( ) call

target_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that can act as
targets for the client becoming the delegate. These servers are added to targets
specified by the target_restrictions argument of the sec_login_become_initiator( ) call.

Part 3 Security Application Programming Interface 745



sec_login_become_impersonator( ) Login API

optional_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined optional
restrictions that apply to the client becoming the delegate. These restrictions are
added to the restrictions identified by the optional_restrictions argument of the
sec_login_become_initiator( ) call.

required_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined required
restrictions that apply to the client becoming the delegate. These restrictions are
added to the restrictions identified required_restrictions argument of the
sec_login_become_initiator( ) call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The sec_login_become_impersonator( ) is used by intermediate servers to become a
delegate for the client identified by callers_identity. The routine returns a new login
context (of type sec_login_handle_t) that carries delegation information. This
information includes the delegation type, delegate, and target restrictions, and any
application-defined optional and required restrictions. The new login context created
by this call can then used to to set up authenticated rpc with an intermediate or target
server using the rpc_binding_set_auth_info( ) call. The effective optional and required
restrictions are the union of the optional and required restrictions specified in this call
and specified by the initiating client and any intermediate clients. The effective target
and delegate restrictions are the intersection of the target and delegate restrictions
specified in this call and specified by the initiating client and any intermediate clients.
The sec_login_become_impersonator( ) call is call is run only if the initiating client enabled
simple delegation by setting the delegation_type_permitted argument in the
sec_login_become_initiator( ) call to sec_id_deleg_type_simple.

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

err_sec_login_invalid_delegate_restriction

err_sec_login_invalid_target_restriction

err_sec_login_invalid_opt_restriction

err_sec_login_invalid_req_restriction

sec_login_s_invalid_deleg_type

sec_login_s_invalid_compat_mode

sec_login_s_deleg_not_enabled

error_status_ok

SEE ALSO
Functions: rpc_binding_inq_auth_caller ( ), sec_login_become_initiator ( ).

746 CAE Specification (1997)



Login API sec_login_become_impersonator( )

Part 3 Security Application Programming Interface 747



sec_login_become_initiator( ) Login API

NAME
sec_login_become_initiator — Constructs a new login context that enables delegation
for the calling client

SYNOPSIS

#include <dce/sec_login.h>

sec_login_handle_t sec_login_become_initiator (
sec_login_handle_t my_login_context ,
sec_id_delegation_type_t delegation_type_permitted ,
sec_id_restriction_set_t * delegate_restrictions ,
sec_id_restriction_set_t * target_restrictions ,
sec_id_opt_req_t * optional_restrictions ,
sec_id_opt_req_t * required_restrictions ,
sec_id_compatibility_mode_t compatibility_mode ,
error_status_t * status );

PARAMETERS

Input

my_login_context
A value of sec_login_handle_t that provides an opaque handle to the identity of
the client that is enabling delegation. The sec_login_handle_t that specifies the
client’s identity is supplied as output of the following calls:

• sec_login_get_current_context( ) if the client inherited the identity of the current
context

• The sec_login_setup_identity( ) and the sec_login_validate_identity( ) pair that
together establish an authentiated identity if a new identity was established

delegation_type_permitted
A value of sec_id_delegation_type_t that specifies the type of delegation to be
enabled. The types available are as follows:

sec_id_deleg_type_none
No delegation.

sec_id_deleg_type_traced
Traced delegation.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation.

Note each subsequent intermediate delegate of the delegation chain started by the
initiating client must set the delegation type to traced if the initiating client set it to
traced or to simple if the initiating client set it to simple. Intermediate delegates,
however, can set the delegation type to no delegation to indicate that the
delegation chain can proceed no further.

delegate_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that can act as
delegates for the client initiating delegation.

target_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that can act as
targets for the client initiating delegation.

748 CAE Specification (1997)



Login API sec_login_become_initiator( )

optional_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined optional
restrictions that apply to the client initiating delegation.

required_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined required
restrictions that apply to the client initiating delegation.

compatibility_mode
A value of sec_id_compatibility_mode_t that specifies the compatibility mode to
be used when the initiating client interacts with pre-1.1 servers. The modes
available are as follows:

sec_id_compat_mode_none
Compatibility mode is off.

sec_id_compat_mode_initiator
Compatibility mode is on. The pre-1.1 PAC data is extracted from the EPAC
of the initiating client.

sec_id_compat_mode_caller
Compatibility mode is on. The pre-1.1 PAC data extracted from the EPAC of
the last client in the delegation chain.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_login_become_initiator( ) enables delegation for the calling client by constructing
a new login context (in a sec_login_handle_t) that carries delegation information. This
information includes the delegation type, delegate, and target restrictions, and any
application-defined optional and required restrictions. The new login context is then
used to to set up authenticated rpc with an intermediate server using the
rpc_binding_set_auth_info( ) call. The intermediary can continue the delegation chain by
calling sec_login_become_delegate( ) (if the delegation type is sec_id_deleg_type_traced)
or sec_login_become_impersonator( ) (if the delegation type is
sec_id_deleg_type_impersonation).

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

err_sec_login_invalid_delegate_restriction

err_sec_login_invalid_target_restriction

err_sec_login_invalid_opt_restriction

err_sec_login_invalid_req_restriction

error_status_ok

sec_login_s_invalid_compat_mode

Part 3 Security Application Programming Interface 749



sec_login_become_initiator( ) Login API

sec_login_s_invalid_context

sec_login_s_invalid_deleg_type

SEE ALSO
Functions: sec_login_become_delegate ( ), sec_login_become_impersonator ( ),
sec_login_get_current_context ( ), sec_login_setup_identity ( ), sec_login_validate_identity ( ).

750 CAE Specification (1997)



Login API sec_login_certify_identity( )

NAME
sec_login_certify_identity — Certify a (validated) login context.

SYNOPSIS

#include <dce/sec_login.h>

boolean32 sec_login_certify_identity(
sec_login_handle_t login_context ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context to be certified.

Output

status
The completion status.

DESCRIPTION
The sec_login_certify_identity ( ) routine certifies a (validated) login context; that is,
demonstrates its trustworthiness (for the purpose of basing access decisions on
information carried in it) to parties other than the principal/account to which it is
associated.

In typical implementations this is accomplished by using the login context to execute a
protected RPC (of authentication type rpc_c_authn_dce_secret, of authorisation type
rpc_c_authz_dce, and of protection level rpc_c_protect_level_pkt_integ) to the local
host’s SCD. If an implementation of sec_login_certify_identity ( ) does not support the
same strong guarantee of ‘‘infallible’’ certification that sec_login_valid_and_cert_ident ( )
does, this fact (as well as the information about the strength of the guarantee that
actually is supported) must be noted in the implementation’s documentation of
sec_login_certify_identity ( ). (See Section 1.15.2 on page 77 for details.)

Typically, this routine is called by a host’s login program, which uses the information
contained in the login context to set security attributes of the logging-in user
(principal/account) that will be subsequently used for access control to the local host’s
resources (such as computing power) — see sec_login_get_pwent ( ),
sec_login_get_groups ( ) and sec_login_get_expiration ( ).

In typical implementations, if this operation succeeds, it updates local security
registration information on the local host (information derived from information in the
(now-certified) login context). This locally held information can be used for subsequent
logins if the RS is unreachable (for example, because of a network partition), though
such information is usable only for access to local resources (that is, it endows a process
with local identity information, but not with a login context that can be used for
protected RPCs).

RETURN VALUES

The routine returns a non-0 (TRUE) value if the certification was successful, and 0
(FALSE) otherwise.

Part 3 Security Application Programming Interface 751



sec_login_certify_identity( ) Login API

ERRORS

error_status_ok

sec_login_s_config

sec_login_s_context_invalid

sec_login_s_default_use

SEE ALSO
Functions: sec_login_get_pwent ( ), sec_login_get_groups ( ), sec_login_get_expiration ( ),
sec_login_valid_and_cert_ident ( ).

Protocols: scd_protected_noop ( ).

752 CAE Specification (1997)



Login API sec_login_cred_get_delegate( )

NAME
sec_login_cred_get_delegate — Returns a handle to the privilege attributes of an
intermediary in a delegation chain

SYNOPSIS

#include <dce/sec_login.h>

sec_cred_pa_handle_t sec_login_cred_get_delegate (
sec_login_handle_t login_context ,
sec_cred_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input

login_context
A value of sec_login_handle_t that provides an opaque handle to a login context
for which delegation has been enabled. The sec_login_handle_t that specifies the
identity is supplied as output of the sec_login_become_delegate( ) call.

Input/Output

cursor
As input, a pointer to a cursor of type sec_cred_cursor_t that has been initialized
by the sec_login_cred_init_cursor( ) call. As an output argument, cursor is a pointer
to a cursor of type sec_cred_cursor_t that is positioned past the principal whose
privilege attributes have been returned in this call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The sec_login_cred_get_delegate( ) routine returns a handle of type sec_login_handle_t to
the privilege attributes of an intermediary in a delegation chain that performed an
authenticated RPC operation.

This call is used by clients. Servers use the sec_cred_get_delegate( ) routine to return the
privilege attribute handle of an intermediary in a delegation chain.

The login context identified by login_context contains all members in the delegation
chain. This call returns a handle (sec_cred_pa_handle_t) to the privilege attributes of
one of the delegates in the login context. The sec_cred_pa_handle_t returned by this
call is used in other sec_cred_get_*( ) calls to obtain privilege attribute information for a
single delegate.

To obtain the privilege attributes of each delegate in the credential handle identified by
callers_identity, execute this call until the message sec_cred_s_no_more_entries is
returned.

Before you execute sec_login_cred_get_delegate( ), you must execute a
sec_login_cred_init_cursor( ) call to initialize a cursor of type sec_cred_cursor_t.

Part 3 Security Application Programming Interface 753



sec_login_cred_get_delegate( ) Login API

Use the sec_cred_free_pa_handle( ) and sec_cred_free_cursor( ) calls to free the resources
allocated to the sec_cred_pa_handle_t and cursor.

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

sec_cred_s_invalid_cursor

sec_cred_s_no_more_entries

error_status_ok

SEE ALSO
Functions: sec_cred_get_deleg_restrictions( ), sec_cred_get_delegation_type ( ),
sec_cred_get_extended_attrs( ), sec_cred_get_opt_restrictions ( ), sec_cred_get_pa_date ( ),
sec_cred_get_req_restrictions( ), sec_cred_get_tgt_restrictions( ), sec_cred_get_v1_pac ( ),
sec_login_cred_init_cursor ( ).

754 CAE Specification (1997)



Login API sec_login_cred_get_initiator( )

NAME
sec_login_cred_get_initiator — Returns information about the delegation initiator in a
specified login context

SYNOPSIS

#include <dce/sec_login.h>

sec_cred_pa_handle_t sec_login_cred_get_initiator (
sec_login_handle_t login_context ,
error_status_t * status );

PARAMETERS

Input

login_context
A value of sec_login_handle_t that provides an opaque handle to a login context
for which delegation has been enabled.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_login_cred_get_initiator( ) routine returns a handle of type
sec_cred_pa_handle_t to the privilege attributes of the delegation initiator.

The login context identified by login_context contains all members in the delegation
chain. This call returns a handle (sec_cred_pa_handle_t) to the privilege attributes of
the initiator. The sec_cred_pa_handle_t returned by this call is used in other
sec_cred_get_*( ) calls to obtain privilege attribute information for the initiator single
delegate.

Use the sec_cred_free_pa_handle( ) call to free the resources allocated to the
sec_cred_pa_handle_t handle.

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

sec_login_s_invalid_context

error_status_ok

SEE ALSO
Functions: sec_cred_get_deleg_restrictions( ), sec_cred_get_delegation_type ( ),
sec_cred_get_extended_attrs( ), sec_cred_get_opt_restrictions ( ), sec_cred_get_pa_date ( ),
sec_cred_get_req_restrictions( ), sec_cred_get_tgt_restrictions( ), sec_cred_get_v1_pac ( ).

Part 3 Security Application Programming Interface 755



sec_login_cred_init_cursor( ) Login API

NAME
sec_login_cred_init_cursor — Initializes a sec_cred_cursor_t

SYNOPSIS

#include <dce/sec_cred.h>

void sec_login_cred_init_cursor (
sec_cred_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input/Output

cursor
As input, a pointer to a sec_cred_cursor_t to be initialized. As output, a pointer to
an initialized sec_cred_cursor_t.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The sec_login_cred_init_cursor( ) routine allocates and initializes a cursor of type
sec_cursor_t for use with the sec_login_cred_get_delegate( ) call.

Use the sec_cred_free_cursor( ) call to free the resources allocated to cursor.

ERRORS

sec_cred_s_invalid_cursor

sec_login_s_no_memory

error_status_ok

SEE ALSO
Functions: sec_login_cred_get_delegate ( ).

756 CAE Specification (1997)



Login API sec_login_disable_delegation( )

NAME
sec_login_disable_delegation — Disables delegation for a specified login context

SYNOPSIS

#include <dce/sec_login.h>

sec_login_handle_t *sec_login_disable_delegation (
sec_login_handle_t login_context ,
error_status_t * status );

PARAMETERS

Input

login_context
An opaque handle to login context for which delegation has been enabled.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_login_disable_delegation( ) routine disables delegation for a specified login
context. It returns a new login context of type sec_login_handle_t without any
delegation information, thus preventing any further delegation.

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

sec_login_s_invalid_context

error_status_ok

SEE ALSO
Functions: sec_login_become_delegate ( ), sec_login_become_impersonator ( ),
sec_login_become_initiator ( ).

Part 3 Security Application Programming Interface 757



sec_login_export_context( ) Login API

NAME
sec_login_export_context — Export a login context.

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_export_context (
sec_login_handle_t login_context ,
unsigned32 count_max ,
idl_byte_t advertisement [ ],
unsigned32 * count ,
unsigned32 * count_needed ,
error_status_t * status );

PARAMETERS

Input

login_context
The login context whose advertisement is to be created.

count_max
The maximum length (in bytes) to be returned in advertisement.

Input/Output

advertisement[ ]
Buffer (which is opaque; that is, whose structure and contents are
implementation-dependent), of length at least count_max, to hold the
advertisement of the login context.

Output

count
Number of bytes of advertisement actually occupied by the advertisement of the
login context.

count_needed
If count_max is less than the length (in bytes) of the advertisement of the login
context, the sec_login_s_no_memory status value is returned, and count_needed
indicates the length of the advertisement.

status
The completion status.

DESCRIPTION
The sec_login_export_context ( ) routine exports a login context; that is, creates an
advertisement for it. Such an advertisement consists of information that can be
communicated to other processes and enables them to (potentially) share the login
context. Such sharing is restricted to processes on the local host. The advertisement
can be communicated to other processes (on the local host) by any means desired by
the communicating processes (it need not be a trusted communication path).

In typical implementations, the advertisement of a login context is simply the name of
the login context’s cache file (which is protected by local host security).

758 CAE Specification (1997)



Login API sec_login_export_context( )

ERRORS

error_status_ok

sec_login_s_no_memory

sec_login_s_handle_invalid

sec_login_s_internal_error

sec_login_s_context_invalid

SEE ALSO
Functions: sec_login_import_context ( ).

Part 3 Security Application Programming Interface 759



sec_login_free_net_info( ) Login API

NAME
sec_login_free_net_info — Free memory allocated for network information.

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_free_net_info (
sec_login_net_info_t * net_info );

PARAMETERS

Input/Output

net_info
The network information to be freed.

DESCRIPTION
The sec_login_free_net_info ( ) routine frees memory allocated for a sec_login_net_info_t
structure allocated by sec_login_inquire_net_info ( ).

SEE ALSO
Functions: sec_login_inquire_net_info ( ).

760 CAE Specification (1997)



Login API sec_login_get_current_context( )

NAME
sec_login_get_current_context — Retrieve this process’ current login context.

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_get_current_context (
sec_login_handle_t * login_context ,
error_status_t * status );

PARAMETERS

Output

login_context
The retrieved current login context.

status
The completion status.

DESCRIPTION
The sec_login_get_current_context( ) routine retrieves a process’ current login context.

In typical implementations, this routine returns the login context information contained
in the cache file named by an (implementation-specific) well-known environment
variable (typically, KRB5CCNAME).

ERRORS

error_status_ok

sec_login_s_internal_error

sec_login_s_no_current_context

SEE ALSO
Functions: sec_login_set_context ( ).

Part 3 Security Application Programming Interface 761



sec_login_get_expiration( ) Login API

NAME
sec_login_get_expiration — Retrieve the expiration date of a login context.

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_get_expiration (
sec_login_handle_t login_context ,
unsigned32 * expiration_date ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context whose expiration date is to be retrieved.

Output

expiration_date
The expiration date of the login context (measured in seconds from midnight
January 1, 1970 UTC).

status
The completion status.

DESCRIPTION
The sec_login_get_expiration( ) routine retrieves the expiration_date of a (validated) login
context, which is the date beyond which RPC binding handles annotated with the login
context (in the sense of rpc_binding_set_auth_info( ) in the referenced X/Open DCE RPC
Specification) will fail. (The RPC failure may occur at either RPC invocation time or at
RPC return time, since both are authenticated — this fact is especially interesting in the
case of long-lived RPC operations.)

ERRORS

error_status_ok

sec_login_s_context_invalid

sec_login_s_default_use

sec_login_s_internal_error

sec_login_s_no_current_context

sec_login_s_not_certified

SEE ALSO
Functions: sec_login_refresh_identity ( ).

762 CAE Specification (1997)



Login API sec_login_get_groups( )

NAME
sec_login_get_groups — Retrieve (read) local host group membership information
from a login context

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_get_groups (
sec_login_handle_t login_context ,
unsigned32 * count ,
signed32 ** groups ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context from which group membership information is to be retrieved.

Output

count
Number of local groups in the array groups.

groups
The list of local groups indicated in the login context. (The datatype of groups,
unsigned32, is intended to be converted to a host-specific datatype. For example,
on POSIX-compliant operating systems, it is intended to be converted to the gid_t
datatype.)

status
The completion status.

DESCRIPTION
The sec_login_get_groups( ) routine returns the local group information from a login
context.

The routine works only on previously validated contexts.

ERRORS

error_status_ok

sec_login_s_context_invalid

sec_login_s_default_use

sec_login_s_info_not_avail

sec_login_s_not_certified

sec_rgy_object_not_found

sec_rgy_server_unavailable

SEE ALSO
Functions: sec_rgy_acct_get_projlist ( ), sec_login_get_pwent ( ).

Part 3 Security Application Programming Interface 763



sec_login_get_pwent( ) Login API

NAME
sec_login_get_pwent — Retrieve local host information associated with a login context

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_get_pwent (
sec_login_handle_t login_context ,
sec_login_passwd_t * pwent ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context from which information is to be retrieved.

Output

pwent
The retrieved information.

status
The completion status.

DESCRIPTION
The sec_login_get_pwent ( ) routine retrieves local host-specific information (represented
by an implementation-specific sec_login_passwd_t structure) from a login context.

This routine works only on (validated) login contexts that are explicitly specified (that
is, it doesn’t work on the default login context indicated by NULL).

ERRORS

error_status_ok

sec_login_s_context_invalid

sec_login_s_default_use

sec_login_s_info_not_avail

sec_login_s_not_certified

sec_rgy_object_not_found

sec_rgy_server_unavailable

SEE ALSO
Functions: sec_login_get_groups ( ).

764 CAE Specification (1997)



Login API sec_login_import_context( )

NAME
sec_login_import_context — Import a login context

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_import_context (
unsigned32 count ,
byte advertisement [ ],
sec_login_handle_t * login_context ,
error_status_t * status );

PARAMETERS

Input

count
The length (in bytes) of the advertisement of the login context (contained in
advertisement).

advertisement[ ]
The advertisement of the login context.

Output

login_context
The login context, created from its advertisement.

status
The completion status.

DESCRIPTION
The sec_login_import_context ( ) routine imports a login context; that is, creates a login
context from its advertisement.

In typical implementations, this routine reads the login context’s cache file (whose
name was contained in the login context’s advertisement) into the calling process’s
address space.

ERRORS

error_status_ok

sec_login_s_context_invalid

sec_login_s_default_use

sec_login_s_internal_error

SEE ALSO
Functions: sec_login_export_context ( ).

Part 3 Security Application Programming Interface 765



sec_login_init_first( ) Login API

NAME
sec_login_init_first — Initialise process’s default login context inheritance mechanism

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_init_first (
error_status_t * status );

PARAMETERS

Output

status
The completion status.

DESCRIPTION
The sec_login_init_first( ) routine initialises the calling process’ current login context
inheritance mechanism, thereby making the calling process’ current login context
(potentially) accessible to other processes on the local host (especially those in the
host’s daemon process hierarchy).

In typical implementations, this routine merely records the name of a cache file (not yet
populated — see sec_login_setup_first( )) which is to contain the host
principal/account’s login context in an (implementation-specific) well-known
environment variable (typically, KRB5CCNAME), thereby marking it as the calling
process’ current login context. Child processes thus inherit the host’s default login
context, provided they have access privilege to the cache file, and provided the cache
file is actually populated (by sec_login_setup_first( )).

If the default inheritance mechanism is already initialised, the operation fails.

Typically, this routine is called from a host’s SCD (or from the host’s initial process,
sometimes called init) at boot time to initialise the current login context for inheritance
by the host’s hierarchy of daemon processes.

ERRORS

error_status_ok

sec_login_s_default_use

sec_login_s_privileged

SEE ALSO
Functions: sec_login_setup_first( ), sec_login_validate_first( ).

766 CAE Specification (1997)



Login API sec_login_inquire_net_info( )

NAME
sec_login_inquire_net_info — Retrieve certain network information from login context

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_inquire_net_info (
sec_login_handle_t login_context ,
sec_login_net_info_t * net_info ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context from which network information is to be retrieved.

Output

net_info
The retrieved network information.

status
The completion status.

DESCRIPTION
The sec_login_inquire_net_info ( ) routine returns certain network information
(represented by the sec_login_net_info_t structure) from a login context.

The memory for net_info is dynamically allocated, and can be freed with
sec_login_free_net_info ( ).

ERRORS

error_status_ok

sec_login_s_auth_local

sec_login_s_context_invalid

sec_login_s_internal_error

sec_login_s_no_current_context

sec_login_s_not_certified

SEE ALSO
Functions: sec_login_get_expiration ( ), sec_login_free_net_info ( ).

Part 3 Security Application Programming Interface 767



sec_login_newgroups( ) Login API

NAME
sec_login_newgroups — Restrict group membership information of a login context

SYNOPSIS

#include <dce/sec_login.h>

boolean32 sec_login_newgroups (
sec_login_handle_t login_context ,
sec_login_flags_t flags ,
unsigned32 count ,
sec_id_t groups [ ],
sec_login_handle_t * restricted_login_context ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context whose group membership information is to be changed.

flags
Flag word indicating attributes of the modified login context.

count
Number of local groups in the array groups.

groups[ ]
Array of groups to include in the modified login context.

Output

restricted_login_context
The restricted login context.

status
The completion status.

DESCRIPTION
The sec_login_newgroups( ) routine restricts the group membership information of a
(validated) login context, to, effectively, the intersection of its existing group
membership information and the information supplied in the groups array. Thus,
groups can be viewed as the maximum group membership privilege that will be
claimed by an RPC annotated (see rpc_binding_set_auth_info ( )) with the restricted login
context.

The restricted login context remains validated.

RETURN VALUES
This routine returns non-0 (TRUE) upon success, 0 (FALSE) upon failure.

ERRORS

error_status_ok

sec_login_s_auth_local

sec_login_s_default_use

768 CAE Specification (1997)



Login API sec_login_newgroups( )

sec_login_s_groupset_invalid

SEE ALSO
Functions: sec_login_get_groups ( ).

Part 3 Security Application Programming Interface 769



sec_login_purge_context( ) Login API

NAME
sec_login_purge_context — Purge a login context

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_purge_context (
sec_login_handle_t * login_context ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context to be purged.

Output

status
The completion status.

DESCRIPTION
The sec_login_purge_context ( ) routine purges a login context; that is, unregisters it in the
sense of making it inaccessible to the calling process and to other processes on the local
host.

In typical implementations, this routine frees local memory storage in the current
address space allocated to the specified login context, and deletes the login context’s
on-disk cache file (first overwriting its contents with NULL bytes (that is, all bits reset
to 0), to limit its exposure to compromise). (The login context remains accessible to
those processes that had previously stored it in their address spaces, however.)

ERRORS

error_status_ok

sec_login_s_context_invalid

sec_login_s_default_use

SEE ALSO
Functions: sec_login_set_context ( ), sec_login_release_context ( ).

770 CAE Specification (1997)



Login API sec_login_purge_context_exp( )

NAME
sec_login_purge_context_exp — Destroy expired network credentials

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_purge_context_exp (
unsigned32 count ,
byte buf [ ],
signed32 purge_time ,
error_status_t * status );

PARAMETERS

Input

count
Number of bytes in the buf array. This number specifies the length of buf.

buf[ ]
Buffer containing the expired network credentials.

purge_time
The time at which the credentials are to be purged. The credentials are purged if they have
actually expired before this time.

Output

status
The completion status.

DESCRIPTION
The sec_login_purbe_context_exp ( ) function purges a named set of network credentials
that have expired before a specified time t, the purge_time.

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

error_status_ok
This function returned successfully. The expired network credentials were purged.

sec_login_s_default_use
The login context did not contain expired credentials. No credentials were purged.

SEE ALSO
Functions: sec_login_purge_context ( ).

Part 3 Security Application Programming Interface 771



sec_login_refresh_identity( ) Login API

NAME
sec_login_refresh_identity — Refresh a login context

SYNOPSIS

#include <dce/sec_login.h>

boolean32 sec_login_refresh_identity (
sec_login_handle_t login_context ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context to be refreshed.

Output

status
The completion status.

DESCRIPTION
The sec_login_refresh_identity ( ) routine refreshes a login context; that is, increases its
expiration date to the maximum allowable (depending on local cell policy).

The refreshed login context reflects changes that may have been made to the
principal/account’s RS datastore information, but no other information associated with
the login context will be modified (for example, any list of maximum group
membership privilege set by sec_login_newgroups( ) remains in effect).

The refreshed login context is unvalidated, so it must be validated (with
sec_login_validate_identity ( )) before it is usable.

It is an error to refresh a locally-authenticated context.

ERRORS

error_status_ok

sec_login_s_context_invalid

sec_login_s_default_use

sec_login_s_internal_error

sec_login_s_refresh_ident_bad

sec_rgy_object_not_found

sec_rgy_server_unavailable

SEE ALSO
Functions: sec_login_get_expiration ( ).

772 CAE Specification (1997)



Login API sec_login_release_context( )

NAME
sec_login_release_context — Release a login context

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_release_context (
sec_login_handle_t * login_context ,
error_status_t * status );

PARAMETERS

Input/Output

login_context
Login context to be freed.

Output

status
The completion status.

DESCRIPTION
The sec_login_release_context ( ) routine releases a login context; that is, frees the memory
allocated to it. (This routine does not affect other processes’ accessibility to the login
context).

In typical implementations, this routine frees local memory storage (in the current
address space) allocated to the specified login context, thereby making the login
context inaccessible to the calling process (but it does not access the login context’s
cache file).

ERRORS

error_status_ok

sec_login_s_context_invalid

sec_login_s_default_use

SEE ALSO
Functions: sec_login_setup_identity ( ), sec_login_purge_context ( ).

Part 3 Security Application Programming Interface 773



sec_login_set_context( ) Login API

NAME
sec_login_set_context — Set a login context (including making it current)

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_set_context (
sec_login_handle_t login_context ,
error_status_t * status );

PARAMETERS

Input

login_context
The login context to be set.

Output

status
The completion status.

DESCRIPTION
The sec_login_set_context ( ) routine sets a (validated) login context; that is, registers it in
the sense of making it (potentially) accessible to other processes on the local host, and
makes it the calling process’ current login context.

In typical implementations, this routine writes the login context information to a file
called the login context’s (credential) cache file on the local host (this file contains this
login context’s information only), thereby making it (potentially) accessible to other
processes (provided they know the name of this file and have access privilege to the
file). This routine also records the name of this file in an (implementation-specific)
well-known environment variable (typically, KRB5CCNAME), thereby marking it as
the calling process’ current login context, and (implicitly) passing the file’s name to its
child processes.

ERRORS

error_status_ok

sec_login_s_auth_local

sec_login_s_context_invalid

sec_login_s_default_use

sec_login_s_internal_error

SEE ALSO
Functions: sec_login_get_current_context ( ).

774 CAE Specification (1997)



Login API sec_login_set_extended_attrs( )

NAME
sec_login_set_extended_attrs — Constructs a new login context that contains extended
registry attributes

SYNOPSIS

#include <dce/sec_login.h>

sec_login_handle_t sec_login_set_extended_attrs (
sec_login_handle_t my_login_context ,
unsigned32 num_attributes ,
sec_attr_t attributes [ ],
error_status_t * status );

PARAMETERS

Input

my_login_context
A value of sec_login_handle_t that provides an opaque handle to the identity of
the calling client.

num_attributes
An unsigned 32-bit integer that specifies the number of elements in the attributes
array. The number must be greater than 0.

attributes[ ]
An array of values of type sec_attr_t that specifies the list of attributes to be set in
the new login context.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_login_set_extended_attrs( ) constructs a login context that contains extended
registry attributes that have been established for the object identified by
my_login_context. The attributes themselves must have been established and attached
to the object using the extended registry attribute API. The input attributes[ ] array of
sec_attr_t values should specify the attr_id field for each requested attribute. Since the
lookup is by attribute type ID only, set the attributes.attr_value.attr_encoding field to
sec_attr_enc_void for each attribute. Note that sec_attr_t is an extended registry
attribute data type. You cannot use this call to add extended registry attributes to a
delegation chain. If you pass in a login context that refers to a delegation chain, an
invalid context error will be returned. The routine returns a new login context of type
sec_login_handle_t that includes the attributes specified in the attributes array.

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

sec_login_s_invalid_context

Part 3 Security Application Programming Interface 775



sec_login_set_extended_attrs( ) Login API

error_status_ok

SEE ALSO
Functions: sec_login_become_impersonator ( ), sec_login_set_context ( ),
sec_login_setup_identity ( ), sec_login_validate_identity ( ), sec_rgy_attr_*( )calls.

776 CAE Specification (1997)



Login API sec_login_setup_ first( )

NAME
sec_login_setup_first — Create local host’s current login context

SYNOPSIS

#include <dce/sec_login.h>

boolean32 sec_login_setup_first (
sec_login_handle_t * login_context ,
error_status_t * status );

PARAMETERS

Output

login_context
The (unvalidated) login context associated with the host’s principal/account (self).

status
The completion status.

DESCRIPTION
The sec_login_setup_first( ) routine creates (see the sec_login_setup_identity ( )routine) the
local host’s (unvalidated) current login context; that is, the login context associated
with the host’s principal/account (self).

If the host’s current login context has previously been created (not necessarily
validated) the routine fails.

Typically, this routine is called from a host’s SCD (or from the host’s initial process,
sometimes called init), and inherited by the host’s hierarchy of daemon processes.

This routine does not take a principal/account name as input (as does
sec_login_setup_identity ( )) — it determines the host principal/account’s name in an
implementation-dependent manner.

RETURN VALUES
The routine returns a non-0 (TRUE) upon success, and 0 (FALSE) upon failure.

ERRORS

error_status_ok

sec_login_s_config

sec_login_s_default_use

sec_login_s_no_current_context

sec_login_s_no_memory

sec_login_s_privileged

sec_rgy_object_not_found

sec_rgy_server_unavailable

SEE ALSO
Functions: sec_login_init_first( ), sec_login_setup_identity ( ), sec_login_validate_first( ).

Part 3 Security Application Programming Interface 777



sec_login_setup_identity( ) Login API

NAME
sec_login_setup_identity — Set up a login context for a principal/account

SYNOPSIS

#include <dce/sec_login.h>

boolean32 sec_login_setup_identity (
unsigned_char_p_t principal ,
sec_login_flags_t flags ,
sec_login_handle_t * login_context ,
error_status_t * status );

PARAMETERS

Input

principal
Name of principal/account to which created login context is to refer. (Recall that
an account is uniquely identified by its principal name component.)

flags
Flags indicating properties attributed to created login context.

Output

login_context
The created login context.

status
The completion status.

DESCRIPTION
The sec_login_setup_identity ( ) routine sets up a login context; that is, creates, in the
address space of the calling process, an (unvalidated and uncertified) login context for
the specified principal/account.

A login context created by this routine is not usable for making protected RPCs (see
rpc_binding_set_auth_info ( )) until it has been validated, usually by
sec_login_validate_identity ( ) (see also sec_login_valid_and_cert_identity ( )). In this sense,
sec_login_setup_identity ( ) and sec_login_validate_identity ( ) are the two halves of a single
logical operation: together they collect the data needed to establish a trusted,
authenticated identity. (The rationale for making the routines independent is to make
sure passwords are subjected to minimal exposure, such as sending them unprotected
in a message, or retaining them in local memory for longer than absolutely necessary;
for example, during a long networking delay that might be caused by an attacker.)

The memory storage for the created login context is dynamically allocated (the
sec_login_release_context ( ) function is used to free it).

In typical implementations, in the case of the Kerberos authentication service (the only
authentication service currently supported by DCE), this routine calls a kds_request( )
RPC operation, returning a KDS Response message protected in the long-term key of
the specified principal/account, which cannot therefore be used (much less trusted)
until it has been decrypted (using sec_login_validate_identity ( )). (Note that this routine
only contacts the KDS (of the cell in which the specified principal/account is
registered), not the PS — thus, it manipulates a TGT, not a PTGT.) An alternative
implementation, in environments where holding the password in memory for a longer

778 CAE Specification (1997)



Login API sec_login_setup_identity( )

period of time is not as large a threat, is to postpone the kds_request( ) call until
sec_login_validate_identity ( ) is invoked.

RETURN VALUES
The routine returns non-0 (TRUE) if the login context has been successfully created,
otherwise it returns 0 (FALSE). (In the success case, this return value is redundant with
error_status_ok.)

ERRORS

error_status_ok

sec_login_s_no_memory

sec_login_s_internal_error

sec_rgy_object_not_found

sec_rgy_server_unavailable

SEE ALSO
Functions: sec_login_release_context ( ), sec_login_validate_identity ( ),
sec_login_valid_and_cert_identity ( ).

Protocols: kds_request( ).

Part 3 Security Application Programming Interface 779



sec_login_tkt_request_options( ) Login API

NAME
sec_login_tkt_request_options —

SYNOPSIS

#include <dce/sec_login.h>

void sec_login_tkt_request_options (
sec_login_handle_t login_context ,
sec_login_tkt_info_t *tkt_info ,
error_status_t *status );

PARAMETERS

Input

login_context
A login context handle in the setup or refreshed state. The requested data is placed
in the KRB_REQUEST_INFO portion of the login context upon successful
completion of this function.

tkt_info
(Pointer to) a structure which specifies the types of ticket options requested. If a
renewable or postdated ticket is requested, or if a non-default ticket lifetime is
requested, additional data must be provided in the respective field associated with
the option. These fields are the renewable_lifetime, postdated_dormanttime, or
lifetime fields of the sec_login_tkt_info_t structure, respectively.

Output

status
The completion status.

AS ticket options
The requested options as specified in the options and option-associated fields,
respectively, of the sec_login_tkt_info_t structure.

DESCRIPTION
This function is used by a client to request specific AS ticket options. This optional
function should be called after sec_login_setup_identity( ) or sec_login_refresh_identity( )
and before sec_login_validate_identity( ) or sec_login_valid_and_cert_ident( ).

Input should consist of a login context handle in the setup or refreshed state, and a
structure which specifies the types of ticket options requested. If the user requests a
renewable/postdated ticket, or a non-default ticket lifetime, additional data must be
provided in the renewable_lifetime, postdated_dormanttime, and lifetime fields of
the sec_login_tkt_info_t structure, respectively.

The data is placed in the KRB_REQUEST_INFO portion of the login context. These
options will override the defaults when the ticket is requested at validation time.

FILES

/usr/include/dce/sec_login.idl
The idl file from which dce/sec_login.h was derived.

ERRORS

780 CAE Specification (1997)



Login API sec_login_tkt_request_options( )

error_status_ok

SEE ALSO
Functions: sec_login_refresh_identity ( ), sec_login_setup_identity ( ),
sec_login_validate_identity ( ), sec_login_valid_and_cert_ident ( ).

Part 3 Security Application Programming Interface 781



sec_login_valid_and_cert_ident( ) Login API

NAME
sec_login_valid_and_cert_ident — Simultaneously validate and certify a login context

SYNOPSIS

#include <dce/sec_login.h>

boolean32 sec_login_valid_and_cert_ident (
sec_login_handle_t login_context ,
sec_passwd_rec_t * passwd ,
boolean32 * reset_passwd ,
sec_login_auth_src_t * authn_src ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context to be validated and certified.

Input/Output

passwd
Password record to be used to validate the login context.

Output

reset_passwd
Indicates whether a principal/account’s password has expired.

authn_src
The source of validation (or authentication) of this login context.

status
The completion status.

DESCRIPTION
The sec_login_valid_and_cert_ident( ) routine validates and certifies a login context
(logically combining the operations of sec_login_validate_identity( ) and
sec_login_certify_identity( )), in a manner appropriate for use by privileged processes.

In typical implementations this is accomplished by impersonating the local host’s SCD,
which may be thought of as the local TCB invoking a protected RPC to itself, and is
infallible (that is, completely secure, modulo the security of the local TCB). (See Section
1.15.2 on page 77 for details.)

Upon return, this operation destroys the contents of the input passwd parameter (that is,
overwrites the actual password contained in it with NULL bytes — all bits reset to 0, in
the caller’s address space), thereby reducing its exposure to compromise).

If the network security service is unavailable, a local-host authenticated context is
created, and the authn_src parameter is set to sec_login_auth_src_local (see the
description of this in <dce/sec_login.h>).

RETURN VALUES
The routine returns non-0 (TRUE) if the login identity has been successfully validated
and certified, 0 (FALSE) otherwise.

782 CAE Specification (1997)



Login API sec_login_valid_and_cert_ident( )

ERRORS

error_status_ok

sec_login_s_acct_invalid

sec_login_s_already_valid

sec_login_s_default_use

sec_login_s_null_password

sec_login_s_privileged

sec_login_s_unsupp_passwd_type

sec_rgy_passwd_invalid

sec_rgy_server_unavailable

SEE ALSO
Functions: sec_login_certify_identity ( ), sec_login_validate_identity ( ).

Part 3 Security Application Programming Interface 783



sec_login_validate_ first( ) Login API

NAME
sec_login_validate_first — Validate host’s current login context

SYNOPSIS

#include <dce/sec_login.h>

boolean32 sec_login_validate_first (
sec_login_handle_t login_context ,
boolean32 * reset_passwd ,
sec_login_auth_src_t * authn_src ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context to be validated.

Output

reset_passwd
Indicates whether a principal/account’s password has expired.

authn_src
The source of validation (or authentication) of this login context.

status
The completion status.

DESCRIPTION
The sec_login_validate_first( ) routine validates (see sec_login_validate_identity( )) the
calling process’s current login context, which must be the host’s login context (set up,
for example, by sec_login_setup_first( )).

Typically, this routine is called from a host’s SCD (or from the host’s initial process,
sometimes called init), to validate the host’s login context for the host’s hierarchy of
daemon processes. This routine does not have a password parameter (as does
sec_login_validate_identity( )) — implementations typically manage the host
principal/account’s key with the sec_key_mgmt API.

RETURN VALUES
This routine returns non-0 (TRUE) if the validation was successful, and 0 (FALSE)
otherwise.

ERRORS

error_status_ok

sec_login_s_privileged

sec_rgy_server_unavailable

SEE ALSO
Functions: sec_login_init_first( ), sec_login_setup_first( ), sec_login_validate_identity ( ).

784 CAE Specification (1997)



Login API sec_login_validate_identity( )

NAME
sec_login_validate_identity — Validate a login context

SYNOPSIS

#include <dce/sec_login.h>

boolean32 sec_login_validate_identity (
sec_login_handle_t login_context ,
sec_passwd_rec_t * passwd ,
boolean32 * reset_passwd ,
sec_login_auth_src_t * authn_src ,
error_status_t * status );

PARAMETERS

Input

login_context
Login context to be validated.

Input/Output

passwd
Password record to be used to validate the login context.

Output

reset_passwd
Indicates whether a principal/account’s password has expired.

authn_src
The source of validation (or authentication) of this login context.

status
The completion status.

DESCRIPTION
The sec_login_validate_identity ( ) routine validates a login context; that is, makes it
usable for making protected RPCs (in the sense of making it usable by
rpc_binding_set_auth_info ( )), and in the process demonstrates its trustworthiness (for
use in protected RPCs) to the principal/account to which it is associated (under the
assumption that the long-term key of the principal/account associated with the login
context is uncompromised).

Upon return, this operation destroys the contents of the input passwd parameter (that is,
overwrites the actual password contained in it with NULL bytes — all bits reset to 0, in
the caller’s address space — thereby reducing its exposure to compromise).

In typical usage, validation is accomplished by decrypting the encrypted part of the
login context as obtained from sec_login_setup_identity ( ) (and verifying that the
decryption is correct), using the long-term key of the principal/account — hence, this
information must have been encrypted by an entity knowing the principal/account’s
long-term key, which must have been an entity trusted by the caller. This routine also
typically contacts the PS (of the cell in which the principal/account associated with the
login context is registered), gets a PTGT for the principal/account, and decrypts the
encrypted part of it. Thus, a validated login context typically contains both a TGT and a
PTGT for the local cell (as well as other information).

Part 3 Security Application Programming Interface 785



sec_login_validate_identity( ) Login API

If reset_passwd returns non-0 (TRUE), then the account’s password has expired.
Otherwise, reset_password returns 0 (FALSE).

RETURN VALUES
The routine returns non-0 (TRUE) if the login context has been successfully validated.
Otherwise, it returns 0 (FALSE). (In the success case, this return value is redundant
with error_status_ok.)

ERRORS

error_status_ok

sec_login_s_acct_invalid

sec_login_s_already_valid

sec_login_s_default_use

sec_login_s_null_password

sec_login_s_unsupp_passwd_type

sec_rgy_passwd_invalid

sec_rgy_server_unavailable

SEE ALSO
Functions: sec_login_certify_identity ( ), sec_login_setup_identity ( ),
sec_login_valid_and_cert_ident ( ).

786 CAE Specification (1997)



Chapter 20

EPAC Accessor Function (sec_cred) API

20.1 Introduction
The routines in the sec_cred API are distinguished with names having the prefix sec_cred_.

In this API, the status error_status_ok has the value 0 and indicates successful completion of the
function the routine was called to perform. In the few instances where successful completion is
indicated by other than error_status_ok, this other status will be explicitely called out. For this
version of DCE, there is one routine that returns successful completion other than
error_status_ok. This routine is sec_cred_is_authenticated ( ).

Background is given in <REFERENCE UNDEFINED>(EPAC-Accessor) and Section 5.2.14 on
page 288.

Part 3 Security Application Programming Interface 787



sec_cred_free_attr_cursor( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_free_attr_cursor — Frees the local resources allocated to a sec_attr_cursor_t

SYNOPSIS

#include <dce/sec_cred.h>

void sec_cred_free_attr_cursor (
sec_cred_attr_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input/Output

cursor
As input, a pointer to a sec_cred_attr_cursor_t whose resources are to be freed. As output, a
pointer to an initialized sec_cred_attr_cursor_t with allocated resources freed.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_cred_free_attr_cursor( ) routine frees the resources assoicated with a cursor of type
sec_cred_attr_cursor_t used by the sec_cred_get_extended_attrs( ) call.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

error_status_ok

SEE ALSO
Functions: sec_cred_get_extended_attrs( ), sec_cred_initialize_attr_cursor ( ).

788 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_free_cursor( )

NAME
sec_cred_free_cursor — Releases local resources allocated to a sec_cred_cursor_t

SYNOPSIS

#include <dce/sec_cred.h>

void sec_cred_free_cursor (
sec_cred_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input/Output

cursor
As input, a sec_cred_cursor_t whose resources are to be freed. As output, a
sec_cred_cursor_t whose resources are freed.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The sec_cred_free_cursor( ) routine releases local resources allocated to a sec_cred_cursor_t used
by the sec_cred_get_delegate( ) call.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_login_s_no_memory

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_initialize_cursor ( ).

Part 3 Security Application Programming Interface 789



sec_cred_free_pa_handle( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_free_pa_handle — Frees the local resources allocated to a privilege attribute handle of
type sec_cred_pa_handle_t

SYNOPSIS

#include <dce/sec_cred.h>

void sec_cred_free_pa_handle (
sec_cred_pa_handle__t * pa_handle ,
error_status_t * status );

PARAMETERS

Input/Output

pa_handle
As input, a pointer to a sec_cred_pa_handle_t whose resources are to be freed. As output, a
pointer to a sec_cred_pa_handle_t with allocated resources freed.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_cred_free_pa_handle ( ) routine frees the resources assoicated with a privilege attribute
handle of type sec_cred_pa_handle_t used by the sec_cred_get_initiator ( ) and
sec_cred_get_delegate( ) calls.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_get_initiator ( ).

790 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_get_authz_session_info( )

NAME
sec_cred_get_authz_session_info — Returns session-specific information that represents an
authenticated client’s credentials

SYNOPSIS

#include <dce/sec_cred.h>

void sec_cred_get_authz_session_info (
rpc_authz_cred_handle_t callers_identity ,
uuid_t * session_id ,
sec_timeval_t * session_expiration ,
error_status_t * status );

PARAMETERS

Input

callers_identity
A credential handle of type rpc_authz_cred_handle_t. This handle is supplied as output of
the rpc_binding_inq_auth_caller( ) call.

Output

session_ID
A pointer to a uuid_t that identifies the client’s DCE authorization session.

session_expiration
A pointer to a sec_timeval_t that specifies the expiration time of the authenticated client’s
credentials.

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_cred_get_authz_session_info ( ) routine retrieves session-specific information that
represents the credentials of authenticated client specified by callers_identity. If the client is a
member of a delegation chain, the information represents the credentials of all members of the
chain.

The information can aid application servers in the construction of identity-based caches. For
example, it could be used as a key into a cache of previously allocated delegation contexts and
thus avoid the overhead of allocating a new login context on every remote operation. It could
also be used as a key into a table of previously computed authorization decisions.

Before you execute this call, you must execute an rpc_binding_inq_auth_caller ( ) call to obtain an
rpc_authz_cred_handle_t for the callers_identity argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_authz_cannot_comply

error_status_ok

Part 3 Security Application Programming Interface 791



sec_cred_get_authz_session_info( ) EPAC Accessor Function (sec_cred) API

SEE ALSO
Functions: rpc_binding_inq_auth_caller ( ).

792 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_get_client_princ_name( )

NAME
sec_cred_get_client_princ_name — Returns the principal name associated with a credential
handle

SYNOPSIS

#include <dce/sec_cred.h>

void sec_cred_get_client_princ_name (
rpc_authz_cred_handle_t callers_identity ,
unsigned_char_p_t * client_princ_name ,
error_status_t * status );

PARAMETERS

Input

callers_identity
A handle of type rpc_authz_cred_handle_t to the credentials for which to return the
principal name. This handle is supplied as output of the rpc_binding_inq_auth_caller( ) call.

Output

client_princ_name
A pointer to the principal name of the server’s RPC client.

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_cred_get_client_princ_name( ) routine extracts the principal name associated with the
credentials identified by callers_identity.

Before you execute sec_cred_get_client_princ_name( ), you must execute an
rpc_binding_inq_auth_caller ( ) call to obtain an rpc_authz_cred_handle_t for the callers_identity
argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_authz_cannot_comply

error_status_ok

SEE ALSO
Functions: rpc_binding_inq_auth_caller ( ), rpc_string_free( ).

Part 3 Security Application Programming Interface 793



sec_cred_get_deleg_restrictions( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_get_deleg_restrictions — Returns delegate restrictions from a privilege attribute
handle

SYNOPSIS

#include <dce/sec_cred.h>

sec_id_restriction_set_t *sec_cred_get_deleg_restrictions (
sec_cred_pa_handle_t callers_pas ,
error_status_t * status );

PARAMETERS

Input

callers_pas
A value of type sec_cred_pa_handle_t that provides a handle to a principal’s privilege
attributes. This handle is supplied as output of the sec_cred_get_initiator( ) call, the
sec_cred_get_delegate( ) call and the sec_login_cred_*( ) calls.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_deleg_restrictions( ) routine extracts delegate restrictions from the privilege
attribute handle identified by callers_pas. The restrictions are returned in a
sec_id_restriction_set_t.

Before you execute sec_cred_get_pa_data ( ), you must execute a sec_cred_get_initiator ( ) or
sec_cred_get_delegate( ) call to obtain a sec_cred_pa_handle_t for the callers_pas argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_pa_handle

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_get_initiator ( ).

794 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_get_delegate( )

NAME
sec_cred_get_delegate — Returns a handle to the privilege attributes of an intermediary in a
delegation chain

SYNOPSIS

#include <dce/sec_cred.h>

sec_cred_pa_handle_t sec_cred_get_delegate (
rpc_authz_cred_handle_t callers_identity ,
sec_cred_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input

callers_identity
A handle of type rpc_authz_cred_handle_t. This handle is supplied as output of the
rpc_binding_inq_auth_caller( ) call.

Input/Output

cursor
As input, a pointer to a cursor of type sec_cred_cursor_t that has been initialized by the
sec_cred_initialize_cursor( ) call. As an output argument, cursor is a pointer to a cursor of type
sec_attr_srch_cursor_t that is positioned past the principal whose privilege attributes have
been returned in this call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_delegate( ) routine returns a handle to the the privilege attributes of an
intermediary in a delegation chain that performed an authenticated RPC operation.

This call is used by servers. Clients use the sec_login_cred_get_delegate ( ) routine to return the
privilege attribute handle of an intermediary in a delegation chain.

The credential handle identified by callers_identity contains authentication and authorization
information for all delegates in the chain. This call returns a handle (sec_cred_pa_handle_t) to
the privilege attributes of one of the delegates in the binding handle. The sec_cred_pa_handle_t
returned by this call is used in other sec_cred_get_*( ) calls to obtain privilege attribute
information for a single delegate.

To obtain the privilege attributes of each delegate in the credential handle identified by
callers_identity, execute this call until the message sec_cred_s_no_more_entries is returned.

Before you execute sec_cred_get_delegate( ), you must execute

An rpc_binding_inq_auth_caller ( ) call to obtain an rpc_authz_cred_handle_t for the
callers_identity argument.

A sec_cred_initialize_cursor ( ) call to initialize a cursor of type sec_cred_cursor_t.

Part 3 Security Application Programming Interface 795



sec_cred_get_delegate( ) EPAC Accessor Function (sec_cred) API

Use the sec_cred_free_pa_handle( ) call to free the resources associated with the
sec_cred_pa_handle_t.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_auth_handle

sec_cred_s_invalid_cursor

sec_cred_s_no_more_entries

error_status_ok

SEE ALSO
Functions: rpc_binding_inq_auth_caller ( ), sec_cred_free_pa_handle ( ),
sec_cred_get_deleg_restrictions( ), sec_cred_get_delegation_typ ( ), sec_cred_get_extended_attrs( ),
sec_cred_get_opt_restrictions ( ), sec_cred_get_pa_date ( ), sec_cred_get_req_restrictions( ),
sec_cred_get_tgt_restrictions( ), sec_cred_get_v1_pac ( ), sec_cred_initialize_cursor ( ).

796 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_get_delegation_type( )

NAME
sec_cred_get_delegation_type — Returns the delegation type from a privilege attribute handle

SYNOPSIS

#include <dce/sec_cred.h>

sec_id_delegation_type_t *sec_cred_get_delegation_type (
sec_cred_pa_handle_t callers_pas ,
error_status_t * status );

PARAMETERS

Input

callers_pas
A value of type sec_cred_pa_handle_t that provides a handle to a principal’s privilege
attributes. This handle is supplied as output of either the sec_cred_get_initiator( ) call or
sec_cred_get_delegate( ) call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_delegation_type ( ) routine extracts the delegation type from the privilege
attribute handle identified by callers_pas and returns it in a sec_id_delegation_type_t.

Before you execute sec_cred_get_delegation_type ( ), you must execute a sec_cred_get_initiator ( ) or
sec_cred_get_delegate( ) call to obtain a sec_cred_pa_handle_t for the callers_pas argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_pa_handle

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_get_initiator ( ).

Part 3 Security Application Programming Interface 797



sec_cred_get_extended_attrs( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_get_extended_attrs — Returns extended attributes from a privilege handle

SYNOPSIS

#include <dce/sec_cred.h>

void sec_cred_get_extended_attrs (
sec_cred_pa_handle_t callers_pas ,
sec_cred_attr_cursor_t * cursor
sec_attr_t * attr
error_status_t * status );

PARAMETERS

Input

callers_pas
A handle of type sec_cred_pa_handle_t to the caller’s privilege attributes. This handle is
supplied as output of either the sec_cred_get_initiator ( ) call or sec_cred_get_delegate( ) call.

Input/Output

cursor
A cursor of type sec_cred_attr_cursor_t that has been initialized by the
sec_cred_initialize_attr_cursor ( ) routine. As input, cursor must be initialized. As output,
cursor is positioned at the first attribute after the returned attribute.

Output

attr
A pointer to a value of sec_attr_t that contains extended registry attributes.

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_extended_attrs( ) routine extracts extended registry attributes initialized from the
privilege attribute handle identified by callers_pas.

Before you execute call, you must execute:

A sec_cred_get_initiator ( ) or sec_cred_get_delegate( ) call to obtain a sec_cred_pa_handle_t for the
callers_pas argument.

A sec_cred_initialize_attr_cursor ( ) to initialize a sec_attr_t.

To obtain all the extended registry attributes in the privilege attribute handle, repeat
sec_cred_get_extended_attrs( ) calls until the status message no_more_entries_available is
returned.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

798 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_get_extended_attrs( )

ERRORS

sec_cred_s_invalid_pa_handle

sec_cred_s_invalid_cursor

sec_cred_s_no_more_entries

error_status_ok

SEE ALSO
Functions: sec_cred_get_initiator ( ), sec_cred_get_delegate( ), sec_cred_initialize_attr_cursor ( ).

Part 3 Security Application Programming Interface 799



sec_cred_get_initiator( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_get_initiator — Returns the privilege attributes of the initiator of a delegation chain

SYNOPSIS

#include <dce/sec_cred.h>

sec_cred_pa_handle_t sec_cred_get_initiator (
rpc_authz_cred_handle_t callers_identity ,
error_status_t * status );

PARAMETERS

Input

callers_identity
A credential handle of type rpc_authz_cred_handle_t. This handle is supplied as output of
the rpc_binding_inq_auth_caller( ) call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_initiator ( ) routine returns a handle to the the privilege attributes of the initiator
of a delegation chain that performed an authenticated RPC operation.

The credential handle identified by callers_identity contains authentication and authorization
information for all delegates in the chain. This call returns a handle (sec_cred_pa_handle_t) to
the privilege attributes of the client that initiated the delegation chain. The
sec_cred_pa_handle_t returned by this call is used in other sec_cred_get_*( ) calls to obtain
privilege attribute information for the initiator.

Before you execute sec_cred_get_initiator ( ), you must execute an rpc_binding_inq_auth_caller ( )
call to obtain an rpc_authz_cred_handle_t for the callers_identity argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_auth_handle

error_status_ok

SEE ALSO
Functions: rpc_binding_inq_auth_caller ( ), sec_cred_get_deleg_restrictions( ),
sec_cred_get_delegation_type ( ), sec_cred_get_extended_attrs( ), sec_cred_get_opt_restrictions ( ),
sec_cred_get_pa_date ( ), sec_cred_get_req_restrictions( ), sec_cred_get_tgt_restrictions( ),
sec_cred_get_v1_pac ( ).

800 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_get_opt_restrictions( )

NAME
sec_cred_get_opt_restrictions — Returns optional restrictions from a privilege handle

SYNOPSIS

#include <dce/sec_cred.h>

sec_id_opt_req_t *sec_cred_get_opt_restrictions (
sec_cred_pa_handle_t callers_pas ,
error_status_t * status );

PARAMETERS

Input

callers_pas
A handle of type sec_cred_pa_handle_t to a principal’s privilege attributes. This handle is
supplied as output of either the sec_cred_get_initiator( ) call or sec_cred_get_delegate( )
call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_opt_restrictions ( ) routine extracts optional restrictions from the privilege
attribute handle identified by callers_pas and returns them in a sec_id_restriction_set_t.

Before you execute sec_cred_get_pa_data ( ), you must execute a sec_cred_get_initiator ( ) or
sec_cred_get_delegate( ) call to obtain a sec_cred_pa_handle_t for the callers_pas argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_pa_handle

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_get_initiator ( ).

Part 3 Security Application Programming Interface 801



sec_cred_get_pa_data( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_get_pa_data — Returns identity information from a privilege attribute handle

SYNOPSIS

#include <dce/sec_cred.h>

sec_id_pa_t *sec_cred_get_pa_data (
sec_cred_pa_handle_t callers_pas ,
error_status_t * status );

PARAMETERS

Input

callers_pas
A handle of type sec_cred_pa_handle_t to a principal’s privilege attributes. This handle is
supplied as output of either the sec_cred_get_initiator( ) call or sec_cred_get_delegate( ) call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_pa_data ( ) routine extracts identity information from the privilege attribute
handle specified by callers_pas and returns it in a sec_id_pa_t. The identity information includes
an identifier of the princpal’s locall cell and the principal’s local and foreign group sets.

Before you execute sec_cred_get_pa_data ( ), you must execute a sec_cred_get_initiator ( ) or
sec_cred_get_delegate( ) call to obtain a sec_cred_pa_handle_t for the callers_pas argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_pa_handle

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_get_initiator ( ).

802 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_get_req_restrictions( )

NAME
sec_cred_get_req_restrictions — Returns required restrictions from a privilege attribute handle

SYNOPSIS

#include <dce/sec_cred.h>

sec_id_opt_req_t *sec_cred_get_req_restrictions (
sec_cred_pa_handle_t callers_pas ,
error_status_t * status );

PARAMETERS

Input

callers_pas
A handle of type sec_cred_pa_handle_t to a principal’s privilege attributes. This handle is
supplied as output of either the sec_cred_get_initiator( ) call or sec_cred_get_delegate( ) call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_req_restrictions( ) routine extracts required restrictions from the privilege
attribute handle identified by callers_pas and returns them in a sec_id_opt_req_t.

Before you execute sec_cred_get_req_restrictions( ), you must execute a sec_cred_get_initiator ( ) or
sec_cred_get_delegate( ) call to obtain a sec_cred_pa_handle_t for the callers_pas argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_pa_handle

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_get_initiator ( ).

Part 3 Security Application Programming Interface 803



sec_cred_get_tgt_restrictions( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_get_tgt_restrictions — Returns target restrictions from a privilege attribute handle

SYNOPSIS

#include <dce/sec_cred.h>

sec_id_restriction_set_t *sec_cred_get_tgt_restrictions (
sec_cred_pa_handle_t callers_pas ,
error_status_t * status );

PARAMETERS

Input

callers_pas
A handle of type sec_cred_pa_handle_t to a principal’s privilege attributes. This handle is
supplied as output of either the sec_cred_get_initiator( ) call or sec_cred_get_delegate( ) call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_tgt_restrictions( ) routine extracts target restrictions from the privilege attribute
handle identified by callers_pas and returns them in a sec_id_restriction_set_t.

Before you execute sec_cred_get_tgt_restrictions( ), you must execute a sec_cred_get_initiator ( ) or
sec_cred_get_delegate( ) call to obtain a sec_cred_pa_handle_t for the callers_pas argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_pa_handle

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_get_initiator ( ).

804 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_get_v1_pac( )

NAME
sec_cred_get_v1_pac — Returns pre-1.1 PAC from a privilege attribute handle

SYNOPSIS

#include <dce/sec_cred.h>

sec_id_pac_t *sec_cred_get_v1_pac (
sec_cred_pa_handle_t callers_pas ,
error_status_t * status );

PARAMETERS

Input

callers_pas
A handle of type sec_cred_pa_handle_t to the principal’s privilege attributes. This handle is
supplied as output of either the sec_cred_get_initiator( ) call or sec_cred_get_delegate( ) call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok.

DESCRIPTION
The sec_cred_get_v1_pac ( ) routine extracts the privilege attributes from a pre-1.1 PAC for the
privilege attribute handle specified by callers_pas and returns them in a sec_id_pa_t.

Before you execute sec_cred_get_v1_pac ( ), you must execute a sec_cred_get_initiator ( ) or
sec_cred_get_delegate( ) call to obtain a sec_cred_pa_handle_t for the callers_pas argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_cred_s_invalid_pa_handle

error_status_ok

SEE ALSO
Functions: sec_cred_get_delegate( ), sec_cred_get_initiator ( ).

Part 3 Security Application Programming Interface 805



sec_cred_initialize_attr_cursor( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_initialize_attr_cursor — Initializes a sec_attr_cursor_t

SYNOPSIS

#include <dce/sec_cred.h>

void sec_cred_initialize_attr_cursor (
sec_cred_attr_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input/Output

cursor
As input, a pointer to a sec_cred_attr_cursor_t to be initialized. As output, a pointer to an
initialized sec_cred_attr_cursor_t.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_cred_initialize_attr_cursor ( ) routine allocates and initializes a cursor of type
sec_cred_attr_cursor_t for use with the sec_cred_get_extended_attrs( ) call. Use the
sec_cred_free_attr_cursor( ) call to free the resources allocated to cursor.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_login_s_no_memory

error_status_ok

SEE ALSO
Functions: sec_cred_free_attr_cursor( ), sec_cred_get_extended_attrs( ).

806 CAE Specification (1997)



EPAC Accessor Function (sec_cred) API sec_cred_initialize_cursor( )

NAME
sec_cred_initialize_cursor — Initializes a sec_cred_cursor_t

SYNOPSIS

#include <dce/sec_cred.h>

void sec_cred_initialize_cursor (
sec_cred_cursor_t * cursor ,
error_status_t * status );

PARAMETERS

Input/Output

cursor
As input, a sec_cred_cursor_t to be initialized. As output, an initialized sec_cred_cursor_t.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_cred_initialize_cursor ( ) routine initializes a cursor of type sec_cursor_t for use with the
sec_cred_get_delegate( ) call. Use the sec_cred_free_cursor( ) call to free the resources allocated to
cursor.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

ERRORS

sec_login_s_no_memory

error_status_ok

SEE ALSO
Functions: sec_cred_free_cursor( ), sec_cred_get_delegate( ).

Part 3 Security Application Programming Interface 807



sec_cred_is_authenticated( ) EPAC Accessor Function (sec_cred) API

NAME
sec_cred_is_authenticated — Returns true if the supplied credentials are authenticated and false
if they are not

SYNOPSIS

#include <dce/sec_cred.h>

boolean32 sec_cred_is_authenticated (
rpc_authz_cred_handle_t callers_identity ,
error_status_t * status );

PARAMETERS

Input

callers_identity
A handle of type rpc_authz_cred_handle_t to the credentials to check for authentication.
This handle is supplied as output of the rpc_binding_inq_auth_caller ( ) call.

Output

status
A pointer to the completion status. On successful completion, status is assigned
error_status_ok. Otherwise, it returns an error.

DESCRIPTION
The sec_cred_is_authenticated ( ) routine returns true if the credentials identified by callers_identity
are authenticated or false if they are not.

Before you execute this call, you must execute an rpc_binding_inq_auth_caller ( ) call to obtain an
rpc_authz_cred_handle_t for the callers_identity argument.

FILES

/usr/include/dce/sec_cred.idl
The idl file from which dce/sec_cred.h was derived.

RETURN VALUES
The routine returns TRUE if the credentials are authenticated; FALSE if they are not.

SEE ALSO
Functions: rpc_binding_inq_auth_caller ( ).

808 CAE Specification (1997)



Chapter 21

Miscellaneous Routines Needed for DCE Security

21.1 Introduction
The routines in the this API are miscellaneous routines needed for DCE Security Services.

In this API, the status error_status_ok has the value 0 and indicates successful completion of the
function the routine was called to perform.

Part 3 Security Application Programming Interface 809



rs_ns_entry_validate( ) Miscellaneous Routines Needed for DCE Security

NAME
rs_ns_entry_validate — Validate that this server can use "name" as its nameservice entry

SYNOPSIS

void rs_ns_entry_validate (
unsigned_char_p_t name,
uuid_p_t cell_sec_id ,
uuid_p_t rep_id ,
rpc_binding_vector_p_t svr_bindings ,
rpc_if_handle_t ifspec ,
error_status_t *status

);

PARAMETERS

Input/Output

name
The string name associated with this registry database entry

cell_sec_id
The well-known cell security id (of this cell)

rep_id
The replica id for this entry

svr_bindings
The server binding tower associated with this entry

ifspec
The interface specification for this entry

status
Completion status.

Output

status
A pointer to the completion status. On successful completion, the routine returns
error_status_ok. Otherwise, it returns an error.

DESCRIPTION

The rs_ns_entry_validate ( ) routine gets the nameservice entry’s data associated with name. This
data consists of the server bindings and replica id associated with name, cell’s security id
(cell_sec_id), and interface specification (ifspec).

If there is no entry associated with name (the nameservice entry does not exist), then this routine
returns with error_status_ok. If an entry exists, then it is checked to verify that it isn’t someone
else’s entry (the bindings for the replica id, rep_id, are checked to ensure they are the bindings
expected). If this is the correct entry, this routine returns with error_status_ok.

If the entry associated with name is does not have the expected bindings (it is someone else’s

810 CAE Specification (1997)



Miscellaneous Routines Needed for DCE Security rs_ns_entry_validate( )

entry), then this routine returns with status (non-zero) not equal error_status_ok.

RETURN VALUES

The routine returns error_status_ok if it is okay for the nameservice to use "name" as its
nameservice entry. It also returns error_status_ok if the entry ("name") does not exist.

ERRORS

!error_status_ok

Part 3 Security Application Programming Interface 811



Miscellaneous Routines Needed for DCE Security

812 CAE Specification (1997)



CAE Specification

Part 4

Appendices

The Open Group

Part 4 Appendices 813



814 CAE Specification (1997)



Appendix A

Symbol Mapping Table

Note: This appendix is informative, not normative. It imposes no restrictions on
conforming implementations.

The table below is a ‘‘symbol mapping table’’, correlating symbols employed in this specification
with symbols occurring in the source code of the standard OSF reference implementation of
DCE. The symbols occurring in the reference implementation are familiar to most DCE
developers, but they were not chosen with an English-language specification document (such as
this specification) in mind. For example, the DCE symbol kds_request( ) is more ‘‘English-
friendly’’ than the reference implementation’s symbol rsec_krb5rpc_sendto_kdc( ). This table is
included solely as an aid to developers who desire to compare their implementation with this
specification — it does not impose any restrictions on conforming implementations.

In the table, indentation indicates either:

1. fields in a data structure, or

2. parameters in an operation signature.

Not every symbol in this specification has been listed — where symbols differ only trivially and
cause no confusion to a reader, no note is made of them. On the other hand, wherever one
field/parameter is listed due to a non-trivial difference in the symbols, all fields/parameters that
differ (even trivially) for that structure/operation are listed.

This Specification OSF DCE Reference Implementation
scd_protected_noop() sec_login_validate_cert_auth()

rpc_mgmt_set_authorization_fcn() rpc_mgmt_set_authorization_fn()

rpc_syntax_id_t
stx_id id
stx_version version

[doesn’t exist — idl_pkl_header_t is merely
a conceptual representation of data that’s
stored as a byte stream in an idl_pkl_t]

idl_pkl_header_t

kds_request() rsec_krb5rpc_sendto_kdc()
rpc_handle h
request_count len
request message
response_count_max out_buf_len
response_count resp_len
response out_buf

ps_message_t rpriv_pickle_t

Part 4 Appendices 815



Symbol Mapping Table

This Specification OSF DCE Reference Implementation
ps_request() rpriv_get_ptgt()

rpc_handle handle
authn_service authn_svc
authz_service authz_svc
request ptgt_req
response ptgt_rep

ps_c_authn_secret rpc_c_authn_dce_secret

ps_c_authz_dce rpc_c_authz_dce

sec_id_foreign_t
cell realm

sec_id_foreign_groupset_t
cell realm
count_local_groups num_groups
local_groups groups

sec_bytes_t
count_bytes num_bytes

sec_id_pac_t
pac_format pac_type
cell realm
primary_group group
count_local_groups num_groups
count_foreign_groups num_foreign_groups
local_groups groups

sec_acl_entry_t
local_id id

sec_acl_t
default_cell default_realm
count num_entries

sec_acl_printstring_t
perm permissions

rdacl_*()
rpc_handle h
acl_type sec_acl_type
acl_list sec_acl_list
acl_result result
count_max size_avail
count size_used

816 CAE Specification (1997)



Symbol Mapping Table

This Specification OSF DCE Reference Implementation

rdacl_get_access()
access_rights net_rights

rdacl_test_access()
access_rights desired_permset

rdacl_get_manager_types()
num_manager_types num_types

rdacl_get_printstring()
manager_type_next manager_type_chain
num_printstrings total_num_printstrings

rdacl_get_referral()
tower_set towers

rdacl_get_mgr_types_semantics()
num_manager_types num_types

rsec_id_*()
rpc_handle h
domain name_domain
cell_name cell_namep
cell_uuid cell_idp
pgo_name princ_namep
pgo_uuid princ_idp

Part 4 Appendices 817



Symbol Mapping Table

818 CAE Specification (1997)



Appendix B

Error Code Mapping List

Note: This appendix is informative, not normative. It imposes no restrictions on
conforming implementations.

The list below is a ‘‘error code mapping list’’, describing the codes returned from the security
API in the source code of the standard OSF reference implementation of DCE.

Name: sec_acl_bad_acl_syntax
Value: 0x17122026
Specified ACL is not valid at this ACL manager. This error can be returned if less than 1 ACL is
specified on a replace operation, or if more than 1 is specified on a replace and the controlling
ACL manager was only expecting 1.

Name: sec_acl_bad_key
Value: 0x17122021
Internal error.

Name: sec_acl_bad_parameter
Value: 0x17122032
Internal error, should never occur.

Name: sec_acl_bad_permset
Value: 0x17122037
One or more permissions not valid for this type of ACL.

Name: sec_acl_bind_error
Value: 0x1712202c
A binding error occurred during the requested ACL operation.

Name: sec_acl_cant_allocate_memory
Value: 0x17122017
Cannot allocate memory for requested operation.

Name: sec_acl_duplicate_entry
Value: 0x17122031
Duplicate ACL entries are not allowed.

Name: sec_acl_expected_group_obj
Value: 0x1712201e
Object has an owning group but no group_obj entry in its ACL.

Name: sec_acl_expected_user_obj
Value: 0x1712201d
Object has an owner but no user_obj entry contained in its ACL.

Name: sec_acl_invalid_acl_handle
Value: 0x1712202d
Internal error, should never occur.

Name: sec_acl_invalid_acl_type

Part 4 Appendices 819



Error Code Mapping List

Value: 0x17122020
Specified ACL type is out of the valid range for this type.

Name: sec_acl_invalid_dfs_acl
Value: 0x17122035
DFS ACL manager does not understand the specified ACL.

Name: sec_acl_invalid_entry_class
Value: 0x17122028
Obsolete.

Name: sec_acl_invalid_entry_name
Value: 0x1712201c
NULL or invalid entry name passed to sec_acl_bind() API.

Name: sec_acl_invalid_entry_type
Value: 0x1712201f
An ACL entry type was specified that the server does not understand. It is possible for this to
occur if a client is attempting to pass new ACL entry types to an older server that cannot
interpret them (eg: delegation ACL entry types).

Name: sec_acl_invalid_manager_type
Value: 0x17122022
Invalid ACL manager type specified.

Name: sec_acl_invalid_permission
Value: 0x17122025
One or more specified permissions not valid for this ACL.

Name: sec_acl_invalid_site_name
Value: 0x17122018
The ACL operation specified an invalid site name.

Name: sec_acl_mgr_file_open_error
Value: 0x1712202f
ACL manager unable to open database file on startup.

Name: sec_acl_mgr_no_space
Value: 0x17122036
ACL manager was not able to store the specified ACL.

Name: sec_acl_missing_required_entry
Value: 0x17122030
ACL is missing an entry required by this ACL manager.

Name: sec_acl_name_resolution_failed
Value: 0x1712202a
Name resolution failed on the requested ACL operation.

Name: sec_acl_no_acl_found
Value: 0x1712201b
Object found, but object has no ACL associated with it.

820 CAE Specification (1997)



Error Code Mapping List

Name: sec_acl_no_owner
Value: 0x17122027
There must be at least one entry in the ACL that grants control over the ACL.

Name: sec_acl_not_authorized
Value: 0x17122033
Not authorized to perform the requested operation on this object.

Name: sec_acl_not_implemented
Value: 0x17122016
Requested operation is not implemented in this version of DCE.

Name: sec_acl_no_update_sites
Value: 0x1712202e
No update sites available for this ACL operation.

Name: sec_acl_object_not_found
Value: 0x1712201a
Specified ACL object was not found.

Name: sec_acl_rpc_error
Value: 0x1712202b
An RPC error was returned during the ACL operation.

Name: sec_acl_server_bad_state
Value: 0x17122034
Server is not in a state capable of performing the requested operation.

Name: sec_acl_site_read_only
Value: 0x17122024
Requested operation attempted at a read only site. This error should be trapped by the security
ACL API and the operation should be resent to an update site automatically if one can be
located.

Name: sec_acl_unable_to_authenticate
Value: 0x17122029
Attempt to authenticate to server controlling the object failed.

Name: sec_acl_unknown_manager_type
Value: 0x17122019
Programming error, should not happen.

Name: sec_attr_bad_acl_mgr_set
Value: 0x17122151
Application specified an invalid acl manager set for this operation.

Name: sec_attr_bad_acl_mgr_type
Value: 0x17122152
Application specified an invalid acl manager.

Name: sec_attr_bad_bind_authn_svc
Value: 0x17122161
Application specified an invalid authentication service in the binding auth info for this

Part 4 Appendices 821



Error Code Mapping List

operation.

Name: sec_attr_bad_bind_authz_svc
Value: 0x17122162
Application specified an invalid authz_svc parameter in a request to the privilege server.

Name: sec_attr_bad_bind_info
Value: 0x17122153
Application specified invalid binding information in an attribute update operation.

Name: sec_attr_bad_bind_prot_level
Value: 0x17122160
Application specified an invalid protection level in the binding auth info.

Name: sec_attr_bad_bind_svr_name
Value: 0x1712215f
Application specified an invalid server name in the binding auth info.

Name: sec_attr_bad_comment
Value: 0x1712215a
Attribute comment specified exceeds 1024 characters.

Name: sec_attr_bad_cursor
Value: 0x17122163
Application specified an invalid cursor.

Name: sec_attr_bad_encoding_type
Value: 0x17122158
Attribute encoding type specified is invalid.

Name: sec_attr_bad_intercell_action
Value: 0x1712215b
Intercell action specified for an attribute must be one of: accept, reject or evaluate.

Name: sec_attr_bad_name
Value: 0x17122157
Attribute name specified is NULL or exceeds 1024 characters.

Name: sec_attr_bad_object_type
Value: 0x17122166
Application specified an acl manager type for this object that is not contained in the schema
entry for this attribute.

Name: sec_attr_bad_param
Value: 0x1712216d
Application specified a bad parameter for a schema or attribute operation.

Name: sec_attr_bad_permset
Value: 0x17122154
Application specified one or more invalid permissions for this type of ACL.

Name: sec_attr_bad_scope
Value: 0x17122159
Attribute scope specified exceeds 1024 characters.

822 CAE Specification (1997)



Error Code Mapping List

Name: sec_attr_bad_trig_type
Value: 0x1712215c
Application specified a trigger type other than query in this operation. Only query triggers are
supported in this release.

Name: sec_attr_bad_type
Value: 0x17122150
Application performing a lookup using the specified attribute type was unsuccessful.

Name: sec_attr_bad_uniq_query_accept
Value: 0x1712215e
If the unique flag is set to true, and a query trigger is used, the intercell action can not be set to
accept.

Name: sec_attr_cant_get_attrinst
Value: 0x17122ebc
Application failed to get the next attribute instance in the attribute list.

Name: sec_attr_cant_get_attrlist
Value: 0x17122eb9
Application could not retrieve the attribute list.

Name: sec_attr_cant_get_instance
Value: 0x17122ebb
Application failed to get the last attribute instance in the attribute list.

Name: sec_attr_inst_not_found
Value: 0x17122144
Application specified an attribute instance that was not found.

Name: sec_attr_multi_inst_no_update
Value: 0x17122170
Schema multi instance flag cannot be unset.

Name: sec_attr_name_exists
Value: 0x1712214d
Application attempted to add an attribute with a duplicate name to the registry.

Name: sec_attr_no_memory
Value: 0x17122155
Unable to allocate memory.

Name: sec_attr_no_more_entries
Value: 0x1712216c
Application has exhausted the available attribute instance or schema entries.

Name: sec_attr_not_implemented
Value: 0x17122164
Application specified an operation that has not yet been implemented.

Name: sec_attr_not_multi_valued
Value: 0x17122167
Application specified more than one attribute instance for a type that is not multi valued.

Part 4 Appendices 823



Error Code Mapping List

Name: sec_attr_num_attr_ltzero
Value: 0x17122eba
Application attempted to decrement the number of attributes below zero.

Name: sec_attr_rgy_obj_not_found
Value: 0x17122147
Specified registry object was not found.

Name: sec_attr_schema_cant_lookup
Value: 0x17122edd
Unable to lookup the schema entry.

Name: sec_attr_schema_cant_reset
Value: 0x17122edc
Unable to reset the schema entry information.

Name: sec_attr_sch_entry_not_found
Value: 0x17122143
Application specified a schema entry that does not exist.

Name: sec_attr_sch_reserved
Value: 0x1712216e
Cannot delete schema entry with reserved flag set.

Name: sec_attr_trig_bind_info_missing
Value: 0x1712215d
Application specified a trigger without supplying binding info.

Name: sec_attr_trig_query_not_sup
Value: 0x17122165
Application specified a query trigger for an operation that does not support query triggers.

Name: sec_attr_trig_types_no_update
Value: 0x17122171
Schema trigger types cannot be updated.

Name: sec_attr_type_id_exists
Value: 0x1712214e
Application attempted to add an attribute with a duplicate id to the registry.

Name: sec_attr_unauthorized
Value: 0x17122149
The object’s ACL denied the attempted operation.

Name: sec_attr_unique_no_update
Value: 0x1712216f
Schema unique flag cannot be unset.

Name: sec_attr_val_attr_set_bad
Value: 0x1712216b
Appliation specifed an improperly formatted attribute value set.

Name: sec_attr_val_bytes_bad
Value: 0x1712216a

824 CAE Specification (1997)



Error Code Mapping List

Application specified improperly formatted bytes string.

Name: sec_attr_val_printstring_bad
Value: 0x17122168
Application specified a printstring value that exceeds 1024 characters.

Name: sec_attr_val_string_array_bad
Value: 0x17122169
Application either specified an improperly formatted attribute value string array or one or more
of the attribute value strings in the array exceed 1024 characters.

Name: sec_authn_s_bad_seal
Value: 0x1712217d
Data corruption, or an attacker asserting credentials that don’t match the credentials that were
actually granted. If error is reproducible, then it’s most likely a defect in DCE.

Name: sec_authn_s_missing_epac
Value: 0x1712217b
Improperly formed RPC authentication protocol message, probably due to a defect in DCE.

Name: sec_authn_s_no_seal
Value: 0x1712217c
Improperly formed RPC authentication protocol message, probably due to a defect in DCE.

Name: sec_buf_too_small
Value: 0x17122f60
The buffer size is smaller than the amount of data which needs to be copied into the buffer. This
is an internal error.

Name: sec_crdb_at_char_in_cellname
Value: 0x17122dc8
A cell name cannot contain the @ (at sign) character.

Name: sec_crdb_cant_add_replica
Value: 0x17122dd8
The application could not add a new replica to the master registry.

Name: sec_crdb_cant_bind_updsite
Value: 0x17122ddc
The application could not locate and bind to the master registry.

Name: sec_crdb_cant_com_master
Value: 0x17122ddd
The application could not communicate with the master registry.

Name: sec_crdb_cant_create_celluuid
Value: 0x17122dd3
Application could not create a cell UUID.

Name: sec_crdb_cant_get_hostname
Value: 0x17122dd2
Application was unable to retrieve host name.

Part 4 Appendices 825



Error Code Mapping List

Name: sec_crdb_cant_get_host_prname
Value: 0x17122dd5
Application was unable to retrieve the host principal name.

Name: sec_crdb_cant_register_ns
Value: 0x17122dd7
Application cannot register with the name service.

Name: sec_crdb_cant_setup_rgycreator
Value: 0x17122dd4
Problem setting up rgy_creator.

Name: sec_crdb_cant_upd_rgyst_file
Value: 0x17122dd9
Cannot update rgy_state file.

Name: sec_crdb_cl_alt_dir_no_arg
Value: 0x17122dd1
No argument was specified for alt_dir. Hence a default path was used.

Name: sec_crdb_cl_bad_name
Value: 0x17122dc9
The specified name is not a legal CDS name.

Name: sec_crdb_cl_dup_option
Value: 0x17122dca
Only one of the two options may be used.

Name: sec_crdb_cl_long_passwd
Value: 0x17122dcd
Password longer than the permitted maximum.

Name: sec_crdb_cl_long_rgyname
Value: 0x17122dcc
Registry name is longer than the permitted maximum.

Name: sec_crdb_cl_missing_arg
Value: 0x17122dcb
The specified option requires an argument which was not specified.

Name: sec_crdb_cl_null_myname
Value: 0x17122dcf
The specified name is either NULL or a null string.

Name: sec_crdb_cl_unknown_option
Value: 0x17122dce
The specified option is not valid. Consult the manual page for the correct set of options.

Name: sec_crdb_cl_usage
Value: 0x17122dd0
Bad syntax in sec_create_db command.

Name: sec_crdb_cr_db_succ
Value: 0x17122dc6

826 CAE Specification (1997)



Error Code Mapping List

This is an informational message.

Name: sec_crdb_cr_master_db
Value: 0x17122dc4
This is an informational message.

Name: sec_crdb_cr_rep_db
Value: 0x17122dc5
This is an informational message.

Name: sec_crdb_db_exists
Value: 0x17122dc7
Registry database could not be created because one exists already.

Name: sec_crdb_db_not_created
Value: 0x17122dd6
The new database was not created.

Name: sec_crdb_inherit_hostident_err
Value: 0x17122ddb
Cannot inherit local host identity.

Name: sec_crdb_rep_not_registered
Value: 0x17122dda
The security replica has not successfully registered with the name service

Name: sec_crdb_site_file_create_fail
Value: 0x17122dc0
The pe_site file could not be created or updated because of an error. The error is logged prior to
this message.

Name: sec_crdb_site_file_create_succ
Value: 0x17122dc1
The pe_site file has been successfully created. This is an informational message.

Name: sec_crdb_site_file_upd_fail
Value: 0x17122dc3
RPC bindings could not be appended to the pe_site file. The messages logged prior to this
indicate why this might have happened.

Name: sec_crdb_site_file_upd_succ
Value: 0x17122dc2
RPC bindings have been successfully appended to the pe_site file. This is an informational
message.

Name: sec_cred_s_authz_cannot_comply
Value: 0x17122132
Application programming error. The server is asking for information that the authorisation
service used for the call cannot supply (eg, calling sec_cred_get_initiator() when the call had
used authz_name).

Name: sec_cred_s_invalid_auth_handle
Value: 0x1712212f
Specified credential handle is invalid.

Part 4 Appendices 827



Error Code Mapping List

Name: sec_cred_s_invalid_cursor
Value: 0x17122131
Specified credential cursor is invalid.

Name: sec_cred_s_invalid_pa_handle
Value: 0x17122130
Specified privilege attribute handle is invalid.

Name: sec_cred_s_no_more_entries
Value: 0x1712212e
No more entries available (informational status code).

Name: sec_id_e_bad_cell_uuid
Value: 0x171220d5
Specified cell UUID does not match any known cell names.

Name: sec_id_e_name_too_long
Value: 0x171220d4
The specified name is too long for the current implementation.

Name: sec_key_mgmt_e_authn_invalid
Value: 0x17122044
The specified authentication service is invalid for this operation.

Name: sec_key_mgmt_e_auth_unavailable
Value: 0x17122045
Unable to contact the authentication service.

Name: sec_key_mgmt_e_keytab_not_found
Value: 0x1712204a
Unable to locate or open specified key table.

Name: sec_key_mgmt_e_key_unavailable
Value: 0x17122043
No key matching specified principal and key version found in keytable.

Name: sec_key_mgmt_e_key_unsupported
Value: 0x17122047
A key with a type unknown to this version of DCE was specified.

Name: sec_key_mgmt_e_key_version_ex
Value: 0x17122048
Specified key already exists in the specified key table.

Name: sec_key_mgmt_e_ktfile_err
Value: 0x1712204b
File found, but format does not conform to that of a key table.

Name: sec_key_mgmt_e_not_implemented
Value: 0x17122049
Specified operation not implemented in this version of DCE.

Name: sec_key_mgmt_e_unauthorized
Value: 0x17122046

828 CAE Specification (1997)



Error Code Mapping List

The caller is unauthorized to perform the requested operation.

Name: sec_lksm_bad_input
Value: 0x17122cc4
The user supplied response to the question of whether a locksmith account should be created is
not correct.

Name: sec_lksm_create_acct
Value: 0x17122cc5
This will be followed by the message in sec_lksm_def_yes_prompt.

Name: sec_lksm_def_no_prompt
Value: 0x17122cc3
If security server is started in the locksmith mode and no locksmith account exists, then the user
is prompted asking whether the account should be created. This prompt is used when the
default is to not to create the the locksmith account.

Name: sec_lksm_def_yes_prompt
Value: 0x17122cc2
If security server is started in the locksmith mode and no locksmith account exists, then the user
is prompted asking whether the account should be created. This prompt is used when the
desired default is to create the locksmith account.

Name: sec_lksm_passwd_prompt
Value: 0x17122ccf
The user is prompted for the password of the locksmith account.

Name: sec_lksm_passwd_verify
Value: 0x17122cd0
The user is prompted to reenter the password of the locksmith account.

Name: sec_lksm_set_acct_span
Value: 0x17122ccb
The policy account lifespan to set to the specified time period.

Name: sec_lksm_set_acct_valid
Value: 0x17122cc9
The specified account is designated as valid.

Name: sec_lksm_set_client_valid
Value: 0x17122cc7
The specified account is designated as a client.

Name: sec_lksm_set_date_now
Value: 0x17122cca
Setting %s account good_since_date to now\n

Name: sec_lksm_set_expire
Value: 0x17122ccc
The specified account is set to expire in the specified time period.

Name: sec_lksm_set_polpwd_expire
Value: 0x17122cce
The policy password lifetime is set to the specified period.

Part 4 Appendices 829



Error Code Mapping List

Name: sec_lksm_set_polpwd_expire_now
Value: 0x17122ccd
The policy password lifetime is set to the specified period. The policy password expiration time
is to expire in the specified time period.

Name: sec_lksm_set_pwd_valid
Value: 0x17122cc6
Setting password valid flag for the specified account.

Name: sec_lksm_set_server_valid
Value: 0x17122cc8
The specified account is designated as a server.

Name: sec_logent_out_of_bounds
Value: 0x17122ea3
The log entry is out of bounds and so is skipped.

Name: sec_login_s_acct_invalid
Value: 0x171220f6
Attempted to login to an account that is currently disabled.

Name: sec_login_s_already_valid
Value: 0x171220ef
Attempted to validate an already valid login context.

Name: sec_login_s_auth_local
Value: 0x171220e9
Operation is not valid on the local context.

Name: sec_login_s_compound_delegate
Value: 0x17122100
Attempted to call become_initiator with a login context that already contained a delegation
chain.

Name: sec_login_s_config
Value: 0x171220f3
Host security client information not available. Either unable to find file
DCELOCAL/var/security/sec_clientd.binding
or unable to set authorisation and authentication information for a server. .

Name: sec_login_s_context_invalid
Value: 0x171220eb
Attempted to use a not-yet-validated login context for an operation that requires a validated
context.

Name: sec_login_s_default_use
Value: 0x171220f0
The default security login handle was used illegally.

Name: sec_login_s_deleg_not_enabled
Value: 0x17122102
Delegation/impersonation attempted, but initiator did not enable it.

830 CAE Specification (1997)



Error Code Mapping List

Name: sec_login_s_groupset_invalid
Value: 0x171220ed
Attempting to perform a task illegally on a default context handle.

Name: sec_login_s_handle_invalid
Value: 0x171220ea
Specified login handle does not correspond to a login context.

Name: sec_login_s_incomplete_ovrd_ent
Value: 0x171220fe
Override entry for this entry encountered, with password field specified, but other necessary
field(s) missing.

Name: sec_login_s_info_not_avail
Value: 0x171220ee
The unix password information is not available.

Name: sec_login_s_internal_error
Value: 0x171220f4
Internal error, should not occur.

Name: sec_login_s_invalid_compat_mode
Value: 0x17122101
Specified compatibility mode is not supported.

Name: sec_login_s_invalid_deleg_type
Value: 0x171220ff
Specified delegation type is not supported.

Name: sec_login_s_invalid_password
Value: 0x171220fd
The specified password is invalid.

Name: sec_login_s_no_current_context
Value: 0x171220ec
Login context is no longer completely accessible.

Name: sec_login_s_no_memory
Value: 0x171220e8
Unable to allocate memory.

Name: sec_login_s_no_override_info
Value: 0x171220f5
No override information is currently available.

Name: sec_login_s_not_certified
Value: 0x171220f2
Warning only. Information was obtained from a login context that has been validated but not
certified.

Name: sec_login_s_not_implemented
Value: 0x171220e7
Specified operation is not yet implemented in this version of DCE.

Part 4 Appendices 831



Error Code Mapping List

Name: sec_login_s_null_password
Value: 0x171220f7
Cannot log in with a zero length password.

Name: sec_login_s_override_failure
Value: 0x171220fb
Unable to determine if any override information exists, so operation must be denied.

Name: sec_login_s_ovrd_ent_not_found
Value: 0x171220fc
No matching override entry found (informational status code).

Name: sec_login_s_preauth_failed
Value: 0x17122103
The client is unable to compose the necessary preauthentication data for this principal.

Name: sec_login_s_privileged
Value: 0x171220f1
Privilege operation was attempted in an unprivileged (non-root) process.

Name: sec_login_s_refresh_ident_bad
Value: 0x171220fa
Attempted to refresh credentials for an account that is no longer valid.

Name: sec_login_s_unsupp_passwd_type
Value: 0x171220f8
Attempted to login using an unsupported password type.

Name: sec_lrgy_s_cannot_create
Value: 0x17122119
Unable to create local registry files.

Name: sec_lrgy_s_internal_error
Value: 0x1712211b
Internal error, should not occur.

Name: sec_lrgy_s_max_lt_num_entries
Value: 0x17122117
User specified a max entry value smaller than current number of entries.

Name: sec_lrgy_s_no_access
Value: 0x1712211a
Local registry exists, but cannot be accessed.

Name: sec_lrgy_s_not_found
Value: 0x17122118
No local registry files found.

Name: sec_ns_import_begin
Value: 0x17122f2c
Beginning import RPC bindings.

Name: sec_ns_import_done
Value: 0x17122f2e

832 CAE Specification (1997)



Error Code Mapping List

Completed import of RPC bindings.

Name: sec_ns_import_next
Value: 0x17122f2d
Attempting to import next RPC binding.

Name: sec_priv_s_bad_compat_mode
Value: 0x17122063
An out of range compat mode parameter was passed to the privilege server.

Name: sec_priv_s_bad_deleg_type
Value: 0x17122064
Specified delegation type is not valid.

Name: sec_priv_s_cmode_not_enabled
Value: 0x1712206c
Delegate attempted to specify a compatibility mode not allowed by initiator.

Name: sec_priv_s_corrupt_deleg_chain
Value: 0x17122067
Internal error, should not occur.

Name: sec_priv_s_deleg_not_enabled
Value: 0x17122065
Delegation attempted, but not enabled by initiator of operation.

Name: sec_priv_s_deleg_token_exp
Value: 0x17122066
Delegation operation attempted, but delegation token has expired.

Name: sec_priv_s_intercell_deleg_req
Value: 0x17122069
Intercell delegation requests are not yet supported.

Name: sec_priv_s_invalid_authn_svc
Value: 0x1712205e
Invalid authn_svc parameter in request to privilege server.

Name: sec_priv_s_invalid_authz_svc
Value: 0x1712205f
Invalid authz_svc parameter in request to privilege server.

Name: sec_priv_s_invalid_dlg_token
Value: 0x17122068
Internal error, should not occur.

Name: sec_priv_s_invalid_principal
Value: 0x1712205b
The principal requesting privileges is not valid. Could be caused by a race condition where the
principal was just deleted, or could be caused by a defect in DCE.

Name: sec_priv_s_invalid_protect_lvl
Value: 0x1712206b
Privilege client code passed in an invalid protection level.

Part 4 Appendices 833



Error Code Mapping List

Name: sec_priv_s_invalid_request
Value: 0x17122061
Invalid request probably caused by defect in DCE, or corrupted data passed in.

Name: sec_priv_s_invalid_server_name
Value: 0x1712206a
Privilege client code passed in an invalid server name.

Name: sec_priv_s_invalid_trust_path
Value: 0x17122060
The intercell authentication path traversed to authenticate to the DCE privilege server does not
conform to the requirements for hierarchical trust in DCE.

Name: sec_priv_s_no_mem
Value: 0x1712205d
Unable to allocate memory for specified operation.

Name: sec_priv_s_not_member_any_group
Value: 0x1712205c
Principal isn’t a member of any of the groups it requested for its groupset. Most likely caused by
a principal’s group membership being changed since they logged in.

Name: sec_priv_s_PAD00
Value: 0x17122062
Obsolete error code.

Name: sec_priv_s_server_unavailable
Value: 0x1712205a
Unable to locate an accessible privilege server.

Name: sec_prop_bad_type
Value: 0x17122e43
Internal error.

Name: sec_prop_chk_prop_slave_init
Value: 0x17122e47
Check how slave initialisation is going.

Name: sec_prop_fail
Value: 0x17122e45
The update did not propagate successfully.

Name: sec_prop_no_master_info
Value: 0x17122e42
Propagation thread tried but could not obtain information about the current master security
server in the cell. This is an internal error.

Name: sec_prop_no_prop_thrs
Value: 0x17122e40
The security server creates several propagation threads to manage the propagation of updates
between the master and slave security servers. This error indicates that one or more such threads
have not been created.

834 CAE Specification (1997)



Error Code Mapping List

Name: sec_prop_not_master
Value: 0x17122e41
Propagation threads can only be created in a master security server not in a slave security server.
This is an internal error.

Name: sec_prop_send_delete_rep
Value: 0x17122e4a
Attempting to propogate deletion of replicas.

Name: sec_prop_send_init_slave
Value: 0x17122e46
Attempting to initialize the slave.

Name: sec_prop_slave_init_done
Value: 0x17122e48
The slave was successfully initialized.

Name: sec_prop_succ
Value: 0x17122e44
The propagation has completed successfully.

Name: sec_prop_updates_to_slaves
Value: 0x17122e49
Ppropagating updates to slaves.

Name: sec_pwd_mgmt_not_authorized
Value: 0x17122177
Caller is not authorized to communicate with the password management server.

Name: sec_pwd_mgmt_str_check_failed
Value: 0x17122176
Specified password failed password strength server checking policy.

Name: sec_pwd_mgmt_svr_error
Value: 0x17122178
The password management server has failed to complete the requested operation due to an
error.

Name: sec_pwd_mgmt_svr_unavail
Value: 0x17122179
Unable to contact password management server.

Name: sec_rca_op_status
Value: 0x17122f2f
Registry operation failed.

Name: sec_rca_site_rebind
Value: 0x17122f30
Attempting to rebind to an alternate registry site and retrying operation.

Name: sec_rca_site_rebind_fail
Value: 0x17122f32
Failed to rebind to an alternate registry to retry operation.

Part 4 Appendices 835



Error Code Mapping List

Name: sec_rca_site_rebind_succ
Value: 0x17122f31
Successfully rebound to specified site to retry operation.

Name: sec_rep_cant_start_prop_tasks
Value: 0x17122e6e
Cannot start the propagation tasks.

Name: sec_rep_corrupt_auth_handle
Value: 0x17122e62
Corrupted replica authentication handle detected.

Name: sec_rep_dupe_cant_start
Value: 0x17122e6a
Replica is in duplicate master state and cannot be started.

Name: sec_rep_dupe_not_master
Value: 0x17122e69
Replica is in duplicate master state but is not the master.

Name: sec_rep_init_slave_fail
Value: 0x17122e74
Initialisation failed.

Name: sec_rep_init_slave_succ
Value: 0x17122e73
Initialisation completed successfully.

Name: sec_rep_invalid_auth_handle
Value: 0x17122e63
Invalid replica authentication handle.

Name: sec_rep_maint_not_master
Value: 0x17122e68
Only a master security server can be in the maintenance mode not a slave.

Name: sec_rep_mseq_not_dup_master
Value: 0x17122e67
master_seqno flag can only be applied to a duplicate master.

Name: sec_rep_msrepl_not_inited
Value: 0x17122e6d
Cannot initialize master replica list.

Name: sec_rep_nm_not_deleted
Value: 0x17122e6b
Unable to remove the specified server name from the name space.

Name: sec_rep_not_on_replist
Value: 0x17122e6c
Specified replica is not on the replica list.

Name: sec_rep_prop_in_progress
Value: 0x17122e6f

836 CAE Specification (1997)



Error Code Mapping List

Propagation was in progress to a replica when an attempting to free the master’s volatile copy of
the replica list.

Name: sec_rep_prop_type_not_init
Value: 0x17122e70
Propagation type is not init or initialising.

Name: sec_rep_recv_become_master
Value: 0x17122e76
The slave received a "become master" message.

Name: sec_rep_recv_i_am_master
Value: 0x17122e75
The slave received an "I am master" message.

Name: sec_rep_recv_init_slave
Value: 0x17122e72
On receipt of this request, the slave will attempt to initialize or reinitialize (?) itself.

Name: sec_rep_recv_stop_sw_compat
Value: 0x17122e77
The slave received a "stop until software s compatible" request.

Name: sec_rep_rm_not_in_service
Value: 0x17122e66
restore_master flag can only be specified to an in service master.

Name: sec_res_acct_add_err
Value: 0x17122cd8
An error occurred while adding an account.

Name: sec_res_attr_sch_add_err
Value: 0x17122cd9
An error occurred while adding an entry to the attribute schema.

Name: sec_res_host_key_set_err
Value: 0x17122cd3
An error occurred while setting local host’s key.

Name: sec_res_mem_add_err
Value: 0x17122cd7
An error occurred while adding a member.

Name: sec_res_pgo_add_err
Value: 0x17122cd6
An error occurred while adding a person, group, or orgnisation entry.

Name: sec_res_princ_cvt_err
Value: 0x17122cd4
An error occurred while converting a cell name to a local realm principal.

Name: sec_res_uuid_cvt_err
Value: 0x17122cd5
An error occurred while converting a cell UUID to a string.

Part 4 Appendices 837



Error Code Mapping List

Name: sec_rgy_acl_init
Value: 0x17122d13
Initializing for sec_acl wire interface failed.

Name: sec_rgy_alias_not_allowed
Value: 0x17122096
Attempted to add an alias to a principal which prohibits that operation.

Name: sec_rgy_aud_open
Value: 0x17122d0d
Fail to open dce audit file

Name: sec_rgy_auth_init
Value: 0x17122d17
Cannot register server’s authentication information with RPC runtime.

Name: sec_rgy_bad_chksum_type
Value: 0x17122097
Internal error, should not occur.

Name: sec_rgy_bad_data
Value: 0x17122084
Invalid data encountered during specified registry operation.

Name: sec_rgy_bad_domain
Value: 0x17122074
Attempted an operation that is not supported by the specified domain.

Name: sec_rgy_bad_handle
Value: 0x1712209d
Internal error, should not occur.

Name: sec_rgy_bad_integrity
Value: 0x17122098
Data integrity error. Could be caused by specifying invalid password.

Name: sec_rgy_bad_name
Value: 0x17122088
Illegal name (possibly illegal character(s)) passed to the sec_rgy API.

Name: sec_rgy_bad_name service_name
Value: 0x171220a3
Internal error.

Name: sec_rgy_bad_rgy_db
Value: 0x17122eab
A bad registry database state was encountered.

Name: sec_rgy_bad_scope
Value: 0x17122093
Attempted to set scope to a name that does not exist in the registry.

Name: sec_rgy_cant_allocate_memory
Value: 0x17122085

838 CAE Specification (1997)



Error Code Mapping List

Unable to allocate memory for the specified operation.

Name: sec_rgy_cant_authenticate
Value: 0x17122095
Can’t establish authentication to security server.

Name: sec_rgy_checkpoint
Value: 0x17122eaf
Attempting to checkpoint the registry database.

Name: sec_rgy_checkpoint_succ
Value: 0x17122eb0
Successfully checkpointed the registry database.

Name: sec_rgy_checkpt_log_file
Value: 0x17122eac
Cannot perform checkpoint on the specified log file.

Name: sec_rgy_checkpt_rename_files
Value: 0x17122ead
Cannot rename files during checkpoint.

Name: sec_rgy_checkpt_save_rep_state
Value: 0x17122eae
Cannot save replica state during checkpoint.

Name: sec_rgy_checkpt_start_task
Value: 0x17122d1b
An error occurred while when trying to start a thread to do checkpoint task.

Name: sec_rgy_chkpt_save_file
Value: 0x17122ee6
Saving the specified file.

Name: sec_rgy_chkpt_save_relation
Value: 0x17122ee7
Saving the specified relation.

Name: sec_rgy_compat_log_replay
Value: 0x17122ee8
Compatibility log replay was entered.

Name: sec_rgy_db_create
Value: 0x17122f66
Failed to create the database.

Name: sec_rgy_db_init
Value: 0x17122d01
The security server is going to attempt to read the registry database into its virtual address
space.

Name: sec_rgy_db_init_err
Value: 0x17122d11
Loading or initilaizing rgy database has error.

Part 4 Appendices 839



Error Code Mapping List

Name: sec_rgy_dce_rgy_identity
Value: 0x17122d19
Cannot set process identity (dce-rgy) and context.

Name: sec_rgy_dir_could_not_create
Value: 0x17122089
Unable to create a directory necessary for the specified operation.

Name: sec_rgy_dir_move_illegal
Value: 0x1712208a
Attempted to make a parent directory the child of one of its descendents.

Name: sec_rgy_era_pwd_mgmt_auth_type
Value: 0x171220a5
Principal’s pwd_mgmt_binding ERA authentication cannot be

Name: sec_rgy_foreign_quota_exhausted
Value: 0x1712208c
Attempt by a foreign principal to add a registry object, but quota is exhausted.

Name: sec_rgy_get_cellname
Value: 0x17122f65
Cannot retrieve the requested cell name.

Name: sec_rgy_get_local_host_princ
Value: 0x17122d26
Cannot retrieve the requested local host principal name.

Name: sec_rgy_host_identity
Value: 0x17122d16
Cannot inherit host machine context and identity.

Name: sec_rgy_incomplete_login_name
Value: 0x1712207f
Specified login name structure was not completely specified.

Name: sec_rgy_init_rpc_bind
Value: 0x17122d0f
Trying to initialize rpc binding failed.

Name: sec_rgy_key_bad_size
Value: 0x17122099
Internal error, should not occur.

Name: sec_rgy_key_bad_type
Value: 0x17122091
The key type specified was not a valid for the specified operation.

Name: sec_rgy_locksmith_init
Value: 0x17122d14
Cannot set up the requestedlocksmith account.

Name: sec_rgy_log_entry_out_of_range
Value: 0x171220a4

840 CAE Specification (1997)



Error Code Mapping List

Internal error.

Name: sec_rgy_log_init_mgr
Value: 0x17122d10
Cannot initialize the server log managers.

Name: sec_rgy_mkey_bad
Value: 0x1712209c
Registry master key retrieved from .mkey file doesn’t match master key stored in the database.

Name: sec_rgy_mkey_bad_stored
Value: 0x1712209b
Registry master key stored in .mkey file has been corrupted.

Name: sec_rgy_mkey_file_io_failed
Value: 0x171220a0
Master key file operation (create/read/write) failed.

Name: sec_rgy_mky_bad_cellname
Value: 0x17122e20
The cell name must begin with /.../ but it does not.

Name: sec_rgy_mky_gen_random
Value: 0x17122e29
Cannot create the master key because an error occurred while generating a random master key.

Name: sec_rgy_mky_get_realm_name
Value: 0x17122e24
The cell name to be converted is not a legal cell name.

Name: sec_rgy_mky_init_keyseed
Value: 0x17122e26
Problem generating a DES key from user-entered keyseed and timeofday.

Name: sec_rgy_mky_init_random
Value: 0x17122e28
Cannot create the master keybecause an error occurred while initialising the random key
generator.

Name: sec_rgy_mky_not_match
Value: 0x17122e2d
The master key in memory doesn’t match the master key stored in the database.

Name: sec_rgy_mky_process_keyseed
Value: 0x17122e27
Cannot create the master key because an error occured while processing the keyseed.

Name: sec_rgy_mky_process_master_key
Value: 0x17122e2a
Cannot create the master key bacause an error occured while processing the master key.

Name: sec_rgy_mky_setup_mkey_name
Value: 0x17122e25
Possibly caused by not enough memory to be allocated.

Part 4 Appendices 841



Error Code Mapping List

Name: sec_rgy_mky_store_db
Value: 0x17122e2c
An error occurred while storing the master key in the database.

Name: sec_rgy_mky_store_disk
Value: 0x17122e2b
Cannot create the master key because an error occurred while storing the master key on the disk.

Name: sec_rgy_name_exists
Value: 0x17122076
Attempted to add a registry object that already exists.

Name: sec_rgy_no_more_entries
Value: 0x17122079
End of list encountered while performing registry lookup.

Name: sec_rgy_no_more_unix_ids
Value: 0x1712208d
No more available Unix IDs within allowable range.

Name: sec_rgy_not_authorized
Value: 0x17122081
The object’s ACL denied the attempted operation.

Name: sec_rgy_not_implemented
Value: 0x17122073
Operation is not implemented in this version of DCE.

Name: sec_rgy_not_member_group
Value: 0x1712207c
The principal specified in the account operation is not a member of the specified primary group.

Name: sec_rgy_not_member_group_org
Value: 0x1712207e
The principal specified in the account operation is not a member of the specified group or
organisation.

Name: sec_rgy_not_member_org
Value: 0x1712207d
The principal specified in the account operation is not a member of the specified organisation.

Name: sec_rgy_not_root
Value: 0x17122d00
The attempted operation requires root privileges.

Name: sec_rgy_ns_register
Value: 0x17122d1a
Cannot start the name service registration task.

Name: sec_rgy_ns_svr_get_binding
Value: 0x17122d53
Cannot get server’s rpc binding from its repository.

842 CAE Specification (1997)



Error Code Mapping List

Name: sec_rgy_object_exists
Value: 0x17122075
Attempted to add a registry object that already exists.

Name: sec_rgy_object_not_found
Value: 0x1712207a
Specified registry object was not found.

Name: sec_rgy_object_not_in_scope
Value: 0x17122094
Attempted to lookup object that doesn’t exist within the current scope.

Name: sec_rgy_passwd_invalid
Value: 0x17122080
Specified password is invalid.

Name: sec_rgy_passwd_non_alpha
Value: 0x171220a7
Specified password contains all alphanumberic characters, which is not allowed by current
policy.

Name: sec_rgy_passwd_spaces
Value: 0x171220a8
Specified password contains no non-blank character, which is not allowed by current policy.

Name: sec_rgy_passwd_too_short
Value: 0x171220a6
Specified password is shorter than the current minimum limit.

Name: sec_rgy_quota_exhausted
Value: 0x1712208b
Principal’s registry quota is exhausted and an update operation was attempted.

Name: sec_rgy_read_only
Value: 0x17122082
Registry is in a read only state and an update was attempted.

Name: sec_rgy_rep_add_master_replica
Value: 0x17122e80
When a slave database is re-initializing, in-memory data is cleared and re-created. Problem
occurred when trying to add master replica to its database.

Name: sec_rgy_rep_add_my_replica
Value: 0x17122e7f
When a slave database is re-initializing, in-memory data is cleared and re-created. Problem
occurred when trying to add this slave replica to its database.

Name: sec_rgy_rep_already_inited
Value: 0x171220c9
Attempt to initialize a replica that has already been initialized.

Name: sec_rgy_rep_bad_arg
Value: 0x171220c2

Part 4 Appendices 843



Error Code Mapping List

Invalid operation.

Name: sec_rgy_rep_bad_binding
Value: 0x171220b6
Bad binding encountered by the registry server.

Name: sec_rgy_rep_bad_db_version
Value: 0x171220aa
Version stored with registry database is not that expected by the registry software executed.

Name: sec_rgy_rep_bad_init_id
Value: 0x171220c8
Internal error, should not occur.

Name: sec_rgy_rep_bad_master_seqno
Value: 0x171220cf
Internal error, should not occur.

Name: sec_rgy_rep_bad_prop_type
Value: 0x171220ca
Internal error, should not occur

Name: sec_rgy_rep_bad_state
Value: 0x171220b4
Operation attempted while registry was in a state unable to perform that type of operation.

Name: sec_rgy_rep_bad_sw_vers
Value: 0x171220c6
Attempted to start registry server with software that is at a version incompatible with that
which is stored in the registry database.

Name: sec_rgy_rep_cannot_create_db
Value: 0x171220ab
Unable to create database.

Name: sec_rgy_rep_cannot_open_db
Value: 0x171220ac
Unable to open registry database file that should already exist.

Name: sec_rgy_rep_cannot_read_db
Value: 0x171220ad
Registry server is unable to read the registry database.

Name: sec_rgy_rep_cannot_rename_db
Value: 0x171220af
The registry server was unable to rename the database files during conversion to the current
database format.

Name: sec_rgy_rep_cannot_save_db
Value: 0x171220ae
Unable to save registry database to disk.

Name: sec_rgy_rep_clock_skew
Value: 0x171220b9

844 CAE Specification (1997)



Error Code Mapping List

Clock value between registry server machines is out of tolerance.

Name: sec_rgy_rep_db_locked
Value: 0x171220b8
Database is already locked by another process.

Name: sec_rgy_rep_doppelganger
Value: 0x171220bc
Another replica with the same name or id exists.

Name: sec_rgy_rep_entry_not_found
Value: 0x17122e71
Cannot find the in-memory replica list entry in the stable replica list.

Name: sec_rgy_rep_host_identity
Value: 0x17122d18
Cannot get local host principal’s context and identity.

Name: sec_rgy_rep_init_ekey_invalid
Value: 0x171220c5
Initialisation encryption key is not valid.

Name: sec_rgy_rep_init_replica
Value: 0x17122d12
Cannot initialize the server replica.

Name: sec_rgy_rep_invalid_entry
Value: 0x171220c4
Invalid replica entry encountered.

Name: sec_rgy_rep_marked_for_init
Value: 0x171220c7
Attempted to mark a replica for initialisation, that has already been marked for initialisation.

Name: sec_rgy_rep_master
Value: 0x171220b1
Specified operation may only be performed at a non-master registry replica site.

Name: sec_rgy_rep_master_bad_sw_vers
Value: 0x171220cb
Master registry is running a version of software that is not compatible with the replica registry
servers.

Name: sec_rgy_rep_master_dup
Value: 0x171220cd
Duplicate master registry servers found.

Name: sec_rgy_rep_master_not_found
Value: 0x171220b0
A registry replica was unable to locate the master registry.

Name: sec_rgy_rep_master_obsolete
Value: 0x17122e4b
A slave has a higher update sequence number than this master, which implies this master has an

Part 4 Appendices 845



Error Code Mapping List

obsolete database; so exit itself.

Name: sec_rgy_rep_mst_restart_prop
Value: 0x17122e79
After change_master operation failed, the old master try to resume its master role but fail to
restart its propagation task threads.

Name: sec_rgy_rep_not_from_master
Value: 0x171220b3
Internal error, should not happen.

Name: sec_rgy_rep_not_master
Value: 0x171220b2
Specified operation may only be performed by the master registry server.

Name: sec_rgy_rep_pack_entry
Value: 0x17122e09
When trying to log replication for add or replace, error occurrs.

Name: sec_rgy_rep_pgmerr
Value: 0x171220a9
Internal error, should not occur.

Name: sec_rgy_rep_recover_db
Value: 0x17122e7e
After an attemp to initialize a replica failed, this operation tried to clear data in memory and
reload pre-initializetion database from disk, also failed.

Name: sec_rgy_rep_set_init_id
Value: 0x17122e7c
This code won’t be executed; we may as well take it out :-) or replaced with same fatal message

Name: sec_rgy_rep_set_state
Value: 0x17122e7b
This code won’t be executed; we may as well take it out :-) or replaced with same fatal message

Name: sec_rgy_rep_set_volatile_state
Value: 0x17122e7d
This code won’t be executed; we may as well take it out :-) or replaced with same fatal message

Name: sec_rgy_rep_slave_bad_sw_vers
Value: 0x171220cc
Replica registry server is running a version of software that is not compatible with the master
registry server.

Name: sec_rgy_rep_slv_restart_prop
Value: 0x17122e7a
After become_slave operation failed, the old master try to resume its master role but fail to
restart its propagation task threads.

Name: sec_rgy_rep_update_seqno_high
Value: 0x171220ba
Slave must have missed/lost some update from the master.

846 CAE Specification (1997)



Error Code Mapping List

Name: sec_rgy_rep_update_seqno_low
Value: 0x171220bb
Registry replica received an update from a master registry that is older than updates already
received by the replica. Either the replica is accepting the new master and should automatically
reinitialize itself from this master, or it believes that the master has an obsolete database and it
will shut down.

Name: sec_rgy_rsdb_attr_delete
Value: 0x17122ebf
Cannot delete the attribute instance.

Name: sec_rgy_rsdb_attr_export
Value: 0x17122ec0
When exporting attribute values from database to sec_attr, error occurrs.

Name: sec_rgy_rsdb_attr_import
Value: 0x17122ebe
When importing attribute values in sec_attr to internal buffer area, error occurrs.

Name: sec_rgy_rsdb_attr_set_id
Value: 0x17122ebd
Cannot set the object’s attribute list ID.

Name: sec_rgy_rsdb_checkpt
Value: 0x17122e78
Cannot checkpoint the database.

Name: sec_rgy_rsdb_checkpt_uninit
Value: 0x17122e81
When a slave database is re-initializing, in-memory data is cleared and re-created. Problem
occurred when trying to do checkpoint on this database.

Name: sec_rgy_server_unavailable
Value: 0x1712207b
Unable to contact a registry server.

Name: sec_rgy_set_stack_size
Value: 0x17122d0e
Cannot set rpc listener thread stack size to be 64*1024.

Name: sec_rgy_shutdown_done
Value: 0x17122d06
Security server shutdown has been completed.

Name: sec_rgy_site_not_absolute
Value: 0x171220a2
A non-absolute name specified as the registry site.

Name: sec_rgy_s_pgo_is_required
Value: 0x1712209e
Attempted to delete a required PGO or account.

Name: sec_rgy_startup_done

Part 4 Appendices 847



Error Code Mapping List

Value: 0x17122d05
Security server initialisation has been completed.

Name: sec_rgy_svr_register
Value: 0x17122d15
Failed when registering with the rpc runtime and with the endpoint mapper.

Name: sec_rgy_svr_register_ns
Value: 0x17122d54
The server cannot register with the name service.

Name: sec_rgy_thr_exit_alert
Value: 0x17122d03
The thread is exiting with an alert exception.

Name: sec_rgy_thr_exit_exc
Value: 0x17122d04
The thread is exiting with an exception.

Name: sec_rgy_thr_join
Value: 0x17122d02
Cannot join pthread tasks.

Name: sec_rgy_thr_set_pool
Value: 0x17122d1c
Prior to setting maximum number of rpc listener threads, a call to set rpc listener threads pool
queue length failed,.

Name: sec_rgy_unix_id_changed
Value: 0x17122077
The specified unix id doesn’t match unix id extracted from the specified UUID.

Name: sec_rgy_uuid_bad_version
Value: 0x1712208e
Version of UUID does not match that expected for this operation. Could occur if the registry
server expected a UUID containing an embedded Unix ID, but was passed a generic UUID.

Name: sec_rsdb_acct_add_curkey
Value: 0x17122eb7
An attempt to add to the current key version was detected.

Name: sec_rsdb_acct_cant_getid
Value: 0x17122eb5
The application was unable to get the account by the specified ID.

Name: sec_rsdb_acct_end_list
Value: 0x17122eb8
The end of the member list was encountered unexpectedly.

Name: sec_rsdb_acct_noaliases
Value: 0x17122eb6
There are no remaining aliases.

848 CAE Specification (1997)



Error Code Mapping List

Name: sec_rsdb_acct_reset
Value: 0x17122eb4
Unable to reset previous account information.

Name: sec_rsdb_bad_policy_data
Value: 0x17122ecb
The policy data is not of a valid size.

Name: sec_rsdb_bad_policy_key
Value: 0x17122ecc
The key for the policy data is illegal.

Name: sec_rsdb_cant_cntr_item_name
Value: 0x17122ecd
Unable to construct the specified item name.

Name: sec_rsdb_cant_get_group_creds
Value: 0x17122ed4
Unable to obtain credentials for the specified group.

Name: sec_rsdb_cant_get_item
Value: 0x17122ec9
Unable to look up the specified item.

Name: sec_rsdb_cant_get_item_seqid
Value: 0x17122ed2
Unable to get the record of the specified item for sequential ID.

Name: sec_rsdb_cant_get_key
Value: 0x17122ed7
Unable to get the key for sequential ID.

Name: sec_rsdb_cant_get_member_data
Value: 0x17122ed6
Unable to get membership data.

Name: sec_rsdb_cant_get_mgr_typuuid
Value: 0x17122edb
Could not get a manager type UUID.

Name: sec_rsdb_cant_get_org_creds
Value: 0x17122ed5
Unable to obtain credentials for the specified organization.

Name: sec_rsdb_cant_get_person_creds
Value: 0x17122ed3
Unable to obtain credentials for the specified person.

Name: sec_rsdb_cant_get_pgo_creds
Value: 0x17122ec8
Unable to obtain credentials for the specified pgo.

Name: sec_rsdb_cant_init_acl
Value: 0x17122ed9

Part 4 Appendices 849



Error Code Mapping List

Could not initialize the ACL list.

Name: sec_rsdb_cant_set_auth_policy
Value: 0x17122ec6
Unable to set the authorisation policy.

Name: sec_rsdb_cant_set_policy
Value: 0x17122ec5
Unable to set the policy.

Name: sec_rsdb_cant_set_properties
Value: 0x17122ec3
Unable to set the properties.

Name: sec_rsdb_cant_set_realm
Value: 0x17122ec4
Unable to set the realm.

Name: sec_rsdb_cant_store_new_item
Value: 0x17122ed1
Could not store the new item.

Name: sec_rsdb_cant_walk_alias_chain
Value: 0x17122eca
Unable to walk the alias chain.

Name: sec_rsdb_corrupt_alias_chain
Value: 0x17122ece
The database alias chain is corrupted.

Name: sec_rsdb_db_chkpt_err
Value: 0x17122ea5
Cannot checkpoint the database.

Name: sec_rsdb_db_inconsistent
Value: 0x17122ed0
The database is inconsistent.

Name: sec_rsdb_dbstore_fail
Value: 0x17122ea9
Storage in the database failed.

Name: sec_rsdb_db_unrecog_state
Value: 0x17122ea1
The database is in an unrecognized state.

Name: sec_rsdb_db_write_fail
Value: 0x17122eb3
Write to the database failed.

Name: sec_rsdb_end_memb_list
Value: 0x17122ecf
End of membership list was reached.

850 CAE Specification (1997)



Error Code Mapping List

Name: sec_rsdb_ent_not_xlated
Value: 0x17122ea2
The log entry could not be translated and so was skipped.

Name: sec_rsdb_fetch_error
Value: 0x17122ed8
An error occurred while fetching data.

Name: sec_rsdb_file_rename_err
Value: 0x17122ea7
Cannot rename files during checkpoint.

Name: sec_rsdb_file_stat_fail
Value: 0x17122eb1
Unable to stat the file with the specified descriptor.

Name: sec_rsdb_inconsistent_creds
Value: 0x17122ec7
The database inconsistent; the credentials item length is not valid.

Name: sec_rsdb_list_not_terminated
Value: 0x17122ec1
The ist was not properly terminated.

Name: sec_rsdb_log_chkpt_err
Value: 0x17122ea6
Cannot checkpoint log file.

Name: sec_rsdb_logent_replay_err
Value: 0x17122ea4
An error occurred while replaying the log entry and it was skipped.

Name: sec_rsdb_log_file_open
Value: 0x17122ea0
The log file is already open.

Name: sec_rsdb_no_open_slot
Value: 0x17122ec2
There is no open slot in the list.

Name: sec_rsdb_readver_fail
Value: 0x17122eb2
Unable to read version the specified version file.

Name: sec_rsdb_repl_fail
Value: 0x17122eaa
The database replace operation failed.

Name: sec_rsdb_rep_state_not_saved
Value: 0x17122ea8
Cannot save the replica state.

Name: sec_rsdb_unknown_aclmgr_type
Value: 0x17122eda

Part 4 Appendices 851



Error Code Mapping List

Unknown ACL manager type.

Name: sec_rs_global_lock_fatal_exc
Value: 0x17122edf
An exception occurred while a global lock was held.

Name: sec_rs_lock_fatal_exc
Value: 0x17122ede
An exception occurred while a lock was held. The first %s is the mode string which can be read,
write or read-intend-to-write . The Name: second parameter is the type of lock and indicates on
what the lock was held - database, replica list, log etc.

Name: sec_rs_log_bad_version
Value: 0x17122e00
The version of the log file is bad.

Name: sec_rs_log_base_prop_seq
Value: 0x17122e06
Logged during replay.

Name: sec_rs_log_file_closed
Value: 0x17122e02
The log file was not open.

Name: sec_rs_login_bad_name
Value: 0x17122d27
The login name is invalid.

Name: sec_rs_login_cant_refresh
Value: 0x17122d25
Unable to refresh the specified identity; will idle and retry.

Name: sec_rs_login_null_handle
Value: 0x17122d21
The registry login handle is null.

Name: sec_rs_login_null_name
Value: 0x17122d22
The login name is either a null pointer or a null string.

Name: sec_rs_login_refresh
Value: 0x17122d24
The thread will attempt to refresh to the login context using the call sec_login_refresh_identity()

Name: sec_rs_login_refresh_wait
Value: 0x17122d23
The thread will wait for the specified number of seconds before attempting to refresh the login
context.

Name: sec_rs_login_wrong_call
Value: 0x17122d20
Internal error.

852 CAE Specification (1997)



Error Code Mapping List

Name: sec_rs_log_open_fail
Value: 0x17122e01
Failed to open the log file.

Name: sec_rs_log_propq_add_fail
Value: 0x17122e03
An attempt to add information to the propagation queue failed. .

Name: sec_rs_log_replay
Value: 0x17122e04
Replay the log file.

Name: sec_rs_log_replay_entry
Value: 0x17122e07
Logged during replay.

Name: sec_rs_log_replay_err
Value: 0x17122e08
An error occurred while replaying the log.

Name: sec_rs_log_replay_succ
Value: 0x17122e05
Successfully replayed the log file.

Name: sec_rs_mkey_actver_mismatch
Value: 0x17122e21
The account’s master key version doesn’t match the old or the new.

Name: sec_rs_mkey_long_keyseed
Value: 0x17122e23
The keyseed is too long.

Name: sec_rs_mkey_unknown
Value: 0x17122e22
The master key version decrypting the account key is unrecognized.

Name: sec_rs_ns_bind_export
Value: 0x17122d4c
The security server is attempting to export the interfaces to the name space.

Name: sec_rs_ns_bind_export_succ
Value: 0x17122d4d
The bindings have been exported to name space.

Name: sec_rs_ns_bind_remove_succ
Value: 0x17122d4e
The bindings have been exported to name space.

Name: sec_rs_ns_cant_rm_member
Value: 0x17122d52
Unable to remove the old name from the group.

Name: sec_rs_ns_cant_rm_name
Value: 0x17122d51

Part 4 Appendices 853



Error Code Mapping List

The old name was not removed from the name service.

Name: sec_rs_ns_grp_ent_create_fail
Value: 0x17122d42
Informational event. .

Name: sec_rs_ns_grp_ent_create_succ
Value: 0x17122d43
Informational event.

Name: sec_rs_ns_grp_mbr_add_fail
Value: 0x17122d44
Informational event. .

Name: sec_rs_ns_grp_mbr_add_succ
Value: 0x17122d45
The member was added to the group.

Name: sec_rs_ns_name_del_succ
Value: 0x17122d4f
The name entry has been deleted successfully from the name space. The name entry is also no
longer a member of the group entry.

Name: sec_rs_ns_name_not_removed
Value: 0x17122d50
The old name not removed from name service; it may not belong to this server.

Name: sec_rs_ns_null_profile
Value: 0x17122d40
This is an internal error.

Name: sec_rs_ns_null_v1_group
Value: 0x17122d41
This is an internal error.

Name: sec_rs_ns_prof_elt_add_fail
Value: 0x17122d46
The profile element was not added to cell-profile.

Name: sec_rs_ns_prof_elt_add_succ
Value: 0x17122d47
The profile element was added to cell-profile.

Name: sec_rs_ns_prof_elt_inq_fail
Value: 0x17122d4a
The profile element inquiry failed.

Name: sec_rs_ns_prof_elt_inq_succ
Value: 0x17122d4b
Read the catalog point from the profile.

Name: sec_rs_ns_prof_elt_rm_fail
Value: 0x17122d48
The secidmap to sec mapping could not be removed from cell-profile.

854 CAE Specification (1997)



Error Code Mapping List

Name: sec_rs_ns_prof_elt_rm_succ
Value: 0x17122d49
The secidmap to sec mapping was removed from cell-profile.

Name: sec_rs_pipe_not_created
Value: 0x17122cd2
Unable to establish a parent-child pipe.

Name: sec_rs_pwd_bogus_pickle
Value: 0x17122cc1
Internal password representation incorrect.

Name: sec_rs_rep_incompat_version
Value: 0x17122e65
The software version is incompatible with the master’s version. The server will exit.

Name: sec_rs_rep_not_master
Value: 0x17122e64
The replica is no longer the master.

Name: sec_rs_rpc_if_reg_succ
Value: 0x17122d80
Security server has successfully registered the server interfaces with the RPC runtime and the
end point mapper

Name: sec_rs_rpc_if_unreg_succ
Value: 0x17122d83
Security server has unregistered the server interfaces from the RPC runtime and the end point
mapper

Name: sec_rs_rpc_inq_bind_err
Value: 0x17122d85
Unable to establish the requested server bindings.

Name: sec_rs_rpc_propif_reg_succ
Value: 0x17122d81
Security server has successfully registered the interfaces required for Name: security replication
with the RPC runtime and the end point mapper.

Name: sec_rs_rpc_propif_unreg_succ
Value: 0x17122d82
Security server has unregistered the interfaces required for Name: security replication from the
RPC runtime and the end point mapper.

Name: sec_rs_rpc_prot_twr_err
Value: 0x17122d87
Unable to get the server’s protocol towers.

Name: sec_rs_rpc_save_bind_err
Value: 0x17122d86
Unable to save the server’s bindings.

Part 4 Appendices 855



Error Code Mapping List

Name: sec_rs_rpc_use_protseq_err
Value: 0x17122d84
Unable to listen on any protocol sequence.

Name: sec_rs_thr_create_fail
Value: 0x17122da1
The specified thread could not be created . The actual cause of failure is logged prior to this.

Name: sec_rs_thr_exit_creat_fail
Value: 0x17122da0
The security server exited because thread creation failed. To name of the thread which could not
be created and the reason why it could not be created is logged by the status
sec_rs_thr_create_fail.

Name: sec_rs_thr_exiting
Value: 0x17122da3
The thread is about to exit.

Name: sec_rs_thr_started
Value: 0x17122da2
The specified thread has been started. This message is logged by a thread as soon as it is created
and starts running.

Name: sec_rs_vmcc_cant_register
Value: 0x17122e60
Unable to register virtual memory kerberos credential cache type.

Name: sec_rs_vmcc_cant_remove
Value: 0x17122e61
Cannot remove individual credentials from the VM cache.

Name: sec_s_authz_unsupp
Value: 0x17122001
The requested authorisation protocol is not supported by the authentication protocol requested.

Name: sec_s_bad_key_parity
Value: 0x1712200d
Specified DES key did not pass a parity check.

Name: sec_s_bad_nonce
Value: 0x17122003
Client failed challenge issued by server in RPC DG callback. Could be caused by a bug in DCE,
trouble with the network, or possibly a failed security attack.

Name: sec_secd_cl_bad_arg
Value: 0x17122d09
The argument for the specified option is not correct.

Name: sec_secd_cl_bad_chkpt_interval
Value: 0x17122d0c
Checkpoint interval specified on the command line is not a positive number.

Name: sec_secd_cl_locksmith_opt

856 CAE Specification (1997)



Error Code Mapping List

Value: 0x17122d0b
The specified option is valid and can be used only when -locksmith is also used.

Name: sec_secd_cl_missing_arg
Value: 0x17122d08
The specified option requires an argument which was not specified.

Name: sec_secd_cl_unknown_opt
Value: 0x17122d0a
The specified option is either invalid or unknown.

Name: sec_secd_cl_usage
Value: 0x17122d07
Name: secd started with incorrect arguments.

Name: sec_s_invalid_name service_entry
Value: 0x1712200b
Registry server encountered an error while processing its name service entry. May be caused by
an incomplete or incorrect configuration, or by duplicate secd replicas running simultaneously.

Name: sec_site_bind_default
Value: 0x17122f24
Attempting to bind to a registry site using the specified file.

Name: sec_site_bind_fail
Value: 0x17122f22
Failed to bind to the specified registry site.

Name: sec_site_bind_start
Value: 0x17122f20
Attempting to bind to the specified registry site.

Name: sec_site_bind_succ
Value: 0x17122f21
Successfully bound to the registry site.

Name: sec_site_cell_bind_start
Value: 0x17122f23
Attempting to bind to an arbitrary registry site in the specified cell.

Name: sec_site_lookup_file
Value: 0x17122f28
Retrieving RPC string binding handles for the specified server from the specified file.

Name: sec_site_profile_search_fail
Value: 0x17122f2b
The search for a security server using the specified profile s failed.

Name: sec_site_profile_search_start
Value: 0x17122f29
Beginning a search for the security server using the specified profile.

Name: sec_site_profile_search_succ
Value: 0x17122f2a

Part 4 Appendices 857



Error Code Mapping List

Successfully located security the specified server using the specified profile.

Name: sec_site_rebind_fail
Value: 0x17122f27
Failed to rebind to an alternate registry site.

Name: sec_site_rebind_start
Value: 0x17122f25
Attempting to rebind to an alternate registry site.

Name: sec_site_rebind_succ
Value: 0x17122f26
Successfully rebound to the registry site.

Name: sec_s_keytype_unsupp
Value: 0x17122002
Most likely an internal error, caused by a defect in DCE.

Name: sec_s_no_key_seed
Value: 0x17122009
Security service has not yet been initialized, so there is no random key seed available.

Name: sec_s_no_memory
Value: 0x17122007
Unable to allocate memory for the requested operation.

Name: sec_s_none_registered
Value: 0x17122004
Application programming error. The server has not yet registered its identity with the security
runtime.

Name: sec_s_no_pac
Value: 0x17122005
Improperly formed RPC authentication protocol message. Most likely caused by a defect in
DCE.

Name: sec_s_not_implemented
Value: 0x17122006
Requested operation is not implemented by this verion of DCE.

Name: sec_s_not_trustworthy
Value: 0x17122008
Client field of an incoming ticket was not the known Name: security/privilege server.

Name: sec_s_pgmerr
Value: 0x1712200c
Internal security server error.

Name: sec_s_v1_1_no_support
Value: 0x1712200f
Client attempted to use a DCE1.1 security feature that the server doesn’t support.

Name: sec_svc_cant_get_msg
Value: 0x17122cd1

858 CAE Specification (1997)



Error Code Mapping List

Serviceability component returns a error.

Name: sec_svc_not_authorized
Value: 0x1712217e
Caller is not authorized to perform the requested serviceability operation.

Name: sec_sys_errno_text
Value: 0x17122f61
The function call returned -1 and errno was set.

Name: sec_sys_errno_text_only
Value: 0x17122f62
The function call returned -1 and errno was set.

Name: sec_sys_file_ftruncate_fail
Value: 0x17122f69
An attempt to truncate the file using the call ftruncate() failed.

Name: sec_sys_file_lseek_fail
Value: 0x17122f63
The file seek failed.

Name: sec_sys_file_open_fail
Value: 0x17122f64
Failed to open the specified file.

Name: sec_sys_file_read_error
Value: 0x17122f67
The requested number of bytes were not read from the file.

Name: sec_sys_file_write_error
Value: 0x17122f68
The requested number of bytes were not written to the file.

Name: sec_thr_alert
Value: 0x17122f42
Thread received an alert exception.

Name: sec_thr_exit_cancel
Value: 0x17122f41
The thread terminated execution because it received a thread cancel exception.

Name: sec_thr_exit_exc
Value: 0x17122f43
The thread terminated execution because it received an exception.

Name: sec_thr_post_cancel
Value: 0x17122f40
Posting a cancel to specified thread.

Part 4 Appendices 859



Error Code Mapping List

860 CAE Specification (1997)



Glossary

This Glossary is intended to assist understanding and is not a substantive part of this
specification.

access
The interaction of a subject with an object. See Section 1.1.3 on page 6.

access control list (ACL)
The matrix of pairs of subjects and objects, whose entries consist of the subjects’
permissions to the objects. See Chapter 7, Section 1.1.3 on page 6 and Section 1.8 on page 40.

access determination algorithm
The algorithm in an ACL manager that determines whether the server should grant or deny
access. See Section 1.9 on page 46.

ACL manager
A module within an RPC server that interprets ACLs. See Section 1.9 on page 46.

a priori trusted entity
One of a small number of objects whose trust is assumed. See Section 1.1.5 on page 7.

asserted
Sent to the server without authentication. See Section 1.6 on page 25.

assured service
The state of being available and obtainable for use when needed. See Section 1.1.1 on page
4.

attribute
A security aspect of a computer installation that must be protected. Security attributes
studied in this specification include authenticity, confidentiality and integrity. See Section
1.1.1 on page 4.

attribute encoding type
A specifier of the data format (integer, string, uuid) of an attribute value. See Section 1.21.7
on page 104.

attribute instance
An attribute type uuid and value created according to the attribute type’s semantics and
attached to a registry object. Also called attribute or ERA. See Section 1.21.10 on page 106.

attribute schema
A collection of attribute type definitions or schema entries. Also called a schema. See Section
1.21.1 on page 100.

attribute set
An attribute instance with encoding type attr_set. Its value is a list of attribute type UUIDs
that identify member attributes of this set. Attribute sets are created for the purpose of
efficient queries of related attributes. See Section 1.21.9 on page 106.

attribute type
The description of the identifiers (such as name and UUID) and semantics (such as encoding
type and access control parameters) of instances of this type. See Section 1.21.10 on page 106
and Section 1.21.12 on page 108.

Part 4 Appendices 861



Glossary

attribute type UUID
A DCE UUID that uniquely identifies an attribute type. Also called attribute type ID or
attribute ID. See Section 1.21.3 on page 101 and Section 1.21.12 on page 108.

attribute value
The data in an attribute instance.

authenticity
The state of genuinely representing reality, of actually representing that which is alleged to
be represented. See Section 1.1.1 on page 4.

authorisation
The state of being granted privilege to access an object. See Section 1.1.3 on page 6.

authorisation data
The portion of a Kerberos ticket that contains data necessary for authorisation decisions. It
is sometimes abbreviated Auth_Data or A_D.

authority
An entity that is trusted to know the secrets of objects other than itself. See Section 1.1.5 on
page 7.

call chain
The chain of operations (RPC calls) leading from an initiator to the final target.

cell
The unit of partition of the network TCB. For security purposes, a cell is an instance of the
three security services, termed the RS/KDS/PS triple, of the security environment. As such,
each instance defines a separate cell. See Section 1.2 on page 12.

cell principal
A ticket that is targeted to a KDS server principal. See Section 1.5 on page 18.

certify
To convince a subject of the security of a credential. See Section 1.1.5 on page 7.
Certification of login is an optional process undertaken to thwart a type of multi-prong
attack described in Section 1.15.2 on page 77.

client
An object acts as a client when it sends an RPC to another object.

compromised
Said of a resource whose security attributes are not adequately protected. See Section 1.1.1
on page 4.

confidentiality
The state of being intrinsically unimpaired. See Section 1.1.1 on page 4.

container object
An object that contains other objects. See Section 1.8.2 on page 44.

credential
An object containing security information about a subject. See Section 1.1.5 on page 7.

cryptography
The science of using secrets to implement security mechanisms. Cryptanalysis is the art of
analysing cryptographic mechanisms. The two together are cryptology . See Section 1.1.6 on
page 8.

862 CAE Specification (1997)



Glossary

data encryption standard (DES)
An encryption/decryption algorithm in use since the late 1970’s and generally considered
secure. See Section 1.4 on page 17.

current login context
The login context automatically inherited by child processes. See Section 1.15 on page 71.

decode/decrypt
The inverse process of encoding or encryption, respectively. See Section 1.1.7 on page 9.

denial of service
The state of being unavailable or unobtainable for use when needed. See Section 1.1.1 on
page 4.

delegation
The projection of an initiator’s identity to another identity in a manner permitting the other
identity to operate on behalf of the initiator.

delegate restrictions
Limits placed upon who may act as an intermediary for a particular identity. See
intermediary.

delegation token
A checksum over the extended PAC (EPAC) data, encrypted in the PS’s key, placed in the
A_D field of a PTGT by the priveledge server when enabling delegation and when
generating a new delegation chain or impersonated identity. See impersonation for the
context in which this identity is used.

delegation type
Either traced delegation or impersonation (only one of which is valid for a given login context).

direct requestor
The client that operates directly on a given target. See target.

distributed environment
An environment in which the notion of communication is an explicit model primitive. See
Section 1.1.1 on page 4.

distributed time service (DTS)
A secure source of time information which is part of the network TCB. See Section 1.16 on
page 80.

domain
The scope of a security policy. See Section 1.1.2 on page 5.

encode
To semantically represent a message by an utterance, where the mapping between message
and utterance is secret. See Section 1.1.7 on page 9.

encrypt
To syntactically represent a message by an utterance, where the mapping between message
and utterance is secret. Typically, the encoding of the message is not secret. See Section
1.1.7 on page 9.

endianness
An attribute of bit-sequences and byte-sequences on a machine architecture that determines
whether the most significant element of the sequence occurs at the high address or at the
low address. See Section 2.1.4 on page 128.

Part 4 Appendices 863



Glossary

EPAC
An Extended PAC available in DCE 1.1 and newer versions, that can contain specified ERAs
in addition to the principal’s identity and group memberships. A delegation chain is
expressed by concatenating the EPACs fro the series of principals involved in an operation.
See Section 1.6 on page 25.

environment_set
A set of attributes known to the server; a ‘‘well-known’’ ERA. The use of the term
environment in this document is intended to represent aspects of a login session that are
associated with a client principal but whose values are derived from the point of entry the
client uses for access. These ‘‘environment attributes’’ can have static values, in which case
the value is specified by an administrator when defining a point of entry for a host machine
and stored in an ERA. Or thay can be dynamic, in which case their value is derived at the
time of the specific login attempt and assigned to an ERA through the login process.

ERA
Extended Registry Attribute, an attribute (user defined) in the DCE Security Registry
(Registry database). It is attached to a registry object, and created using the interfaces
defined in this specification. (Also called attribute.) Each ERA has a schema entry that is the
data dictionary entry defining the attribute type. Instances of the attribute containing values
can be attached to principal, group, organisation or policy nodes in the Registry database.
See Section 1.21 on page 100.

ERA Database
The portion of the Registry database that contains ertended registry attribute information,
including schema entries and attribute instances. See Section 1.21 on page 100.

final target
The last object in a call chain.

helpstring
A human-readable string explaining the semantics of a permission in greater detail than
does the printstring . See Section 1.9 on page 46.

home cell
The cell in whose registry a given principal’s security information is held. See Section 1.2 on
page 12.

insecure
Said of a resource whose security attributes are not adequately protected. See Section 1.1.1
on page 4.

integrity
The state of being unimpaired. See Section 1.1.1 on page 4.

item
An element of the registry datastore. See Section 1.12 on page 60.

immediate target
The object upon which a client performs an operation directly.

impersonation
Transmission of an initiator’s identity such that the identities of participants in a call chain
are not preserved.

initiator
The initial client in a call chain.

864 CAE Specification (1997)



Glossary

integrator
A person responsible for porting applications. This person is familiar with both the
application to be proted and with the site into which the application is being added. This
role involves modifying and recompiling source code.

intermediary
A server acting on behalf of an initiator, via delegation or impersonation, making requests
to another target server.

intermediate service
See intermediary.

Kerckhoffs´ Doctrine
The idea that the entire algorithm need not be secret, provided a key is. See Section 1.1.8 on
page 9.

key
A parameter to an encryption algorithm that suffices to make encryption secure even if the
algorithm is not secret. See Section 1.1.8 on page 9.

derived key
A key used for encryption based upon user input, usually a password and a ‘‘confounder’’
or ‘‘salt’’.

strong key
A key that is random and which uses the full key size. These keys are more difficult to break
by an intruder.

key management facility
A module that manages long-term cryptographic keys. See Section 1.14 on page 69.

login
A procedure that obtains and validates a login name to provide context for subsequent
operations. This specification does not specify a login program or login command, but
Section 1.15 on page 71 does list the typical behaviour of such a program or command.

login_set
A set of attributes known to a server, a ‘‘well-known’’ ERA. This set of attributes consists of
client specific information derived from the identity of a client. These login attributes can
have static values, in which case the value is specified by the administrator when defining a
user and stored in an ERA. Or they can be dynamic, in which case their values is derived at
the time of the specific login attempt and assigned to an ERA through the login process.

message
Data in communication. See Section 1.1.7 on page 9.

multi-prong attack
A security attack consisting of a counterfeit login and, simultaneously, malicious RPC
servers masquerading as KDS, PS, RS and SCD servers. Defeated by certifying the login, as
described in Section 1.15.2 on page 77.

multi-valued attribute
A collection of attribute instances of hte same attribute type attached to a single registry
object. See Section 1.21.12.1 on page 108 and Section 1.21.4 on page 102.

name-based authorisation
A primitive authorisation alternative specified in Section 1.6.1 on page 30 but whose use is
discouraged.

Part 4 Appendices 865



Glossary

network login context
The information necessary for a subject to become a client. See Section 1.15 on page 71.

network TCB
Three trusted network services: a Registry, a Key Distribution Service, and a Privilege
Service. See Section 1.2 on page 12.

object
The passive aspect of entities whose security attributes are to be protected. See Section 1.1.3
on page 6.

PAC
Privilege Attribute Certificate; the portion of a principal’s DCE 1.0 security credentials that
provides information about the principal’s identity (UUID) and privileges (group
memberships). See Section 1.6 on page 25.

pickle
A representation of a data type suitable for storage in the absence of a communications
context. See Section 2.1.7 on page 132.

policy
Requirements or rules an organisation places on the security attributes of its assets. See
Section 1.1.2 on page 5.

policy object
The registry data node, with the well-known name ‘‘policy’’ (under the Security junction
point, usually /.:/sec), representing registry-wide policy information. Attributes related to
cell-wide security policy should be created on the policy object. See Section 1.21.3 on page
101.

printstring
A human-readable string identifying a permission. See Section 1.9 on page 46.

privilege attribute
That portion of a client’s credentials a server uses in access control decisions. See Section
1.6 on page 25.

privilege attribute certificate (PAC)
A certificate specifying the attributes of a client that a server uses to grant or deny access to
its protected objects. See Section 1.2 on page 12.

quota
The maximum total number of PGO items plus accounts that may be added to the registry
datastore. See Section 11.5 on page 379

PTGT
Privilege Ticket Granting Ticket.

realm
The scope of a security policy. From the strict perspective of security, a cell is also known as
a realm in that it is the security domain of the network TCB. See Section 1.1.2 on page 5.

reference monitor
A trusted subject or entity that mediates all access to a protected object. See Section 1.1.5 on
page 7.

registry object
A data node in the Registry database. Registry object are of the object types: principal,
group, org, directory, policy, replist (replica list), and attr_schema. There are many nodes of

866 CAE Specification (1997)



Glossary

the principal, group, org and directory types. There is only one node each for the policy,
replist and attr_schema types. See Section 1.21 on page 100.

replay attack
A security attack consisting of a retransmission of an intercepted message for the purpose of
claiming to be the original sender. Thwarted by use of timestamps, as described in Section
1.16 on page 80.

schema
See attribute schema.

schema entry
A record containing the identifiers and characteristics of an attribute type. A schema entry is
essentially an attribute type definition. See Section 1.21.3 on page 101.

schema object
The Registry data node, with the well-known name ‘‘xattrschema’’ (under the Security
junction point, typically /.:/sec), containing the attribute schema information. Also called
the attribute schema object. See Section 1.21.1 on page 100.

secret
The smallest object whose security is considered tantamount to the security of larger objects
by means of trust chains. See Section 1.1.5 on page 7.

secure
Said of a resource whose security attributes are adequately protected. See Section 1.1.1 on
page 4.

service
A tool available to enforce a security policy. See Section 1.1.2 on page 5.

session
An interaction between an identified client and a server for a finite time, subject to discrete
authentication. See Section 1.2 on page 12.

signature
A keyed cryptographic checksum of a message. See Section 1.3 on page 16.

simple object
An object that does not contain other objects. See Section 1.8.2 on page 44.

site administrator
A person responsible for maintaining user accounts and installing new software packages.
This role does not involve any source code modification.

strength
An algorithm’s resistance to cryptanalysis. See Section 1.1.8 on page 9.

subject
The active aspect of entities that interact with objects. See Section 1.1.3 on page 6.

target
Any object that is downstream in a call chain from a given target.

target restrictions
A bound upon the set of targets to whom the client’s identity may be projected.

ticket
A credential certificate representing the authenticated identity of a client. See Section 1.2 on
page 12.

Part 4 Appendices 867



Glossary

traced delegation
A form of delegation that preserves the identities of each participant in a call chain.

transit path
The ordered sequence of KDS servers that vouch for a ticket. See Section 1.5 on page 18.

trigger
A remote operation, associated with an attribute type, that is executed when attributes of
that type are either queried or updated. See Section 1.21.8 on page 104.

trigger type
A classification, either ‘‘query’’ or ‘‘update’’, on a trigger that identifies on which attribute
operation the trigger will be invoked. See Section 1.21.8.2 on page 105.

trust
Said of a subject that believes an object is secure. See Section 1.1.4 on page 7.

trusted computing base
The fundamental core set of hardware and software that must be trusted. This set is
abbreviated (TCB) in this document, and is also referred to as the network TCB. See Section
1.1.5 on page 7.

validated login
A login context whose information has been decrypted and is trusted by the associated
principal or account. See Section 1.15 on page 71.

weak password
Users typically choose passwords which are derived from words and this makes attacks on
passwords easier to break than randomly generated passwords. Not to be confused with
weak key which is a term used to refer to specific keys and how they are modified by the DES
algorithm for encryption.

868 CAE Specification (1997)



Index

<dce/acct.h>............................................................530
<dce/aclbase.h>......................................................502
<dce/binding.h>.....................................................531
<dce/keymgmt.h> .................................................716
<dce/misc.h>...........................................................533
<dce/pgo.h>............................................................534
<dce/policy.h>........................................................535
<dce/rgynbase.h> ..................................................536
<dce/secidmap.h> .................................................706
<dce/sec_login.h>..................................................736
<dce/sec_rgy_attr.h>.............................................537
<dce/sec_rgy_attr_sch.h> ....................................538
1-tuple .......................................................................127
16-bit architecture...................................................128
1970 (end of time timestamp) ..............................167
a priori trust .................................................................7
a priori trusted entity.............................................861
abbreviation

of transit path......................................................170
absolute expiration time .........................................19
abstract syntax notation........................................159
academic discipline ....................................................3
accepting weak keys ..............................................151
access.....................................................................6, 861

matrix ........................................................................6
Access Control.................................................106-107

Attributes with Triggers....................................107
for Attribute Types.............................................106

access control decision ............................................14
access control list (ACL).....................6, 40, 312, 861
access determination algorithm....................46, 861
access request

input to CADA......................................................49
access semantics

of permissions.....................................................319
account........................................................................65

creator ...................................................................392
data (data type)...................................................408
entry in RS datastore............................................69
exactly one key....................................................394
expiration.....................................................369, 393
flag .........................................................................398
information, administration-level ..................392
lifetime..................................................................369
local-ID (data type) ............................................401
name of .................................................................362

unambiguous reference ....................................391
user-level information.......................................397
UUID (data type)................................................401

account domain.........................................................60
account information

conceptual part of login context........................71
account name

equals login name.................................................65
accuracy ........................................................................5

of time source ........................................................80
ACL .................................................................6, 40, 312

common................................................................317
data type...............................................................315
default creation .....................................................44
Editor.......................................................................12
entry (ACLE) (data type) ..................................312
Extensions ..............................................................98
for xattrschema Object ......................................101
identity of ...............................................................55
initial .......................................................................44
initial container .....................................................44
initial object ...........................................................44
multiple ..................................................................52
not supported in name-based............................30
physical separation from referent.....................12
pointer to..............................................................346
protection/object ..................................................44
semantics interpreted by manager ...................46
type........................................................................345
type (data type)...................................................315
unauthenticated entry .........................................25

ACL editor..................................................................55
ACL manager............................................46, 319, 861

ACLE types supported......................................359
common..................................................................47
multiple ..................................................................52
permission ...........................................................358
POSIX support ....................................................347
type UUID ...................................................345, 358
types supported by RS ........................................61

ACL manager API
future work............................................................48

ACL manager type UUID.......................................40
input to CADA......................................................49

ACL Permissions
Generic..................................................................358

DCE 1.1: Authentication and Security Services 869



Index

ACL type
not all need be supported ...................................46

ACLE...........................................................................40
data type...............................................................313
extended information........................................313
permission set .....................................................313

acting as a delegate.............................................42-44
active aspect.................................................................6
active bits of DES vector .......................................147
adequacy of security, evaluating.............................6
administer permission...........................................360
administration-level information........................392
administrative flag .................................................391
administrative interface ..........................................14
algorithm..................................................................159

access determination ...........................................46
basic DES..............................................................154
CADA .....................................................................48
CBC mode............................................................158
common access determination........................321
generate RA header............................................234
generation of AS response................................222

Algorithm
intercell_action....................................................103

algorithm
KDS Error processing ........................................258
next-hop ...............................................................219
prepare authentication header ........................232
processing privilege authentication/RA.......296
TGS request/response.......................................298
trusted.......................................................................8

Algorithm
use_defaults.........................................................102

alias............................................................................380
feature of principal domain................................65
in principal domain..............................................64

alternate algorithm
in future version ...................................................11

alternative approach ..................................................4
alter_context PDU ..................................................338
alter_context_response PDU................................339
ambiguity

of partially qualified string.................................85
syntactic, of PGO name.......................................67

AND ..........................................................................131
annotating a binding handle ..................................71
anonymous ................................................................25
Anonymous

Cell UUID...............................................................96
anonymous

client......................................................................281

Anonymous
Group UUID..........................................................96
Principal UUID......................................................96
Version 1 UUID...........................................278, 288

Anonymous Identity................................................96
data type...............................................................288

ANSI X3.106.............................................................147
ANSI X3.92...............................................................147
ANY_OTHER............................................................42

algorithm..............................................................326
at most one...........................................................317
supported by common ACL manager .............47

ANY_OTHER_DEL
algorithm..............................................................328

ANY_OTHER_DELEG............................................44
AppleTalk

registered address type .....................................176
application

correctly written ...................................................82
arithmetic

on timestamps.....................................................167
arithmetic, modular ...............................................131
array

of pointers to ACL..............................................346
AS...............................................................................163

receipt of request ................................................222
request/response processing...........................220
response (data type) ..........................................212
response received by client ..............................227

AS request ..................................................................21
client sends ..........................................................220

AS request/response................................................28
AS response ...............................................................21
ASCII.........................................................................190
ASN.1 ........................................................................159
aspect, active/passive................................................6
asserted.....................................................................861

status of PAC.......................................................280
asserted PAC .............................................................25
assertion......................................................................54
assurance

of correctly-written applications.......................82
assured service....................................................5, 861
asymmetric trust peers............................................33
atomicity

in changes to ACL ................................................56
attribute ................................................................5, 861

of user (data type) ..............................................393
PAC, in RS information.....................................291
PGO item (data type).........................................379
policy.....................................................................367

870 CAE Specification (1997)



Index

privilege..................................................................25
attribute encoding type .........................................861
Attribute Encodings...............................................104
attribute instance ....................................................861
Attribute Permissions

Additional............................................................107
Attribute Schema....................................................100
attribute schema .....................................................861
Attribute Schemas

Well-known .........................................................117
Attribute Scope .......................................................104
attribute set ..............................................................861
Attribute Sets...........................................................106
Attribute Trigger.....................................................104
Attribute Trigger Facility ......................................104
Attribute Triggers...................................................104
attribute type ...........................................................861
Attribute Type Flags ..............................................102
attribute type UUID...............................................862
attribute value .........................................................862
Attributes

Additional Permissions.....................................107
Privilege (for EPAC) ..........................................286
Well Known.........................................................115

attr_schema
ACL manager permission.................................358
ACL manager type UUID.................................358
supported ACLE types......................................359

auditing
not in this version.................................................11

authenticated
flag in PAC...........................................................280

authentication ...................................................18, 161
and Kerberos .........................................................18
client sends header.............................................232
cross-cell.........................................................32, 260
data........................................................................208
flag .........................................................................392
header omitted....................................................231
mutual, at TGS request........................................22
of TGS service, need for ....................................240
policy.....................................................................370
server receives header.......................................234
service not autonomous from KDS ..................18
situations warranting ..........................................54
time of .....................................................................19
to KDS server.........................................................18
user-to-user..........................................................203
verifier (PDU)......................................................329
vs. authorisation .................................................277

authentication data
checked by KDS server......................................245
data type...............................................................193
registered..............................................................193

authentication flag....................................................25
authentication header

data type...............................................................202
authentication header processing .......................231
authentication information permission.............360
authentication method

in RS information ...............................................217
authentication policy

in registry property ..............................................63
authentication service

registered..............................................................273
authentication service (AS) ..................................163
authenticator

available ...............................................................258
data type...............................................................200
decrypted by KDS server..................................246
in Kerberos protocol ............................................19
in service request..................................................23
in TGS request.....................................................243
timestamp in..........................................................80

authenticity..........................................................5, 862
protected by DES..................................................17
protected by DES-MD4/5...................................16

authnr-Cksum
usage in CL security ..........................................333

authorisation .......................................................6, 862
cross-cell .................................................................32
foreign groupsets (data type) ..........................279
in PTGS request ..................................................294
in RS information ...............................................291
local/foreign (data type) ..................................279
name-based..........................................................299
name-based versus PAC-based.........................30
vs. authentication ...............................................277

Authorisation Algorithm
for Delegation........................................................98

authorisation data ..................................................862
data type...............................................................194
registered..............................................................194

authorisation decision computation.....................46
authorisation identity

data type...............................................................277
authorisation service .......................................25, 263

registered..............................................................273
authority...............................................................8, 862
authority of authentication

conceptual part of login context........................71

DCE 1.1: Authentication and Security Services 871



Index

auth_value.assoc_uuid_crc ..................................338
auth_value.checksum ............................................339
auth_value.credentials ..........................................340
available

authenticator .......................................................258
avoided key..............................................................151
basic DES..................................................................147
basic DES algorithm

details....................................................................154
belief ..............................................................................7
belonging to a cell.....................................................60
BER ............................................................................159
big-endian.........................................................128-129
big/big-endian encoding in pickle .....................134
bilateral authentication ...........................................15
bind PDU..................................................................338
binding

to ACL server ........................................................87
binding handle ........................................................162
binding handle, RPC..............................................345
bind_ack PDU .........................................................339
bit ...............................................................................128

implementation of permission ..........................46
parity, in DES key...............................................147
unused ..................................................................160

bit representation
permission ...........................................................359

BIT STRING .............................................................160
denoting field element.......................................160

bit-position
of permissions.....................................................353

bit-reflection.............................................................137
bit-sequence

mapping to integer.............................................129
bit-vector

implementation of permission ..........................46
pickle as ................................................................132

bitset
data type...............................................................361

bitwise boolean AND ............................................131
bitwise boolean OR ................................................131
bitwise boolean XOR .............................................131
bitwise operation....................................................131
bitwise rotation .......................................................132
block

encryption of partial ..........................................148
block space...............................................................156
block, DES ................................................................147
body

of KDS request (data type) ...............................208
of PDU ..................................................................329

of pickle ................................................................132
PDU.......................................................................341

bootstrap
use of sec_login API after ...................................73

bootstrapping trust.....................................................7
bounds on ID numbers

in registry property ..............................................63
built-in integrity......................................................189
byte ............................................................................128

interpretation as integer....................................129
byte-sequence

mapping to integer.............................................130
byte-vector

pickle as ................................................................132
C language

pseudocode resembling ....................................127
cache

in RS information ...............................................219
maintenance ........................................................363

caching ........................................................................19
CADA ...........................................................27, 48, 321

not supported in name-based............................30
subalgorithm .......................................................324

call chain...................................................................862
case sensitivity ........................................................190
CBC mode algorithm.............................................158
CBC mode of DES...................................................148
CCITT X.208 ............................................................159
CCITT X.209 ............................................................159
CCITT X.509 ............................................................160
CCITT-32 ..................................................................138
CDS directory service

use in RPC binding...............................................86
CDS naming syntax ...............................................361
CDS-supported namespace....................................55
cell .................................................................12, 32, 862

checked by KDS server......................................245
cell name

data type...............................................................168
in registry property ..............................................62
in RS information ...............................................217

cell principal ......................................................18, 862
cell UUID....................................................................26
cell-profile ..................................................................86
cell-wide information ..............................................60
certificate, privilege attribute .................................14
certification ................................................................77

and scd_protected_noop( ) ...............................498
basis of login validation......................................71

certify ....................................................................8, 862
certify login context .................................................72

872 CAE Specification (1997)



Index

chain, trust....................................................................7
chaining properties ................................................150
chaining property

satisfied by twisted CRC ..................................137
challenge...................................................................332
change

date/time .............................................................363
change password..............................................69, 394
change permission....................................................47
CHAOSnet

registered address type .....................................176
character

restrict choice of..................................................192
character set

portable.................................................................192
checksum...........................................16, 127, 139, 143

checked by KDS server......................................247
data type ......................................................185, 396
DES-CBC ..............................................................150
in TGS request.....................................................244
registered type ....................................................185
type (data type)...................................................396

checksum type
in RS information ...............................................217

checksumtext ..................................................139, 143
child object .................................................................44
child process

inheritance of login context................................72
cipher block chaining CBC .....................................17
cipher function ........................................................155
ciphertext

operated on by DES .............................................17
circular shift .............................................................131
CL

integrity and confidentiality ............................334
security .................................................................332
verifier...................................................................330

claimed identity ......................................................165
class

of protected objects ..............................................40
client....................................................................12, 862

anonymous ..........................................................281
in CL context .......................................................332
in KDS Error message........................................258
in transit path ......................................................171
named.............................................................18, 163
named, in privilege ticket ...................................25
nominated............................................................281
receives AS response .........................................227
receives PTGS response ....................................295
receives RA header ............................................297

receives TGS response.......................................254
sends authentication header ............................232
sends PA header .................................................296
sends PTGS request ...........................................292
sends TGS request..............................................240

client cell
in TGS response..................................................255

client name
in TGS response..................................................255
versus CDS-registered service name................85

client receives RA header......................................238
client sends AS request..........................................220
client-side access information..................................6
client-side security context .....................................71
climate of opinion.......................................................7
clock

synchronisation.....................................................22
clock skew................................................................168

in RS information ...............................................218
CO

security .................................................................337
verifier...................................................................330

CO integrity and confidentiality .........................341
codebook ......................................................................9
coefficient

and endianness ...................................................128
collision

resistance of MD4, MD5......................................16
collision of ACLE....................................................317
collision resistance

of MD4..................................................................139
of MD5..................................................................143

collision-resistance .................................................137
combination permission

bit position...........................................................353
combinations of ACLs .............................................53
comma

metacharacter in transit path...........................170
common access determination algorithm.........321

CADA .....................................................................48
common access determination algorithm
(CADA)27
common ACL ..........................................................317
common ACL manager ...........................................47
common helpstring................................................320
common permission ..............................................319

bit position...........................................................353
common printstring...............................................320
communication

of twisted CRC....................................................137
start of protection .................................................23

DCE 1.1: Authentication and Security Services 873



Index

communication via RPC .........................................15
complex permission

bit position...........................................................353
complexity....................................................................7
component

mapping from PGO name ..................................67
composition law of CRC.......................................137
composition laws....................................................150
compressed

transit path...........................................................171
compression

of transit path......................................................170
compromised.......................................................4, 862
compromises of timestamp security ....................80
computation

authorisation decision .........................................46
computational complexity........................................7
computing entity ........................................................6
concatenation ..........................................................127
concurrent group set..............................................380
condition

on ACL..................................................................317
confidence ....................................................................7
confidentiality .....................................................5, 862

CL ..........................................................................334
CO..........................................................................341
protected by DES..................................................17
protected by DES, not MD4/5...........................16

confounder ..............................................148, 186, 188
conjunction ..............................................................131
connection-oriented

security .................................................................337
verifier...................................................................330

connectionless
security .................................................................332
verifier...................................................................330

constructed form ....................................................160
consuming the transit path.....................................25
container object.................................................44, 862
containment of damage...........................................27
context

at process start-up................................................72
login.........................................................................71
of security-version UUID .................................278
set for process at login.........................................73

control access
using ACLs ............................................................40

control permission ...........................................47, 359
convention

for encrypting partial blocks............................148
conventions..............................................................127

conversation key.......................................................14
checked by KDS server......................................247
in CL security ......................................................333
in TGS request.....................................................244
negotiation .............................................................23

conversation manager
CL ..........................................................................332

conv_who_are_you_auth( )..................................332
coordination

inter-cell..................................................................12
cost

of changing password .......................................229
of security checking .............................................54

costs ...............................................................................4
counterfeit KDS.......................................................228
counterfeit login

certification and ....................................................77
counterfeit server......................................................15
cracking a cryptosystem .........................................80
CRC ...................................................................127, 136

composition law .................................................137
registered..............................................................138
twisted ..................................................................137

CRC-32......................................................................136
crc_assoc_uuid ........................................................337
creator of account ...................................................392
credential..............................................................8, 862

CL ..........................................................................332
CO..........................................................................338
issuing.....................................................................25

cross-cell
complete scenario.................................................36

cross-cell authentication .................................32, 260
cross-cell authorisation .........................................298
cross-cell coordination.............................................12
cross-cell referral.....................................................241
cross-cell registration.............................................165
cross-cell security

poor in name-based .............................................31
cross-registration ......................................................32

global.......................................................................38
cryptanalysis................................................................9
cryptographic checksum.......................................127
cryptographic key

data type...............................................................395
management ..........................................................69
version number...................................................394

cryptography.......................................................9, 862
trusted algorithm/protocol ..................................8

cryptology ....................................................................9
cryptovariable .............................................................9

874 CAE Specification (1997)



Index

current login context........................................72, 863
at process start-up................................................72

current long-term key..............................................69
cursor

current position ..................................................405
Cursor

for Delegate Iteration.........................................286
for Extended Attributee Iteration ...................286

cursor
in RS datastore ....................................................362
meaningless across RS servers ........................362
wrap-around .......................................................387

cyclic redundancy checksum ...............................136
daemon.................................................................12, 71

inherited login context ........................................72
security-client........................................................14

damage containment ...............................................27
data

encrypted (data type) ........................................187
Data

Extended PAC (EPAC)......................................287
data

pre-authentication..............................................208
data encryption standard......................................147
data encryption standard (DES)....................17, 863
data repository (registry) ........................................60
data representation ................................................159
data type

ACL .......................................................................312
ACL manager ......................................................319
Anonymous Identity .........................................288
applicability to PS ..............................................277
authorisation identity........................................277
compatibility modes..........................................285
Cursor (Delegate Iteration) ..............................286
Cursor (Extended Attributee Iteration) .........286
delegate restriction entry types .......................284
delegate restriction types..................................284
delegation compatibility modes......................285
delegation restrictions .......................................285
Delegation Token........................................289-290
Delegation Token Set .........................................290
EPAC Seal ............................................................285
extended PAC (EPAC) ......................................283
for EPAC Data.....................................................287
foreign groupset identity..................................279
foreign identity ...................................................279
Handle (attribute data) .....................................286
in RS information ...............................................217
Kerberos ...............................................................166
List of Seals ..........................................................287

optional restrictions ...........................................283
PAC .......................................................................280
PAC (Extended) ..................................................287
PAC format..........................................................280
Privilege Attributes............................................286
privilege authentication header ......................282
privilege RA header...........................................282
privilege-ticket ....................................................281
PTGS request.......................................................282
required restrictions...........................................283
restrictions....................................................283-285
rpriv ps_app_tkt_result ....................................264
rpriv ps_attr_request .........................................264
rpriv ps_attr_result ............................................264
rpriv ps_message................................................264
Set of PACs (Extended).....................................288
storable as pickle ................................................132
Supported Delegation Types ...........................285
Supported Seal Types ........................................285
target restriction entry types............................284
target restriction types ......................................284
target restrictions................................................285
Version 0 Token Flags........................................289

data versus metadata...............................................15
data, account (data type) ......................................408
datastore.............................................................61, 362

in RS ........................................................................60
lookup by local ID..............................................381
lookup by UUID .................................................381
quota .....................................................................380

datastore query
result .....................................................................382

datastream ...............................................................135
date

creation of account .............................................392
dbyte............................................................................82
DCE Delegation Model............................................88
DCE X.500 name type............................................169
dce-ptgt.......................................................................30

reserved account...................................................65
reserved name.......................................................64

dce-rgy ........................................................................60
reserved account...................................................65
reserved name.......................................................64

dce_c_authn_level_integrity
CL ..........................................................................335

dce_c_authn_level_pkt
CL ..........................................................................335
CO..........................................................................341

dce_c_authn_level_pkt_integrity
CO..........................................................................342

DCE 1.1: Authentication and Security Services 875



Index

dce_c_authn_level_pkt_privacy
CO..........................................................................342

dce_c_authn_level_privacy
CL ..........................................................................336

dce_c_cn_sub_type_des ........................................338
dce_c_cn_sub_type_md5 ......................................338
DEA ...........................................................................147
decipher ........................................................................9
DECnet Phase IV

registered address type .....................................176
decode ...........................................................................9
decode/decrypt.......................................................863
decrypt ..........................................................................9

RA header ............................................................238
decryption

by KDS server......................................................246
CBC .......................................................................148
DES........................................................................157
in received AS response....................................228
in TGS response..................................................255
notation ................................................................147
unsuccessful ........................................................255
via DES .................................................................147

default cell
ACLEs that refer to.........................................41-42

default cell UUID......................................................40
default creation ACL................................................44
definite form ............................................................160
definitive identifier.................................................380
degree

of polynomial defining CRC............................136
delay

reflected in skew.................................................168
delegate.........................................................................6

ACLEs.....................................................................98
delegate restrictions ...............................................863
delegation.................................................................863
Delegation

Authorisation Algorithm....................................98
delegation

in this version........................................................11
Delegation

Login Functions ....................................................75
Remote Interfaces.................................................97

delegation compatibility modes
data type...............................................................285

Delegation Components - EPAC...........................90
Delegation Controls .................................................95
delegation foreign ACLE type ...............................43
delegation local ACLE type....................................42
Delegation Model - Components ..........................90

Delegation Model - overview ................................89
Delegation Token......................................................97
delegation token .....................................................863
Delegation Token

data type...............................................................289
in PTGT ................................................................290

delegation type........................................................863
delete item permission ..........................................360
delete permission .............................................48, 360
deletion of key...........................................................69
denial of service ..................................................5, 863

based on client address .....................................197
from expired key ................................................229

denying access.............................................................6
DER............................................................................160
derived key ..............................................................865
DES......................................................................17, 147

decryption............................................................157
no raw API.............................................................17
restriction by governments ................................17
usage to ensure integrity.....................................54

DES block .................................................................147
DES key

data type...............................................................395
DES-CBC checksum...............................................150
DES-CBC-CRC encryption ...................................399
des_key .....................................................................334
dictionary attack .......................................................17
difference between tickets ......................................25
different cell

PTGS processing.................................................292
digest

MD4.........................................................................16
MD4, MD5..............................................................16
MD5.........................................................................16

direct requestor .......................................................863
directory

ACL manager permission.................................358
ACL manager type...............................................61
ACL manager type UUID.................................358
supported ACLE types......................................359

directory services......................................................55
Directory Services

and RPC binding ..................................................86
dir_seq.......................................................................337
Disabling delegation ................................................95
disclosure

of ACLs unspecified.............................................47
discretionary policy....................................................5
disjunction................................................................131

876 CAE Specification (1997)



Index

display
of permission.......................................................353

distinct
integer (nonce) ....................................................183

distinct principals .....................................................33
distinctness

of pgo-UUID..........................................................67
distinguished encoding restriction .....................160
distributed

RPC service..........................................................263
distributed environment...................................4, 863
distributed RPC ......................................................161
distributed security ....................................................8
distributed time service (DTS).......................81, 863
DNS name type.......................................................169
doctrine

Kerckhoffs’ ...............................................................9
domain .....................................................5, 32, 60, 863

account....................................................................60
and aliases..............................................................64
data type...............................................................379
group.......................................................................60
naming..................................................................361
of ACL in model ...................................................12
organisation...........................................................60
principal .................................................................60

dot notation .............................................................160
double-UUID scheme ..............................................67
DTS ..............................................................................81
dummy operation...................................................498
duplicate cell names...............................................174
dynamic information

in ID map facility..................................................67
earlier

in comparing timestamps.................................167
Editor

ACL .........................................................................12
editor

registry....................................................................14
registry (RS) ...........................................................60

editor, ACL.................................................................55
egodicity of DES .....................................................156
empty PAC...............................................................281
empty string.............................................................127
Enabling delegation .................................................95
encipher ........................................................................9
encode...................................................................9, 863

BER ........................................................................159
pickle.....................................................................132

encoding service .....................................................135
encrypt..................................................................9, 863

encrypted data
data type...............................................................187

encrypted part of ticket .........................................195
encrypted pickle

data type...............................................................398
encryption

CBC .......................................................................148
in AS response.....................................................225
in TGS request.....................................................244
MD4 is not..............................................................16
MD5 is not..............................................................16
notation ..........................................................20, 147
of partial blocks ..................................................148
of ticket ...................................................................29
trivial.....................................................................399
type (data type)...................................................399
via DES .................................................................147

encryption key
data type...............................................................184
in RS information ...............................................217
registered..............................................................184

encryption type
initialisation.........................................................222
registered..............................................................188

end of time ...............................................................167
endianness .......................................................128, 863
endpoint map ............................................................55
English

use in common ACL manager...........................47
enhancement not precluded.....................................4
entity

active/passive aspect ............................................6
entry

ACL .........................................................................40
entry (ACLE)

data type...............................................................312
environment

distributed................................................................4
Environmental Parameters...................................115
environment_set .....................................................864
EPAC...........................................................26, 283, 864

Access Functions ..................................................93
input to CADA......................................................48

EPAC Seal
EPAC Seal ............................................................285

EPAC sets ...................................................................92
linked to tickets.....................................................92

EPACs
Receiving................................................................92
Transmitting ..........................................................92

epoch .........................................................................361

DCE 1.1: Authentication and Security Services 877



Index

equal principals.........................................................33
ERA ...................................................................100, 864

disable_time_interval ........................................118
environment_set .................................................123
login_set ...............................................................122
max_invalid_attempts ......................................118
minimum_password_cycle_time....................119
passwd_override ................................................122
passwords_per_cycle ........................................119
password_generation ........................................120
pre_auth_req .......................................................121
pwd_mgmt_binding..........................................121
pwd_val_type .....................................................120

ERA Database..........................................................864
ergodicity .................................................................148
error

KDS........................................................................258
KDS (data type) ..................................................215
order of reporting...............................................159
PS processing ......................................................298
PS, no special data type.....................................283

error message, KDS................................................163
error status code

data type...............................................................177
registered..............................................................178

error-detecting property .......................................137
error_status_ok

in kds_request .....................................................162
escape metacharacter.............................................171
establish credential

CL ..........................................................................332
CO..........................................................................338

establishing identity.................................................14
evaluate adequacy of security..................................6
exclusive or ..............................................................131
execute permission...................................................47
exotic combinations of ACLs .................................53
expanded

transit path...........................................................171
expansion .................................................................155
expiration

account .................................................................369
checked by KDS server......................................247
checking................................................................229
in RS information ...............................................218
in TGS request.....................................................242
in TGS response..................................................256
initialisation.........................................................221
of account.............................................................393
password..............................................................368

expiration time ..........................................................19

expire time
interpretation ......................................................209

EXTENDED ...............................................................42
optional in common ACL manager..................47

extended ACLE
prohibited from common ACL........................317

extended ACLE information................................313
extended ACLE type................................................42
extended PAC (EPAC)

data type...............................................................283
Extended Privilege

Attribute Facility...................................................93
Extended Registry

Attribute Facility ................................................100
extending the naming model .................................55
F( ) (used in definition of MD4) ...........................139
F( ) (used in definition of MD5) ...........................143
failed service request .............................................215
failure

in received response ..........................................228
fan-folding................................................................192
feasibility

of key search attack..............................................17
federated naming......................................................55
file

key table .................................................................69
file group class ACLEs.............................................58
final permutation....................................................154
final target ................................................................864
fingerprint..................................................16, 139, 143
first failure encountered........................................258
flag

account’s datastore information .....................398
administrative .....................................................391
authentication .....................................................392
authentication header........................................203
data type...............................................................379
KDS request (data type)....................................210
ticket (data type).................................................198
word, POSIX semantics.....................................347

foreign ACLE type....................................................41
foreign authorisation

data type...............................................................279
foreign group

in PAC...................................................................281
foreign groups authorisation

data type...............................................................279
foreign groupsets authorisation

data type...............................................................279
foreign secondary group ID ...................................26
FOREIGN_GROUP ..................................................41

878 CAE Specification (1997)



Index

algorithm..............................................................325
limitation in common ACL ..............................317
supported by common ACL manager .............47

FOREIGN_GROUP_DEL
algorithm..............................................................327

FOREIGN_GROUP_DELEG ..................................43
FOREIGN_OTHER ..................................................42

algorithm..............................................................326
limitation in common ACL ..............................317
supported by common ACL manager .............47

FOREIGN_OTHER_DEL
algorithm..............................................................328

FOREIGN_OTHER_DELEG ..................................43
FOREIGN_USER ......................................................41

algorithm..............................................................325
limitation in common ACL ..............................317
supported by common ACL manager .............47

FOREIGN_USER_DEL
algorithm..............................................................327

FOREIGN_USER_DELEG ......................................43
formalisation of security theory ..............................3
format

for displaying permission.................................353
of PAC...................................................................280
PAC (data type) ..................................................280

formatting details ...................................................127
forward

combined with proxy ........................................207
forwardable

in AS response.....................................................225
in RS information ...............................................218
in TGS request.....................................................241
initialisation.........................................................221
KDS request flag .................................................210
ticket flag..............................................................198

frequency of changing password ..........................69
freshness

of authenticator.....................................................80
full BER.....................................................................160
full name...................................................................381
fullname permission ..............................................360
future work

solve multi-hop trust chain problem ...............38
G( ) (used in definition of MD4) ..........................139
G( ) (used in definition of MD5) ..........................143
G-name .......................................................................84
gecos..........................................................................397
generalities on security..............................................3
generation of ticket...................................................29
generation of weak keys .......................................151

generator
of CRC ..................................................................137

generic permissions ...............................................360
genuine

received ticket .....................................................228
geographic dispersion ...............................................8
Global Group Name.................................................26

from Cell UUID and Group UUID....................26
global KDS cross-registration ................................38
global PGO name....................................................490
Global Principal Name

from Cell UUID and Principal UUID...............26
global root ................................................................171
global uniqueness...................................................278
goal of security ............................................................4
good password........................................................393
government

restriction on use of DES.....................................17
grace period .............................................................231
granting access ............................................................6
granting ticket ...........................................................12
granularity of time .................................................167
group...........................................................................41

ACL manager permission.................................358
ACL manager type...............................................61
ACL manager type UUID.................................358

GROUP
algorithm..............................................................325

group
identity (data type) ............................................392
in account item......................................................65
in PAC...................................................................281

GROUP
limitation in common ACL ..............................317

group
primary vs. secondary.........................................27
separate namespace .............................................63
supported ACLE types......................................359

GROUP
supported by common ACL manager .............47

group delegate...........................................................43
group domain....................................................60, 379
group permission ...................................................360
group UUID...............................................................26
group-ID.....................................................................67
group-name .........................................................67, 84
GROUP_DEL

algorithm..............................................................327
GROUP_DELEG .......................................................43
GROUP_OBJ..............................................................41

algorithm..............................................................325

DCE 1.1: Authentication and Security Services 879



Index

at most one...........................................................317
optional in common ACL manager..................47

GROUP_OBJ_DEL
algorithm..............................................................327

GROUP_OBJ_DELEG..............................................43
guarantee

that SCD server is genuine .................................79
unique stringname .............................................174

guessing password.............................................17, 69
H( ) (used in definition of MD4) ..........................139
H( ) (used in definition of MD5) ..........................143
hand-rolled pickle ..................................................135
Handle

for Privilege Attribute Data..............................286
handle

RPC binding................................................162, 345
handle, binding

annotating ..............................................................71
handle, protected

obtain ......................................................................57
handle_t ......................................................................62
hardware.......................................................................6

basis of key security.............................................69
hash.............................................................16, 139, 143

CRC-32..................................................................136
header

authentication (data type) ................................202
authentication, omitted.....................................231
authentication, processing ...............................296
client sends authentication...............................232
of PDU ..................................................................329
of pickle ................................................................132
privilege authentication (data type)...............282
privilege RA (data type) ...................................282
RA, client receives ..............................................238
reverse authentication (data type)..................205
version number...................................................133

helpstring...................................................46, 320, 864
and common ACL manager...............................47
common................................................................320

hierarchy
of principals, groups and orgs...........................63
organisational..........................................................5

high-level ACL manipulation
not specified...........................................................58

high-order bit
use of, in permission..........................................353

hint
in secidmap interface.........................................489

home cell ....................................................12, 161, 864
home directory........................................................397

honouring a ticket
time constraints on...............................................80

hop
in RS information ...............................................219

host address
communications, not security .........................175
data type...............................................................175
registered..............................................................176

host principal name..................................................64
host-name

reserved account...................................................65
reserved name.......................................................64
versus other machine name ...............................72

hot list
in RS information ...............................................219

human understanding of security...........................3
human-friendly stringname

in PGO item ...........................................................63
human-readable........................................................46
I( ) (used in definition of MD5) ............................143
ID map facility...........................................................67

bidirectional mapping.........................................67
identifier

of RPC transfer syntax ......................................133
identifier, definitive................................................380
identity..........................................................................3

authorisation (data type) ..................................277
authorisation, by PS .............................................25
certainty of ...............................................................5
data type...............................................................392
establishing............................................................14
in AS response.......................................................21
in Kerberos protocol ............................................19

identity-based policy .................................................5
IDL

specifies pickles ..................................................132
idl_pkl_header_t.....................................................133
ignorance of algorithm ............................................10
illicit use of resources.................................................4
immediate target.....................................................864
impersonation ...........................................................71
Impersonation ...........................................................95
impersonation .........................................................864
implementation

not constrained by pseudocode ......................127
implementation requirement...............................192
implementation variability...................................348

in header processing..........................................231
import/export of DES..............................................17
indicator of position...............................................362
indirect trust ................................................................7

880 CAE Specification (1997)



Index

indirect trust chain ...................................................36
infallibility, relative ..................................................78
infinite privilege..........................................................6
information

administration-level ..........................................392
registry (RS) .........................................................291
RS (data type)......................................................217

inheritance
of login context .....................................................72

inheritance model...................................................360
inheritance of ACLs .................................................44
inheritance rules

and common ACL manager...............................47
init

use of sec_login API.............................................73
init process

login context ..........................................................72
initial ACL..................................................................44
initial container ACL................................................44
initial key..................................................................164
initial object ACL......................................................44
initial permutation .................................................154
initial registration .....................................................14
initial ticket

issuing.....................................................................18
initialisation vector

DES........................................................................148
of CRC ..................................................................136

initialise permission...............................................360
initiator .................................................................6, 864
insecure.................................................................4, 864
insert permission ..............................................48, 359
instance

synonymous with server ....................................61
integer

mapping to bit-sequence ..................................129
mapping to byte-sequence ...............................130
mapping to mixed bit/byte-sequence ...........130

integration with time services ...............................80
integrator..................................................................865
integrity ................................................................5, 864

built-in ..................................................................189
CL ..........................................................................334
CO..........................................................................341
protected by DES..................................................17
protected by DES-MD4/5...................................16

intentional request
of cross-cell referral ticket ................................241

inter-cell coordination .............................................12
interaction ....................................................................6

intercell_action
Algorithm.............................................................103

interchangeability
of CADA steps ....................................................323

interests of client.....................................................489
interface

RPC........................................................................161
Interface

rpriv.......................................................................263
sec_id_epac_base................................................283

interface UUID
ACLs .....................................................................312
rs_acct ...................................................................402
rs_attr ....................................................................422
rs_attr_schema ....................................................433
rs_bind..................................................................364
rs_misc..................................................................409
rs_pgo ...................................................................383
rs_policy ...............................................................374
rs_prop_acct ........................................................441
rs_prop_acl ..........................................................445
rs_prop_attr .........................................................447
rs_prop_attr_schema .........................................449
rs_prop_pgo ........................................................451
rs_prop_plcy........................................................456
rs_prop_replist....................................................459
rs_pwd_mgmt.....................................................461
rs_qry ....................................................................463
rs_repadm............................................................465
rs_replist...............................................................473
rs_repmgr.............................................................476
rs_rpladmn ..........................................................481
rs_unix ..................................................................484
rs_update .............................................................487
scd..........................................................................497
secidmap ..............................................................491

interface, administrative .........................................14
intermediary........................................................6, 865
intermediate cell in trust chain ..............................36
intermediate service...............................................865
Internet

DNS name type...................................................169
registered address type .....................................176

Internet host name
versus host-name .................................................72

interpret
ticket......................................................................197

interval
data type...............................................................366

introduction
replication and propagation ............................301

DCE 1.1: Authentication and Security Services 881



Index

security services......................................................3
intuitive model............................................................3
invalid

ticket flag..............................................................199
inverse initial permutation...................................154
invisible

password..............................................................366
in_data

CL ..........................................................................332
IP ................................................................................154
irreducible generator .............................................137
ISO

registered address type .....................................176
ISO8859-1 .................................................................190
issuing cell TCB.......................................................163
issuing credential......................................................25
issuing initial ticket ..................................................18
item......................................................................60, 864

policy.......................................................................60
junction, namespace.................................................55
KDC (RFC 1510)......................................................159
KDS......................................................................18, 159

as registry client....................................................60
at least one per cell ...............................................32
basis of name-based authorisation ...................30
counterfeit ............................................................228
error (data type)..................................................215
error message ......................................................163
error processing ..................................................258
invoked only indirectly.......................................23
knowledge of foreign servers ............................38
password irrelevant to ......................................190
request body (data type)...................................208
request flag (data type) .....................................210
response (data type) ..........................................212
response, encrypted part ..................................213
server receives TGS request .............................245
TGS request/response processing..................298
ticket obtained at login........................................72
two services .........................................................163
use of protected RPC ...........................................54

KDS request
data type...............................................................207

KDS server
must be principal................................................165

kds_request( )
overview.................................................................23

Kerberos .............................................................18, 159
and use of most recent key...............................394
maximum ticket lifetime...................................370
outline of protocol................................................19

registered service................................................273
unregisterable data ............................................294

Kerckhoffs’
doctrine.....................................................................9

Kerckhoffs´ Doctrine..............................................865
key .........................................................................9, 865

deletion of ..............................................................69
DES..................................................................17, 147
DES (data type) ...................................................395
distributed by KDS...............................................18
distribution service ..............................................12
encryption (data type).......................................184
exactly one per account.....................................394
frequency of changes ...........................................69
in AS response.......................................................21
in Kerberos protocol ............................................19
in TGS response ....................................................22
limit on duration of validity...............................80
long-term................................................................69
long-term, retrieval ............................................223
long-term/short-term........................................164
management ..........................................................10
mapping to password, registered...................190
MD4 does not depend on....................................16
MD5 does not depend on....................................16
most recent ..........................................................394
possibly-weak .....................................................152
safe lifetime............................................................80
search attack ..........................................................17
semi-weak............................................................152
session ............................................................18, 164
session/conversation...........................................14
to be avoided.......................................................151
true session ............................................................14
type, in RS information .....................................217
version number...................................................394
weak ......................................................................151

key distribution service.........................................159
key distribution service (KDS)...............................18
key management

no special RPC interfaces .................................495
key management facility.................................69, 865
key schedule ............................................................154
key type ......................................................................69
key version number

presence/absence of ..........................................187
key, lookup

in PGO item ...........................................................63
key, query

type........................................................................381
keying information.................................................400

882 CAE Specification (1997)



Index

key_seq_num...........................................................333
knowledge....................................................................7
knowledge of foreign KDS servers .......................38
krb5rpc

metadata explicit in..............................................82
krb5rpc identity

element of cell-profile node................................86
krb5tgt

reserved account...................................................65
reserved name.......................................................64

krbtgt.........................................................................173
KS...............................................................................154
language

natural...................................................................159
LAS+TGS....................................................................18
last request

data type...............................................................176
in RS information ...............................................219
in TGS response..................................................256
inspection.............................................................229
registered..............................................................177

later
end of time timestamp ......................................167
in comparing timestamps.................................167

laws, composition...................................................150
least privilege ..........................................................201
least-significant byte (LSB) ...................................130
left shift

in DES ...................................................................155
left shift/rotate ........................................................132
legal ACL..................................................................317
length

of pickle ................................................................132
password..............................................................368

lifetime
account .................................................................369
in AS request .........................................................21
in registry property ..............................................62
of key in DES .........................................................80
of ticket ...................................................................19
password..............................................................368
renewable.............................................................370
ticket......................................................................370
ticket, in RS information ...................................218

lifetime timestamp ...................................................19
link

in trust chain............................................................8
links of chains..........................................................148
list

of pointers to ACL..............................................346
list of UUIDs ..............................................................26

list, access control (ACL) ......................................312
literature, current........................................................3
little-endian......................................................128-129
local ACLE type ........................................................41
local authorisation

vs. foreign.............................................................279
local cell UUID ..........................................................26
local group

in groupset ...........................................................279
in PAC...................................................................281

local ID......................................................................380
account (data type) ............................................401
lookup by .............................................................381

local key store
management of keys in .......................................69

local password
data type...............................................................397

lock.................................................................................9
locking

semantics not specified .......................................56
logical security ............................................................8
login ..............................................................14, 65, 865

availability of characters...................................192
login context

non-interactive basis............................................71
Login Denial............................................111, 113, 116

Client Overview .................................................110
Overview..............................................................109
Server Overview.................................................109

login facility ...............................................................71
Login Functions

for delegation ........................................................75
login name

equals account name ...........................................65
login program............................................................72
login request protocol............................................111
login response protocol.........................................111
login shell .................................................................397
login_set ...................................................................865
long PGO name.......................................................361
long-term key ..........................................................164

in RS information ...............................................217
one per account.....................................................69
retrieval ................................................................223

longword..................................................................128
lookup

result .....................................................................382
lookup by local ID ..................................................381
lookup by UUID .....................................................381
lookup key

data type...............................................................382

DCE 1.1: Authentication and Security Services 883



Index

lost
information in PTGS request ...........................282

low-order bit
use of, in permission..........................................353

LSB.............................................................................130
machine name

versus host-name .................................................72
machine principal name..........................................64
management information permission................360
manager, ACL...................................................46, 319
managing keys ..........................................................10
mandatory policy........................................................5
manipulated old ticket ..................................207, 241
map

endpoint .................................................................55
password to cryptographic key.........................72

mapping
password-to-key, registered ............................190

marshall
pickle.....................................................................132

mask ACLE type.......................................................42
masking step in CADA............................................50
masking step in DADA ...........................................52
MASK_OBJ.................................................................42

and sec_acl_calc_mask( ) ....................................58
at most one...........................................................317
optional in common ACL manager..................47

masquerade................................................................15
master replica ..........................................................302
master/slave RS server............................................61
matching step in CADA..........................................50
matching step in DADA..........................................51
mathematical probability..........................................7
matrix

access.........................................................................6
maxClockSkew ......................................................168
maximum clock skew............................................168

in RS information ...............................................218
maximum ticket lifetime.......................................370
MD4 ............................................................16, 127, 139

no raw interface ....................................................16
MD5 ............................................................16, 127, 143

no raw interface ....................................................16
usage to ensure integrity.....................................54

mechanism ...................................................................5
mediation

of trust link across cells .......................................32
member of group......................................................60
membership permission .......................................360
memorisation of password.....................................69

memory
inability to allocate.............................................162

message ................................................................9, 865
KDS Error.............................................................163
notation...................................................................20

message digest
produced by MD4 ..............................................139
produced by MD5 ..............................................143

Message Digest 5 (MD5) .........................................16
message identity code (MIC) .................................16
message type

data type...............................................................166
in KDS Error message........................................258

metacharacter
escaping................................................................171
in cell name..........................................................169
in transit path ......................................................170

metadata...............................................................15, 55
pickle header .......................................................132
tickets and authenticators...................................82

metaticket ...................................................................18
MIC..............................................................................16
microsecond

checked by KDS server......................................247
in KDS Error message........................................258

microsecond timestamp........................................167
alternative implementation..............................167

minimum implementation requirement............192
minimum number of octets..................................160
mirrored RS server ...................................................61
misuse of resources ....................................................4
mix-in string ............................................................190
mixed bit/byte-sequence

mapping to integer.............................................130
mode, access ................................................................6
model

extend to multi-cell case .....................................32
extension of............................................................55
federated naming .................................................55
inheritance ...........................................................360
programming, RPC............................................329
RPC binding ..........................................................86
shape, trusted......................................................291

model of security ......................................................12
models

academic...................................................................3
modification

date/time .............................................................363
modular arithmetic ................................................131
monitor, reference.......................................................8
most recent key.......................................................394

884 CAE Specification (1997)



Index

most-significant byte (MSB).................................130
MSB............................................................................130
multi-cell TCB .....................................................12, 32
multi-hop trust chain...............................................38
multi-prong attack ...........................................77, 865
multi-valued attribute ...........................................865
multiple ACLs ...........................................................52
multiple UUIDs.........................................................27
mutual authentication.....................................15, 237

checked by KDS server......................................246
future work............................................................58
in TGS request.....................................................244
of TGS service .....................................................240

mutual required......................................................203
mutual trust ...............................................................33
n-tuple.......................................................................127
name

data type...............................................................379
full..........................................................................381
global PGO...........................................................490
mapping by ID map facility ...............................67
of account ...............................................................65
of cell (data type .................................................168
principal (data type) ..........................................174
RS (data type)......................................................172

name permission ....................................................360
name, reserved ..........................................................64
name-based authorisation......................30, 299, 865
name-based group

not supported........................................................30
named client ......................................................18, 163

in privilege ticket ..................................................25
namespace junction..................................................55
namespace, separate ................................................63
NAMETYPE.............................................................169
naming domain.......................................................361

data type...............................................................379
naming model

extension of............................................................55
naming services

integration with security.....................................84
naming syntax, CDS ..............................................361
natural language.....................................................159
NDR

encoding/marshalling of pickles ....................132
not used in pickle fields ....................................134

NDR format label ...................................................134
negation, boolean ...................................................131
negotiation

in RS information ...............................................218
of conversation key..............................................23

network
compromise ...........................................................10

network delay..........................................................168
network identity information

mapped at login....................................................72
network login context .....................................71, 866
network TCB .....................................................12, 866
new ticket .................................................................207
newly issued ticket.................................................241
next hop

in RS information ...............................................219
nibble

not used in this specification ...........................128
no-op .........................................................................498
no-op, protected........................................................76
node

RPC cell profile .....................................................86
nominate client..........................................................25
nominated client .....................................................281
non-alphabetic

required in password.........................................368
non-cryptographic checksum ..............................127
non-empty

header and body of pickle ................................132
non-interactive subject

and key management facility.............................69
non-invertible digest .....................................139, 143
non-linearity of DES...............................................156
nonce

as challenge..........................................................332
checking................................................................229
data type...............................................................183
in AS request .........................................................21
in TGS request.....................................................243
in TGS response..................................................255
initialisation.........................................................222

none
reserved group name...........................................64
reserved organisation name...............................64

normal form
bytes of DES key.................................................147

not ..............................................................................131
notation ..............................................................20, 127

for CBC encryption/decryption......................148
for decryption......................................................147
for encryption......................................................147

number
random (data type) ............................................183
sequence (data type) ..........................................176

numerical rotation..................................................131
O-name .......................................................................84

DCE 1.1: Authentication and Security Services 885



Index

object ...............................................................6, 44, 866
control of access to ...............................................40
group.......................................................................60
identity of ...............................................................55
organisation...........................................................60
principal .................................................................60
protected ..............................................................345
underlying..............................................................55
uniqueness of identification.............................346

object ACL..................................................................44
objective criterion of belief .......................................7
obscurity .....................................................................10
odd parity.................................................................147
old ticket

manipulated ........................................................207
one-way authentication in sec_acl ........................58
opaque

cell name ..............................................................169
opaque pointer

login context as .....................................................71
opaque RPC transport .............................................82
operating system.........................................................6

basis of key security.............................................69
operation

on bit-sequences .................................................131
opinion..........................................................................7
optimisation...............................................................23
OR ..............................................................................131
order of reporting errors .......................................159
org-name ....................................................................84
organisation

ACL manager permission.................................358
ACL manager type...............................................61
ACL manager type UUID.................................358
identity (data type) ............................................392
in account item......................................................65
policy information..............................................368
separate namespace .............................................63
supported ACLE types......................................359

organisation domain........................................60, 379
organization-ID.........................................................67
organization-name ...................................................67
original RPC.............................................................332
OTHER_OBJ ..............................................................41

algorithm..............................................................325
at most one...........................................................317
supported by common ACL manager .............47

OTHER_OBJ_DEL
algorithm..............................................................327

OTHER_OBJ_DELEG ..............................................43
out of band.................................................................14

outline
of Kerberos protocol ............................................19

outline of specification ............................................10
out_data

in CL security ......................................................332
overlap

of security domains................................................5
owner

can control object’s ACL.....................................47
owning group............................................................43
owning user..........................................................41-42
P-name ........................................................................84
PA

client sends header.............................................296
PA header

received by server ..............................................297
PAC............................................................................866

(Set of) Extended (EPACs)................................288
contained in privilege ticket...............................25
data type...............................................................280
empty ....................................................................281
Extended (EPAC)................................................287
pickled ..................................................................281

PAC attribute
in RS information ...............................................291

PAC format
data type...............................................................280

PAC-based authorisation........................................30
PAC-based PS..........................................................263
padding bits .............................................................134
pair of UUIDs ............................................................27
parent object ..............................................................44
parity

odd in DES key....................................................147
part of KDS response .............................................213
part of message

notation...................................................................20
part of RA header to be encrypted......................205
part of ticket to be encrypted...............................195
partial block

encryption of .......................................................148
partial qualification ..................................................85
partitioned

RPC service..........................................................263
partitioned RPC ......................................................161
partitioning

of network TCB.....................................................12
passive aspect ..............................................................6
passive bits

destroying ............................................................155
passive bits of DES vector ....................................147

886 CAE Specification (1997)



Index

Passsword Strength................................................116
password ....................................................................14

and key search attack ..........................................17
basis of long-term key .........................................69
change...................................................................394
changing...............................................................229
data type......................................190, 393, 395, 397
expiration .............................................................368
level of confidence in .............................................7
lifetime..................................................................368
minimum length.................................................368
not to be sent remotely......................................366
policy restriction.................................................368
requested at login.................................................72
valid.......................................................................393
version number...................................................394

Password Expiration..............................................117
Password Management.................................109, 116

Overview..............................................................110
password-changing program...............................165
password-to-key mapping

registered..............................................................190
path

transit ......................................................................19
PC1, PC2...................................................................154
PCS ............................................................................192

in printstring........................................................319
PDU

verifier and body ................................................341
pepper .......................................................................190
per-cell PGO UUID ..................................................67
per-end-principal

in RS information ...............................................217
per-foreign-KDS

in RS information ...............................................217
performance...............................................................54
permission..................................................................46

and common ACL manager...............................47
bit position...........................................................353
common................................................................319
display format.....................................................353
exceeding maximum number............................52
in ACLE ..................................................................40
list ..........................................................................359
maximum number ...............................................40
semantics unspecified .......................................319

permission set .........................................................313
permissions

not supported in name-based............................30
permutation .............................................................154
permutation mapping ...........................................156

permuted choices ...................................................154
PGO

global name .........................................................490
protected with ACLs ...........................................84

PGO item
attribute (data type) ...........................................379
data type...............................................................380
definitive identifier.............................................380

PGO name
mapping into components .................................67
short and long .....................................................361

PGO UUID .................................................................67
pgo-ID .........................................................................67
PGO-name..................................................................84
physical security .........................................................7
pickle.................................................................132, 866

data type...............................................................398
in extended ACLE..............................................313
type (data type)...................................................399

pickled PAC.............................................................281
in privilege-ticket ...............................................281

piggy-back..................................................................23
pkl_length_hi...........................................................133
pkl_length_low .......................................................133
pkl_syntax................................................................133
pkl_type....................................................................133
pkl_version ..............................................................133
plaintext ........................................................................9

operated on by DES .............................................17
pre-encrypted..............................................209, 213

pointer
to ACL...................................................................346

pointer, opaque
login context as .....................................................71

policy ..............................................................5, 84, 866
ACL manager permission.................................358
ACL manager type...............................................61
ACL manager type UUID.................................358
authentication .....................................................370
examples...................................................................5
in policy item.........................................................62
in registry property ..............................................63
of organisation ....................................................368
organisation...........................................................60
protected with ACLs ...........................................84
restriction on password ....................................368
supported ACLE types......................................359

policy attribute........................................................367
policy item ...........................................................60, 62
policy object .............................................................866

DCE 1.1: Authentication and Security Services 887



Index

polymorphic
no registry item is.................................................61

polymorphism.........................................................346
polynomial

definition of CRC................................................136
poor cryptographic characteristic .......................151
port 88.................................................................83, 163
portability

seat.........................................................................192
portable character set.............................................192

in printstring........................................................319
posited trust .................................................................7
position indicator ...................................................362
POSIX

and MASK_OBJ ....................................................58
draft rule for common ACL .............................317
extent of semantics.............................................347
group.................................................................41, 43
home directory....................................................397
login shell .............................................................397
owner.................................................................41-42

possibly-weak keys ................................................152
postdatable

in AS response.....................................................225
in RS information ...............................................218
in TGS request.....................................................242
initialisation.........................................................221
KDS request flag .................................................210
ticket flag..............................................................198

power
of polynomial defining CRC............................136

pre-authentication data.........................................208
pre-encrypted plaintext ................................209, 213
pre-installation ..........................................................14
prefixed name type ................................................169
Pre-authentication ..................................................111

Overview..............................................................109
protocol ................................................................114

primary group
in account item......................................................65

principal
ACL manager permission.................................358
ACL manager type...............................................61
ACL manager type UUID.................................358
equal vs. distinct across cells .............................33
identity (data type) ............................................392

Principal
input to CADA......................................................49

principal
KDS server must be ...........................................165
separate namespace .............................................63

supported ACLE types......................................359
principal domain ..............................................60, 379

and aliases..............................................................64
principal name

data type...............................................................174
not a parameter in sec_acl ..................................58

principal stringname
conceptual part of login context........................71

principal UUID..........................................................26
principal, cell .............................................................18
principal-ID................................................................67
principal-name....................................................67, 84
printable stringname (data type..........................362
printstring ..........................................................46, 866

and common ACL manager...............................47
common................................................................320
data type...............................................................319
permission ...........................................................359

privacy ..........................................................................5
privilege........................................................................6

infinite .......................................................................6
service .....................................................................12

privilege attribute.............................................25, 866
privilege attribute certificate

data type...............................................................280
privilege attribute certificate (PAC) .............14, 866
privilege authentication header

client sends ..........................................................296
data type...............................................................282

privilege authentication/RA header..................296
privilege RA header

data type...............................................................282
privilege service......................................................263

PAC-based ...........................................................263
privilege service (PS) ...............................................25
privilege ticket...........................................................25

not used in name-based authorisation.............30
use in PS .................................................................27

privilege ticket granting service ..........................275
privilege-ticket ..................................................14, 276

data type...............................................................281
probability....................................................................7
process

context at start-up ................................................72
no correspondence with login context.............71

processing
AS request/response .........................................220
header/RA header .............................................231
privilege authentication/RA header..............296
TGS request/response.......................................298

programming model..............................................329

888 CAE Specification (1997)



Index

prompt, login.............................................................65
proper use of resources .............................................4
property

in policy item.........................................................62
of RS server (data type).....................................366

property, chaining..................................................150
protected communication

start of .....................................................................23
protected handle

obtain ......................................................................57
protected object.......................................................345
protected password ...............................................366

data type...............................................................397
protected RPC.............................................14, 54, 329
protecting security attribute.....................................4
protection

of AS response.......................................................22
protection ACL..........................................................44
protection of ticket ...................................................18
protection_level ......................................................333
protocol.......................................................................10

Kerberos .................................................................19
RPC (list) ..............................................................329
trusted.......................................................................8

protocol data unit .....................................................15
protocol message type

data type...............................................................166
registered..............................................................166

protocol tower.................................................347, 364
protocol version number

data type...............................................................166
registered..............................................................166

provability....................................................................7
proxiable

in AS response.....................................................225
in RS information ...............................................218
in TGS request.....................................................242
initialisation.........................................................221
KDS request flag .................................................210
ticket flag..............................................................198

proximity and trust ..................................................32
proxy

combined with forward ....................................207
PS .........................................................................25, 263

as registry client....................................................60
at least one per cell ...............................................32
error processing ..................................................298
no direct API..........................................................30
not visited in name-based authorisation.........30
use of protected RPC ...........................................54

PS error
no special data type ...........................................283

PS request...................................................................28
PS response ................................................................29
pseudocode..............................................................127
ps_request_become_delegate( )

overview.................................................................30
ps_request_become_impersonator( )

overview.................................................................30
ps_request_eptgt( )

overview.................................................................30
ps_request_ptgt( )

overview.................................................................30
PTGS

request/response processing...........................292
PTGS request

client sends ..........................................................292
data type...............................................................282
lost information ..................................................282
PS server receives ...............................................293

PTGS response
client receives ......................................................295
data type...............................................................283

PTGS service............................................................275
PTGT .........................................................................866
public-key certificate..............................................204
quadratic vector Q[ ] ..............................................141
quadword.................................................................128
qualification

partial ......................................................................85
quality

of nonce generator..............................................183
of random number generator ..........................183

query
result .....................................................................382

query key
data type...............................................................382
type........................................................................381

Query Triggers ........................................................106
quota .................................................................380, 866
Q[ ] .............................................................................141
RA

header, client receives .......................................238
RA header

client receives ......................................................297
sent by server ......................................................297

RA header processing............................................231
random number

data type...............................................................183
rationale

for extended ACLE ............................................313

DCE 1.1: Authentication and Security Services 889



Index

raw UDP.....................................................................83
rdacl.....................................................................55, 345

enumeration of functions ...................................55
rdacl_get_*( )

basis of sec_acl_get_*( ) .......................................57
rdacl_get_access( )

overview ........................................................57, 350
rdacl_get_manager_types( )

overview ........................................................55, 352
rdacl_get_mgr_types_semantics( )

overview ........................................................55, 355
rdacl_get_printstring( )

overview ........................................................56, 352
rdacl_get_referral( )

overview ........................................................57, 354
rdacl_lookup( )

and EXTENDED ACLE type..............................42
overview ........................................................56, 349

rdacl_place_holder_1( )
overview...............................................................351

rdacl_replace( )
may modify RS data ..........................................366
overview ........................................................56, 349
replacing old ACL ................................................56

rdacl_test_access( )
overview ........................................................57, 350

rdacl_test_access_on_behalf( )
overview.................................................................57

read
protection against...................................................5

read permission ................................................47, 359
read-only

RS site....................................................................366
readable server ..........................................................61
realm ...............................................................5, 32, 866

usage in RFC 1510 ..............................................159
realm name ..............................................................168
redundant UUIDs.....................................................27
reference monitor ...............................................8, 866

RS .............................................................................61
referent

of ACLE............................................................41, 43
of UUID ..................................................................26

referral ticket..............................................................36
registered authentication data type....................193
registered authentication service ........................273
registered authorisation data type......................194
registered authorisation service ..........................273
registered cell name syntax ..................................169
registered checksum type .....................................185
registered CRC........................................................138

registered encryption key type............................184
registered encryption type....................................188
registered error status code..................................178
registered host address type ................................176
registered last request............................................177
registered password-to-key mapping................190
registered protocol message type .......................166
registered protocol version number...................166
registered RS name.................................................173
registered transit path type ..................................170
registration

cross-cell ...............................................................165
of RS ........................................................................84

registration service ...................................................60
registration, cross- ....................................................32
registry..................................................................12, 60

ACL manager types supported .........................61
editor .......................................................................14

Registry Attributes .................................................115
registry editor ............................................................60
registry information...............................................291
registry name

data type...............................................................172
registry object ..........................................................866
registry policy

conceptual part of login context........................71
registry property.......................................................62
rejection

of PAC without authentication .........................25
relative infallibility ...................................................78
relatively well-formed ACL ...................................46
reliability.......................................................................5
Remote Interfaces

Delegation..............................................................97
renew

in TGS request.....................................................242
renewable

in AS response.....................................................225
in RS information ...............................................218
in TGS request.....................................................242
initialisation.........................................................221
KDS request flag .................................................210

renewable lifetime..................................................370
replay attack ......................................................80, 867

detecting via nonce ............................................229
replay cache

in RS information ...............................................219
server checks timestamp against ....................235

replica
synonymous with server ....................................61

replica overview .....................................................301

890 CAE Specification (1997)



Index

replica state
data type...............................................................469

replication
of network TCB.....................................................12
of RS service ..........................................................61

replication model
protocol is future work .......................................61

replist
ACL manager permission.................................358
ACL manager type UUID.................................358
supported ACLE types......................................359

repudiation...................................................................4
request

AS.............................................................................21
AS, receipt of .......................................................222
KDS........................................................................207
processing by AS ................................................220
PTGS (data type) ................................................282
PTGS processing.................................................292
PTGS, received....................................................293
service .....................................................................23
TGS ..........................................................................22
TGS, receipt of.....................................................245

request processing
TGS........................................................................240

required item ...........................................................380
reserved name ...........................................................64
resolution-with-residual support..........................55
resource

proper/improper use ............................................4
response

AS.............................................................................21
AS, received by client ........................................227
AS, sending of .....................................................222
processing by AS ................................................220
PTGS (data type) ................................................283
PTGS processing.................................................292
PTGS, ....................................................................293
PTGS, received....................................................295
service .....................................................................23
TGS ..........................................................................22
TGS, construction of ..........................................253
TGS, receiving.....................................................254
TGS, sending .......................................................245

response processing
TGS........................................................................240

responsibility
of server..................................................................12

restrictions
data type.......................................................283-285

Restrictions
Delegate..................................................................96
Optional..................................................................96
Required.................................................................96
Target ......................................................................96

reverse authentication
client receives header ........................................238
header (data type) ..............................................205
header omitted....................................................231
header processing...............................................231
server sends header ...........................................234

reverse authenticator ...............................................29
REVERSE transformation .....................................192
revocation

in RS information ...............................................219
revoke

implicit when key is deleted ..............................69
ticket ........................................................................69

RFC 1320...................................................................139
RFC 1321...................................................................143
RFC 1510 ..................................159, 163, 174-175, 197

expire time ...........................................................209
in CL security ......................................................333

rights
implementation variability ..............................348

rigour.............................................................................4
ritual, login.................................................................65
root, global ...............................................................171
rotation .....................................................................131
rounds.......................................................................155
RPC

binding model .......................................................86
integration with security.....................................82
profile node............................................................86
transfer syntax, in pickle...................................133
used by all security servers ................................15

RPC binding handle...............................................345
RPC interface...........................................................161
RPC PDU..................................................................329
RPC server .........................................................12, 161
RPC, protected ..................................................54, 329
rpc_biding_set_auth_info( )

in login facility ......................................................71
rpc_binding_inq_auth_caller( )

overview.................................................................82
rpc_binding_inq_auth_client( )

overview.................................................................82
rpc_binding_inq_auth_info( )

overview.................................................................82
rpc_binding_set_auth_info( ).........................72, 498

overview.................................................................82

DCE 1.1: Authentication and Security Services 891



Index

rpc_c_authz_name ...................................................30
rpc_c_protect_level constants................................54
rpc_mgmt_inq_server_princ_name( )

overview.................................................................82
rpc_mgmt_set_authorization_fcn( )

overview.................................................................82
rpc_ns_binding_import_*( )

binding to security ...............................................86
rpc_ns_entry_inq_resolution( )

with residual operation.......................................55
rpc_server_register_auth_info( )

overview.................................................................82
rpc_syntax_id_t.......................................................133
rpriv...........................................................................263

metadata explicit in..............................................82
rpriv identity

element of cell-profile node................................86
RS .................................................................................60

ACL manager types supported .........................61
as reference monitor ............................................61
at least one per cell ...............................................32
information (data type).....................................217
must be registered................................................84
policy attribute....................................................367

RS binding..................................................................61
RS datastore

data type...............................................................380
lookup by local ID..............................................381
lookup by UUID .................................................381
management of keys in .......................................69
query (lookup) key.............................................382
quota .....................................................................380
user-level information.......................................397

RS editor .....................................................................60
RS editor RPC interface

future work............................................................60
RS information ........................................................291
RS name

data type...............................................................172
registered..............................................................173

RS namespace
data type...............................................................379

RS server
properties (data type) ........................................366

rsec_id_gen_name( )
overview ........................................................68, 492

rsec_id_gen_name_cache( )
overview ........................................................68, 493

rsec_id_output_selector_t
data type...............................................................489

rsec_id_parse_name( )
overview ........................................................68, 491

rsec_id_parse_name_cache( )
overview ........................................................68, 493

rs_acct .........................................................................60
rs_acct RPC interface .............................................391
rs_acct_add( )

limited by quota..................................................380
may modify RS data ..........................................366
overview ........................................................65, 403
use of rs_acct_key_transmit_t .........................400

rs_acct_delete( )
may modify RS data ..........................................366
overview ........................................................66, 404

rs_acct_get_projlist( )
overview ........................................................66, 407
part of rs_login_get_info( ) ...............................410

rs_acct_key_transmit_t
data type...............................................................400

rs_acct_lookup( )
honours sec_rgy_prop_shadow_password..366
overview ........................................................66, 405
part of rs_login_get_info( ) ...............................410

rs_acct_parts_t
data type...............................................................398

rs_acct_rename( )
may modify RS data ..........................................366
overview ........................................................66, 404

rs_acct_replace( )
may modify RS data ..........................................366
overview ........................................................66, 405
use of rs_acct_key_transmit_t .........................400

rs_attr RPC interface..............................................412
rs_attr_cursor_init( )

overview...............................................................422
rs_attr_cursor_t

data type...............................................................412
rs_attr_delete( )

overview...............................................................426
rs_attr_get_effective( )

overview...............................................................427
rs_attr_get_referral( )

overview...............................................................426
rs_attr_lookup_by_id( )

overview...............................................................422
rs_attr_lookup_by_name( )

overview...............................................................424
rs_attr_lookup_no_expand( )

overview...............................................................423
rs_attr_schema RPC interface..............................428

892 CAE Specification (1997)



Index

rs_attr_schema_aclmgr_strings( )
overview...............................................................437

rs_attr_schema_create_entry( )
overview...............................................................433

rs_attr_schema_cursor_init( )
overview...............................................................434

rs_attr_schema_delete_entry( )
overview...............................................................433

rs_attr_schema_get_acl_mgrs( )
overview...............................................................437

rs_attr_schema_get_referral( )
overview...............................................................436

rs_attr_schema_lookup_by_id( )
overview...............................................................436

rs_attr_schema_lookup_by_name( )
overview...............................................................435

rs_attr_schema_scan( )
overview...............................................................435

rs_attr_schema_update_entry( )
overview...............................................................434

rs_attr_test_and_update( )
overview...............................................................425

rs_attr_update( )
overview...............................................................425

rs_auth_policy_get_effective( )
overview ........................................................63, 377

rs_auth_policy_get_info( )
overview ........................................................63, 376

rs_auth_policy_set_info( )
may modify RS data ..........................................366
overview ........................................................63, 377

rs_bind identity
element of cell-profile node................................86

rs_bind interface .......................................................61
rs_bind RPC interface ............................................364
rs_bind_get_update_site( )

overview ........................................................62, 364
rs_cache_data_t

data type...............................................................363
rs_check_consistency( )

overview...............................................................410
rs_encrypted_pickle_t

data type...............................................................398
rs_login_get_info( )

honours sec_rgy_prop_shadow_password..366
overview ........................................................66, 409

rs_login_info_t
data type...............................................................408

rs_misc interface .......................................................66
rs_misc RPC interface............................................408
rs_ns_entry_validate( ) ..........................................810

rs_pgo..........................................................................60
rs_pgo RPC interface .............................................379
rs_pgo_add( )

limited by quota..................................................380
may modify RS data ..........................................366
overview ........................................................64, 383

rs_pgo_add_member( )
may modify RS data ..........................................366
overview ........................................................65, 388

rs_pgo_delete( )
may modify RS data ..........................................366
overview ........................................................64, 384

rs_pgo_delete_member( )
may modify RS data ..........................................366
overview ........................................................65, 389

rs_pgo_get( )
overview ........................................................65, 386

rs_pgo_get_members( )
overview ........................................................65, 390

rs_pgo_id_key_t
data type...............................................................381

rs_pgo_is_member( )
overview ........................................................65, 389

rs_pgo_key_transfer( )
overview ........................................................65, 387

rs_pgo_query_key_t
data type...............................................................382

rs_pgo_query_result_t
data type...............................................................383

rs_pgo_query_t
data type...............................................................381

rs_pgo_rename( )
may modify RS data ..........................................366
overview ........................................................64, 385

rs_pgo_replace( )
may modify RS data ..........................................366
overview ........................................................64, 385

rs_pgo_result_t
data type...............................................................382

rs_pgo_unix_num_key_t
data type...............................................................381

rs_policy .....................................................................60
rs_policy RPC interface .........................................366
rs_policy_get_effective( )

overview ........................................................63, 376
rs_policy_get_info( )

overview ........................................................63, 375
part of rs_login_get_info( ) ...............................410

rs_policy_set_info( )
may modify RS data ..........................................366
overview ........................................................63, 375

DCE 1.1: Authentication and Security Services 893



Index

rs_properties_get_info( )
overview ........................................................63, 374
part of rs_login_get_info( ) ...............................410

rs_properties_set_info( )
may modify RS data ..........................................366
overview ........................................................63, 374

rs_prop_acct RPC interface ..................................439
rs_prop_acct_add( )

overview...............................................................441
rs_prop_acct_add_data_t

data type...............................................................439
rs_prop_acct_add_key_version( )

overview...............................................................443
rs_prop_acct_delete( )

overview...............................................................441
rs_prop_acct_key_data_t

data type...............................................................440
rs_prop_acct_rename( )

overview...............................................................442
rs_prop_acct_replace( )

overview...............................................................442
rs_prop_acl RPC interface ....................................445
rs_prop_acl_data_t

data type...............................................................445
rs_prop_acl_replace( )

overview...............................................................445
rs_prop_attr RPC interface...................................447
rs_prop_attr_data_t

data type...............................................................447
rs_prop_attr_delete( )

overview...............................................................448
rs_prop_attr_list_t

data type...............................................................447
rs_prop_attr_schema RPC interface...................449
rs_prop_attr_schema_create( )

overview...............................................................449
rs_prop_attr_schema_delete( )

overview...............................................................450
rs_prop_attr_schema_update( )

overview...............................................................450
rs_prop_attr_sch_create_data_t

data type...............................................................449
rs_prop_attr_update( )

overview...............................................................448
rs_prop_auth_plcy_set_info( )

overview...............................................................457
rs_prop_pgo RPC interface ..................................451
rs_prop_pgo_add( )

overview...............................................................451
rs_prop_pgo_add_data_t

data type...............................................................451

rs_prop_pgo_add_member( )
overview...............................................................453

rs_prop_pgo_delete( )
overview...............................................................452

rs_prop_pgo_delete_member( )
overview...............................................................454

rs_prop_pgo_rename( )
overview...............................................................452

rs_prop_pgo_replace( )
overview...............................................................453

rs_prop_plcy RPC interface .................................456
rs_prop_plcy_set_dom_cache_info( )

overview...............................................................457
rs_prop_plcy_set_info( )

overview...............................................................456
rs_prop_properties_set_info( )

overview...............................................................456
rs_prop_replist RPC interface..............................459
rs_prop_replist_add_replica( )

overview...............................................................459
rs_prop_replist_del_replica( )

overview...............................................................459
rs_pwd_mgmt RPC interface...............................461
rs_pwd_mgmt_plcy_t

data type...............................................................461
rs_pwd_mgmt_setup( )

overview...............................................................461
rs_qry RPC interface ..............................................463
rs_query_are_you_there( )

overview...............................................................463
rs_repadm RPC interface ......................................464
rs_replica_auth_p_t

data type...............................................................476
rs_replica_auth_t

data type...............................................................476
rs_replica_comm_info_t

data type...............................................................472
rs_replica_comm_t

data type...............................................................471
rs_replica_info_t

data type...............................................................464
rs_replica_item_full_t

data type...............................................................472
rs_replica_item_p_t

data type...............................................................469
rs_replica_item_t

data type...............................................................469
rs_replica_master_info_p_t

data type...............................................................440
rs_replica_master_info_t

data type...............................................................440

894 CAE Specification (1997)



Index

rs_replica_name_p_t
data type...............................................................364

rs_replica_prop_info_t
data type...............................................................471

rs_replica_prop_t
data type...............................................................470

rs_replica_twr_vec_p_t
data type...............................................................364

rs_replist RPC interface.........................................469
rs_replist_add_replica( )

overview...............................................................473
rs_replist_delete_replica( )

overview...............................................................474
rs_replist_read( )

overview...............................................................474
rs_replist_read_full( )

overview...............................................................475
rs_replist_replace_replica( )

overview...............................................................473
rs_repmgr RPC interface.......................................476
rs_rep_admin_become_master( )

overview...............................................................468
rs_rep_admin_become_slave( )

overview...............................................................468
rs_rep_admin_change_master( )

overview...............................................................467
rs_rep_admin_destroy( )

overview...............................................................467
rs_rep_admin_info( )

overview ......................................................466, 487
rs_rep_admin_info_full( )

overview...............................................................466
rs_rep_admin_init_replica( )

overview...............................................................467
rs_rep_admin_maint( )

overview ......................................................465, 481
rs_rep_admin_mkey( )

overview ......................................................466, 481
rs_rep_admin_stop( )

overview ......................................................465, 481
rs_rep_mgr_become_master( )

overview...............................................................479
rs_rep_mgr_copy_all( )

overview...............................................................479
rs_rep_mgr_copy_propq( )

overview...............................................................480
rs_rep_mgr_get_info_and_creds( )

overview...............................................................476
rs_rep_mgr_init( )

overview...............................................................477

rs_rep_mgr_init_done( )
overview...............................................................477

rs_rep_mgr_i_am_master( )
overview...............................................................478

rs_rep_mgr_i_am_slave( )
overview...............................................................478

rs_rep_mgr_stop_until_compat_sw( )
overview...............................................................480

rs_rpladmn RPC interface ....................................481
rs_sw_version_t

data type...............................................................464
rs_unix RPC interface ............................................482
rs_unix_getmemberents( )

overview...............................................................485
rs_unix_getpwents( )

overview...............................................................484
rs_unix_query_key_t

data type...............................................................482
rs_unix_query_t

data type...............................................................482
rs_update RPC interface .......................................487
rs_update_seqno_t

data type...............................................................409
rs_wait_until_consistent( )

overview...............................................................410
rule-based policy.........................................................5
rules for inheritance of ACLs .................................44
S-boxes ......................................................................156
salt .....................................................................114, 190

in RS information ...............................................218
zero-length...........................................................193

same cell
PTGS processing.................................................292

scd RPC interface....................................................497
scd_protected_noop( )

overview ........................................................76, 498
schema ......................................................................867
schema entry............................................................867
schema object ..........................................................867
Schemas

Well-known Attributes .....................................117
scientific notation

in example............................................................127
scramble........................................................................9
Seal

List of ....................................................................287
seat portability ........................................................192
sec-junction ................................................................84
sec-rgy_handle_t.......................................................62
secidmap RPC interface ........................................489

DCE 1.1: Authentication and Security Services 895



Index

secondary group
in account item......................................................65

secondary group UUID...........................................26
secrecy...........................................................................5
secret .....................................................................8, 867

role in building trust chain ...................................8
secret-key certificate ..............................................204
secure ....................................................................4, 867
security

attribute ....................................................................5
based on time ........................................................80
distributed................................................................8
generalities...............................................................3
integration with naming services .....................84
integration with RPC...........................................82
level provided by DES.........................................17
logical ........................................................................8
model ......................................................................12
of cross-cell authentication step......................260
of non-memorisable password..........................69
of time source ........................................................80
physical.....................................................................7
verifier (PDU)......................................................329
versus performance .............................................54

security client daemon (SCD) ................................71
security context .........................................................71
security junction RPC group..................................84
security services

introduction .............................................................3
security-version UUID ..........................................278
sec_acl .........................................................................55

enumeration of functions ...................................57
one-way authentication ......................................58

sec_acl_bind( ) .........................................................508
overview.................................................................57

sec_acl_bind_to_addr( ).........................................510
overview.................................................................57

sec_acl_calc_mask( ) ..............................................511
and POSIX..............................................................58
overview.................................................................58

sec_acl_component_name_t ................................346
sec_acl_entry_t ........................................................313
sec_acl_entry_type_t..............................................312
sec_acl_get_access( ) ..............................................512

overview.................................................................58
sec_acl_get_error_info( ) .......................................513

overview.................................................................58
sec_acl_get_manager_types( ) .............................514

overview.................................................................57
sec_acl_get_mgr_types_semantics( )..................516

overview.................................................................57

sec_acl_get_printstring( ) ......................................518
overview.................................................................57

sec_acl_list_t ............................................................346
sec_acl_lookup( ) ....................................................520

overview.................................................................58
sec_acl_permset_t...................................................313
sec_acl_perm_ bits .................................................319
sec_acl_posix_semantics_t ...................................347
sec_acl_printstring_t..............................................319
sec_acl_p_t ...............................................................346
sec_acl_release( ).....................................................521

overview.................................................................58
sec_acl_release_handle( ) ......................................522

overview.................................................................57
sec_acl_replace( ) ....................................................523

overview.................................................................58
sec_acl_result_t .......................................................346
sec_acl_t....................................................................315
sec_acl_test_access( ) .............................................525

overview.................................................................58
sec_acl_test_access_on_behalf( ) .........................527

overview.................................................................58
sec_acl_tower_set_t ...............................................347
sec_acl_twr_ref_t ....................................................347
sec_acl_type_t .........................................................315
sec_attr_acl_mgr_info_p_t

data type...............................................................428
sec_attr_acl_mgr_info_set_t

data type...............................................................430
sec_attr_acl_mgr_info_t

data type...............................................................428
sec_attr_binding_t

data type...............................................................416
sec_attr_bind_auth_info_t

data type...............................................................413
sec_attr_bind_auth_info_type_t

data type...............................................................413
sec_attr_bind_info_t

data type...............................................................417
sec_attr_bind_svrname

data type...............................................................416
sec_attr_bind_type_t

data type...............................................................415
sec_attr_component_name_t

data type...............................................................412
sec_attr_encoding_t

data type...............................................................418
sec_attr_enc_attr_set_t

data type...............................................................418
sec_attr_enc_bytes_t

data type...............................................................417

896 CAE Specification (1997)



Index

sec_attr_enc_printstring_p_t
data type...............................................................417

sec_attr_enc_str_array_t
data type...............................................................417

sec_attr_i18n_data_t
data type...............................................................418

sec_attr_intercell_action_t
data type...............................................................429

sec_attr_schema_entry_parts_t
data type...............................................................432

sec_attr_schema_entry_t
data type...............................................................431

sec_attr_sch_entry_flags_t
data type...............................................................428

sec_attr_t
data type...............................................................421

sec_attr_trig_type_flags_t
data type...............................................................429

sec_attr_twr_ref_t
data type...............................................................415

sec_attr_twr_set_p_t
data type...............................................................415

sec_attr_twr_set_t
data type...............................................................415

sec_attr_value_t
data type...............................................................420

sec_attr_vec_t
data type...............................................................421

sec_bytes_t
data type...............................................................399

sec_chksum_t
data type...............................................................396

sec_chksum_type_t
data type...............................................................396

sec_cred_free_attr_cursor( ) .................................788
sec_cred_free_cursor( ) ..........................................789
sec_cred_free_pa_handle( ) ..................................790
sec_cred_get_authz_session_info( )....................791
sec_cred_get_client_princ_name( ).....................793
sec_cred_get_delegate( ) .......................................795
sec_cred_get_delegation_type( ) .........................797
sec_cred_get_deleg_restrictions( ) ......................794
sec_cred_get_extended_attrs( )............................798
sec_cred_get_initiator( ) ........................................800
sec_cred_get_opt_restrictions( ) ..........................801
sec_cred_get_pa_data( ) ........................................802
sec_cred_get_req_restrictions( ) ..........................803
sec_cred_get_tgt_restrictions( ) ...........................804
sec_cred_get_v1_pac( )..........................................805
sec_cred_initialize_attr_cursor( ) ........................806
sec_cred_initialize_cursor( ) .................................807

sec_cred_is_authenticated( ) ................................808
sec_encrypted_bytes_t

data type...............................................................399
sec_etype_t

data type...............................................................399
sec_id API.............................................................67-68
sec_id_gen_group( ) ...............................................707

overview.................................................................68
sec_id_gen_name( ) ................................................709

overview.................................................................68
sec_id_parse_group( )............................................711

overview.................................................................68
sec_id_parse_name( ).............................................713

overview.................................................................68
sec_key_mgmt API...................................................69
sec_key_mgmt_change_key( ) .............................718

overview.................................................................70
sec_key_mgmt_delete_key( ) ...............................720

overview.................................................................70
sec_key_mgmt_delete_key_type( ).....................721

overview.................................................................70
sec_key_mgmt_free_key( ) ...................................722

overview.................................................................70
sec_key_mgmt_garbage_collect( ) ......................723

overview.................................................................70
sec_key_mgmt_gen_rand_key( ).........................724

overview.................................................................70
sec_key_mgmt_get_key( ).....................................726

overview.................................................................70
sec_key_mgmt_get_next_key( ) ..........................727

overview.................................................................70
sec_key_mgmt_get_next_kvno( )........................728

overview.................................................................70
sec_key_mgmt_initialize_cursor( ) .....................729

overview.................................................................70
sec_key_mgmt_manage_key( )............................730

overview.................................................................70
sec_key_mgmt_release_cursor( ) ........................731

overview.................................................................70
sec_key_mgmt_set_key( ) .....................................732

overview.................................................................70
sec_key_version_t

data type...............................................................394
sec_login API.............................................................71

used during login .................................................73
sec_login Extensions ................................................95
sec_login_become_delegate( )..............................742

overview.................................................................75
sec_login_become_impersonator( ) ....................745

overview.................................................................75
sec_login_become_initiator( ) ..............................748

DCE 1.1: Authentication and Security Services 897



Index

overview.................................................................75
sec_login_certify_identity( ) .................................751

and process privilege...........................................78
overview.................................................................74

sec_login_cred_get_delegate( ) ............................753
overview.................................................................76

sec_login_cred_get_initiator( ).............................755
overview.................................................................76

sec_login_cred_init_cursor( ) ...............................756
overview.................................................................76

sec_login_disable_delegation( )...........................757
overview.................................................................76

sec_login_export_context( )..................................758
overview.................................................................74

sec_login_free_net_info( ) .....................................760
overview.................................................................75

sec_login_get_current_context( ) ........................761
overview.................................................................74

sec_login_get_expiration( )...................................762
overview.................................................................75

sec_login_get_groups( ).........................................763
overview.................................................................74

sec_login_get_pwent( )..........................................764
overview.................................................................75

sec_login_import_context( ) .................................765
overview.................................................................74

sec_login_init_first( )..............................................766
overview.................................................................73

sec_login_inquire_net_info( )...............................767
overview.................................................................75

sec_login_newgroups( ) ........................................768
overview.................................................................74

sec_login_purge_context( )...................................770
overview.................................................................74

sec_login_purge_context_exp( ) ..........................771
overview.................................................................76

sec_login_refresh_identity( ) ................................772
overview.................................................................75

sec_login_release_context( ) .................................773
overview.................................................................74

sec_login_setup_first( )..........................................777
overview.................................................................73

sec_login_setup_identity( )...................................778
overview.................................................................73

sec_login_set_context( ) ........................................774
overview.................................................................74

sec_login_set_extended_attrs( )...........................775
overview.................................................................76

sec_login_tkt_request_options( ).........................780
overview.................................................................76

sec_login_validate_first( ) .....................................784

overview.................................................................73
sec_login_validate_identity( ) ..............................785

overview.................................................................73
sec_login_valid_and_cert_ident( ) ......................782

overview.................................................................74
reason for being privileged ................................78

sec_passwd_des_key_t
data type...............................................................395

sec_passwd_rec_t
data type...............................................................395

sec_passwd_type_t
data type...............................................................393

sec_passwd_version_t
data type...............................................................394

sec_rgy_acct_add( ) ................................................540
sec_rgy_acct_admin_flags_t

data type...............................................................391
sec_rgy_acct_admin_replace( )............................543
sec_rgy_acct_admin_t

data type...............................................................392
sec_rgy_acct_auth_flags_t

data type...............................................................392
sec_rgy_acct_delete( ) ............................................546
sec_rgy_acct_get_projlist( ) ..................................548
sec_rgy_acct_key_t

data type...............................................................391
sec_rgy_acct_lookup( ) ..........................................551
sec_rgy_acct_passwd( ) .........................................554
sec_rgy_acct_rename( ) .........................................556
sec_rgy_acct_replace_all( ) ...................................558
sec_rgy_acct_user_flags_t

data type...............................................................393
sec_rgy_acct_user_replace( )................................561
sec_rgy_acct_user_t

data type...............................................................397
sec_rgy_attr_cursor_alloc( ) .................................564
sec_rgy_attr_cursor_init( ) ....................................565
sec_rgy_attr_cursor_release( ) .............................567
sec_rgy_attr_cursor_reset( ) .................................568
sec_rgy_attr_delete( ).............................................569
sec_rgy_attr_get_effective( ).................................572
sec_rgy_attr_lookup_by_id( ) ..............................575
sec_rgy_attr_lookup_by_name( )........................578
sec_rgy_attr_lookup_no_expand( ) ....................580
sec_rgy_attr_sch_aclmgr_strings( ) ....................583
sec_rgy_attr_sch_create_entry( ) .........................586
sec_rgy_attr_sch_cursor_alloc( ) .........................588
sec_rgy_attr_sch_cursor_init( )............................589
sec_rgy_attr_sch_cursor_release( ) .....................591
sec_rgy_attr_sch_cursor_reset( ) .........................592
sec_rgy_attr_sch_delete_entry( ).........................593

898 CAE Specification (1997)



Index

sec_rgy_attr_sch_get_acl_mgrs( ) .......................595
sec_rgy_attr_sch_lookup_by_id( ) ......................597
sec_rgy_attr_sch_lookup_by_name( )................599
sec_rgy_attr_sch_scan( )........................................601
sec_rgy_attr_sch_update_entry( ) .......................603
sec_rgy_attr_test_and_update( ) .........................606
sec_rgy_attr_update( ) ...........................................609
sec_rgy_auth_plcy_get_effective( ).....................612
sec_rgy_auth_plcy_get_info( ) .............................614
sec_rgy_auth_plcy_set_info( ) .............................616
sec_rgy_bind interface.............................................61
sec_rgy_cell_bind( )................................................618

overview.................................................................62
sec_rgy_cursor_reset( ) ..........................................619
sec_rgy_cursor_t

data type...............................................................362
sec_rgy_domain_t

data type...............................................................379
sec_rgy_foreign_id_t

data type...............................................................392
sec_rgy_login_get_effective( )..............................620
sec_rgy_login_get_info( ) ......................................623
sec_rgy_login_name_t

data type...............................................................362
sec_rgy_member_buf_t

data type...............................................................484
sec_rgy_member_t

data type...............................................................379
sec_rgy_name_t

data type...............................................................361
sec_rgy_pgo_add( ) ................................................626
sec_rgy_pgo_add_member( )...............................628
sec_rgy_pgo_delete( ) ............................................630
sec_rgy_pgo_delete_member( )...........................632
sec_rgy_pgo_flags_t

data type...............................................................379
sec_rgy_pgo_get_by_eff_unix_num( ) ...............634
sec_rgy_pgo_get_by_id( ) .....................................637
sec_rgy_pgo_get_by_name( )...............................640
sec_rgy_pgo_get_by_unix_num( )......................642
sec_rgy_pgo_get_members( ) ..............................645
sec_rgy_pgo_get_next( )........................................648
sec_rgy_pgo_id_to_name( )..................................651
sec_rgy_pgo_id_to_unix_num( ).........................653
sec_rgy_pgo_is_member( ) ...................................655
sec_rgy_pgo_item_t

data type...............................................................380
sec_rgy_pgo_name_to_id( )..................................657
sec_rgy_pgo_name_to_unix_num( ) ..................659
sec_rgy_pgo_rename( )..........................................661
sec_rgy_pgo_replace( ) ..........................................663

sec_rgy_pgo_unix_num_to_id( ).........................665
sec_rgy_pgo_unix_num_to_name( ) ..................667
sec_rgy_plcy_auth_t

data type...............................................................370
sec_rgy_plcy_get_effective( ) ...............................669
sec_rgy_plcy_get_info( ) .......................................671
sec_rgy_plcy_pwd_flags_t

data type...............................................................368
sec_rgy_plcy_set_info( ) ........................................673
sec_rgy_plcy_t

data type...............................................................368
sec_rgy_pname_t

data type...............................................................362
sec_rgy_properties_flags_t

data type...............................................................366
sec_rgy_properties_get_info( ) ............................675
sec_rgy_properties_set_info( ) .............................677
sec_rgy_properties_t

data type...............................................................367
sec_rgy_sid_t

data type...............................................................401
sec_rgy_site_bind( )................................................679

overview.................................................................62
sec_rgy_site_binding_get_info( ).........................683

overview.................................................................62
sec_rgy_site_bind_update( ).................................681

overview.................................................................62
sec_rgy_site_close( )...............................................685

overview.................................................................62
sec_rgy_site_get( ) ..................................................686
sec_rgy_site_is_readonly( )...................................688

overview.................................................................62
sec_rgy_site_open( )...............................................689

overview.................................................................62
sec_rgy_site_open_query( ) ..................................691
sec_rgy_site_open_update( )................................693

overview.................................................................62
sec_rgy_unix_gecos_t

data type...............................................................483
sec_rgy_unix_getgrgid( ).......................................695
sec_rgy_unix_getgrnam( ) ....................................697
sec_rgy_unix_getpwnam( ) ..................................699
sec_rgy_unix_getpwuid( ) ....................................701
sec_rgy_unix_group_t

data type...............................................................484
sec_rgy_unix_login_name_t

data type...............................................................483
sec_rgy_unix_passwd_buf_t

data type...............................................................397
sec_rgy_unix_passwd_t

data type...............................................................483

DCE 1.1: Authentication and Security Services 899



Index

sec_rgy_unix_sid_t
data type...............................................................401

sec_rgy_wait_until_consistent( ).........................703
sec_timeval_period_t

data type...............................................................366
sec_timeval_sec_t

data type...............................................................361
seed............................................................................190

DES........................................................................148
of CRC ..................................................................136

selection/substitution............................................156
selector

in secidmap interface.........................................489
self

trust in.......................................................................7
semantic information

in ID map facility..................................................67
semantic representation (encoding) .......................9
semantics

of permission.......................................................359
of permissions.....................................................319

semantics of permission..........................................46
semi-weak keys.......................................................152
separator

in cell name..........................................................169
sequence ...................................................................127

and endianness ...................................................128
SEQUENCE

denoting field element.......................................160
sequence number

checked by KDS server......................................247
data type...............................................................176

server...........................................................................12
in CL context .......................................................332
in KDS Error message........................................258
in transit path ......................................................171
readable/writable.................................................61
receives authentication header........................234
receives PA header.............................................297
receives PTGS request.......................................293
security ...................................................................12
targeted ..........................................................18, 163

server cell
in TGS response..................................................256

server name
checked by KDS server......................................245
in TGS response..................................................256
not a parameter in sec_acl ..................................58
versus CDS-registered service name................85

service ...................................................................5, 867
assured......................................................................5

examples...................................................................5
PTGS .....................................................................275
request/response..................................................30

service name
RPC........................................................................263

service name, RPC..................................................161
service request

failed......................................................................215
service request/response ........................................23
service ticket ..............................................................18
service-ticket............................................................165
serviceability permission ......................................360
session.................................................................14, 867
session key...................................................14, 18, 164

distributed by KDS...............................................18
generation ............................................................223
in AS response.......................................................21
in Kerberos protocol ............................................19
in TGS response............................................22, 256
use (authentication header flag)......................203

set
ACLE permission ...............................................313

shadow......................................................................366
shadow password ..................................................366
shape model, trusted .............................................291
shared state ..............................................................334
shell............................................................................397
shift ............................................................................131
shift schedule...........................................................155
short PGO name .....................................................361
short-term key...................................................18, 164
shortword.................................................................128
signature.............................................................16, 867
simple object......................................................44, 867
site

synonymous with server ....................................61
site administrator ...................................................867
skew ..............................................................22, 80, 168

in RS information ...............................................218
slave RS server ..........................................................61
space

in transit path ......................................................171
space character

prohibited in password.....................................368
specificity

of ACLEs ..............................................................317
spoof ............................................................................15
start time.....................................................................19

initialisation.........................................................221
state information

conceptual part of login context........................71

900 CAE Specification (1997)



Index

static method
none for decomposing PGO names..................67

status code
ACL editor ...........................................................348
in KDS Error message........................................259
in rpriv..................................................................273
key management ................................................495
RS editor interfaces ............................................370
scd interface.........................................................497
secidmap ..............................................................490

status text
in KDS Error message........................................259

storage
of data type as pickle.........................................132

strategy
next-hop ...............................................................219

strength.....................................................................867
strength of algorithm...............................................10
string .........................................................................127
stringname .................................................................30

guaranteed unique .............................................174
in PGO item ...........................................................63
name of PGO .........................................................67
on server, identifies object ..................................55
printable (data type) ..........................................362

strong key.................................................................865
stx_id .........................................................................133
stx_version ...............................................................133
subalgorithm

CADA ...................................................................324
subject ...................................................................6, 867
subject-side access information ...............................6
subkey to halfblock mapping ..............................156
submapping.............................................................156
subscript ...................................................................127
subtracting rights......................................................42
sub_type ...................................................................337
success

in received response ..........................................228
surrogate...................................................................165
surrogate cell principal............................................32
suspicion

of PAC without authentication .........................25
symmetric trust peers ..............................................33
synchronisation.........................................................22
syntactic method

none for decomposing PGO names..................67
syntactic representation (encryption) ....................9
syntax identifier ......................................................133
tag UUID field ...........................................................40
target .........................................................................867

target restrictions....................................................867
targeted server ..................................................18, 163
targeted ticket............................................................18
taxonomy

of ACLE types .......................................................40
TCB ................................................................................8

issuing cell ...........................................................163
technology

versus human issues..............................................4
terminology .............................................................127

academic...................................................................3
test permission..................................................48, 360
TGS ............................................................................163

request received..................................................245
request/response processingn.........................240
response (data type) ..........................................212

TGS request .........................................................22, 29
client sends ..........................................................240

TGS request/response .............................................28
TGS response.......................................................22, 29

construction.........................................................253
receiving...............................................................254

the CRC.....................................................................138
theory

formal........................................................................3
third party

trusted.....................................................................12
third party, trusted .....................................................8
Third-Party

Client Protocol ....................................................112
Protocol.................................................................112
Server Protocol....................................................113

threat analysis..............................................................6
ticket....................................................................14, 867

and authenticator ...............................................202
basis for denying service ..................................197
data type...............................................................195
differences between types ..................................25
distributed by KDS...............................................18
effect when key is changed.................................69
encrypted part.....................................................195
genuineness of received....................................228
granting service ....................................................12
in AS response.......................................................21
in Kerberos protocol ............................................19
in service request..................................................23
in TGS response..................................................255
interpretability ....................................................197
Kerberos ...............................................................163
lifetime............................................................19, 370
lifetime in registry property...............................62

DCE 1.1: Authentication and Security Services 901



Index

lifetime, in RS information ...............................218
manipulated old .................................................241
newly issued........................................................241
obtained from KDS at login................................72
privilege..................................................................25
privilege- ..............................................................276
privilege- (data type) .........................................281
referral.....................................................................36
request ....................................................................22
request for new ...................................................207
targeted...................................................................18
ticket-granting.....................................................165
timestamps in........................................................80

ticket flag
data type...............................................................198

ticket-granting service .............................................18
ticket-granting service (TGS) ...............................163
ticket-granting ticket..............................................241
time

basis for security...................................................80
start/expiration.....................................................19
UTC .......................................................................167

time interval
data type...............................................................366

time services ..............................................................80
time, end of ..............................................................167
time-out ......................................................................14

password..............................................................394
timeliness......................................................................5
timestamp

checked by KDS server......................................246
comparison and arithmetic ..............................167
compromise of ......................................................80
data type...............................................................167
in KDS Error message........................................258
in Kerberos protocol ............................................19
lifetime....................................................................19
microsecond ........................................................167
usage in Kerberos .................................................80

Timestamps
Protocol.................................................................111

tolerance for malformed ACL................................46
tower, protocol................................................347, 364
Traced Delegation.....................................................95
traced delegation ....................................................868
transaction

semantics not specified .......................................56
transferred trust ..........................................................7
transit path.........................................................19, 868

checked by KDS server......................................247
data type...............................................................169

empty ....................................................................171
in AS response.......................................................21
in privilege ticket ..................................................25
in RS information .......................................217, 291
level of trust in ......................................................38

transitive trust .............................................................7
trigger........................................................................868
Trigger Binding .......................................................105
trigger type...............................................................868
trigonometric vector T[ ] .......................................144
trivial

encryption....................................................184, 188
trivial encryption ....................................................399
true session key.........................................................14
trust .......................................................................7, 868

and authentication flag .......................................25
and cross-registration ..........................................33
evaluating the path ..............................................25
in transit path ........................................................38
in UUIDs.................................................................27
of login context .....................................................71
varies between cells .............................................32

trust chain.....................................................................7
extend to multi-cell case .....................................32
indirect....................................................................36
link.............................................................................8
multi-hop ...............................................................38

trusted computing base.........................................868
trusted computing base (TCB)...........................8, 12
trusted shape model ..............................................291
twisted CRC.............................................................137
type

ACL .......................................................................345
checksum .............................................................185
for encrypting byte strings (data type) ..........399
for uninterpreted byte strings (data type).....399
of ACL manager supported by RS....................61
of ACLE..................................................................40
of checksum (data type)....................................396
of encryption (data type) ..................................399
of key.......................................................................69
of query key.........................................................381
polymorphic ........................................................346
UUID, ACL managers .......................................358

type UUID
of ACL manager ...................................................46
pre-encrypted pickle..........................................400

type, ACL
data type...............................................................315

Types
Supported for Delegation .................................285

902 CAE Specification (1997)



Index

Supported Seal Identifiers ................................285
types of protected object

multiple ..................................................................52
T[ ] ..............................................................................144
UDP ...........................................................................163
unambiguous

guarantee of stringname...................................174
unambiguous account reference .........................391
UNAUTHENTICATED...........................................42

at most one...........................................................317
optional in common ACL manager..................47

unauthenticated ACL entry....................................25
underlying object ......................................................55
unencrypted.............................................................184
unilateral trust mediation .......................................33
uninterpreted

cell name ..............................................................169
unique

guarantee of stringname...................................174
uniqueness

of object identification.......................................346
of pgo-UUID..........................................................67
of security-version UUID .................................278
of UUID in PGO item ..........................................63

universal ACLE type................................................42
universal delegation ACLE type ...........................43
Unknown Intercell Action

Attribute...............................................................108
unprotected RPC ......................................................54
unregisterable authorisation data.......................294
unspecified bit .........................................................160
unused bit.................................................................160
unvalidated login......................................................71
up-over-down algorithm ......................................219
Update Triggers ......................................................106
US ASCII...................................................................190
use session key

authentication header flag................................203
use-session-key

checked by KDS server......................................245
in TGS request ............................................242, 244

USER............................................................................41
algorithm..............................................................325

user
attribute (data type) ...........................................393

USER
limitation in common ACL ..............................317
supported by common ACL manager .............47

user information permission................................360
User Interfaces

ACLEs.....................................................................99

user interfaces for ACL manipulation
not specified...........................................................58

user-friendly
common ACL manager.......................................46

user-level information ...........................................397
user-to-user authentication ..................................203
USER_DEL

algorithm..............................................................327
USER_DELEG............................................................43
USER_OBJ ..................................................................41

algorithm..............................................................324
at most one...........................................................317
optional in common ACL manager..................47

USER_OBJ_DEL
algorithm..............................................................326

USER_OBJ_DELEG ..................................................42
use_defaults

Algorithm.............................................................102
UTC

difference from (skew) ......................................168
UTC time ..................................................................167
UUID ...........................................................................14

account (data type) ............................................401
ACL manager type.......................................40, 345
ACL managers ....................................................358
ACLs .....................................................................312
conceptual part of login context........................71
default cell..............................................................40
element of cell-profile node................................86
group.......................................................................26
in authorisation identity ...................................277
in PGO item ...........................................................63
in registry property ..............................................62
local cell ..................................................................26
local secondary group .........................................26
lookup by .............................................................381
mapping by ID map facility ...............................67
pairs.........................................................................27
pre-encrypted pickle..........................................400
principal .................................................................26
rdacl interface......................................................348
rs_acct interface ..................................................402
rs_attr interface ...................................................422
rs_attr_schema interface ...................................433
rs_bind interface .................................................364
rs_misc interface.................................................409
rs_pgo interface ..................................................383
rs_policy interface ..............................................374
rs_prop_acct interface .......................................441
rs_prop_acl interface .........................................445
rs_prop_attr interface ........................................447

DCE 1.1: Authentication and Security Services 903



Index

rs_prop_attr_schema interface ........................449
rs_prop_pgo interface .......................................451
rs_prop_plcy interface.......................................456
rs_prop_replist interface...................................459
rs_pwd_mgmt interface....................................461
rs_qry interface ...................................................463
rs_repadm interface ...........................................465
rs_replist interface..............................................473
rs_repmgr interface............................................476
rs_rpladmn interface .........................................481
rs_unix interface .................................................484
rs_update interface ............................................487
scd interface.........................................................497
secidmap interface .............................................491
security-version ..................................................278
stored in ticket at login........................................72

uuid_create( )
not part of TCB ...................................................337

validate
in TGS request.....................................................242

validated login ..................................................71, 868
validation

as certification .......................................................71
validation of ticket

by login facility ...................................................228
validation state

conceptual part of login context........................71
validity

password..............................................................393
validity of key

limit on time ..........................................................80
variability

in header processing..........................................231
vector.........................................................................127
verifier.......................................................................330

of PDU ..................................................................329
PDU.......................................................................341

verifier, RPC
availability .............................................................15

Version 0 Token Flags
Data Type.............................................................289

version 2 UUID .......................................................278
version number

checked by KDS server......................................245
element of cell-profile node................................86
in CL security ......................................................332
in KDS Error message........................................258
in registry property ..............................................62
in RS information ...............................................217
of cryptographic key..........................................394
of key.......................................................................69

of pickle header...................................................133
of RPC transfer syntax ......................................133
of version 2 UUID ..............................................278
presence/absence of ..........................................187
protocol (data type) ...........................................166
rdacl interface......................................................348
rs_acct ...................................................................402
rs_bind interface .................................................364
rs_misc..................................................................409
rs_pgo ...................................................................383
rs_policy interface ..............................................374
rs_prop_acct interface .......................................441
rs_prop_acl interface .........................................445
rs_prop_attr interface ........................................447
rs_prop_attr_schema interface ........................449
rs_prop_pgo interface .......................................451
rs_prop_plcy interface.......................................456
rs_prop_replist interface...................................459
rs_pwd_mgmt interface....................................461
rs_qry interface ...................................................463
rs_repadm interface ...........................................465
rs_replist interface..............................................473
rs_repmgr interface............................................476
rs_rpladmn interface .........................................481
rs_unix interface .................................................484
rs_update interface ............................................487
scd interface.........................................................497
secidmap ..............................................................491

vetting
cross-cell ...............................................................298
in RS information ...............................................291

visibility
password..............................................................366

vouch.............................................................................8
vouching

by PS........................................................................25
by PS server .........................................................294

weak keys.................................................................151
weak password .......................................................868
Well Known

Attribute Types ...................................................108
well-formed ACL....................................................317
wildcard....................................................................405
wiretapping..................................................................5
word ..........................................................................128
word of mouth ..........................................................14
word operations......................................................131
wrap-around............................................................387
writability

in registry property ..............................................62
writable server...........................................................61

904 CAE Specification (1997)



Index

write
protection against...................................................5

write permission .......................................................47
write-ACL permission.............................................47
X.208 ..........................................................................159
X.209 ..........................................................................159
X.500

name type.............................................................169
X.509 ..........................................................................160
X3.106........................................................................148
X3.92

no mention of weak keys..................................151
XNS

registered address type .....................................176
XOR ...........................................................................131
zero-length salt........................................................193
Zulu time..................................................................167

DCE 1.1: Authentication and Security Services 905



Index

906 CAE Specification (1997)


