
X/Open CAE Specification

Systems Management: Management Protocols API (XMP)

X/Open Company Ltd.

 March 1994, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Systems Management: Management Protocols API (XMP)

ISBN: 1-85912-027-X
X/Open Document Number: C306

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification (1994)

Systems Management: Management Protocols API (XMP) iii

ii X/Open CAE Specification (1994)

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Format of the Specification ... 2
 1.3 Introductory Concepts... 3
 1.3.1 Relationship to Management Protocols .. 5
 1.3.2 XMP and the MIS Provider.. 6
 1.4 Relationship between CMIP and SNMP.. 7
 1.5 Relationship to Data Abstraction Services .. 8
 1.6 Mandatory and Optional Features .. 10
 1.7 Packages.. 11
 1.8 Terminology... 12
 1.9 Abbreviations .. 12
 1.10 Document History .. 13
 1.11 Future Directions .. 13

Chapter 2 C Language Binding... 15
 2.1 Introduction ... 15
 2.2 C Naming Conventions... 15
 2.3 Use and Implementation of Interfaces ... 17
 2.4 Function Return Values ... 17
 2.5 Compilation and Linking.. 18

Chapter 3 Description .. 19
 3.1 Introduction ... 19
 3.2 Services ... 20
 3.2.1 Negotiation Sequence ... 21
 3.2.2 Names, Addresses and Titles .. 22
 3.3 Session... 24
 3.4 Context.. 27
 3.5 Function Arguments .. 28
 3.5.1 Attribute and Attribute-Value-Assertion (AVA)............................... 28
 3.5.2 ‘‘Action’’ function arguments ... 29
 3.5.3 Encoding / Decoding.. 29
 3.5.4 Argument / Response .. 30
 3.6 Function Results.. 32
 3.6.1 Invoke-ID... 32
 3.6.2 Result.. 32
 3.6.3 Status .. 33
 3.7 Synchronous and Asynchronous Operations 34
 3.8 Security ... 37
 3.9 Other Features ... 38
 3.9.1 Automatic Connection Management .. 38

Systems Management: Management Protocols API (XMP) iii

Contents

 3.9.2 Automatic Performer Resolution .. 38
 3.9.3 Responder Versatility ... 38
 3.9.4 Automatic Name - Address Resolution.. 39
 3.9.5 Automatic Dispatching to Appropriate Stack 39
 3.10 Function Sequencing.. 40

Chapter 4 Interface Functions.. 45
 Abandon() .. 46
 Abort-req() ... 47
 Action-req().. 48
 Action-rsp().. 50
 Assoc-req() ... 52
 Assoc-rsp() ... 54
 Bind().. 56
 Cancel-Get-req() .. 58
 Cancel-Get-rsp() .. 59
 Create-req() .. 61
 Create-rsp() .. 63
 Delete-req()... 65
 Delete-rsp() .. 67
 Error-Message()... 69
 Event-Report-req()... 70
 Event-Report-rsp() .. 72
 Get-Assoc-Info() .. 74
 Get-Last-Error()... 76
 Get-Next-req().. 77
 Get-req() ... 79
 Get-rsp() ... 81
 Initialize () .. 83
 Negotiate() ... 84
 Receive() ... 87
 Release-req() ... 91
 Release-rsp()... 93
 Set-req() .. 95
 Set-rsp().. 97
 Shutdown() .. 99
 Unbind()... 100
 Validate-Object () ... 101
 Wait().. 102

Chapter 5 Interface Class Definitions... 105
 5.1 Introduction ... 105
 5.1.1 Vendor Extensions ... 106
 5.2 Global Class Hierarchy.. 107
 5.2.1 Interface Common Objects .. 107
 5.2.2 Interface Common Error Definitions... 108
 5.2.3 CMIS package Objects .. 108
 5.2.4 SNMP package Objects... 109

iv X/Open CAE Specification (1994)

Contents

 5.3 Common Management Service Package ... 110
 5.3.1 Introduction.. 110
 5.3.2 Common Management Service Class Hierarchy.............................. 110
 5.3.3 Abort-Argument.. 110
 5.3.4 Access-Control ... 111
 5.3.5 Acse-Args .. 112
 5.3.6 Address.. 113
 5.3.7 AE-Title.. 113
 5.3.8 Assoc-Argument.. 114
 5.3.9 Assoc-Diagnostic ... 114
 5.3.10 Association-Information .. 115
 5.3.11 Assoc-Result ... 116
 5.3.12 Authentication-Information.. 117
 5.3.13 Authentication-Other.. 117
 5.3.14 AVA... 118
 5.3.15 Cmip-Assoc-Args .. 118
 5.3.16 Community-Name .. 119
 5.3.17 Context... 119
 5.3.18 DS-DN.. 122
 5.3.19 DS-RDN... 123
 5.3.20 Entity-Name.. 123
 5.3.21 Extension ... 123
 5.3.22 External-AC... 124
 5.3.23 Form1.. 124
 5.3.24 Form2.. 125
 5.3.25 Functional-Unit-Package.. 126
 5.3.26 Name .. 126
 5.3.27 Name-String.. 127
 5.3.28 Network-Address.. 127
 5.3.29 Presentation-Address.. 127
 5.3.30 Presentation-Context .. 128
 5.3.31 Presentation-Layer-Args .. 128
 5.3.32 Relative-Name.. 129
 5.3.33 Release-Argument... 129
 5.3.34 Release-Result... 130
 5.3.35 Session.. 130
 5.3.36 SMASE-User-Data ... 132
 5.3.37 SNMP-Object-Name ... 132
 5.3.38 Standard-Externals.. 133
 5.3.39 Title ... 133
 5.4 CMIS Management Service Package .. 134
 5.4.1 Introduction.. 134
 5.4.2 CMIS Management Service Class Hierarchy..................................... 134
 5.4.3 Action-Error.. 134
 5.4.4 Action-Error-Info... 135
 5.4.5 Action-Info .. 135
 5.4.6 Action-Reply... 136
 5.4.7 Action-Type-Id ... 136

Systems Management: Management Protocols API (XMP) v

Contents

 5.4.8 Attribute... 137
 5.4.9 Attribute-Error.. 137
 5.4.10 Attribute-Id... 138
 5.4.11 Attribute-Id-Error.. 139
 5.4.12 Attribute-Id-List... 139
 5.4.13 Base-Managed-Object-Id.. 139
 5.4.14 CMIS-Action-Argument... 140
 5.4.15 CMIS-Action-Result .. 141
 5.4.16 CMIS-Cancel-Get-Argument... 141
 5.4.17 CMIS-Create-Argument... 142
 5.4.18 CMIS-Create-Result .. 143
 5.4.19 CMIS-Delete-Argument ... 143
 5.4.20 CMIS-Delete-Result... 144
 5.4.21 CMIS-Event-Report-Argument .. 145
 5.4.22 CMIS-Event-Report-Result.. 145
 5.4.23 CMIS-Filter.. 146
 5.4.24 CMIS-Get-Argument... 147
 5.4.25 CMIS-Get-List-Error.. 148
 5.4.26 CMIS-Get-Result.. 148
 5.4.27 CMIS-Linked-Reply-Argument.. 149
 5.4.28 CMIS-Service-Error ... 150
 5.4.29 CMIS-Service-Reject.. 153
 5.4.30 CMIS-Set-Argument.. 154
 5.4.31 CMIS-Set-List-Error... 155
 5.4.32 CMIS-Set-Result... 155
 5.4.33 Complexity-Limitation... 156
 5.4.34 Create-Object-Instance ... 156
 5.4.35 Delete-Error... 157
 5.4.36 Error-Info... 157
 5.4.37 Event-Info.. 158
 5.4.38 Event-Reply... 158
 5.4.39 Event-Type-Id... 159
 5.4.40 Filter-Item.. 159
 5.4.41 Get-Info-Status ... 160
 5.4.42 Invalid-Argument-Value.. 161
 5.4.43 Missing-Attribute-Value... 161
 5.4.44 Modification.. 161
 5.4.45 Modification-List.. 162
 5.4.46 Multiple-Reply ... 163
 5.4.47 No-Such-Action.. 163
 5.4.48 No-Such-Action-Id .. 163
 5.4.49 No-Such-Argument... 164
 5.4.50 No-Such-Event-Id.. 164
 5.4.51 No-Such-Event-Type... 165
 5.4.52 Object-Class .. 165
 5.4.53 Object-Instance... 165
 5.4.54 Processing-Failure.. 166
 5.4.55 Scope... 167

vi X/Open CAE Specification (1994)

Contents

 5.4.56 Set-Info-Status .. 167
 5.4.57 Setof-Attribute.. 168
 5.4.58 Setof-CMIS-Filter ... 168
 5.4.59 Setof-Get-Info-Status... 169
 5.4.60 Setof-Set-Info-Status.. 169
 5.4.61 Specific-Error-Info ... 169
 5.4.62 Substring.. 170
 5.4.63 Substrings.. 170
 5.5 SNMP Management Service package... 172
 5.5.1 Introduction.. 172
 5.5.2 SNMP Management Service Class Hierarchy 172
 5.5.3 Application-Syntax.. 172
 5.5.4 Object-Syntax.. 173
 5.5.5 Pdu .. 173
 5.5.6 Pdus .. 174
 5.5.7 Simple-Syntax... 175
 5.5.8 Trap-Pdu .. 175
 5.5.9 Var-Bind... 176
 5.5.10 Variable-Bindings... 177

Chapter 6 Errors.. 179
 6.1 Introduction ... 179
 6.2 OM Class Hierarchy... 182
 6.2.1 Bad-Argument.. 182
 6.2.2 Communications-Error... 183
 6.2.3 Error.. 184
 6.2.4 Library-Error... 184
 6.2.5 Service-Error... 186
 6.2.6 System-Error... 186

Chapter 7 C Headers.. 187
 7.1 <xmp.h>.. 187
 7.2 <xmp_cmis.h>... 199
 7.3 <xmp_snmp.h> ... 204

 Glossary ... 207

 Index... 215

List of Figures

1-1 Reference Model - Conceptual View of Management Interaction 4
1-2 Manager, Agent and Object Interactions .. 4
1-3 A CMIS Interaction.. 6
1-4 XMP Packages .. 11
3-1 Interface Function Sequencing.. 41
3-2 Connection Establishment Phase Function Sequencing........................ 43
3-3 Connection Release Phase Function Sequencing.................................... 44

Systems Management: Management Protocols API (XMP) vii

Contents

List of Tables

1-1 CMIS Services ... 5
1-2 SNMP Services ... 7
2-1 C Naming Conventions.. 16
3-1 Interface Functions .. 21
3-2 Synchronous Mode Operation for Get-req()... 34
3-3 Asynchronous Mode Operation for Receive().. 35
3-4 Interface State Definitions.. 40
3-5 State Table.. 42
5-1 OM Attributes of a Abort-Argument .. 110
5-2 OM Attributes of a Acse-Args... 112
5-3 OM Attributes of a AE-Title .. 113
5-4 OM Attributes of a Assoc-Argument .. 114
5-5 OM Attributes of an Assoc-Diagnostic ... 115
5-6 OM Attributes of a Association-Information... 116
5-7 OM Attributes of a Assoc-Result.. 116
5-8 OM Attributes of an Authentication-Information 117
5-9 OM Attributes of an Authentication-Other ... 117
5-10 OM Attributes of an AVA... 118
5-11 OM Attributes of a Cmip-Assoc-Args... 119
5-12 OM Attributes of a Community-Name... 119
5-13 OM Attributes of a Context ... 120
5-14 OM Attributes of a DS-DN .. 122
5-15 OM Attributes of a DS-RDN ... 123
5-16 OM Attributes of an Entity-Name ... 123
5-17 OM Attributes of an Extension ... 124
5-18 OM Attributes of a External-AC... 124
5-19 OM Attributes of a Form1.. 125
5-20 OM Attributes of a Form2.. 125
5-21 OM Attributes of a Functional-Unit-Package .. 126
5-22 OM Attributes of a Name-String.. 127
5-23 OM Attributes of a Network-Address .. 127
5-24 OM Attributes of a Presentation-Address.. 127
5-25 OM Attributes of a Presentation-Context... 128
5-26 OM Attributes of a Presentation-Layer-Args... 128
5-27 OM Attributes of a Release-Argument ... 129
5-28 OM Attributes of a Release-Result... 130
5-29 OM Attributes of a Session .. 130
5-30 OM Attributes of a SMASE-User-Data.. 132
5-31 OM Attributes of an SNMP-Object-Name ... 132
5-32 OM Attributes of a Standard-Externals .. 133
5-33 OM Attributes of an Action-Error.. 134
5-34 OM Attributes of an Action-Error-Info... 135
5-35 OM Attributes of an Action-Info .. 135
5-36 OM Attributes of an Action-Reply... 136
5-37 OM Attributes of an Action-Type-Id ... 136
5-38 OM Attributes of an Attribute .. 137

viii X/Open CAE Specification (1994)

Contents

5-39 OM Attributes of an Attribute-Error ... 137
5-40 OM Attributes of a Attribute-Id ... 138
5-41 OM Attributes of an Attribute-Id-Error.. 139
5-42 OM Attribute of an Attribute-Id-List... 139
5-43 OM Attributes of a Base-Managed-Object-Id .. 140
5-44 OM Attributes of an CMIS-Action-Argument... 140
5-45 OM Attributes of an CMIS-Action-Result .. 141
5-46 OM Attributes of a CMIS-Cancel-Get-Argument................................... 142
5-47 OM Attributes of a CMIS-Create-Argument ... 142
5-48 OM Attributes of a CMIS-Create-Result... 143
5-49 OM Attributes of a CMIS-Delete-Argument.. 143
5-50 OM Attributes of a CMIS-Delete-Result ... 144
5-51 OM Attributes of an CMIS-Event-Report-Argument 145
5-52 OM Attributes of an CMIS-Event-Report-Result.................................... 145
5-53 OM Attributes of a CMIS-Filter .. 146
5-54 OM Attributes of a CMIS-Get-Argument... 147
5-55 OM Attributes of a CMIS-Get-List-Error.. 148
5-56 OM Attributes of a CMIS-Get-Result .. 148
5-57 OM Attributes of a CMIS-Linked-Reply-Argument 149
5-58 OM Attributes of a CMIS-Set-Argument.. 154
5-59 OM Attributes of a CMIS-Set-List-Error... 155
5-60 OM Attributes of a CMIS-Set-Result ... 155
5-61 OM Attributes of a Complexity-Limitation ... 156
5-62 OM Attributes of a Create-Object-Instance.. 156
5-63 OM Attributes of a Delete-Error... 157
5-64 OM Attributes of an Error-Info... 157
5-65 OM Attributes of an Event-Reply .. 158
5-66 OM Attributes of an Event-Reply .. 158
5-67 OM Attributes of an Event-Type-Id... 159
5-68 OM Attributes of a Filter-Item .. 159
5-69 OM Attributes of a Get-Info-Status ... 160
5-70 OM Attributes of an Invalid-Argument-Value.. 161
5-71 OM Attributes of a Missing-Attribute-Value... 161
5-72 OM Attributes of a Modification .. 161
5-73 OM Attributes of a Modification-List.. 163
5-74 OM Attributes of a Multiple-Reply.. 163
5-75 OM Attributes of a No-Such-Action.. 163
5-76 OM Attributes of a No-Such-Action-Id .. 164
5-77 OM Attributes of a No-Such-Argument ... 164
5-78 OM Attributes of a No-Such-Event-Id .. 164
5-79 OM Attributes of a No-Such-Event-Type... 165
5-80 OM Attributes of an Object-Class .. 165
5-81 OM Attributes of an Object-Instance... 166
5-82 OM Attributes of a Processing-Failure.. 166
5-83 OM Attributes of a Scope... 167
5-84 OM Attributes of a Set-Info-Status .. 168
5-85 OM Attribute of a Setof-Attribute.. 168
5-86 OM Attribute of a Setof-Get-Info-Status... 168

Systems Management: Management Protocols API (XMP) ix

Contents

5-87 OM Attribute of a Setof-Get-Info-Status... 169
5-88 OM Attribute of a Setof-Get-Info-Status... 169
5-89 OM Attributes of a Specific-Error-Info.. 169
5-90 OM Attributes of a Substring.. 170
5-91 OM Attributes of Substrings ... 171
5-92 OM Attributes of an Application-Syntax ... 172
5-93 OM Attributes of an Object-Syntax ... 173
5-94 OM Attributes of a Pdu .. 173
5-95 OM Attributes of Pdus.. 174
5-96 OM Attributes of a Simple-Syntax ... 175
5-97 OM Attributes of a Trap-Pdu .. 176
5-98 OM Attributes of a Var-Bind ... 176
5-99 OM Attributes of Variable-Bindings.. 177
6-1 OM Attributes of a Bad-Argument .. 182
6-2 OM Attributes of an Error.. 184

x X/Open CAE Specification (1994)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Developers who base their products on a current CAE specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future X/Open brand (if not referenced already), and that a variety of compatible, X/Open-
branded systems capable of hosting their products will be available, either immediately or in
the near future.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Systems Management: Management Protocols API (XMP) xi

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xii X/Open CAE Specification (1994)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk
containing the line:

request Corrigenda; topic index

This Document

This document is a CAE Specification (see above). It defines an Application Program Interface
(API) to management information services.

The interface uses the generic concepts defined by ISO which form the basis for systems
management, and supports the model defined in the Structure of Management Information
(SMI).

The interface is designed to provide access to Management Information Services which are
abstracted in terms of notifications and operations on Managed Objects. The interface offers
service primitives which correspond to the abstract services of the Common Management
Information Service (CMIS) and to the Simple Network Management Protocol (SNMP) of the
Internet community.

The Management Information Base (MIB) is a conceptual repository of all management
information. The MIB is modelled as a collection of managed objects, which programs can
access through the interface in order to make queries, updates or reports.

Management services are modelled as specific managed objects, termed management support
objects , which provide the services in question.

The interface is designed to be used and implemented in conjunction with the use and
implementation of the general-purpose OSI-Abstract-Data Manipulation API - see the
referenced XOM Specification.

This document includes a programming language-independent interface to the Management
Information Service, together with a specific C language binding of that interface. Readers are
expected to have some knowledge of basic system management, X.710, and managed objects,
and be familiar with the C programming language.

A compliant system shall meet the definitive requirements described in this Specification.

Systems Management: Management Protocols API (XMP) xiii

Preface

Structure

• Chapter 2 describes the C language binding

• Chapter 3 gives an overall description of the interface

• Chapter 4 defines the interface functions

• Chapter 5 describes the interface data (OM class definitions)

• Chapter 6 describes error handling

• Chapter 7 describes the contents of the C headers

The document concludes with a glossary and an index.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members, and language-independent names.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Roman font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items.

• For a more detailed description of the C language binding font usage, see Chapter 2.

xiv X/Open CAE Specification (1994)

Trade Marks

X/OpenTM and the ‘‘X’’ device are trade marks of X/Open Company Ltd.

Systems Management: Management Protocols API (XMP) xv

Referenced Documents

ACSE
Information Processing Systems - Open Systems Interconnection - Protocol specification for
the Association Control Service Element, ISO 8650/cor.1:1988

ASN.1
Specification of Abstract Syntax Notation One (ASN.1), ISO 8824:1990, CCITT X.208

CMISD
Common Management Information Service Definition — ISO 9595:1991, CCITT X.710

CMISP
Common Management Information Service Protocol — ISO 9596-1:1991, CCITT X.711

DMI
Management Information Services — Structure of Management Information Part 2:
Definition of Management Information, ISO 10165-2, CCITT X.721

IP
Internet Protocol - DARPA Internet Program Specification, J. Postel, RFC 791,
USC/Information Sciences Institute, September 1981.

MF
Basic Reference Model — Part 4: Management Framework, ISO 7498-4, CCITT X.700

MIM
Management Information Services — Structure of Management Information Part 1:
Management Information Model , ISO 10165-1, CCITT X.720 A

PLC
Information Processing - Programming Language C, ISO Draft International Standard
DIS9899 (also known as ‘‘ANSI C’’ - American National Standard X3.159-1989)

Problem Statement
Systems Management: Problem Statement, Snapshot, document S110, X/Open Company
Limited, August 1991.

SIMI
Structure and Identification of Management Information for TCP/IP-based Internets, M.
Rose and K. McCloghrie, RFC 1155, Performance Systems International and Hughes LAN
Systems, May 1990.

SMO
Systems Management Overview — ISO 10040, CCITT X.701

SNMP
The Simple Network Management Protocol, J. Case, M. Fedor, M. Schoffstall, and J. Davin,
RFC 1157, University of Tennessee at Knoxville, Performance Systems International,
Performance Systems International, and the MIT Laboratory for Computer Science, May
1990.

TCP
Transmission Control Protocol - DARPA Internet Program Specification, J. Postel, RFC 793,

xvi X/Open CAE Specification (1994)

Referenced Documents

USC/Information Sciences Institute, NTIS AD Number A111091, September 1981.

X.400
X/Open CAE Specification, February 1994, API to Electronic Mail (X.400), Issue 2,
(ISBN: 1-85912-009-1, X/Open document C316).

XDS
X/Open CAE Specification, February 1994, API to Directory Services (XDS), Issue 2,
(ISBN: 1-85912-007-5, X/Open document C317).

XGDMO
GDMO to XOM Translation Algorithm, Preliminary Specification, X/Open Company
Limited, March 1994, (ISBN: 1-85912-023-7, P319).

XMPP
Systems Management: Management Protocol Profiles, CAE Specification, X/Open
Company Limited, October 1993, ISBN 1-85912-018-0, X/Open document C206.

XOM
X/Open CAE Specification, February 1994, OSI-Abstract-Data Manipulation API (XOM),
Issue 2, ISBN: 1-85912-008-3, X/Open document C315.

XPG4
X/Open Systems and Branded Products: XPG4, July 1992 (ISBN: 1-872630-52-9, X924).

XRM
X/Open Guide, August 1993, Systems Management: Reference Model (ISBN: 1-85912-05-9,
G207).

Systems Management: Management Protocols API (XMP) xvii

Referenced Documents

xviii X/Open CAE Specification (1994)

Chapter 1

Introduction

Note: Many technical terms, such as object and attribute, are used by both OSI-Abstract-Data
Manipulation and the Management Information Model. The meanings ascribed to
these terms are often similar but different. The reader is urged to caution, and reference
to Section 1.5 on page 8 and to the glossary may be useful.

1.1 Overview
The X/Open Management Protocols Application Program Interface (abbreviated XMP) defines
an Application Program Interface (API) to management information services. It is referred to as
the interface throughout this specification.

The interface is designed to offer services which are consistent with, but not limited to, the X.710
& X.711 CCITT Recommendations (CMIS/CMIP ISO 9595 & 9596-1) Standards. These standards
were published in 1991 and are intended to be stable for at least four years. The CCITT
Recommendations and the ISO Standards were developed in close collaboration and are
technically identical.

The interface is also designed to offer services which are consistent with the Internet Network
Management Standard for network management of TCP/IP-based Internets (SNMP).

All the above standards are referred to in this document as the Standards .

Access to other management services through the API is not prohibited, but has not been
explicitly considered.

In addition to this API, which provides access to management functionality using management
protocol-based technology, future APIs will provide access to management functionality using
interfaces based on the Object Management Group technology.

The interface uses the generic concepts defined by ISO which form the basis for systems
management and supports the model defined in the ‘‘Structure of Management Information
(SMI)’’.

The interface is designed to provide access to Management Information Services which are
abstracted in terms of notifications and operations on Managed Objects. The interface offers
service primitives which correspond to the abstract services of the Common Management
Information Service (CMIS) and to the Simple Network Management Protocol (SNMP) of the
Internet community. The API is able to manipulate quite different Structures of Management
Information (SMI), as defined by ISO 10165 and the Internet RFC 1155.

The Management Information Base (MIB) is a conceptual repository of all management
information. The MIB is modelled as a collection of managed objects, which programs can
access through the interface in order to make queries, updates or reports.

Management services are modelled as specific managed objects, termed management support
objects, which provide the services in question.

The interface is designed to be used and implemented in conjunction with the use and
implementation of the general-purpose XOM API (reference XOM).

A brief introduction to Management Information Services is given in Section 1.3 on page 3.
Following this is an overview of OSI-Abstract-Data Manipulation OM, which provides the Data

Systems Management: Management Protocols API (XMP) 1

Overview Introduction

Abstraction service as defined in the XOM specification (reference XOM). Then the optional
features of this specification are described, and the chapter closes with a list of abbreviations. In
all cases, the reader should refer to the Standards (references CMISD, CMISP, DMI, MF, MIM,
SMO), or to the XOM Specification (reference XOM) for further authoritative details.

The structure of the remaining chapters and appendices is described in the Preface.

1.2 Format of the Specification
This specification describes a programming language-independent interface to the Management
Information together with a specific C language binding of that interface. Several conventions
are used to identify particular items. The general conventions are described in the Preface, while
the C language binding conventions are described in Chapter 2.

2 X/Open CAE Specification (1994)

Introduction Introductory Concepts

1.3 Introductory Concepts
The goals and requirements of System Management, and a description of the Systems
management Reference Model, is given in the XRM (see Referenced Documents).

The concept of System Management includes a facility which contains management information
about managed objects which identify resources in the real world. Management users, including
people and programs, can read or modify this information. The information is typically used to
monitor, tune or configure objects such as users, application programs, peripherals, networks,
etc.

The information stored by System Management is held in the Management Information Base
(MIB). Management information is structured in terms of managed objects, their attributes, the
management operations that can be performed upon them and the notifications that they can
emit. The set of managed objects together with their attributes constitutes that Management
Information Base.

Each part of the system that needs to be treated by management as an independent entity is
represented by a managed object.

A managed object is the Management view of a system resource that is subject to management.
Each managed object has a specific class, which is a named set of managed objects sharing the
same set of attributes, notifications, behaviour and management operations. An object identifier
serves to name the class of managed object.

An attribute is an item of management information that describes some property of a managed
object. An attribute has an associated value, which may have a simple or a complex structure.

Managed objects and attributes are described in the ‘‘Structure of Management Information -
Model of Management Information’’ (ISO/IEC 10165-1), or in the ‘‘Structure and Identification
of Management Information for TCP/IP-based Internets’’ (RFC1155).

Managed object instances are referenced by Names.

Management applications perform the management activities in a distributed manner.
Management applications consist of a cooperative set of Management Programs.

Management program instances are referenced by Titles. The network location of management
program instances are referenced by Addresses.

Figure 1-1 shows the conceptual view of the interaction between the Manager Role and the
Agent Role, as presented in the Systems Management Reference Model (reference XRM).

Manager
Role Management Interaction Agent

Role
Managed
Resource

Management
Interface

Systems Management: Management Protocols API (XMP) 3

Introductory Concepts Introduction

Figure 1-1 Reference Model - Conceptual View of Management Interaction

Figure 1-2 expands the concepts illustrated in Figure 1-1. As shown in Figure 1-2, the
interactions which take place between management programs are abstracted in terms of
operations and notifications issued by one entity to the other; these are realised using services
and protocols.

Management activities are effected through the manipulation of managed objects. For a specific
management interaction, a management program is allowed to take on one of two possible roles,
either an agent role or a manager role.

A Management Program taking the role of an agent is often simply referred to as an agent. An
agent is that part of a distributed application that presents a view of the Managed Resource in
terms of Managed Objects.

A Management Program taking the role of a manager is often simply referred to as a manager. A
manager is that part of a distributed application which has the responsibility for performing one
or more management activities.

A manager uses the management interface presented by the agent to perform operations on
Managed Objects and to receive information from them in terms of notifications.

The interface is based on a model Management Information Services that is described in the
Standards, and it provides facilities that closely follow the abstract services described there.

Entities which provide the Management Information Services are called MIS Providers .

..

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..

MIS Provider MIS Provider

SNMP

XMP
API

XMP
API

CMIP

Manager Agent

Managed Objects

Management Operations

Management
Operations

Notifications
EmittedNotifications

Management
Program

Management
ProgramCommunicating

Performing

(MIB)

Figure 1-2 Manager, Agent and Object Interactions

4 X/Open CAE Specification (1994)

Introduction Introductory Concepts

1.3.1 Relationship to Management Protocols

The interaction between management programs acting in the role of manager and agent
respectively are realised through the exchange of management information. The general OSI
communication service for systems management is the Common Management Information Services
(CMIS). CMIS defines the following operations:

CMIS Services Type
M-ACTION confirmed/non-confirmed
M-CREATE confirmed
M-CANCEL-GET confirmed
M-DELETE confirmed
M-EVENT-REPORT confirmed/non-confirmed
M-GET confirmed
M-SET confirmed/non-confirmed

Table 1-1 CMIS Services

Management notifications are exchanged by using the M-EVENT-REPORTservice, whereas
management operations are exchanged by using other services mentioned above.

This communication may be accomplished using the OSI Common Management Information
Protocol (CMIP) or when managing IPS-based Internets the Simple Network Management Protocol
(SNMP).

Systems Management: Management Protocols API (XMP) 5

Introductory Concepts Introduction

1.3.2 XMP and the MIS Provider

The XMP interface gives access to the MIS Provider, which offers all the facilities defined in the
Standards. It also provides facilities such as automatic connection management. Other features
may also be supported by the MIS Provider , such as managed object location transparency (see
Section 3.9 on page 38). The interface is designed not to restrict the services offered to those of
the CMIS.

The interface defined in this specification is ‘‘symmetrical’’ in the sense that it can be used to
implement management programs acting in manager or agent roles. The interface supports:

• a management program acting as a manager accessing Management Information from an
agent. This is done by submitting operation requests and receiving operation responses and
event reports.

• a management program acting as an agent interacting with a manager by receiving operation
requests and sending back responses or event reports.

The interface provides the ability to send requests on the invoker side and to receive indications
on the performer side within a management interaction (see Figure 1-3). Furthermore if the
service is confirmed, the performer will be able to send back responses that will be received as
confirmations by the invoker.

Provider

MIS

Provider

MIS

Conf

Req

Confirmed Service

Invoker

Resp

Ind

Performer Invoker Performer

Non Confirmed Service

Req Ind

Figure 1-3 A CMIS Interaction

6 X/Open CAE Specification (1994)

Introduction Relationship between CMIP and SNMP

1.4 Relationship between CMIP and SNMP
This API is essentially based on the abstract services of the CMIS (reference CMISD) and SNMP
(reference SNMP), but is independent of the underlying communications stack. The API allows
for the manipulation of ISO and Internet management information. Thus this API does not
preclude and does not force the use of either the SNMP protocol (Simple Network Management
Protocol) or the CMIP protocol (Common Management Information Protocol).

XMP API offers two abstract management service views : the one of the ISO Standards and that
of the Internet community.

The contents of SNMP messages are described in RFC1157. These messages implicitly define the
SNMP services. The mapping between the SNMP services and various service primitives and
parameters of the XMP API are described below.

The services offered by the XMP API are a superset of those defined both by SNMP and CMIS.
The general communication protocol for Internet management is the Simple Network Management
Protocol (SNMP). SNMP defines in RFC 1157 the following procedures:

SNMP Procedures Type
GET confirmed
GET-NEXT confirmed
SET confirmed
TRAP non-confirmed

Table 1-2 SNMP Services

Management notifications are exchanged by using the TRAPprocedure, whereas management
operations are exchanged by following other procedures mentioned above.

The SNMP specific Get-Next service is offered. The SNMP trap operation is mapped on the
Event-Report service.

The two abstract management views of XMP (ISO view and Internet view) are independent of
the underlying protocol. However, the ISO view on top of SNMP requires that an appropriate
mapping of CMIS services over SNMP is widely available.

Systems Management: Management Protocols API (XMP) 7

Relationship to Data Abstraction Services Introduction

1.5 Relationship to Data Abstraction Services
XMP is dependent on standard data abstraction services to ensure portability of management
software written to the XMP specification. XMP functions pass most arguments by reference.
The data referenced by these arguments is modelled and manipulated in an object-oriented
fashion. X/Open Systems Management data abstraction services are provided by the XOM API
(reference XOM).

Note that some of the terms used (for example, object and attribute) are also used in a different
way when referring to parts of the Management Information. Care has been taken to avoid
confusion, by using distinct names for each such term. Throughout this document, care is taken
to distinguish between OM classes and managed object classes, and between OM attributes and
managed object attributes. In both cases, the former is a construct of the OM interface, while the
latter is a construct of the Management Information Services to which the interface provides
access. The unqualified term ‘‘attribute’’ denotes the managed object construct, while the phrase
‘‘OM attribute’’ denotes the OM construct. The phrase ‘‘Object Class’’ denotes the Management
Information construct, while the phrase ‘‘OM class’’ denotes the OM construct.

The definitions below introduce the various concepts that are used by Systems Management
data abstraction services.

Syntax
A syntax is the classification and representation of values in OSI-Abstract-Data
Manipulation. Examples of syntaxes are Boolean, Integer, Real, String(Octet),
String(Object-Identifier) and Object.

Value
A value is a single datum, or piece of information. A value may be as simple as a Boolean
value (for example, True), or as complicated as an entire OM object (for example, a
Message).

OM Attribute
An OM attribute type is an arbitrary category into which a specification places some values.
An OM attribute is an OM Attribute Type, together with an ordered sequence of one or more
values. The OM Attribute Type can be thought of as the name of the OM attribute.

OM Object
An OM object is a collection of OM attributes.

OM Class
An OM class is a category of OM object set out in a specification. It determines the OM
attributes that may be present in the OM object, and details the constraints on those OM
attributes.

Package
A Package is a set of OM classes that are grouped together by the specification, because they
are functionally related (for example, SNMP service package).

Package Closure
A Package-Closure is the set of classes which need to be supported in order to be able to
create all possible instances of all classes defined in the package. Thus an OM Class may be
defined to have an OM Attribute whose value is an OM Object of an OM Class that is
defined in some other package, but within the same Package-Closure.

Workspace
A workspace is allocated storage that contains one or more Package-Closures, together with
an implementation of the Systems Management data abstraction services, that supports all
the OM classes of OM objects in the Package-Closures.

8 X/Open CAE Specification (1994)

Introduction Relationship to Data Abstraction Services

Descriptor
A descriptor is a defined data structure that is used to represent an OM Attribute Type and a
single value. The structure has three components: a type, a syntax, and a value.

Public Object
Public Objects are represented by data structures that are manipulated directly using
programming language constructs. Use of Public Objects therefore simplifies programming
by this direct access and by enabling objects to be statically defined, where appropriate.
Programs can efficiently access public objects.

Private Objects
Private Objects are held in data structures that are private to the service and can only be
accessed from programs indirectly using interface functions. They are of particular use for
structures that are infrequently manipulated by programs, being passed by reference to the
service, which can then manipulate them efficiently. An example of such objects in XMP is
the session object.

Systems Management: Management Protocols API (XMP) 9

Mandatory and Optional Features Introduction

1.6 Mandatory and Optional Features
The interface defines an Application Program Interface (API) that application programs can use
to access the functionality of the underlying Management Information Services. The interface
does not define or imply any profile of that service.

Note that nothing in this specification requires that the implementation of the interface or the
Management Information Services itself actually makes use of CMIP or other parts of the model,
just so long as it provides the defined service. Also, the scope of the Management Information
Services to which an application has access is not determined; it is not restricted to OSI systems
managements.

The Get-Next-req() function is conditional: it is only required if the SNMP package is supported
by the implementation. If called in a non-SNMP environment, the error Not-Supported is
returned.

Some OM attributes are optional; these are marked (Optional Functionality) in the OM class
definitions. They are:

• File-Descriptor in a Session object.

Some items of behaviour of the interface and a number of aspects of the Management
Information Services Provider are implementation-defined. These are:

• the maximum number of outstanding asynchronous operations

• whether an asynchronous function call returns before the operation is submitted to the
Management Information Services provider

• the text and language of error messages

• the OM classes permitted as values of the Name, Address and Title argument to interface
functions.

The default values of some OM attributes in OM object Session are locally administered.

This API assumes the provision of automatic connection management by the MIS provider.

The interface enables negotiation of the use of the various defined features of the MIS provider
and those of the interface.

10 X/Open CAE Specification (1994)

Introduction Packages

1.7 Packages
This specification defines two types of packages:

1. The Management Service packages (Common Management Service package, CMIS
package and SNMP package), see Chapter 5 on page 105, define the OM classes required
by the interface functions to perform CMIS and/or SNMP services. The Common
Management Service package, which also includes the errors defined (see Chapter 6 on
page 179), is mandatory. The CMIS package and the SNMP package are optional, but at
least one of them must be supported by the implementation. The Internet management
service view and the ISO management service view assume respectively the support of the
SNMP package or the support of the CMIS package by the implementation.

2. Management Contents packages, such as the DMI Contents Package defined in the GDMO
to XOM Translation Algorithm (reference XGDMO), are optional. They define OM classes
corresponding to the ASN.1 syntaxes used in management messages related to specific
managed objects. New packages of this type are expected to be defined in the future to
extend the capabilities of the interface. The DMI package for ISO management
information definitions is formed with the ISO 10164 Systems Management Functions
together with the ISO 10165 SMI - part 2: Definition of Management Information.

The use of the optional packages is negotiated using the Negotiate() function.

The packages are illustrated in Figure 1-4.

..

.........

...........................

Management Contents PackagesManagement Service Packages

Common

CMIS

DMI

PackagePackage

Package

Management Program

XMP API

Package

SNMP

PACKAGE

XOM API

XOM

OM WORKSPACE

Other

Package

Figure 1-4 XMP Packages

Systems Management: Management Protocols API (XMP) 11

Terminology Introduction

1.8 Terminology
The terms implementation-defined, may , should , undefined, unspecified, and will are used in this
document with the meanings ascribed to them in reference XPG4 (see also the Glossary).

1.9 Abbreviations
API Application Program Interface

ASN.1 Abstract Syntax Notation One

AVA Attribute Value Assertion

BER Basic Encoding Rules

CCITT International Telegraph and Telephone Consultative Committee

CMIP Common Management Information Protocol

CMIS Common Management Information Service

DN Distinguished Name

DMI Definition of Management Information

IETF Internet Engineering Task Force

IP Internet Protocol

IPS Internet Protocol Suite (often referred to as TCP/IP)

ISO International Organisation for Standardisation

MIB Management Information Base

MIM Management Information Model

MIS Management Information Services

MIT Management Information containment Tree

NMF OSI Network Management Forum

OM OSI-Abstract-Data Manipulation

OSI Open Systems Interconnection

RDN Relative Distinguished Name

RFC Request For Comments

ROSE Remote Operations Service Element

SMI Structure of Management Information

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

XDS X/Open: Directory Services API

XOM X/Open: OSI-Abstract-Data Manipulation API

XMP X/Open Management Protocols API

12 X/Open CAE Specification (1994)

Introduction Document History

1.10 Document History
This document was first published as a Preliminary Specification. At that time certain areas of
the document were identified as being likely to be changed in order to provide additional
functionality. Significant changes have been implemented in the following areas:

• Error handling: Interface functions now return integer values instead of OM private objects
(with 3 integer exceptions). This removed the need to overload the return value with either
integers or pointers, and will allow application programmers to make quick, high-level
decisions based on integer return codes. The interface has been extended to provide new
functions in this area.

• Automated Connection Management: The XMP interface now provides support for
connection management by applications. If Automated Connection Management is disabled,
applications exercise control over the establishment and release of associations. The interface
has been extended to provide new functions in this area.

• Alignment with standards: Modifications have been made to the OM class definitions in
order to bring them into alignment with the relevant standards. Major changes have been
made to the SNMP service package for this reason. In the future, an SNMP version 2 service
package will provided.

• Get-req() function: The functionality of the Get-req() function has been extended to include
the SNMP Get-Nextoperation. In the future it will be further extended to include the SNMP
version 2 Get-Bulkoperation. The Get-Next-req() function has been retained for backwards
compatibility, but its use is discouraged in new applications.

1.11 Future Directions
This section notes a number of areas where there are likely to be future developments in the
interface:

• Future versions of this interface will provide access to the functionality specified in future
versions of the Standards. In particular, it is anticipated that SNMP version 2 capability will
be added.

• It is likely that additional representations of names, addresses and titles will be adopted as
such representations become widely accepted.

• Further standardisation of the OM representation of management attributes, actions and
notifications will be addressed by the definition of a separate specification describing the
method of translating GDMO definitions into XOM (see reference XGDMO). This will allow
the definition of new packages for additional attribute types and object classes in additional
Management Contents Packages (see Section 5.1 on page 105).

Systems Management: Management Protocols API (XMP) 13

Introduction

14 X/Open CAE Specification (1994)

Chapter 2

C Language Binding

2.1 Introduction
This chapter sets out certain characteristics of the C language binding to the interface. The
binding specifies C identifiers for all the elements of the interface, so that application programs
written in C can access the Management Information Services. These elements include function
names, typedef names and constants. All the C identifiers are mechanically derived from the
language independent names as explained below. There is a complete list of all the identifiers in
Chapter 7. For ease of use, some of these identifiers are defined in the specification alongside the
language-independent name.

A Function() is indicated as shown.

A CONSTANT is in Roman font.

The names of [ERRORS] and other return codes are surrounded by square brackets.

The definitions of the C identifiers appear in four headers:

• <xom.h> contains definitions for the associated OM interface.

• <xmp.h> contains common definitions for the access to the Management Communication
Service (see Chapter 5 and Chapter 6).

• <xmp_cmis.h> contains specific definitions which reflect the Abstract Services of the
Common Management Information Service along with the ASN.1 productions of the related
protocol (CMIP) (see Chapter 5).

• <xmp_snmp.h> contains specific definitions which reflect the Abstract Services of the Simple
Network Management Protocol along with the associated ASN.1 productions (see Chapter
5).

2.2 C Naming Conventions
The interface uses part of the C public namespace for its facilities. All identifiers start with the
letters mp, MP or OMP, and more detail of the conventions used are given in the following table.
Note that the interface reserves all identifiers starting with the letters mpP for Private (ie.
internal) use by implementations of the interface. It also reserves all identifiers starting with the
letters mpX or MPX for vendor specific extensions of the interface. Application programmers
should not use any identifier starting with these letters.

The OSI-Abstract-Data Manipulation API uses similar, though not identical, naming
conventions, which are described in reference XOM. All its identifiers are prefixed by the letters
OM or om.

Systems Management: Management Protocols API (XMP) 15

C Naming Conventions C Language Binding

Item Prefix
reserved for implementors mpP
reserved for interface extensions mpX
reserved for interface extensions MPX
reserved for implementors OMP

<xmp.h> & <xmp_cmis.h> & <xmp_snmp.h>
functions mp_
error "problem" values MP_E_
enumeration tags (except errors) MP_T_
OM class names MP_C_
OM value length limits MP_VL_
OM value number limits MP_VN_
other constants MP_

Table 2-1 C Naming Conventions

A complete list of all identifiers used (except those beginning mpP, mpX, MPX or OMP) is given
in Chapter 7. No implementation of the interface will use any other public identifiers. A public
identifier is any name except those reserved in section 4.1.2.1 of the ISO C Standard (reference
PLC), and the public namespace is the set of all possible public identifiers.

The C identifiers are derived from the language-independent names used throughout this
specification by a purely mechanical process which depends on the kind of name:

• Interface function names are made entirely lower-case and prefixed by mp_. Thus Get-Req()
becomes mp_get_req().

• C function parameters are derived from the argument and result names by making them
entirely lower-case. In addition the names of results have _return added as a suffix. Thus the
argument Name becomes name, whilst the result Operation-Notification becomes
operation_notification_return .

• OM class names are made entirely upper-case and prefixed by MP_C_ . Thus Get-Result
becomes MP_C_GET_RESULT. Note that the symbolic OM class names are strictly those
used in the abstract syntax ASN.1 of the CMIP with the exception that names containing
multiple words are separated with hyphens.

• Enumeration tags are derived from the name of the corresponding OM type and syntax by
prefixing with MP_ . The case of letters is left unchanged. Thus Enum(Synchronization)
becomes MP_Synchronization.

• Enumeration constants, except errors, are made entirely upper-case and prefixed by MP_T .
Thus Atomic becomes MP_T_ATOMIC.

• The name of an OM attribute is local to its OM class, that means the same name of an OM
attribute may appear in different OM classes, for example OM attribute filter is defined in
both OM classes Get-Argument and Set-Argument. Independent-language attribute filter
appears as MP_FILTER in C-language. Note that the symbolic OM attribute names are
strictly those used in the abstract syntax ASN.1 of the CMIP with the exception that names
containing multiple words are separated with hyphens.

• Errors are treated as a special case. Constants that are the possible values of the OM attribute
Error-Status of a subclass of the OM class Error are made entirely upper-case and prefixed by
MP_E_ . Thus no-such-object-instance becomes MP_E_NO_SUCH_OBJECT_INSTANCE.

16 X/Open CAE Specification (1994)

C Language Binding C Naming Conventions

• The constants in the Value Length and Value Number columns of the OM class definition
tables are also assigned identifiers. (They have no names in the language-independent
specification.) Where the upper limit in one of these columns is not "1" (one), it is given a
name consisting of the OM attribute name, prefixed by MP_VL_ for value length, or
MP_VN_ for value numbers.

• The sequence of octets for each object identifier is also assigned an identifier, for internal use
by certain OM macros. These identifiers are all upper case and are prefixed by OMP_O_ .
See reference XOM for further details on the use of object identifiers.

Note that hyphens are translated everywhere to underscores.

2.3 Use and Implementation of Interfaces
Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow.

If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer), the behaviour
is undefined.

Any function declared in a header may be implemented as a macro defined in the header, so a
library function should not be declared explicitly if its header is included. Any macro definition
of a function can be suppressed locally by enclosing the name of the function in parentheses,
because the name is not then followed by the left parenthesis that indicates expansion of a macro
function name. For the same syntactic reason, it is permitted to take the address of a library
function even if it is also defined as a macro. The use of #undef to remove any macro definition
will also ensure that an actual function is referred to. Any invocation of a library function that is
implemented as a macro will expand to code that evaluates each of its arguments exactly once,
fully protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as arguments. Likewise, those function-like macros described in the following
sections may be invoked in an expression anywhere a function with a compatible return type
could be called.

2.4 Function Return Values
The return value of a C function is always bound to the result of the language-independent
description. Functions return a value of type MP_status , which is an error indication. If and
only if the function succeeds, its value will be success, expressed in C by the constant
MP_SUCCESS. If a function returns a status other than this, then it has not updated the return
parameters. The value of the status, in this case, is an error as described in Chapter 6. In most
cases the integer returned in Status is sufficient for error processing. However, in a few cases
additional information is available if desired.

Since C does not provide multiple return values, functions must return all other results by
writing into storage passed by the application program. Any argument that is a pointer to such
storage has a name ending with _return. For example, the C parameter declaration ‘‘Uint *
completion_flag_return’’ in the Receive() function indicates that the function will return an
unsigned integer Completion-Flag as a result, so the actual argument to the function must be
the address of a suitable variable. This notation allows the reader to distinguish between an
input parameter that happens to be a pointer, and an output parameter where the "*" is used to
simulate the semantics of passing by reference.

Systems Management: Management Protocols API (XMP) 17

Compilation and Linking C Language Binding

2.5 Compilation and Linking
All application programs that use this interface must include the <xom.h> and <xmp.h> headers
in that order, and at least one of the <xmp_cmis.h> and <xmp_snmp.h> headers.

18 X/Open CAE Specification (1994)

Chapter 3

Description

3.1 Introduction
The interface comprises a number of functions together with many OM classes of OM objects,
which are used as the arguments and results of the functions. Both the functions and the OM
objects are based closely on the Abstract Service that is specified in the Standards (references
CMISD and SNMP).

The interface models management interactions as service requests made through a number of
interface functions , which take a number of input arguments. Each valid request causes an
operation within the Agent or a notification to the Manager, which eventually returns a status and
any result of the operation.

All interactions between a Manager and an Agent belong to a session, which is represented by an
OM object passed as the first argument to most interface functions.

The other arguments to the functions include a context and various service-specific arguments.
The context includes a number of parameters that are common to many functions and that
seldom change from operation to operation.

Each of the components of this model is described below, along with other features of the
interface such as asynchronous function calls and security.

Systems Management: Management Protocols API (XMP) 19

Services Description

3.2 Services
As mentioned above, the Standards define Abstract Services that Managers and Agents use to
interact with the managed objects. Each of these Abstract Services maps to a single function†
call with the same name (with one minor exception noted below). The services are: Create-req,
Create-rsp, Delete-req, Delete-rsp, Get-req, Get-rsp, Set-req, Set-rsp, Action-req, Action-rsp,
Event-Report-req, Event-Report-rsp, Cancel-Get-req, and Cancel-Get-rsp.

There are three functions called Receive(), Wait(), and Abandon() which have no counterpart in
the Abstract Service. Receive() is used to receive indications and results of asynchronous
operations, and is explained in Interface Functions, Chapter 4. Wait() is used to suspend
execution until indications or notifications are available for specified sessions. Abandon() is used
to abandon locally the result of a pending asynchronous operation. Two additional functions,
Bind() and Unbind(), are used to open and close a user-session. Five functions, Abort-req(),
Assoc-req(), Assoc-rsp(), Release-req(), and Release-rsp(), are used by applications to control
associations. There are also other interface specific functions called Get-Assoc-Info(), Get-Last-
Error(), Validate-Object (), Error-Message(), Initialize (), Shutdown() and Negotiate().

The detailed specifications are given in Chapter 4. The interface functions are summarised in
Table 3-1. Those which can execute asynchronously are indicated by an a in the first column. All
other functions always execute synchronously. The function Cancel-Get-req() can only be used
asynchronously. An s in the second column indicates that the function addresses the
corresponding ACSE, CMIS or SNMP service while an i references a specific interface service.

† A special function called Get-Next-req() provides the SNMP Get-Next request operation (the response is performed by the Get-
rsp function). This function is provided for backwards compatibility with the Preliminary Specification. Its use in future
applications is not recommended.

20 X/Open CAE Specification (1994)

Description Services

Asyn Type Name Description
abandon locally the result of a pending asynchronous operation.i Abandon
abort a management association.s Abort-req
request an action on managed objects to be performed.a s Action-req
response to an Action request.s Action-rsp
response to an Assoc request.s Assoc-rsp
build a management association.a s Assoc-req
open a management session with the Agent(s) or the Manager(s).i Bind
cancel an outstanding asynchronous Get operation.a s Cancel-Get-req
response to a Cancel-Get request.s Cancel-Get-rsp
request to create an object in the MIB.a s Create-req
response to a Create request.s Create-rsp
request to delete an object in the MIB.a s Delete-req
response to a Delete request.s Delete-rsp
return an error message describing a particular error.i Error-Message
request to forward a management notification.a s Event-Report-req
response to an Event Report request.s Event-Report-rsp
return negotiated connection values.i Get-Assoc-Info
retrieve secondary error code.i Get-Last-Error
request to get the next SNMP management information.a s Get-Next-req
request to get management information.a s Get-req
response to Get request.s Get-rsp
initialise the interface and create a workspace.i Initialize
negotiate features of the interface and service.i Negotiate
retrieve the result of an asynchronously executed management
operation or the content of a received management
notification/indication.

i Receive

response to a Release request.s Release-rsp
release a management association.a s Release-req
request to modify (replace, add, remove) attribute value(s) of a
managed object with the specified attribute value(s).

a s Set-req

response to a Set request.s Set-rsp
discard a workspace.i Shutdown
close a management session.i Unbind
analyse an OM object.i Validate-Object
wait for the availability of management message(s) from one or more
bound Sessions.

i Wait

Table 3-1 Interface Functions

3.2.1 Negotiation Sequence

The interface has an initialise and shutdown sequence that permits the negotiation of optional
features. This involves the functions Initialize (), Negotiate(), and Shutdown().

Every application program must first call Initialize (), which returns a workspace. This
workspace supports only the standard Common Management Service Package (COMMON, see
Chapter 5).

The workspace can be extended to support either the CMIS package or the SNMP package or
both (see Chapter 5 and any combination of the optional Management Information Contents

Systems Management: Management Protocols API (XMP) 21

Services Description

packages (DMI Package and/or other packages, - reference XGDMO), or any vendor extensions.
Vendor extensions may include additional packages, and may also include additional or
modified functionality. All such packages or other extensions are identified by means of OSI
Object Identifiers, and these Object Identifiers are supplied to the Negotiate() function to
incorporate the extensions into the workspace. Features defined by this specification are
described and assigned Object Identifiers in Chapter 4. A feature represents any package or any
additional or modified functionality that is subject to negotiation. The Negotiate() function
allows some particular features to be made available.

After a workspace with the required features has been negotiated in this way, the application
can use the workspace as required. It can create and manipulate OM objects using the OM
functions, and can start one or more management sessions using Bind(). All the sessions on a
given workspace share the same features.

Eventually - when it has completed its tasks, terminated all its management sessions using
Unbind(), and released all its OM objects using OM-Delete() - the application should ensure that
resources associated with the interface are freed by calling Shutdown().

A miscellaneous error arises if an attempt is made to use an unavailable feature. If an instance of
a class that is not in an available package is supplied as a function argument, the bad-class error
arises.

3.2.2 Names, Addresses and Titles

To address a wide variety of management and transport protocols the interface is capable of
accepting various forms of object names, system addresses and program or system titles.

• Name is an ‘‘abstract class’’ that contains various subclass types used to define managed
object instances. For example, the DS-DN subclass is typically used for ISO managed object
instance naming.

• Address is an ‘‘abstract class’’ that contains various subclass types used to define the specific
location to contact a particular agent or manager. For example, the Network-Address
subclass is typically used to define the location of an SNMP agent or manager.

• Title is an ‘‘abstract class’’ that contains various subclass types used to define the specific
program or system name responsible for a managed object instance.

All three abstract classes participate in an implementation-specific name resolution scheme. It is
assumed that if given a Name, an implementation can determine the Title responsible for that
Name. It is also assumed that given a Title, an implementation can determine the Address of
that Title.

Note: The way in which these relationships are resolved is implementation-dependent, but
use of the X/Open Directory Services (reference XDS) should play a significant role.

The performer of an invoked operation or a reported notification may be explicitly designated at
the interface boundary using the following precedence rules:

1. A default Title and/or Address may be supplied as parameters to a bound ‘‘session’’. If
both are provided, the implementation will verify that the Title resolves to the Address.

2. If automated connection management is used, a performer Title and/or Address may be
supplied as parameters within the ‘‘context’’ of a specific operation/notification request. If
both are provided, the implementation will verify that the Title resolves to the Address.
The ‘‘context’’ Title and/or Address takes precedence over the ‘‘sessio’’n Title and/or
Address for unconnected session objects.

22 X/Open CAE Specification (1994)

Description Services

3. In the case of SNMP, a responder Address may be supplied as a parameter within the
‘‘argument’’ of a specific operation/notification request. The ‘‘argument’’ Address takes
precedence over either the ‘‘session’’ Title and/or Address or the ‘‘context’’ Title and/or
Address.

4. If the performer of an invoked operation or a reported notification is not explicitly
designated at the interface boundary, the implementation will resolve the managed object
Name to the appropriate Title and/or Address.

Systems Management: Management Protocols API (XMP) 23

Session Description

3.3 Session
A session identifies to which agent or to which manager a particular management
operation/notification will be sent. It contains some Bind-Arguments, such as the name of the
requestor. The session is passed as the first argument to most interface functions.

A session is described by an OM object of OM class Session. It is created, and appropriate
parameter values may be set, using the OSI-Abstract-Data Manipulation functions. A
management session is then started with Bind() and later is terminated with Unbind(). A
session with default parameters can be started by passing the constant Default-Session
((OM_object)0) (MP_DEFAULT_SESSION) as the Session argument to Bind().

Bind() must be called before the Session can be used as an argument to any other function in
this interface. After Unbind() has been called, Bind() must be called again if another session is to
be started.

The interface supports multiple concurrent sessions, so that an application implemented as a
single process, such as a server in a client-server model, can interact with the Management
Information Services using several identities; and so that a process can interact directly and
concurrently with different parts of the MIB.

Detailed specifications of the OM class Session are given in Chapter 5.

A session can be used either acting as a manager, that is, invoker of management operation and
performer of management notifications, or acting as an agent, that is, performer of management
operation and invoker of management notifications, or both.

A session can be restricted for use only with a designated program called the responder. When
the responder is omitted and automated connection management is used, the session can be
used to exchange management information with all processes.

The responder (title and address) parameters of an opened session, if present, specifies the
performer of the requested operation or reported notification. The precedence rules on address
and title of the responder are described in Section 3.2.2 on page 22.

Other OM attributes (vendors’ implementation extensions) may be included to specify
characteristics of the underlying protocol used.

There are three types of Session objects:

ACM Enabled Session

The Session collects together all the information which describes a particular management
interaction. The parameters which are to control such a session are set up in an instance of this
OM class, which is then passed as an argument to Bind(). This sets the OM attributes which
describe the actual characteristics of this session, and starts the session. Such a started session
can be passed as the first argument to management interface functions.

No attributes of a bound or connected session can be changed . The result of modifying a started
session is unspecified.

Finally, Unbind() is used to terminate the session, after which the parameters can be modified
and a new session started using the same instance, if required. Multiple concurrent sessions can
be run, by using multiple instances of this OM class.

A session allows a requesting program (the requestor) to exchange management information
with another program designated (the responder) or by default to all programs.

24 X/Open CAE Specification (1994)

Description Session

An ACM enabled session thus allows:

• a manager to access either a part of the MIB (that is, that accessible via the designated
responding agent) or the whole MIB — in the latter, the performing agent resolution is
performed by the Management Information Service provider, according to the managed
objects accessed

• an agent to report notifications either to a particular manager or independently of the
possible recipient managers — in the latter, the destinations of the event forwarding are
determined by the Management Information Service provider.

This type of session object can not be used to receive or send ACSE related primitives or
operations explicitly. To use ACSE explicitly, see the next section on ACM being disabled.

ACM Disabled Session

A session object can have Automatic Connection Management disabled via Negotiate(), which
allows the user to explicitly send and receive ACSE operations to build and tear down
associations. It gives explicit control over associations to the user. The Management System
Service provider does no ACSE operations on behalf of the user.

When the user creates and binds a session object, with ACM disabled, only the following
attributes within the session object can be specified:

• requestor-Address

• requestor-Title

• role

This session object is then passed as an argument to Bind(), which binds the session. This bound
session can only be used to send ACSE related operations and to receive ACSE related
primitives. The following can be sent/received using this type of bound session:

• mp_receive/MP_ASSOC_IND

• mp_receive/MP_ASSOC_CNF

• mp_assoc_req

• mp_assoc_rsp

The other attributes that relate to ACSE are specified within an Assoc-Argument object or
Assoc-Result object which is passed to / returned from Assoc_req(), Assoc_rsp(), or Receive().

Connected Session

Once a user has created a bound session that has ACM disabled, an association can be created.
An association is represented by a connected session object. A connected session is returned as the
result of building a new association. The connected session is used, like a bound session, by
sending and receiving management operations. The major difference is that a connected session
object can only be used to send and receive operations to/from a single remote entity. After a
session is connected the user can release the association or abort the association, which
implicitly unbinds the connected session.

Only CMISE operations can be sent/received with a connected session.

The precedence rules for common parameters within the session and the context objects are
different for connected session objects. Once a session is in the connected state, the responder
address and responder title can not be overridden by the context object.

Systems Management: Management Protocols API (XMP) 25

Session Description

To terminate this type of session, the user should either abort or release the session, which
implicitly unbinds the session. If the user unbinds the connected session prior to either
releasing or aborting the session, the service provider will first attempt to release the
association and if that is rejected, will abort the association.

26 X/Open CAE Specification (1994)

Description Context

3.4 Context
The context defines the characteristics of the management interaction that are specific to a
particular management operation/notification, but are often used unchanged for many
operations/notifications. Since these parameters are presumed to be relatively static for a given
user during a particular management interaction, these arguments are collected into an OM
object, of OM class Context, which is supplied as the second argument of each management
service request. This serves to reduce the number of arguments passed to each function.

The context includes various administrative details, such as the mode defined in the Abstract
Service, which affect the processing of each management operation. These include a number of
Service-Controls and Local-Controls, which allow control over some aspects of the service. The
Service-Controls include access-Control, mode, priority, responder-Address, and responder-
Title. The Local-Controls include asynchronous, reply-Limit, and time-Limit. Each of these is
mapped onto an OM attribute in the context, and they are detailed in Chapter 5.

The effect is as if they were passed as a group of additional arguments on every function call.
The value of each component of the context is determined when the interface function is called,
and remains fixed throughout the operation.

The precedence rules on address and title of the responder are described in Section 3.2 on page
20.

In the case of SNMP Get and Set operations, if the parameter access-Control is supplied within
the argument of the requested operation, this SNMP value takes precedence over the access-
Control attribute of the context.

Some of the OM attributes in the Context have default values, some of which are locally
administered. The constant Default-Context ((OM_object)0) (MP_DEFAULT_CONTEXT) can
be passed as the value of the Context argument to the interface functions, and has the same
effect as a context OM object created with default values. The context must be a private object,
unless it is Default-Context.

Detailed specifications of the OM class Context are given in Chapter 5.

Systems Management: Management Protocols API (XMP) 27

Function Arguments Description

3.5 Function Arguments
The Abstract Service defines specific arguments for each operation. These are mapped onto
corresponding arguments to each interface function (which are also called input parameters).
Although each service has different arguments, some specific arguments recur in several
operations; these are briefly introduced here. As far as the CMIS package is concerned, OM
classes are defined with a one-to-one mapping to the ASN.1 Abstract Syntax of CMIP. Full
details of these and all the other arguments are given in the function definitions in Chapter 4 and
the OM class definitions in Chapter 5.

All arguments that are OM objects can generally be supplied to the interface functions as public
objects (ie. descriptor lists) or as private objects. Private objects must be created in the
workspace that was returned by Initialize (). In some cases, constants can be supplied instead of
OM objects.

Note that wherever a function is stated as accepting an instance of a particular OM class as the
value of an argument, it will also accept an instance of any subclass of that OM class. For
example, the Get-Req function has a parameter argument, which accepts values of OM class
Get-Argument. Any of the subclasses of Get-Argument may be supplied as the value of
argument.

Rules for interpretation of "any" syntax appearing in function arguments are defined in Section
3.5.3 on page 29.

3.5.1 Attribute and Attribute-Value-Assertion (AVA)

Each attribute of a managed object is represented in the interface by an OM object of OM class
Attribute. The type of the attribute is represented by an OM attribute, attribute-Id, within the
OM object; the values of the attribute are expressed as the values of the OM attribute attribute-
Value.

An Attribute-Value-Assertion (AVA) - used for the purposes of naming - is represented in the
interface by an OM object of OM class AVA. The type of the naming attribute is represented by
an OM attribute, naming-Attribute-Id, within the OM object; the values of the naming attribute
are expressed as the values of the OM attribute naming-Attribute-Value.

The representation of the attribute value depends on the attribute type and is determined as set
out below. This lists the way in which an application program must supply values to the
interface (for example, in the modification-List of the argument Set-Argument to the Set-req()
function). The interface follows the same rules when returning attribute values to the
application (for example, in the result of the Get-req() function).

Wherever an "any" appears in the syntax column of an OM attribute definition, this shall be
treated according to the rules expressed in Section 3.5.3 on page 29, except for the AVA class (see
Section 5.3.14 on page 118). Where attribute values have OM syntax String(*) that may be long,
segmented strings and the functions OM-Read() and OM-Write() should be used to access them.

28 X/Open CAE Specification (1994)

Description Function Arguments

3.5.2 ‘‘Action’’ function arguments

This group includes Action-Info, Action-Reply, Event-Info, Event-Reply and Specific-Error-Info.
Each argument of an action is represented in the interface by an OM object of OM class Action-
Info. The type of the action is represented by an OM attribute, action-Type, within the OM
object; the value of the argument information is expressed as the value of the OM attribute
action-Info-Arg. The representation of the action-Info-Arg value depends on the action type
and is determined as set out in Section 3.5.1 on page 28.

Each reply to an action, if specified, is represented in the interface by an OM object of OM class
Action-Reply. The type of the action is represented by an OM attribute, action-Type, within the
OM object; the value of the reply information is expressed as the value of the OM attribute
action-Reply-Info.

The representation of the action-Reply-Info value depends on the action type and is determined
as set out in Section 3.5.1 on page 28.

Each argument of a management notification is represented in the interface as a pair of related
items of information: event identifier, and associated event information value. The type of the
event is represented by an OM attribute, event-Type, within the OM object; the value of the
argument information is expressed as the value of the OM attribute event-Info. The
representation of the event-Info value depends on the event type and is determined as set out in
Section 3.5.1 on page 28.

Each reply to a reported event, if specified, is represented in the interface by an OM object of OM
class Event-Reply. The type of the event is represented by an OM attribute, event-Type, within
the OM object; the value of the reply information is expressed as the value of the OM attribute
event-Reply-Info. The representation of the event-Reply-Info value depends on the event type
and is determined as set out in Section 3.5.1 on page 28.

Each specific error is represented in the interface by an OM object of OM class Specific-Error-
Info. The type of the specific error is represented by an OM attribute, error-Id, within the OM
object; the value of the error is expressed as the value of the OM attribute error-Info. The
representation of the error-Info value depends on the error type and is determined as set out in
Section 3.5.1 on page 28. Specific error types are specified in the management contents packages
(for DMI Contents Package, see referenced DMI).

3.5.3 Encoding / Decoding

XMP specifies two alternatives for encoding and decoding of Management Services Packages
OM-Attribute values of type ANY, or any OM-Attribute values in a Management Contents
package.

1. The encoding/decoding functionality can be provided internally within the XMP API,
without requiring the application to invoke any encoding/decoding functions. This option
allows the application to be free from any knowledge of encoding rules. In this case, the
OM class and attribute type and corresponding representation are defined in a
management service or contents package. The XMP API uses the package definition to
attempt encoding/decoding; if automatic decoding fails, an OM String(Encoding) is used.

2. The application can perform encoding/decoding itself. This option gives the application
responsibility and control over the encoding/decoding of OM attributes. In this case, all
OM attribute values appear as an OM String(Encoding).

The encoding/decoding alternative to be used is negotiated through the Negotiate() function;
refer to Negotiate() on page 84.

Systems Management: Management Protocols API (XMP) 29

Function Arguments Description

The XMP API does not specify the use of OM-Encode or OM-Decode for the OM classes defined
in this specification, or in management service or contents packages used with this specification.

To ensure interoperability, the sender and receiver must follow the same encoding rules when
converting between OM syntax and encoded syntax. If an algorithm is used to generate OM
packages, then the algorithm must ensure that the generated OM syntax is consistent with the
input abstract syntax (that is, the same encoded values must result from applying the encoding
rules to either representation). The encoding rules used with the CMIS and SNMP service
packages defined by this specification are ASN.1 BER. This does not imply that other encoding
rules cannot be used with other packages defined in the future.

In order for the API to encode and decode the OM attribute values according to the ASN.1
standard scheme, ASN.1 tagging information must be stored for each OM object and each OM
attribute. Thus, the package definitions in the workspace need to incorporate the ASN.1 tagging
information for each OM object and each OM attribute definition for all Management Contents
packages.

As a minimum, the following requirements apply:

• All rules specified in ISO/IEC 8825 - Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1) shall be adhered to. Any exceptions or restrictions must be
stated.

• ASN.1 tagging information must be retained for each OM object and each OM attribute in the
Management Content packages.

• The specified encoding/decoding scheme (and any implementation thereof) should be
extensible to accommodate the new encoding rules now under development by ISO/CCITT.

3.5.4 Argument / Response

Most operations and notifications take an argument to specify the argument of the operation and
a response when issuing the response of the operation. These arguments and responses are
specified to accept values of OM classes that are consistent with the abstract service view (CMIS
or SNMP) of the current operation.

The argument for a Get-req() function is represented by an instance of the OM-Class CMIS-Get-
Argument for a CMIS Get operation or an instance of the OM-Class Pdus for an SNMP Get
operation.

The argument for a Set-req() function is represented by an instance of the OM-Class CMIS-Set-
Argument for a CMIS Set operation or an instance of the OM-Class Pdus for an SNMP Set
operation.

The response for a Get-rsp() function is represented by an instance of the OM-Class CMIS-Get-
Result, CMIS-Linked-Reply-Argument, CMIS-Service-Error or CMIS-Service-Reject to
represent the possible responses to a CMIS Get operation. An instance of the OM-Class Pdus is
used to represent the response to an SNMP Get operation.

The response for a Set-rsp() function is represented by an instance of the OM-Class CMIS-Set-
Result, CMIS-Linked-Reply-Argument, CMIS-Service-Error or CMIS-Service-Reject to
represent the possible responses to a CMIS Set operation. An instance of the OM-Class Pdus is
used to represent the response to an SNMP Set operation.

The argument for an Event-Report-req() function is represented by an instance of the OM-Class
CMIS-Event-Report-Argument for a CMIS Event-Report notification or an instance of the OM-
Class Trap-Pdu for an SNMP Trap notification.

30 X/Open CAE Specification (1994)

Description Function Arguments

The response for an Event-Report-rsp() function is represented by an instance of the OM-Class
CMIS-Event-Report-Result, CMIS-Service-Error or CMIS-Service-Reject to represent the
possible responses to a CMIS Event-Report notification. There is no response to an SNMP Trap
notification.

Systems Management: Management Protocols API (XMP) 31

Function Results Description

3.6 Function Results
All functions return a Status (which is the C function result). Most return an Invoke-ID which
identifies the particular invocation. The confirmed operations and notifications each return a
Result. (The Invoke-ID and Result are returned using pointers that are supplied as arguments
of the C function). These three kinds of function results are introduced below.

All OM objects returned by interface functions (results and errors) will be private objects in the
workspace associated with the session private object.

3.6.1 Invoke-ID

All interface functions that invoke a management operation or notification return an Invoke-ID ;
an integer that identifies the particular invocation of an operation. The Invoke-ID is only
relevant for asynchronous confirmed operations/notifications and may be used later to receive
the Status and Result, or to abandon them. The Invoke-ID is also used to respond to a
previously requested confirmed operation/notification. Asynchronous operations are fully
described in Section 3.7 on page 34 and the interface functions that can be used to start them are
indicated by an a in Table 3-1 on page 21.

The numerical value of the invoke-Id returned from a call that successfully invokes an
asynchronous confirmed operation is guaranteed to be unique amongst all outstanding
operations in a given session. The value is such as could be returned from ROSE, the Remote
Operations Service Element defined in CCITT X.219/X.229 and ISO 9072. Invoke IDs used by
XMP are not necessarily those that are actually sent via a protocol such as ROSE. Invoke IDs
may be mapped or altered by the MIS provider.

The value returned for a synchronous operation or an asynchronous non-confirmed operation is
unspecified, as is that for a call that fails to invoke an operation.

3.6.2 Result

Functions invoking confirmed management notifications or operations return a result only if
they succeed. All errors from these functions are reported in the Status described below, as are
errors from all other functions.

The value returned by a function call that invokes an asynchronous operation is unspecified, as
is that for a call that fails to invoke an operation. The result of an asynchronous operation is
returned by a later call to Receive().

The result of a function invoking a confirmed operation can be composed of a single reply, or of
multiple linked replies. In the latter case, the term ‘‘partial result’’ is used to designate one of
these linked replies. Only the confirmed operations Action-req, Delete-req, Get-req and Set-req
may produce multiple results. Multiple replies to a single management operation may only
occur if the invoker specifies multiple-reply in the functional unit attribute of the Session object
and selects multiple managed objects or requests an Action-req operation for a single managed
object in which the action is defined to produce multiple responses.

In asynchronous mode, the partial results can be retrieved one at a time by subsequent calls to
Receive(), which each time returns an instance of OM class CMIS-Linked-Reply-Argument. In
synchronous mode, the function returns an instance of OM class Multiple-Reply, which
contains a list of sub-objects CMIS-Linked-Reply-Argument.

The result (or partial result) of an operation/notification is returned in a private object whose
OM class is appropriate to the particular operation/notification. The format of management
operation/notification results is driven both by the Abstract Service and by the need to provide
asynchronous execution of functions. To simplify processing of asynchronous results, the result

32 X/Open CAE Specification (1994)

Description Function Results

(or partial result) of a single operation/notification is returned in a single OM object
(corresponding to the abstract result defined in the Standards). The components of the result (or
partial result) of an operation are represented by OM attributes in the operation’s result object.
The components of the result of a notification are represented by OM attributes in the
notification’s result object. All information contained in the Abstract Service result is made
available to the application program. The result (partial result) is inspected using the functions
provided in the OSI-Abstract-Data Manipulation API.

Only the confirmed operations and the confirmed notifications produce results, and each type of
operation/notification has a specific OM class of OM object for its result. These OM classes -
CMIS-Action-Result, CMIS-Create-Result, CMIS-Delete-Result, CMIS-Event-Report-Result,
CMIS-Get-Result, CMIS-Set-Result, and Pdus (for SNMP) are defined in Chapter 5.

The actual OM class of the result can always be a subclass of that named, in order to allow
flexibility for extensions. Thus, the function OM-Instance() should always be used when testing
the OM class.

Any values in the result are represented as discussed in Section 3.5.1 on page 28.

3.6.3 Status

Every interface function returns a Status value, which is either the constant success
((MP_status)0) (MP_SUCCESS) or an error. Function call errors are represented as integer
constants and grouped in categories of System, Library and Communications as described in
Chapter 6.

Additional error information is available for System and Communications errors via the Get-
Last-Error function call. Additional error information is available for the bad-argument Library
error via a Validate-Object function call.

A synchronous call with multiple linked replies is considered successful unless the reply limit or
time limit is exceeded. The function returns a Status value equal to success, and the argument
Result is an OM object Multiple-Reply, which contains all the linked replies.

It should be noted that the OM object CMIS-Linked-Reply-Argument may contain an OM
attribute that reflects a CMIS error, for example get-List-Error.

If the reply limit or time limit is exceeded, the synchronous call fails and returns a status of the
appropriate Library error. However, the Result is still considered valid and may contain an
OM-Object Multiple-Reply, which contains all the received linked replies. A result of
MP_ABSENT_OBJECT means no replies were received.

In most cases other results of functions are initialised to Null (MP_ABSENT_OBJECT) if the
status does not have the value success. However, the Result is still considered valid and may
contain an OM-Object of partial replies. A result of MP_ABSENT_OBJECT means no replies
were received.

Systems Management: Management Protocols API (XMP) 33

Synchronous and Asynchronous Operations Description

3.7 Synchronous and Asynchronous Operations
The asynchronous or synchronous mode of a requested operation/notification is specified at the
interface, and determined for each operation/notification by the value of the OM attribute
Asynchronous in the Context passed to the interface function. The default value of this OM
attribute is false, causing all operations to be synchronous. Support for both synchronous and
asynchronous operation is mandatory. There is a limit to the number of pending asynchronous
operations; this limit is given by the constant max-outstanding-operations, and has a minimum
value of 10.

In synchronous mode, all functions wait until the operation is complete before returning. Thus
the thread of control is blocked within the interface after calling a function, and the application
can make use of the result immediately after the function returns.

In synchronous mode, the following table illustrates the OM class of the result-return and the
status returned by function Get_req(), which depends on the OM class of the response parameter
of Get_rspv(). Similar tables can be constructed for each service function (Action(), Create(),
Delete(), Event_Report() and Set().

MANAGER SIDE AGENT SIDE
status result-return OM class response OM class

Success Absent-Object Absent-Object
Success CMIS-Get-Result CMIS-Get-Result
Success CMIS-Service-Error CMIS-Service-Error

<-- CMIS-Linked-Reply-Argument
with get-Result attribute

.

.
<-- CMIS-Linked-Reply-Argument

Success Multiple-Reply with get-List-Error or
processing-Failure attribute

.

.
<-- CMIS-Linked-Reply-Argument

with get-Result attribute
.
.

<-- Absent-Object
Success Multiple-Reply <-- CMIS-Linked-Reply-Argument

with get-Result attribute
.
.

<-- Absent-Object

Table 3-2 Synchronous Mode Operation for Get-req()

This scenario does not take into account possible library, communications or system errors.

In asynchronous mode some functions return before the operation is complete. The application
is then able to continue with other processing whilst the operation is being executed by the MIS
provider, and can then access the result by calling Receive(). An application may initiate several
concurrent asynchronous operations on the same session before receiving any of the results,
subject to the limit described below. The results are not guaranteed to be returned in any
particular order. The functions that can execute asynchronously are indicated in Section 3.2 on
page 20. They correspond to the abstract services of the Standards which can be requested in a

34 X/Open CAE Specification (1994)

Description Synchronous and Asynchronous Operations

confirmed mode. Moreover only confirmed operations/notifications return service results.

In asynchronous mode, the following table illustrates the OM class of the operation-
notification-status-return and the result-or-argument-return returned by function Receive()
which depends on the OM class of the response parameter of Get_rsp(). Similar tables can be
constructed for each service function (Action(), Create(), Delete(), Event-Report() and Set()).

MANAGER SIDE AGENT SIDE
operation-notification result or argument response OM class
status-return OM class return OM class

Success Absent-Object Absent-Object
Success CMIS-Get-Result CMIS-Get-Result
Success CMIS-Service-Error CMIS-Service-Error
Success CMIS-Linked-Reply-Argument CMIS-Linked-Reply-Argument

with Get-Result attribute with Get-Result attribute
CMIS-Linked-Reply-Argument CMIS-Linked-Reply-Argument

Success with get-List-Error attribute with get-List-Error attribute
or processing-Failure attribute or processing-Failure-attribute

Table 3-3 Asynchronous Mode Operation for Receive()

This scenario does not take into account possible library, communication or system errors.

An asynchronous function call of a confirmed service returns an Invoke-ID of the operation to
the application. The same Invoke-ID will be returned by Receive() on the corresponding result.

An Invoke-ID is also returned by Receive() on an indication of an invoked management
operation. The same Invoke-ID will be used to respond to this operation.

An Invoke-ID is also returned by Receive() on an indication of a reported management
notification. The same Invoke-ID will be used to confirm this notification.

Implementations of the interface are free to return from asynchronous function calls as soon as
possible or may wait until the operation has been submitted to the underlying MIS provider.
The actual policy used is implementation-defined.

Implementations will define a limit to the number of asynchronous operations that may be
outstanding at any one time on any one session. An asynchronous operation is outstanding
from the time that the function is called until the last reply of the result is returned by Receive(),
or the operation is abandoned by Abandon(), or the session is closed by Unbind(). The limit is
given by the constant:

max-outstanding-operations(MP_MAX_OUTSTANDING_OPERATIONS)

and is at least 10 for conformant XMP implementations. While this number of operations is
outstanding, attempts to invoke further asynchronous operations will report a Library-Error
(too-many-operations).

Most asynchronous operation calls can be aborted by executing an Abandon() or Unbind() call.
In this case, the operation is no longer outstanding and the result will never be returned by
further Receive() function calls.

An asynchronous Get-req() operation can also be aborted by a Cancel-Get-req() call. This last
function runs only in asynchronous mode. The Get operation is no longer outstanding after the
service confirmation of the Cancel-get operation has been received by Receive().

If an error is detected before an asynchronous request is submitted to the MIS provider, the
function will return immediately and there will be no outstanding operation generated. Other

Systems Management: Management Protocols API (XMP) 35

Synchronous and Asynchronous Operations Description

errors are notified later by Receive(), when the result of the outstanding asynchronous confirmed
operation is returned. All errors occurring during a synchronous request are reported when the
function returns. Full details of error handling are given in Chapter 6.

Where vendors provide suitable system primitives (such as System V poll (), or BSD (Berkeley
Source Distribution) select()), applications can obtain a file descriptor from the Session by
inspecting the value of the OM attribute File-Descriptor . Applications may use the file descriptor
to suspend the process until data is received on the particular file descriptor.

Applications should ensure that there are no outstanding asynchronous operations on a session
when Unbind() is called on that session. Once Unbind() has been called there is no way to
determine whether any outstanding operations succeed or even whether they were ever sent to
the MIS provider. Also no errors or results of any kind will be reported to the application. It is
strongly recommended that Receive() is called repeatedly until Completion-Flag takes the value
nothing.

36 X/Open CAE Specification (1994)

Description Security

3.8 Security
It is not the purpose of this interface specification to constrain the security policy of any
implementation or local administration. Such policies may differ widely according to the
requirements of different user groups.

The Standards (reference SMO) do not define security features to protect the provision of the
Management Information Services. Defining a security interface in this specification could have
the effect of constraining local security policy. Consequently, this specification does not impose
a security interface.

Security can be provided in several ways. One way is to provide the security below the interface
by some private means. Alternatively, implementations may provide security by means of
extensions to the interface, or by clarifying the syntax of the OM class Access-Control. For
example, some implementation may add extra OM attributes to OM classes such as Context and
Session.

The OM attribute access-Control of the OM class Context may be used to specify the SNMP
community name used as input of the authentication service.

The OM class Access-Control is an abstract class. Two OM subclasses Community-Name and
External-AC (External Access Control), are defined to be used according to the desired security
scheme. Community-Name is used exclusively within an SNMP environment, and External-AC
is used exclusively within a CMIS environment.

The OM class Authentication-Information is used to specify information to be used by peer
entity authentication functions which provide security services for all exchanges on a session.

A third way is to provide a separate security interface. Some security mechanism, such as
authentication (for example, Kerberos), might be provided in a fully transparent manner.

Systems Management: Management Protocols API (XMP) 37

Other Features Description

3.9 Other Features
These features are not part of the interface itself, but are mandatory when specified by the MIS
provider.

The Management Services are not restricted to those defined in the CMIS.

All the features listed below are for the most part necessary for ease of use in a systems
management environment. These features are classified and given registered identifiers (Object
Identifier). They can be negotiated via the Negotiate() function in a same manner as the
packages. Other types of information that are critical in servicing an environment that includes
implementations from multiple vendors on various machines can also be classified and handled
via the Negotiate() function. Features defined by this specification are described and assigned
Object Identifiers in Chapter 4.

3.9.1 Automatic Connection Management

When the Management Information Services provider makes use of connection-oriented
communications service, such as CMISE, MIS provider implementations are assumed to provide
automatic management of the association, or connection, between the manager and the agent,
making and releasing connections at its discretion. Such management is intended to bring
benefits such as reduced communication charges. In order to allow this flexibility to the
implementation, the interface does not specify when communication takes place. In particular,
it does not require that the A-associate operation, specified in the Standards (ACSE), be
performed when the Bind() interface function is called. Automatic Connection Management
(ACM) may be enabled or disabled on a per-workspace basis using the Negotiate() function

3.9.2 Automatic Performer Resolution

The performer of an invoked operation or a reported notification may be explicitly designated by
the responder name and responder address parameters of the bound session used.

However, in the case where the responder is specified as a wildcard, the MIS provider may be
assumed to provide:

• automatic managed object - agent resolution: to find out the agent that is in charge of the
selected managed objects specified in the management operation

• automatic event forwarding - recipient manager resolution: to find out the manager(s) to
which the notification has to be addressed.

3.9.3 Responder Versatility

Responder versatility is the ability to change the performer within a same bound-session at each
function call. It is useful when the automatic performer resolution is either not supported by the
MIS provider or not requested. This applies if the underlying MIS provider is connection-less.

38 X/Open CAE Specification (1994)

Description Other Features

3.9.4 Automatic Name - Address Resolution

MIS provider implementation may provide automatic resolution between program name and
address in order to find out the network address of an agent or a manager from its name using
the directory services.

3.9.5 Automatic Dispatching to Appropriate Stack

The MIS provider implementation may provide a loop back facility if the destination of the
operation or notification is local. It also may provide routing of the management
operation/notification to the proper underlying communication stack according to the implied
selected managed objects and the destination. (for example, SNMP over IPS stack or CMIP over
OSI stack).

Systems Management: Management Protocols API (XMP) 39

Function Sequencing Description

3.10 Function Sequencing
A minimum set of sequencing rules applies when using the interface to exchange management
information between management programs acting either as manager or as agent. These rules
need to be respected by management programs to ensure that interface functions are called in
the proper sequence and that the state of the interface is not violated, otherwise a Library-error
status will be returned.

Note: The following is to be considered as tutorial information. The definitive information is
contained in the Standards (see Referenced Documents).

As illustrated in Figure 3-1 on page 41, the general rules to follow are:

1. Initialise a workspace (mp_initialize ())

2. Negotiate features of the interface (mp_negotiate ())

3. Open one or several sessions (mp_bind())

4. Perform management interactions (operations/notifications) using the offered interface
functions. An interaction is identified by its Invoke-Id

5. Close the opened sessions (mp_unbind())

6. Discard the workspace (mp_shutdown()).

Nine states are defined in the interface to cover both interface service operations and
management interactions:

State Description
UNINIT Workspace uninitialised
INIT Workspace initialised
UNBND Session closed
BND Session opened
IDLE No interaction initiated
OUTOP Outstanding operation requested in a management interaction
OPIND Operation indication received in a management interaction
OUTNOT Outstanding notification requested in a management interaction
NOTIND Notification indication received in a management interaction

Table 3-4 Interface State Definitions

The Figure 3-1 on page 41 also shows the allowable sequence of interface functions involved
within a management interaction in an opened session (BND). Note that the state specified in
the circles represents an individual state per interaction and not the global state of the session.
For example, when an asynchronous operation has been requested, the state of the interaction
passes from IDLE to OUTOP and another asynchronous operation may be requested (that is,
this new interaction starts from the IDLE state) before submitting the mp_receive(conf) call to get
the result of the previous operation.

The State Table following Figure 3-1 on page 41 gives some complementary details regarding the
possible state changes of the interface upon successful completion of a function.

Figure 3-2 on page 43 and Figure 3-3 on page 44 show the allowable sequence of functions
involved in the connection establishment and connection release phases when automatic
connection management is not being used.

40 X/Open CAE Specification (1994)

Description Function Sequencing

...

Asynchronous mode (confirmed)*

return(sync/no conf)

return(sync/no conf)

return(no conf)

return(no conf)

linked reply

linked reply

IDLE

(OUTNOT)(NOTIND)

(OPIND)(OUTOP)

(BND)

(UNBND)

(INIT)(UNINIT)

return()
mp_received(conf)

No confirmation expected
or synchronous call return

Confirmation received
Indication receivedmp_receive(ind)

Closed Session

Opened Session

Agent role
Manager role

Outstanding

Indication
Operation
Received

mp_receive(conf)*

mp_event_report_rsp()

mp_event_report_req()

mp_set_req()

mp_delete_req()
mp_create_req()
mp_action_req()

mp_get_next_req()
mp_get_req()

mp_cancel_get_req() mp_abandon()

mp_unbind()mp_bind()

mp_negotiate()
mp_error_message()

mp_negotiate()
mp_error_message()
mp_wait()

mp_receive(ind)

Outstanding
Operation

Received

Indication Notification
Notification

mp_receive(ind)

mp_initialize()

mp_shutdown()

Workspace
Uninitialised

Workspace
Initialised

mp_action_rsp()
mp_create_rsp()
mp_delete_rsp()
mp_get_rsp()
mp_set_rsp()
mp_cancel_get_rsp()

mp_receive(conf)*
mp_abandon()

OM Functions

om_copy()
om_copy_value()
om_create()
om_delete()
om_get()
om_instance()
om_put()
om_read()
om_remove()
om_write()

Figure 3-1 Interface Function Sequencing

Systems Management: Management Protocols API (XMP) 41

Function Sequencing Description

Current state BND
Function

Substate
UNINIT INIT UNBND

IDLE OUTOP OPIND OUTNOT NOTIND

mp_abandon() IDLE IDLE

mp_action_req(s/a*) IDLE

mp_action_req(a) OUTOP

mp_action_rsp() IDLE

mp_action_rsp(lr) OPIND

mp_bind() BND

mp_cancel_get_req(a) OUTOP[1]

mp_cancel_get_rsp() IDLE

mp_create_req(s) IDLE

mp_create_req(a) OUTOP

mp_create_rsp() IDLE

mp_delete_req(s) IDLE

mp_delete_req(a) OUTOP

mp_delete_rsp() IDLE

mp_delete_rsp(lr) OPIND

mp_error_message() / / / / / /
mp_event_report_req(s/a*) IDLE

mp_event_report_req(a) OUTNOT

mp_event_report_rsp() IDLE

mp_get_assoc_info() / / / / /
mp_get_last_error() / / / / / / /
mp_get_next_req(s) IDLE[2]

mp_get_next_req(a) OUTOP[2]

mp_get_req(s) IDLE

mp_get_req(a) OUTOP

mp_get_rsp() IDLE

mp_get_rsp(lr) OPIND

mp_initialize() INIT

mp_negotiate() / / / / / /
mp_receive(ind=OP) OPIND

mp_receive(ind=NOT) NOTIND

mp_receive(conf)[3] IDLE IDLE

mp_receive(conf/lr)[3] OUTOP OUTNOT

return() IDLE IDLE IDLE IDLE

mp_set_req(s/a*) IDLE

mp_set_req(a) OUTOP

mp_set_rsp() IDLE

mp_set_rsp(lr) OPIND

mp_shutdown() UNINIT UNINIT UNINIT UNINIT UNINIT UNINIT UNINIT

mp_unbind() UNBND UNBND UNBND UNBND UNBND

mp_validate_object() / / / / / / /
mp_wait() / / / / /

/ applicable but no state change empty box not applicable
s synchronous mode a confirmed asynchronous mode
lr linked reply a* not confirmed asynchronous mode
[1] a Get-req operation must be outstanding conf confirmation
[2] Get-rsp should be issued to respond to Get-Next-req ind=OP operation indication
[3] relevant only when the operation is confirmed ind=NOT notification indication

Table 3-5 State Table

42 X/Open CAE Specification (1994)

Description Function Sequencing

BND
UNCONN

UNBND
PARTCONN

(Initiator)

UNBND
UNCONN

UNBND
PARTCONN
(Responder)

BND
CONNECTED

mp_assoc_req(ASYNC) mp_receive(ASSOC_IND)

mp_receive(ASSOC_CNF)
Accept

mp_assoc_rsp
Accept

mp_unbind mp_bind

mp_receive(ABORT_IND)

mp_abort_req

mp_receive(ASSOC_CNF)
Reject

mp_abort_req or
mp_assoc_rsp

Reject

mp_assoc_req(SYNC)

New session is
created and is

awaiting confirmation

New Session is Created

State Change Only

Figure 3-2 Connection Establishment Phase Function Sequencing

Systems Management: Management Protocols API (XMP) 43

Function Sequencing Description

BND
CONNECTED

BND
PARTCONN

(Initiator)

BND
PARTCONN
(Responder)

UNBND
UNCONN

mp_release_req

mp_receive(RECEIVE_CNF)
Reject

mp_abort_req or
mp_receive(ABORT_IND)

mp_release_rsp
Reject

mp_receive(RELEASE_IND)

mp_abort_req or
mp_receive(RELEASE_CNF)

Accept

mp_abort_req or
mp_release_rsp

Accept

Figure 3-3 Connection Release Phase Function Sequencing

44 X/Open CAE Specification (1994)

Chapter 4

Interface Functions

Systems Management: Management Protocols API (XMP) 45

Abandon() Interface Functions

NAME
Abandon - abandon locally the result of a pending, asynchronously-executing
operation/notification, except Assoc-req() and Release-req().

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_abandon(
OM_private_object session,
OM_sint32 invoke_id

);

DESCRIPTION
This function abandons the result of an outstanding asynchronous function call. The function is
no longer outstanding after this function returns, and the result (or the remaining results in case
of multiple linked replies) will never be returned by Receive().

Abandon() may, but need not, cause the Management Information Service (MIS) Provider to
abandon the outstanding asynchronous operation itself (as opposed to simply discarding the
result). Note that the specified behaviour is a local matter, and no statement is made about
underlying management operations/notifications that may or may not be abandoned.

This function can only be called in synchronous mode.

ARGUMENTS

Session (Object(Session))
The management session in which the confirmed operation/notification was requested.
This must be a private object previously returned from Bind().

Invoke-ID (Integer)
Selects the specific outstanding asynchronous operation submitted via the Session to be
terminated. The outstanding operation may be a non-confirmed service. In that case the
abandon is without effect. The value of Invoke-ID must be that which was returned by the
function call that initiated the asynchronous management operation to be abandoned.

RESULTS

Status (Status)
Indicates whether or not the abandon function succeeded.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
session, bad-procedural-use, miscellaneous, session-terminated.

This function can return a Communications-Error.

Note that the abandon function is successful even if the operation or notification to be
abandoned does not exist (any longer) or is not confirmed. The abandon is then without effect.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

46 X/Open CAE Specification (1994)

Interface Functions Abort-req()

NAME
Abort-req - Abort Management Association.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_abort_req(
OM_private_object session,
OM_private_object context,
OM_object argument

);

DESCRIPTION
This function is used to abort a management session that is either connected or partially
connected. The service is defined as an unconfirmed service. A reply is not expected.

Once an abort is issued, the connected session is implicitly unconnected and unbound. All
outstanding requests that pertain to this session are returned with the error session-terminated.
This includes any wait request on that session.

ARGUMENTS

Session (Object(Session))
The connected (or partially connected) session against which this operation is performed.
This must be a private object previously returned as part of an Assoc-Result or Assoc-
Argument, or returned explicitly from an asynchronously called Assoc-req(). This session
object must have ACM disabled.

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object.

Once a session is connected or partially connected, the precedence rules for common
parameters within the Session and the Context objects are different. Once connected, the
responder address and responder title can not be overridden by the Context object.

Argument (Object(Abort-Argument))
The information supplied as the argument of an Abort operation.

RESULTS
Since this function is not confirmed, there are no results returned.

ERRORS
This function can return a Communications-Error, or one of the following Library-Errors: bad-
argument, bad-class, bad-context, bad-session, miscellaneous, missing-type, session-terminated,
reply-limit-exceeded, time-limit-exceeded.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

Systems Management: Management Protocols API (XMP) 47

Action-req() Interface Functions

NAME
Action-req - request managed objects to perform an action.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_action_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to perform an action.

This function may be called in asynchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT).

The service may be requested in a confirmed mode or a non confirmed mode. In confirmed
mode, a reply is expected.

Argument (Object(CMIP-Action-Argument))
The information supplied as the argument of an action operation is an instance of the OM
class CMIS-Action-Argument.

RESULTS

Status (Status)
If the function is called synchronously, the value success indicated that the action was
completed. If called asynchronously, it indicates that the operation was initiated.

Result (Object(*))
Upon successful completion of a synchronous call, when the operation was requested in a
confirmed mode, the result is one of the following:

• When the action is requested in a non-confirmed mode, no results are expected and the
constant Absent-Object (MP_ABSENT_OBJECT) is returned as the result.

• When a confirmed mode action is performed on no objects, this is indicated by the
constant Absent-Object (MP_ABSENT_OBJECT) as the result.

• When a confirmed mode action is performed on a single object, this is indicated by one
instance of the OM class CMIS-Action-Result or Service-Error.

• When a confirmed mode action is performed on multiple objects or entails multiple
responses, this is indicated by one instance of the OM class Multiple-Reply, which
contains a set of instances of the OM class CMIS-Linked-Reply-Argument (one for each
selected object or for each response to a multiple-action operation request on a single

48 X/Open CAE Specification (1994)

Interface Functions Action-req()

managed object). Each CMIS-Linked-Reply-Argument contains exactly one of the
following OM attributes:

— action-Result

— action-Error

— processing-Failure

Invoke-ID (Integer)
The Invoke-ID of the initiated management operation when invoked asynchronously. It is
significant in the case of a confirmed mode request.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-session, miscellaneous not-supported, session-terminated, reply-
limit-exceeded, time-limit-exceeded.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abandon(), Action-rsp().

Systems Management: Management Protocols API (XMP) 49

Action-rsp() Interface Functions

NAME
Action-rsp - reply to a requested Action operation.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_action_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously invoked confirmed Action operation.

This function can only be called in synchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Response (Object(*))
The information supplied as response to an action operation.

The response is one of the following:

• When an action is performed on no objects, this is indicated by the constant Absent-
Object (MP_ABSENT_OBJECT) as the response.

• When an action is performed on a single object, this is indicated by one instance of the
OM class CMIS-Action-Result as the response.

• When an action is performed on multiple objects or entails multiple responses, this is
indicated by one or more Action-rsp() calls, once for each selected object or response,
followed by a final ‘‘empty’’ Action-rsp(). Each Action-rsp() call includes a response
which contains an instance of the OM class CMIS-Linked-Reply-Argument, containing
exactly one of the following OM attributes:

— action-Result

— action-Error

— processing-Failure

The final ‘‘empty’’ Action-rsp() call includes a response which contains only the constant
Absent-Object (MP_ABSENT_OBJECT).

• An instance of the OM class CMIS-Service-Error including the problem cause and its
associated parameter may be returned: access-denied, class-instance-conflict,
complexity-limitation, invalid-argument-value, invalid-filter, invalid-scope, no-such-
action, no-such-argument, no-such-object-class, no-such-object-instance, processing-
failure, synchronization-not-supported.

50 X/Open CAE Specification (1994)

Interface Functions Action-rsp()

• An instance of the OM class CMIS-Service-Reject including the problem cause and its
associated parameter may be returned: duplicate-invocation, mistyped-argument,
resource-limitation, unrecognized-operation.

For more details about the OM classes and OM attributes mentioned above, refer to the
Interface Class Definitions descriptions in Chapter 5.

Invoke-ID (Integer)
The Invoke-ID of the requested operation to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the action response was completed.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
context, bad-error, bad-linked-reply, bad-result, bad-session, miscellaneous, no-such-operation,
not-supported, session-terminated.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Action-req().

Systems Management: Management Protocols API (XMP) 51

Assoc-req() Interface Functions

NAME
Assoc-req - Build Management Association.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_assoc_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to request the creation of a management association. The service is defined
as a confirmed service. A reply is expected.

This operation may be called in asynchronous mode. Note that when operating in this mode,
results may not only be locally discarded (via Abandon()), as may be done with other
asynchronous calls.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind(). This session must also have ACM (Automatic
Connection Management) disabled.

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object.

Argument (Object(Assoc-Argument))
The information supplied as the argument of a Assoc operation. This is an Assoc-
Argument object with optional ACSE information contained within it. When called
asynchronously, a partially connected Session object is returned in the Result of this
function.

RESULTS

Status (Status)
If the function is called synchronously, the value success indicated that the action was
completed. If called asynchronously, it indicates that the operation was initiated.

Result (Object(*))
Upon successful completion of a synchronous call, the result is one of the following:

• When the Assoc-Request has been accepted/rejected by the remote peer, one instance of
the OM class Assoc-Result Object is returned. This Assoc-Result object either contains
information on why an association was rejected, or contains a connected Session object
if the association was accepted. This new Session object is in a connected state, and
contains the final negotiated ACSE parameters for the new association.

• An association request can result in an abort being issued by the remote peer. When the
association request does result in an abort, the result is an Abort-Argument. The Abort-
Argument contains information pertaining the abort. Upon successful completion of an

52 X/Open CAE Specification (1994)

Interface Functions Assoc-req()

asynchronous call, a partially connected Session object is returned in the Result.

Invoke-ID (Integer)
The returned Invoke-ID of the management operation when used asynchronously.

ERRORS
This function can return one of the following Library-Errors: bad-argument, bad-class, bad-
context, bad-session, miscellaneous, missing-type, session-terminated, reply-limit-exceeded,
time-limit-exceeded.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abort(), Assoc-rsp().

Systems Management: Management Protocols API (XMP) 53

Assoc-rsp() Interface Functions

NAME
Assoc-rsp - reply to a requested Assoc operation.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_assoc_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously invoked Assoc operation.

This function can only be called in synchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Response (Object(*))
The information supplied as response of an Assoc operation.

For an Assoc operation, the response is one of the following:

• When an Association is accepted, one instance of the OM class Assoc-Result is given as
the response. The user provides negotiated ACSE parameters in this object as input to
the service provider, and also indicates that the association is to be accepted by setting
the assoc-Result attribute to accept. A newly connected session object is returned in the
Assoc-Result object, so this is an in/out parameter to this function. The new Session
object is in a connected state, and contains the final negotiated ACSE parameters for the
new association.

• When an Association is to be rejected, one instance of the OM class Assoc-Result is given
as the response. The Assoc-Result should have the assoc-Result attribute set to either
reject-permanent or reject-transient. The assoc-Diagnostic can also optionally be set to
indicate why the reject has occurred.

A user can also abort an association attempt. To do this, the user does not issue an Assoc-
req(), but instead issues an Abort_req() using the partially connected session object that was
contained within the Assoc-Argument obtained via Receive().

Invoke-ID (Integer)
The Invoke-ID of the requested operation to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the Assoc response was completed.

54 X/Open CAE Specification (1994)

Interface Functions Assoc-rsp()

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
context, bad-result, bad-session, miscellaneous, no-such-operation, not-supported, session-
terminated.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Assoc-req().

Systems Management: Management Protocols API (XMP) 55

Bind() Interface Functions

NAME
Bind - open a management session.

SYNOPSIS
#include <xmp.h>
#include <xom.h>

MP_status mp_bind(
OM_object session,
OM_workspace workspace,
OM_private_object *bound_session_return

);

DESCRIPTION
This function opens a management session. It creates a Session OM object describing the session
suitable for supplying to other XMP functions. A session must be opened before any
management interactions can take place.

If the OM attribute requestor-Title is specified, only one unconnected session can be opened
with the same value of the OM attribute. There can be multiple connected or partially connected
session objects with the same requestor-Title.

To allow for the implementation of automatic connection management, it is undefined as to
whether Bind() causes any communication with the remote management entity.

ARGUMENTS

Session (Object(Session))
Specifies a program together with other details of the service required. This argument may
be either a public object or a private object. The constant Default-Session
(MP_DEFAULT_SESSION) may also be used as the value of this argument, causing a new
session to be created with default values for all its OM attributes.

Workspace (Workspace)
Specifies the workspace (obtained from a call to Initialize ()) which is to be associated with
the session. All function results from management operations using this session will be
returned as private objects in this workspace. If the Session argument is a private object, it
must be a private object in this workspace.

RESULTS

Status (Status)
Indicates whether or not the function completed successfully.

Bound-Session (Object(Session))
Upon successful completion, contains an instance of a management session which may be
used as an argument to other functions (e.g. Get()). This will be a new private object if the
value of Session was Default-Session or a public object, otherwise it will be that supplied
as an argument. In the latter case, the session provided should not be already in use. The
function will supply default values for any of the OM attributes which were not present in
the Session instance supplied as an argument. It will also set the value of the File-
Descriptor OM attribute (the value will be No-Valid-File-Descriptor
(MP_NO_VALID_FILE_DESCRIPTOR) if the functionality is not supported).

When ACM is disabled via Negotiate(), any session bound using Bind() is unconnected and
may only be used to receive and send ACSE-related primitives, (i.e. it cannot be used for
CMIP and SNMP primitives).

56 X/Open CAE Specification (1994)

Interface Functions Bind()

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-address,
bad-session, bad-title, miscellaneous, not-supported, too-many-sessions.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Unbind(), Negotiate().

Systems Management: Management Protocols API (XMP) 57

Cancel-Get-req() Interface Functions

NAME
Cancel-Get-req - cancel the result of a pending, asynchronously-executing Get operation in an
orderly manner.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_cancel_get_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function cancels the result of an outstanding asynchronous Get-req() function call in an
orderly manner; the Get-req() function is no longer outstanding after the service confirmation of
the cancel-get operation is received by Receive() and thereafter the further replies of the Get
operation will never be returned by Receive().

This function can only be called in asynchronous mode.

ARGUMENTS

Session (Object(Session))
The management session in which the Get operation was requested. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT).

The service is defined as a confirmed service. A single reply is expected.

Argument (Object(CMIS-Cancel-Get-Argument))
Selects the specific outstanding asynchronous Get operation submitted via Session to be
aborted. It is an instance of the OM class Cancel-Get-Argument. The value of the OM
attribute get-Invoke-ID must be that which was returned by the Get-req() function call that
initiated the asynchronous management Get operation to be cancelled.

RESULTS

Status (Status)
Indicates whether or not the Cancel-get operation was initiated.

Invoke-ID (Integer)
The Invoke-ID of the initiated Cancel-get (asynchronous) operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-context,
bad-session, no-such-operation, not-supported, miscellaneous, session-terminated.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Cancel-Get-rsp().

58 X/Open CAE Specification (1994)

Interface Functions Cancel-Get-rsp()

NAME
Cancel-Get-rsp - reply to a requested Cancel-Get operation.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_cancel_get_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously invoked Cancel-get operation. No further replies to
the cancelled Get operation will be issued. This function can only be called in a synchronous
mode. A last reply to the cancelled outstanding Get operation indicating the completion of the
Get operation has to be issued. That last reply contains the service-error ‘‘cancelled-operation’’.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Response (Object(*))
The constant Absent-Object (MP_ABSENT_OBJECT) indicates the successful completion of
the operation, or it is an instance of one of the following OM classes.

An instance of the OM class CMIS-Service-Errors including the problem cause and its
associated parameter may be returned: no-such-invoke-id, processing-failure.

An instance of the OM class CMIS-Service-Reject including the problem cause and its
associated parameter may be returned: duplicate-invocation, mistyped-operation,
resource-limitation, unrecognized-operation.

Invoke-ID (Integer)
The Invoke-ID of the requested Cancel-get operation to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the Cancel-get response was completed.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
error, bad-context, bad-procedural-use, bad-session, miscellaneous, no-such-operation, session-
terminated.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

Systems Management: Management Protocols API (XMP) 59

Cancel-Get-rsp() Interface Functions

SEE ALSO
Cancel-Get-req().

60 X/Open CAE Specification (1994)

Interface Functions Create-req()

NAME
Create-req - create a new managed object instance.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_create_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to request the creation of a new managed object instance, complete with its
identification and the values of its associated management information, and simultaneously to
register its identification.

This function may be called in asynchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

The service is defined as a confirmed service. A single reply is expected.

Argument (Object(CMIS-Create-Argument))
The information supplied as the argument of a create operation is an instance of the OM
class CMIS-Create-Argument.

RESULTS

Status (Status)
If the function is called synchronously, the value success indicated that the action was
completed. If called asynchronously, it indicates that the operation was initiated.

Result (Object(Create-Result))
Upon successful completion of a synchronous call, the result is one instance of the OM class
CMIS-Create-Result or Service-Error.

It may be absent. In this case, it is the constant Absent-Object (MP_ABSENT_OBJECT). A
CMIS-Create-Result object is required if the invoker of the creation did not supply the
name of the new managed object instance.

Invoke-ID (Integer)
The Invoke-ID of the initiated management operation when invoked asynchronously.

Systems Management: Management Protocols API (XMP) 61

Create-req() Interface Functions

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-session, miscellaneous, not-supported, session-terminated, time-
limit-exceeded.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abandon(), Create-rsp(), Receive().

62 X/Open CAE Specification (1994)

Interface Functions Create-rsp()

NAME
Create-rsp - reply to a requested Create operation.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_create_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously invoked Create operation.

This function can only be called in synchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Response (Object(*))
The information supplied in a (single) reply of a create operation. It is a result or an error. A
result may be absent. This parameter is an instance of a subclass of the OM class Create-
Result, CMIS-Service-Error, CMIS-Service-Reject, or the constant Absent-Object
(MP_ABSENT_OBJECT) which denotes the absence of result.

An instance of OM class CMIS-Create-Result indicates the successful completion of the
operation. The result may be absent but it shall be present if the name of the new managed
object instance was not supplied by the invoker of the creation.

An instance of the OM class CMIS-Service-Error including the problem cause and its
associated parameter may be returned: access-denied, class-instance-conflict, duplicate-
managed-object-instance, invalid-attribute-value, invalid-object-instance, missing-
attribute-value, no-such-attribute, no-such-object-class, no-such-object-instance, no-such-
reference-object, processing-failure.

The following CMIS-Service-Rejects including the problem cause and its associated
parameter may be returned: duplicate-invocation, mistyped-argument, resource-limitation,
unrecognized-operation.

Invoke-ID (Integer)
The Invoke-ID of the requested operation to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the create response was completed.

Systems Management: Management Protocols API (XMP) 63

Create-rsp() Interface Functions

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
context, bad-error, bad-result, bad-session, miscellaneous, no-such-operation, not-supported,
session-terminated.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Create-req().

64 X/Open CAE Specification (1994)

Interface Functions Delete-req()

NAME
Delete-req - delete managed objects.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_delete_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to request the deletion of managed objects.

The service is defined as a confirmed service. A reply is expected.

This operation may be called in asynchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) . The service is defined
as a confirmed service. A reply is expected.

Argument (Object(CMIS-Delete-Argument))
The information supplied as the argument of a delete operation is an instance of the OM
class Delete-Argument.

RESULTS

Status (Status)
If the function is called synchronously, the value success indicated that the action was
completed. If called asynchronously, it indicates that the operation was initiated.

Result (Object(*)
Upon successful completion of a synchronous call, the result is one of the following:

• When a delete is performed on no objects, this is indicated by the constant Absent-
Object (MP_ABSENT_OBJECT) as the result.

• When a delete is performed on a single object, this is indicated by one instance of the
OM class CMIS-Delete-Result or Service-Error.

• When a delete is performed on multiple objects, this is indicated by one instance of the
OM class Multiple-Reply, which contains a set of instances of the OM class CMIS-
Linked-Reply-Argument (one for each selected object). Each CMIS-Linked-Reply-
Argument contains exactly one of the following OM attributes:

— delete-Result

Systems Management: Management Protocols API (XMP) 65

Delete-req() Interface Functions

— delete-Error

— processing-Failure

Invoke-ID (Integer)
The Invoke-ID of the initiated management operation when invoked asynchronously.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-session, miscellaneous, not-supported, session-terminated, reply-
limit-exceeded, time-limit-exceeded.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abandon(), Delete-rsp().

66 X/Open CAE Specification (1994)

Interface Functions Delete-rsp()

NAME
Delete-rsp - reply to a requested Delete operation.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_delete_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously invoked confirmed Delete operation.

The function can only be called in synchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Response (Object(*))
The information supplied as response to a delete operation.

The response is one of the following:

• When a delete is performed on no objects, this is indicated by the constant Absent-
Object (MP_ABSENT_OBJECT) as the response.

• When a delete is performed on a single object, this is indicated by one instance of the
OM class CMIS-Delete-Result as the response.

• When a delete is performed on multiple objects, this is indicated by one or more Delete-
rsp() calls, one for each selected object, followed by a final "empty" Delete-rsp(). Each
Delete-rsp() call includes a response which contains an instance of the OM class CMIS-
Linked-Reply-Argument. Each CMIS-Linked-Reply-Argument contains exactly one of
the following OM attributes:

— delete-Result

— delete-Error

— processing-Failure

The final ‘‘empty’’ Delete-rsp() call includes a response which contains only the constant
Absent-Object (MP_ABSENT_OBJECT).

• The following CMIS-Service-Errors including the problem cause and its associated
parameter may be returned: access-denied, class-instance-conflict, complexity-
limitation, invalid-filter, invalid-scope, no-such-object-class, no-such-object-instance,
processing-failure, synchronization-not-supported.

Systems Management: Management Protocols API (XMP) 67

Delete-rsp() Interface Functions

• The following CMIS-Service-Rejects including the problem cause and its associated
parameter may be returned: duplicate-invocation, mistyped-argument, resource-
limitation, unrecognized-operation.

For more details about the OM classes and OM attributes mentioned above, refer to the
Interface Class Definitions section.

Invoke-ID (Integer)
The Invoke-ID of the requested operation to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the delete response was completed.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
context, bad-error, bad-linked-reply, bad-result, bad-session, miscellaneous, no-such-operation,
not-supported, session-terminated.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Delete-req().

68 X/Open CAE Specification (1994)

Interface Functions Error-Message()

NAME
Error-Message - return an error message describing a particular error.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

OM_sint mp_error_message(
MP_status error,
OM_sint length,
unsigned char *error_text_return

);

DESCRIPTION
This function returns an error message string which describes the error. The caller provides a
buffer-address and buffer-length argument. The error message text is stored in the client’s buffer.

ARGUMENTS

Error (Status)

Length
The length of the buffer. The error text buffer is an unsigned character array. This is
necessary if the intent is to support NLS (the X/Open Native Language System).

RESULTS

Error-text (String)
A message describing the error. The error message text is terminated by a NUL character.

The error message text will be truncated if the length of the error-text buffer is less than the
length of the error message text.

Length_return
Indicates the length of the returned message. If the length parameter is 0 or the
*error_text_return parameter is NULL, then the length_return value indicates the amount
of buffer space required to hold the error message.

ERRORS
This function returns no errors. (A default error message reports faulty arguments or other
problems).

Systems Management: Management Protocols API (XMP) 69

Event-Report-req() Interface Functions

NAME
Event-Report-req - report a notification emitted by a managed object.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_event_report_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to report a management notification.

This operation may be called in asynchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT).

The service may be requested in a confirmed mode or in a non-confirmed mode. In the
former a reply is expected unlike in the latter. An SNMP trap can only be sent in a non-
confirmed mode.

Argument (Object(*))
The information supplied as argument of the notification to be reported.

• For a CMIS event report, it is an instance of the OM class CMIS-Event-Report-
Argument.

• For an SNMP trap, it is an instance of the OM class Trap-Pdu.

RESULTS

Status (Status)
If the function is called synchronously, the value success indicated that the action was
completed. If called asynchronously, it indicates that the operation was initiated.

Result (Object(Event-Report-Result))
Upon successful completion of a synchronous call, when the service was requested in a
confirmed mode, the result is one instance of OM class CMIS-Event-Report-Result or
Service-Error.

It may be absent (it is the constant Absent-Object (MP_ABSENT_OBJECT)).

Invoke-ID (Integer)
The Invoke-ID of the initiated management operation when invoked asynchronously.
Significant if requested in a confirmed mode.

70 X/Open CAE Specification (1994)

Interface Functions Event-Report-req()

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-session, miscellaneous, not-supported, session-terminated, time-
limit-exceeded.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abandon(), Event-Report-rsp(), Receive().

Systems Management: Management Protocols API (XMP) 71

Event-Report-rsp() Interface Functions

NAME
Event-Report-rsp - reply to a reported management notification.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_event_report_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously reported notification to be confirmed.

This function can only be called in synchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this notification is performed. This must be a
private object previously returned from Bind().

Context (Object(Context))
The management context to be used for this notification. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Response (Object(*))
The information supplied in response to an event-report operation. It is a result or an error.
The result may be absent. An instance of the OM class CMIS-Event-Report-Result or the
constant Absent-Object (MP_ABSENT_OBJECT) indicates the successful completion of the
notification. The result is absent if no information is defined for this type of notification.
For more details refer to the Interface Class Definitions section.

The following CMIS-Service-Errors including the problem cause and its associated
parameter indicating the failure of the notification may be returned: invalid-argument-
value, no-such-argument, no-such-event-type, no-such-object-class, no-such-object-
instance, processing-failure.

The following CMIS-Service-Rejects including the problem cause and its associated
parameter indicating the failure of the notification may be returned: duplicate-invocation,
mistyped-argument, resource-limitation, unrecognized-operation.

For more details refer to the Interface Class Definitions described in Chapter 5.

Invoke-ID (Integer)
The Invoke-ID of the reported notification to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the event-report response was completed.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-response,
bad-linked-reply, bad-error, bad-class, bad-context, bad-session, miscellaneous, no-such-
operation, session-terminated.

72 X/Open CAE Specification (1994)

Interface Functions Event-Report-rsp()

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Event-Report-req().

Systems Management: Management Protocols API (XMP) 73

Get-Assoc-Info() Interface Functions

NAME
Get-Assoc-Info - retrieve negotiated connection values.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_get_assoc_info(
OM_private_object receive_result_or_argument,
OM_uint request_mask,
OM_uint result_mask,
OM_public_object *pres_layer_args,
OM_public_object *acse_args,
OM_public_object *cmip_assoc_args,
OM_public_object *standard_externals

);

DESCRIPTION
This function returns the negotiated connection values associated with an incoming Receive-
Result-Or-Argument object previously supplied by Receive(). The caller provides a
request_mask to identify which values are to be returned in result objects.

This function may be used with automated connection management enabled or disabled. In
either case, the values returned are those associated with the underlying connection on which
the incoming receive-result-or-argument arrived. In connectionless environments, the values
returned are those associated with the incoming receive-result-or_argument message (for
example, Responder-Address).

Certain requested values may be not be available for the input object (that is, inappropriate for
the underlying protocol) and may therefore be absent from the result. The values actually
returned are indicated by the function result.

ARGUMENTS

Receive-Result-Or-Argument (Object(*))
This object contains an asynchronous response or indication, as previously returned to the
user from the Receive() function.

Request-Mask (Integer)
The request-mask indicates which connection values should be returned as result objects.
The mask is composed of bit values which must be set on (1) to request that the
corresponding connection value be returned. Connection values which can be obtained by
calling this function are:

• presentation-context-layer

• responder-address

• responder-title

• application-context

• authentication-information

• acse-user-info

• CMIS-functional-units

• access-control

74 X/Open CAE Specification (1994)

Interface Functions Get-Assoc-Info()

• user-info

• SMASE-user-data

RESULTS

Result-Mask (Integer)
A mask indicating which connection values have been returned as part of the result objects
below. This mask has the same structure as the Request-Mask argument. All bits off (0)
indicates no values were available for the input object.

Pres-Layer-Args (Object(Presentation-Layer-Args))
Upon completion of this function, this object contains the negotiated connection values
associated with the Receive-Result-Or-Argument object. This object is returned only when
the Result-Mask bit MP_T_PRESENTATION_CONTEXT_LIST is set on; otherwise,
[MP_ABSENT_OBJECT] is returned for this object.

ACSE-Args (Object(ACSE-Args))
Upon completion of this function, this object contains the negotiated connection values
associated with the Receive-Result-Or-Argument object. This object is returned only when
the Result-Mask bit MP_T_RESPONDER_ADDRESS, MP_T_RESPONDER_TITLE,
MP_T_APPLICATION_CONTEXT, MP_T_AUTHENTICATION_INFORMATION, or
MP_T_ACSE_USER_INFO is set on; otherwise, [MP_ABSENT_OBJECT] is returned for this
object.

CMIP-Assoc-Args (Object(CMIP-Assoc-Args))
Upon completion of this function, this object contains the negotiated connection values
associated with the Receive-Result-Or-Argument object. This object is returned only when
the Result-Mask bit MP_T_CMIS_FUNCTIONAL_UNITS, MP_T_ACCESS_CONTROL, or
MP_T_USER_INFO is set on; otherwise, [MP_ABSENT_OBJECT] is returned for this object.

Standard-Externals (Object(Standard-Externals))
Upon completion of this function, this object contains the negotiated connection values
associated with the Receive-Result-Or-Argument object. This object is returned only when
the Result-Mask bit MP_T_SMASE_USER_DATA is set on; otherwise,
[MP_ABSENT_OBJECT] is returned for this object.

ERRORS
In addition, this function can return the error constants [MP_NO_WORKSPACE] and
[MP_INSUFFICIENT_RESOURCES].

Systems Management: Management Protocols API (XMP) 75

Get-Last-Error() Interface Functions

NAME
Get-Last-Error - retrieve secondary return code of the most recent function call Communications
or System error.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_get_last_error(
OM_workspace workspace,
OM_uint32 *additional_error_return

);

DESCRIPTION
This function is used to return additional error information related to the last function call that
returned a status of:

• [MP_E_COMMUNICATIONS_PROBLEM]

• [MP_E_BROKEN_SESSION]

• [MP_E_INVALID_CONNECTION_ID]

• [MP_E_SYSTEM]

The returned integer value is implementation dependent.

In a multiple thread environment where there are multiple XMP function calls, additional error
information is stored in the workspace of the invoking call on a thread basis. The
mp_get_last_error call must be invoked from the same thread.

For most XMP function calls, the Workspace anchor to store additional information is derived
from the bound_session. For Bind() and Wait(), the workspace parameter on the calls is used.

ARGUMENTS

Workspace (Workspace)
The workspace (obtained from a prior call to Initialize ()) of the function call that had the
status error.

RESULTS

Status (Status)
Indicates whether or not the Get-Last-Error was completed.

Additional-Error (Integer)
The secondary integer related to the last function call that returned a Communications or
System error.

ERRORS
In addition, this function can return the error constants [MP_NO_WORKSPACE], and
[MP_INVALID_SESSION].

76 X/Open CAE Specification (1994)

Interface Functions Get-Next-req()

NAME
Get-Next-req - retrieve the next SNMP management information.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_get_next_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is offered to support the SNMP Get-next operation. It is only usable when the
SNMP Package is activated via the Negotiate() call.

Note: The use of the Get-next function may prevent an application from being portable on
both ISO CMIS and SNMP environments. For these reasons it is strongly recommended
not to use this facility if it can be avoided.

This function is retained for backward compatibility with the Preliminary Specification.
The Get-next functionality has been incorporated into the Get function.

The service is defined as a confirmed service. A reply is expected.

This operation may be called in asynchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Argument (Object(Pdus))
The information supplied as the argument of the Get-next operation. It is an instance of the
OM class Pdus.

RESULTS

Status (Status)
If the Get-Next-req function is called synchronously, the value success indicated that the
action was completed. If called asynchronously, it indicates that the operation was
initiated.

Result (Object(Pdus))
Upon successful completion of a synchronous call, the result is one instance of OM class
Pdus containing a list of variables along with their values which were read or a Service-
Error.

Invoke-ID (Integer)
The returned Invoke-ID of the management operation when used asynchronously.

Systems Management: Management Protocols API (XMP) 77

Get-Next-req() Interface Functions

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-session, miscellaneous, missing-type, not-supported, session-
terminated, time-limit-exceeded, too-many-operations.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abandon(), Get-rsp().

78 X/Open CAE Specification (1994)

Interface Functions Get-req()

NAME
Get-req - retrieve management information.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_get_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to request the retrieval of management attribute values.

The service is defined as a confirmed service. A reply is expected.

This operation may be called in asynchronous mode. Note that when operating in this mode,
results may not only be locally discarded (via Abandon), as may be done with other
asynchronous calls, but the remote operation may also be aborted (via Cancel-Get-req).

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Argument (Object(*))
The information supplied as the argument of a Get operation. is an instance of one of the
following OM classes.

• An instance of the OM class CMIS-Get-Argument.

• An instance of the OM class Pdus, with one of the following OM attributes, get-Request,
or get-Next-Request.

RESULTS

Status (Status)
If the function is called synchronously, the value success indicated that the action was
completed. If called asynchronously, it indicates that the operation was initiated.

Result (Object(*))
Upon successful completion of a synchronous call, then for a CMIS Get operation, the result
is one of the following:

• When a Get is performed on no objects, this is indicated by the constant Absent-Object
(MP_ABSENT_OBJECT) as the result.

• When a Get is performed on a single object, this is indicated by one instance of the OM
class CMIS-Get-Result or Service-Error.

Systems Management: Management Protocols API (XMP) 79

Get-req() Interface Functions

• When a Get is performed on multiple objects, this is indicated by one instance of the OM
class Multiple-Reply, which contains a set of instances of the OM class CMIS-Linked-
Reply-Argument (one for each selected object). Each CMIS-Linked-Reply-Argument,
contains exactly one of the following OM attributes:

— get-Result

— get-List-Error

— processing-Failure

For an SNMP Get operation or Get-Next operation, the response is an instance of the OM
class Pdus. The single OM attribute variable-Bindings contains the list of variables and
their values which were read. The single OM attribute error-Status indicates one of the
following errors: gen-err, no-such-name, too-big.

Invoke-ID (Integer)
The returned Invoke-ID of the management operation when used asynchronously.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-session, miscellaneous, missing-type, session-terminated, reply-
limit-exceeded, time-limit-exceeded.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abandon(), Cancel-Get-req(), Get-rsp().

80 X/Open CAE Specification (1994)

Interface Functions Get-rsp()

NAME
Get-rsp - reply to a requested Get operation or Get-Next operation.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_get_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously invoked Get operation or Get-Next operation.

This function can only be called in synchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned from Bind.

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Response (Object(*))
The information supplied as response of a Get or Get-Next operation.

For a CMIS Get operation, the response is one of the following:

• When a Get is performed on no objects, this is indicated by the constant Absent-Object
(MP_ABSENT_OBJECT) as the response.

• When a Get is performed on a single object, this is indicated by one instance of the OM
class CMIS-Get-Result as the response.

• When a Get is performed on multiple objects, this is indicated by one or more Get-rsp
calls, one for each selected object, followed by a final "empty" Get-rsp. Each Get-rsp call
includes a response which contains an instance of the OM class CMIS-Linked-Reply-
Argument. Each CMIS-Linked-Reply-Argument contains exactly one of the following
OM attributes:

— get-Result

— get-List-Error

— processing-Failure

The final ‘‘empty’’ Get-rsp call includes a response which contains only the constant
Absent-Object (MP_ABSENT_OBJECT).

• An instance of the OM class CMIS-Service-Error or CMIS-Service-Reject indicates the
failure of the operation, except the operation cancelled error indication which completes
(cancels) the operation.

Systems Management: Management Protocols API (XMP) 81

Get-rsp() Interface Functions

The following CMIS-Service-Errors including the problem cause and its associated
parameter may be returned: access-denied, class-instance-conflict, complexity-
limitation, get-list-error, invalid-filter, invalid-scope, no-such-object-class, no-such-
object-instance, operation-cancelled, processing-failure, synchronization-not-supported.

The following CMIS-Service-Rejects including the problem cause and its associated
parameter may be returned: duplicate-invocation, mistyped-argument, resource-
limitation, unrecognized-operation.

For an SNMP Get operation or Get-Next operation, the response is an instance of the OM
class Pdus. The single OM attribute variable-Bindings contains the list of variables and
their values which were read. The single OM attribute error-Status indicates one of the
following errors: gen-err, no-such-name, too-big.

Invoke-ID (Integer)
The Invoke-ID of the requested operation to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the Get response was completed.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
context, bad-error, bad-linked-reply, bad-result, bad-session, miscellaneous, no-such-operation,
not-supported, session-terminated.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION] and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Get-req(), Get-Next-req().

82 X/Open CAE Specification (1994)

Interface Functions Initialize()

NAME
Initialize - initialise the interface.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

OM_workspace mp_initialize(
void

);

DESCRIPTION
This function performs any necessary initialisation of the interface and allocates a workspace. It
must be called before any other management interface functions are called. It may be called
multiple times, in which case each call returns a workspace which is distinct from other
workspaces created by Initialize () but not yet deleted by Shutdown().

ARGUMENTS
None.

RESULTS

Workspace (Workspace).
Upon successful completion, contains a handle to a workspace in which OM objects can be
created and manipulated. Objects created in this workspace, and only such objects, may be
used as arguments to the other management interface functions. This function returns
NULL if it fails.

ERRORS
None.

SEE ALSO
Shutdown().

Systems Management: Management Protocols API (XMP) 83

Negotiate() Interface Functions

NAME
Negotiate - negotiate features of the interface and service.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_negotiate(
MP_feature feature_list[]
OM_workspace workspace,

);

DESCRIPTION
This function negotiates features of the interface; each feature is represented as an Object
Identifier. Several features are defined and registered within this specification - refer to the
Feature-List below. Features may also include management contents packages, vendor
extensions, and new features defined in future versions of this specification. Features can be
negotiated after a workspace has been initialised, and can be renegotiated any time until the
workspace is discarded. Note that all sessions on a given workspace share the same features.

ARGUMENTS

Feature-List (Feature-List)
An ordered sequence of features, each represented by an object identifier and a request
value. The request value can contain one of the following values: Activate, Deactivate,
Query State, and Query Supported.

The sequence is terminated by an object identifier having no components (a length of zero
and any value of the data pointer in the C representation). The response value is returned
upon completion of the Negotiate invocation.

In the C binding, the Feature-List argument is a single array of structures of type
MP_feature, which is defined as

#define MP_ACTIVATE 0
#define MP_DEACTIVATE 1
#define MP_QUERY_STATE 2
#define MP_QUERY_SUPPORTED 3

typedef struct
{

OM_object_identifier feature;
OM_sint request;
OM_boolean response;

}
MP_feature;

The following Features are defined and registered by this specification:

• Management Service Packages
The CMIS Management Service package and the SNMP Management Service package
are specified in Chapter 5. Additional Management Service packages may be specified
in the future.

• Automatic Connection Management
This feature provides for automatic establishment and release of the underlying protocol
connection(s) (if any); refer to Section 3.9.1 on page 38. The Object-Identifier associated

84 X/Open CAE Specification (1994)

Interface Functions Negotiate()

with this feature is {iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) xmp(1)
common(1) automatic-connection-management(1)}.

This Object-Identifier is represented by the constant
(MP_AUTOMATIC_CONNECTION_MANAGEMENT).

Automatic Connection Management is enabled by default.

• Automatic ASN.1 BER Encoding/Decoding
This feature provides for automatic encoding and decoding of OM class and attribute
types using ASN.1 BER; refer to Section 3.5.3 on page 29. Object-Identifier associated
with this feature is {iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) xmp(1)
common(1) automatic-decoding(2)}.

This Object-Identifier is represented by the constant (MP_AUTOMATIC_DECODING).

Automatic ASN.1 BER Encoding/Decoding is enabled by default.

Management Contents packages are also negotiated as part of the Feature-List.
Management Contents packages may be defined by X/Open, by other standards
organisations or consortia, by vendors, or by users. The X/Open GDMO to XOM
Translation Algorithm (reference XGDMO) provides guidance on how Management
Contents packages may be generated.

Registered Object Identifiers representing future features and vendor extensions may also
be included in the Feature-List for negotiation.

Workspace (Workspace)
The handle to the workspace.

RESULTS

Status (Status)
Whether or not the function completed successfully.

Response (Boolean-List)
If the function completed successfully, this result contains an ordered list of Boolean values,
with the same number of elements as the Feature-List. The significance of the values is
shown in the following table:

Request Response Meaning
Activate True Activated

False Cannot activate feature,
(or the feature is not supported)

Deactivate True Deactivated
False Cannot deactivate feature,

(or the feature is not supported)

Query-state True Activated
False Deactivated,

(or the feature is not supported)

Query-supported True Supported
False Not supported

Invalid True Cannot be returned
False Invalid argument

Systems Management: Management Protocols API (XMP) 85

Negotiate() Interface Functions

In the C binding, this result is combined with the Feature-List argument as a single array of
structures of type MP_feature, as defined above.

ERRORS
This function can return a System-Error or Library-Error ‘‘miscellaneous’’.

This function does not return a Communications-Error, or any management service errors.

In addition, this function can return the error constants [MP_NO_WORKSPACE] and
[MP_INSUFFICIENT_RESOURCES].

86 X/Open CAE Specification (1994)

Interface Functions Receive()

NAME
Receive - get the argument of a operation/notification or retrieve the (partial) result of an
asynchronously executed operation/notification.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_receive(
OM_private_object session,
OM_sint *mode_return;
OM_sint *primitive_return,
OM_sint *completion_flag_return,
MP_status *operation_notification_status_return,
OM_private_object *result_or_argument_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to retrieve the argument of an invoked operation or a reported notification
and to retrieve a partial result (linked reply) or the completed result of a previous asynchronous
operation/notification.

The function results include two status indications. One, called Status, indicates that this
function call itself was successful; it is always returned. The other, called Operation-
Notification-Status, is used to return the status of the completed asynchronous
operation/notification, and is only returned if there is one.

ARGUMENTS

Session (Object(Session))
The management session against which this management operation/notification is
performed. This must be a private object previously returned from Bind(), or a
connected/partially connected session object returned from Assoc_req(), Assoc_rsp() or
Receive().

RESULTS

Status (Status)
Takes an error value if one of the library errors or System errors listed below occurred
during execution of this function. Takes the value success (MP_SUCCESS) if this function
returned successfully.

Primitive (Integer)
The management service primitives (MP_GET_IND, MP_GET_NEXT_IND, MP_GET_CNF,
MP_SET_IND, MP_SET_CNF, MP_ACTION_IND, MP_ACTION_CNF, MP_CREATE_IND, MP_CREATE_CNF,
MP_DELETE_IND, MP_DELETE_CNF, MP_EVENT_REPORT_IND, MP_EVENT_REPORT_CNF,
MP_CANCEL_GET_IND, MP_CANCEL_GET_CNF).

The ACSE service primitives (MP_ASSOC_IND, MP_ASSOC_CNF, MP_RELEASE_IND,
MP_RELEASE_CNF, MP_ABORT_IND).

Determines the operation/notification of this result or argument.

This result is only valid if Completion-Flag has the value completed, incoming or partial.

Mode (Integer)
This indicates the mode of an indication. When confirmed (MP_T_CONFIRMED) invoked

Systems Management: Management Protocols API (XMP) 87

Receive() Interface Functions

operation or the reported management notification has to be confirmed, a reply is expected.
When non-confirmed (MP_T_NON_CONFIRMED), the requested service is not to be
confirmed.

This result is only valid if Completion-Flag has the value incoming.

Completion-Flag (Integer)
This flag indicates the status of the received data, if any.

• completed (MP_COMPLETED)
This flag indicates that a final response has been received. For management primitives
this may be the confirmation for a non-scoped request or the last confirmation of a
linked reply. In the latter case, the Result-or-Argument parameter will be the Absent-
Object.

• incoming (MP_INCOMING)
An indication has been received.

• nothing (MP_NOTHING)
There are no indications or confirmations to receive. Further, there are no outstanding
asynchronous requests.

• outstanding (MP_OUTSTANDING)
There are no indications or confirmations to receive. There are still outstanding
requests, but no confirmations have yet arrived.

• partial (MP_PARTIAL)
A confirmation has been received which is part of a linked reply. This is used for all but
the last in a series of linked replies. (See completed, above).

This result is only valid if Status has the value success. In that case, the validity of the other
results is given in the following table:

Completion-Flag Primitive Mode Operation Result or Invoke-ID
value /Notification Argument

Status
Completed yes (1) no yes yes (1) yes
Incoming yes yes no yes yes
Nothing no no no no no

Outstanding no no no no no
Partial(3) yes (1) no yes yes (1) yes

(1) This result is only valid if Operation-Notification-Status has the value success.

Operation-Notification-Status (Status)
Takes an error value if a communications error occurred during the execution of the
asynchronous operation/notification, and success (MP_SUCCESS) otherwise. The possible
error values are listed for each individual operation in the corresponding function
description.

This result is only valid if Completion-Flag has the value completed or partial.

Result-or-Argument (Object(*))
This object contains the results of an asynchronous request, or information about an
indication. The class of object received is dependent on the values of the Primitive and
Completion-Flag parameters. The following table defines the OM-classes of the Result-or-
Argument parameter which can be returned for the three applicable Completion-Flag
values. The actual class returned is dependent on the value of Primitive.

88 X/Open CAE Specification (1994)

Interface Functions Receive()

Completion-Flag set to completed:

CMIS-Action-Result MP_ACTION_CNF
CMIS-Create-Result MP_CREATE_CNF
CMIS-Delete-Result MP_DELETE_CNF
CMIS-Event-Report-Result MP_EVENT_REPORT_CNF
CMIS-Get-Result or Pdus (get-Response) MP_GET_CNF
CMIS-Set-Result or Pdus (get-Response) MP_SET_CNF
CMIS-Service-Error All Confirmations
or CMIS-Service-Reject
or Pdus

Assoc-Result MP_ASSOC_CNF
Release-Result MP_RELEASE_CNF
Absent-Object All Confirmations: see note below

Note that Absent-Object may be returned in three cases:

1. The confirmation contains no data (i.e. Cancel-get())

2. A scoped request was issued, but no objects were selected

3. As the terminator of a linked-reply list. In this case, the Invoke-ID parameter can be
used to determine which linked reply has been terminated.

Completion-Flag set to incoming:

CMIS-Action-Argument MP_ACTION_IND
CMIS-Cancel-Get-Argument MP_CANCEL_GET_IND
CMIS-Create-Argument MP_CREATE_IND
CMIS-Delete-Argument MP_DELETE_IND
CMIS-Event-Report-Argument or Pdus (trap) MP_EVENT_REPORT_IND
CMIS-Get-Argument or Pdus (get-Request) MP_GET_IND
or Pdus (get-Next-Request) or MP_GET_NEXT_IND

CMIS-Set-Argument or Pdus (set-Request) MP_SET_IND
Assoc-Argument MP_ASSOC_IND
Release-Argument MP_RELEASE_IND
Abort-Argument MP_ABORT_IND

Completion-Flag set to partial:

CMIS-Linked-Reply Argument

For Completion-Flag values of completed or partial, the Result-or-Argument parameter is
valid only if the Operation-Notification-Status contains the value success. The parameter
is not valid for Completion-Flag values of nothing or outstanding.

Invoke-ID (Integer)
The Invoke-ID of the operation/notification whose error, result or argument is being
returned.

This result is only valid if the Status has the value success and Completion-Flag has the
value completed, partial or incoming.

Systems Management: Management Protocols API (XMP) 89

Receive() Interface Functions

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
context, bad-session, miscellaneous, session-terminated, time-limit-exceeded.

This function does not report any Communications-Errors, in its Status result. (Any such errors
related to the completed asynchronous operation/notification are reported in Operation-
Notification-Status, as described above).

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

90 X/Open CAE Specification (1994)

Interface Functions Release-req()

NAME
Release-req - Release Management Association.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_release_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to request the release of a management association. The service is defined
as a confirmed service. A reply is expected.

This operation may be called in asynchronous mode. Note that when operating in this mode,
results may not only be locally discarded (via Abandon()), as may be done with other
asynchronous calls.

ARGUMENTS

Session (Object(Session))
The connected session against which this operation is performed. This must be a private
object previously returned as part of an Assoc-Result or Assoc-Argument. This session
object must have ACM disabled, and it must be in a connected state.

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object.

Once a session is connected or partially connected, the precedence rules for common
parameters within the Session and the Context objects are different. Once connected, the
responder address and title can not be overridden by the Context object.

Argument (Object(Release-Argument))
The information supplied as the argument of a Release operation.

RESULTS

Status (Status)
If the function is called synchronously, the value success indicated that the action was
completed. If called asynchronously, it indicates that the operation was initiated.

Result (Object(*))
Upon successful completion of a synchronous call, then for a Release operation, the result is
one of the following:

• When the Release Request is accepted by the remote peer, this is indicated by one instance
of the OM class Release-Result. The reason would be set to normal.

• When the Release Request is rejected by the remote peer, this is indicated by one instance
of the OM class Release-Result. The reason attribute would be set to either not-finished
or user-Defined. If a release is rejected, the session is left connected to the remote peer.

Systems Management: Management Protocols API (XMP) 91

Release-req() Interface Functions

Invoke-ID (Integer)
The returned Invoke-ID of the ACSE operation when used asynchronously.

ERRORS
This function can return a Communications-Error, or one of the following Library-Errors: bad-
argument, bad-class, bad-context, bad-session, miscellaneous, missing-type, session-terminated,
reply-limit-exceeded, time-limit-exceeded.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abort(), Release-rsp().

92 X/Open CAE Specification (1994)

Interface Functions Release-rsp()

NAME
Release-rsp - reply to a requested Release operation.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_release_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously invoked Release operation.

This function can only be called in synchronous mode. This request will cause all outstanding
requests that pertain to this session to be returned with the error session-terminated. This
includes any wait request on that session.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned as part of an Assoc-Argument or Assoc-Result. This session
object must have ACM disabled, and it must be in a connected state.

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT).

Once a session is connected or partially connected, the precedence rules for common
parameters within the Session and the Context objects are different. Once connected, the
responder address and title can not be overridden by the Context object.

Response (Object(*))
The information supplied as response of a Release operation.

For a Release operation, the response is one of the following:

• When a Release is accepted, this is indicated by one instance of the OM class Release-
Result as the response. The reason should be set to normal.

Once a release has been accepted, the Session object is implicitly unconnected and
unbound. The user can not use this Session object again with any more XMP calls.

• When a Release is rejected, this is indicated by one instance of the OM class Release-
Result.The reason should be set to either not-finished or user-Defined.

Once a release has been rejected, the session is still connected to the remote peer.

Invoke-ID (Integer)
The Invoke-ID of the requested operation to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the Release response was completed.

Systems Management: Management Protocols API (XMP) 93

Release-rsp() Interface Functions

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
context, bad-result, bad-session, miscellaneous, no-such-operation, not-supported, session-
terminated.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Release_req().

94 X/Open CAE Specification (1994)

Interface Functions Set-req()

NAME
Set-req - change attribute values of managed objects.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_set_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object *result_return,
OM_sint32 *invoke_id_return

);

DESCRIPTION
This function is used to request the modification of management attribute values.

This operation may be called in asynchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned by Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) . The CMIS service
may be requested in a confirmed mode or a non confirmed mode. In the former, a reply is
expected, unlike in the latter. The SNMP service can only be requested in a confirmed
mode.

Argument (Object(*))
The information supplied as the argument of a Set operation. It is an instance of one of the
following OM classes:

• An instance of the OM class CMIS-Set-Argument for a CMIS set operation.

• An instance of the OM class Pdus with the OM attribute set-Request for an SNMP set
operation.

RESULTS

Status (Status)
If the function is called synchronously, the value success indicated that the action was
completed. If called asynchronously, it indicates that the operation was initiated.

Result (Object(*))
Upon successful completion of a synchronous call, when the operation was requested in a
confirmed mode, then for a CMIS Set operation, the result is one of the following:

• When the Set is requested in a non-confirmed mode, no results are expected and the
constant Absent-Object (MP_ABSENT_OBJECT) is returned as the result.

• When a confirmed mode Set is performed on no objects, this is indicated by the constant
Absent-Object (MP_ABSENT_OBJECT) as the result.

• When a confirmed mode Set is performed on a single object, this is indicated by one
instance of the OM class CMIS-Set-Result or Service-Error.

Systems Management: Management Protocols API (XMP) 95

Set-req() Interface Functions

• When a confirmed mode Set is performed on multiple objects, this is indicated by one
instance of the OM class Multiple-Reply, which contains a set of instances of the OM
class CMIS-Linked-Reply-Argument (one for each selected object). Each CMIS-
Linked-Reply-Argument contains exactly one of the following OM attributes:

— set-Result

— set-List-Error

— processing-Failure

For an SNMP Set operation, the response is an instance of the OM class Pdus: The single
OM attribute variable-Bindings contains the requested list of variables along with the
corresponding values which were modified. The single OM attribute error-Status indicates
one of the following errors: bad-value, gen-err, no-such-name, read-only, too-big.

Invoke-ID (Integer)
The Invoke-ID of the initiated management operation when invoked asynchronously.
Significant if requested in a confirmed mode.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-session, miscellaneous, not-supported, session-terminated, reply-
limit-exceeded, time-limit-exceeded, too-many-operations.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Abandon(), Set-rsp().

96 X/Open CAE Specification (1994)

Interface Functions Set-rsp()

NAME
Set-rsp - reply to requested Set operation.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_set_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

DESCRIPTION
This function is used to reply to a previously invoked confirmed Set operation.

This function can only be called in synchronous mode.

ARGUMENTS

Session (Object(Session))
The management session against which this operation is performed. This must be a private
object previously returned by Bind().

Context (Object(Context))
The management context to be used for this operation. This argument must be a private
object or the constant Default-Context (MP_DEFAULT_CONTEXT) .

Response (Object(*))
The information supplied as response of the requested Set confirmed operation.

For a CMIS Set operation, the response is one of the following:

• When a Set is performed on no objects, this is indicated by the constant Absent-Object
(MP_ABSENT_OBJECT) as the response.

• When a Set is performed on a single object, this is indicated by one instance of the OM
class CMIS-Set-Result as the response.

• When a Set is performed on multiple objects, this is indicated by one or more Set-rsp
calls, one for each selected object, followed by a final "empty" Set-rsp. Each Set-rsp call
includes a response which contains an instance of the OM class CMIS-Linked-Reply-
Argument. Each CMIS-Linked-Reply-Argument contains exactly one of the following
OM attributes:

— set-Result

— set-List-Error

— processing-Failure

The final ‘‘empty’’ Set-rsp call includes a response which contains only the constant
Absent-Object (MP_ABSENT_OBJECT).

• An instance of OM class CMIS-Service-Error or CMIS-Service-Reject indicates the
failure of the operation.

The following CMIS-Service-Errors including the problem cause and its associated
parameter may be returned: access-denied, class-instance-conflict, complexity-
limitation, invalid-filter, invalid-scope, no-such-object-class, no-such-object-instance,

Systems Management: Management Protocols API (XMP) 97

Set-rsp() Interface Functions

processing-failure, set-list-error, synchronization-not-supported.

The following CMIS-Service-Rejects including the problem cause and its associated
parameter may be returned: duplicate-invocation, mistyped-argument, resource-
limitation, unrecognized-operation.

For an SNMP Set operation, the response is an instance of the OM class Pdus: The single
OM attribute variable-Bindings contains the requested list of variables along with the
corresponding values which were modified. The single OM attribute error-Status indicates
one of the following errors: bad-value, gen-err, no-such-name, read-only, too-big.

Invoke-ID (Integer)
The Invoke-ID of the requested operation to which the reply applies.

RESULTS

Status (Status)
Indicates whether or not the Set response was completed.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
context, bad-error, bad-linked-reply, bad-result, bad-session, miscellaneous, no-such-operation,
not-supported, session-terminated.

This function can return a Communications-Error.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Set-req().

98 X/Open CAE Specification (1994)

Interface Functions Shutdown()

NAME
Shutdown - delete a workspace and the associated resources.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_shutdown(
OM_workspace workspace

);

DESCRIPTION
This function deletes a workspace established by Initialize () and all the associated resources. It
may enable the service to release resources.

All the remaining opened sessions are closed, all the remaining OM objects are deleted, and the
workspace is deleted.

No other function may reference the specified workspace after it has been deleted.

ARGUMENTS

Workspace (Workspace)
Specifies the workspace (obtained from a call to Initialize ()) which is to be deleted.

RESULTS

Status (Status)
Indicates whether or not the shutdown function succeeded.

ERRORS
In addition, this function can return the error constants [MP_NO_WORKSPACE] and
[MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Initialize ().

Systems Management: Management Protocols API (XMP) 99

Unbind() Interface Functions

NAME
Unbind - unbind from a management session.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_unbind(
OM_private_object session

);

DESCRIPTION
This function terminates the given management session, and makes the argument unavailable
for use with other interface functions (except Bind()).

Note that this means the results of any outstanding asynchronous operations which were
initiated using the given Session can no longer be received. Any such operations may be
terminated prematurely. For this reason it is recommended that all outstanding asynchronous
operations are processed using Receive() before Unbind() is called.

The unbound session may be used again as an argument to Bind() possibly after modification by
the XOM functions (reference XOM). When it is no longer required, it must be deleted using the
XOM functions.

The Library-Error ‘‘session-terminated’’ will be returned as error value to a synchronous
function call using the terminated session.

ARGUMENTS

Session (Object(Session))
The management session which is to be unbound. This must be a private object previously
returned by Bind(). The value of the File-Descriptor OM attribute will be No-Valid-File-
Descriptor (MP_NO_VALID_FILE_DESCRIPTOR) if the function succeeds. The other OM
attributes will be unchanged.

RESULTS

Status (Status)
Takes the value success if Session was unbound, and takes an error value if not.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-class, bad-
session, miscellaneous, session-terminated.

This function does not return a Communications-Error or any management service errors.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Bind().

100 X/Open CAE Specification (1994)

Interface Functions Validate-Object()

NAME
Validate-Object - analyse OM-Object and return Bad-Argument details if necessary.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_validate_object(
OM_workspace workspace,
OM_object test_object,
OM_private_object *bad_argument_return

);

DESCRIPTION
This function is used to analyze any OM-Object to validate its structure. It may be used as a
debug tool prior to issuing other XMP function calls. It may also be used after XMP function
calls that return [MP_E_BAD_ARGUMENT].

ARGUMENTS

Test-Object (Object(*))
The OM-Object to analyse and validate.

Workspace (Workspace)
Specifies the workspace (obtained from a call to Initialize ()), in which a Bad-Argument OM
object will be created if the return status is [MP_E_BAD_ARGUMENT]. Test-Object does
not need to be from this workspace.

RESULTS

Status (Status)
Indicates whether or not the validation was successful. A value of
[MP_E_BAD_ARGUMENT] indicates a validation failure and problem details are in the
bad_argument_return parameter.

Bad-Argument (Object(Bad-Argument)) If Status is [MP_E_BAD_ARGUMENT], the result is one
instance of the OM Class Bad-Argument.

ERRORS
In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INSUFFICIENT_RESOURCES], [MP_E_SYSTEM] or [MP_E_BAD_ARGUMENT].

Systems Management: Management Protocols API (XMP) 101

Wait() Interface Functions

NAME
Wait - wait for the availability of management message(s) from one or more bound Sessions.

SYNOPSIS
#include <xom.h>
#include <xmp.h>

MP_status mp_wait(
MP_waiting_sessions bound_session_list[]
OM_workspace workspace,
OM_uint32 timeout,

);

DESCRIPTION
This function is used to suspend the caller until a management operation/notification is
available for a bound Session. A timeout value specifies the maximum number of milliseconds
to suspend before returning when no messages are available. It should be noted that, in a multi-
threaded environment, Wait() may report the presence of a message which will have been
processed by another thread by the time the first thread calls Receive() to process it.

ARGUMENTS

Bound_session_list (Bound-Session-List)
An ordered sequence of management sessions to wait upon. The last value must evaluate to
NULL.

Workspace (Workspace)
Specifies the workspace (obtained from a call to Initialize ()), in which an MP_status object
will be created if the return status is other than [MP_SUCCESS]. Session(s) specified in the
bound_session_list do not need to be from this workspace.

Timeout (OM_uint32)
The maximum number of milliseconds to suspend before returning when there are no
messages from the list of Session(s). A value of zero specifies an indefinite timeout.

RESULTS

Status (Status)
Indicates whether or not the function completed successfully. A successful completion
means that either a message is available from a Session or that the timeout limit has been
reached. The Receive() function must be called to determine whether a message is available.
(See note in Description above).

Activated (Boolean-List)
If the function was completed successfully, this result contains an ordered sequence of
Boolean values, with the same number of elements as the bound_session_list. If true, each
value indicates that the corresponding Session has data waiting in queue. If false, each value
indicates that the corresponding Session does NOT have data waiting in queue.

102 X/Open CAE Specification (1994)

Interface Functions Wait()

In the C binding, this result is combined with the bound_session_list argument as a single
array of structures of type MP_waiting_sessions, which is defined as:

typedef struct
{

OM_private_object bound_session;
OM_boolean activated;

}
MP_waiting_sessions;

ERRORS
This function can return one of the following Library-Errors: bad-address, bad-session, bad-
workspace, miscellaneous, session-terminated.

In addition, this function can return the error constants [MP_NO_WORKSPACE],
[MP_INVALID_SESSION], and [MP_INSUFFICIENT_RESOURCES].

SEE ALSO
Initialize (), Receive(), Bind().

Systems Management: Management Protocols API (XMP) 103

Interface Functions

104 X/Open CAE Specification (1994)

Chapter 5

Interface Class Definitions

Note: Throughout this document, care is taken to distinguish between OM classes and
managed object classes, and between OM attributes and managed object attributes. (In
both cases, the former is a construct of the closely associated OSI-Abstract-Data
Manipulation interface, while the latter is a construct of the Management Information
Services to which the interface provides access.) The terms managed object class and
attribute denote the management information constructs, while the terms OM class and
OM attribute denote the OSI-Abstract-Data Manipulation ones.

5.1 Introduction
This chapter defines, in alphabetical order, the OM classes that constitute the Common
Management Service package (COMMON), the CMIS Management Service package (CMIS), and
the SNMP Management Service package (SNMP). The common errors are defined in the
Common Management Service package, while the service-specific errors are defined in the CMIS
Management Service package and SNMP Management Service package, respectively.

The Object-Identifier associated with the Common Management Service package is:

{iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) xmp-cae(6) common(1)}.

This Object-Identifier is represented by the constant Common-Package (MP_COMMON_PKG).

The Object-Identifier associated with the CMIS Management Service package is:

{iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) xmp-cae(6) cmis(2)}.

This Object-Identifier is represented by the constant CMIS-Package (MP_CMIS_PKG).

The Object-Identifier associated with the SNMP Management Service package is:

{iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) xmp-cae(6) snmp(3)}.

This Object-Identifier is represented by the constant SNMP-Package (MP_SNMP_PKG).

The XMP API may also make use of Management Contents Packages . These optional packages
define OM classes which are additional to those in the Management Service packages, to extend
the capabilities of the interface.

X/Open is publishing a separate specification which describes how Contents Packages may be
generated (see reference XGDMO). It is expected that the number of Management Contents
packages will increase in close liaison with the Standards (reference CMISD, CMISP, MF, MIM,
SMO), and also as managed object definitions are developed for the various system resources
that require to be managed.

The concepts of OSI-Abstract-Data Manipulation are briefly described in Section 1.4 on page 7,
and the notation is introduced below. Both are fully explained in the XOM Specification (see
reference XOM).

Each OM class is described in a separate section, which identifies the OM attributes specific to
that OM class. The OM classes are listed in alphabetic order; the OM attributes for each OM
class are listed in the order in which they occur in corresponding ASN.1 definitions. The OM
attributes that may be found in an instance of an OM class are those OM attributes specific to
that OM class and those inherited from each of its superclasses. The OM class-specific OM

Systems Management: Management Protocols API (XMP) 105

Introduction Interface Class Definitions

attributes are defined in a table. The table gives the name of each OM attribute, the syntax of
each of its values, any restrictions upon the length (in bits, octets (bytes), or characters) of each
value, any restrictions upon the number of values, and the value, if any, the OM-Create()
function supplies.

5.1.1 Vendor Extensions

Vendors may provide additional OM attributes in their implementation of particular OM classes,
and their individual documentation will give details of the specification and usage of these. The
issue of how to negotiate the presence of extensions is under review (one suggestion is that it
might be negotiated through use of the Negotiate() function).

All such OM attributes have default values which lead to the behaviour described in this
specification.

106 X/Open CAE Specification (1994)

Interface Class Definitions Global Class Hierarchy

5.2 Global Class Hierarchy
This section depicts the hierarchical organisation of the OM classes defined in this chapter, and
thus shows which OM classes inherit additional OM attributes from their superclasses.
Subclassification is indicated by indentation, and the names of abstract OM classes are rendered
in italics. Thus, for example, the concrete class Presentation-Address is an immediate subclass
of the abstract class Address which in turn is an immediate subclass of the abstract class Object.
The Create() function applies to all concrete OM classes.

The application is not permitted to create or modify instances of some OM classes, because these
OM classes are only returned by the interface and never supplied to it (for example, some
subclasses of Error).

5.2.1 Interface Common Objects

Object (defined in the XOM Specification - see reference XOM)
— Abort-Argument
— Access-Control

— Community-Name
— External-AC

— Acse-Args
— Address

— Presentation-Address
— Network-Address

— Assoc-Argument
— Assoc-Diagnostic
— Assoc-Information
— Assoc-Result
— Authentication-information
— Authentication-Other
— AVA
— Cmip-Assoc-Args
— Context
— Extension
— Functional-Unit-Package
— Name (definition imported from Directory Services - see reference XDS)

— DS-DN
— SNMP-Object-Name
— Name-String

— Presentation-Context
— Presentation-Layer-Args
— Relative-Name (definition imported from Directory Services - see reference XDS)

— DS-RDN
— Release-Argument
— Release-Result
— Session
— SMASE-User-Data
— Standard-Externals
— Title

— AE-Title
— Entity-Name
— Form1
— Form2

Systems Management: Management Protocols API (XMP) 107

Global Class Hierarchy Interface Class Definitions

5.2.2 Interface Common Error Definitions

Object (defined in the XOM Specification - see reference XOM)
— Bad-Argument
— Error

— CMIS-Service-Error (defined in CMIS package)
— CMIS-Service-Reject (defined in CMIS package)

5.2.3 CMIS package Objects

The abstract OM classes (in italics) are defined in the COMMON package.

Object (defined in the XOM Specification - see reference XOM)
— Action-Error
— Action-Error-Info
— Action-Info
— Action-Reply
— Action-Type-Id
— Attribute
— Attribute-Error
— Attribute-Id
— Attribute-Id-Error
— Attribute-Id-List
— Base-Managed-Object-Id
— CMIS-Action-Argument
— CMIS-Action-Result
— CMIS-Cancel-Get-Argument
— CMIS-Create-Argument
— CMIS-Create-Result
— CMIS-Delete-Argument
— CMIS-Delete-Result
— CMIS-Event-Report-Argument
— CMIS-Event-Report-Result
— CMIS-Filter
— CMIS-Get-Argument
— CMIS-Get-List-Error
— CMIS-Get-Result
— CMIS-Linked-Reply-Argument
— CMIS-Service-Error
— CMIS-Service-Reject
— CMIS-Set-Argument
— CMIS-Set-List-Error
— CMIS-Set-Result
— Complexity-Limitation
— Create-Object-Instance
— Delete-Error
— Error-Info
— Event-Info
— Event-Reply
— Event-Type-Id
— Filter-Item
— Get-Info-Status
— Invalid-Argument-Value

108 X/Open CAE Specification (1994)

Interface Class Definitions Global Class Hierarchy

— Missing-Attribute-Value
— Modification
— Modification-List
— Multiple-Reply
— No-Such-Action
— No-Such-Action-Id
— No-Such-Argument
— No-Such-Event-Id
— No-Such-Event-Type
— Object-Class
— Object-Instance
— Processing-Failure
— Scope
— Set-Info-Status
— Setof-Attribute
— Setof-CMIS-Filter
— Setof-Get-Info-Status
— Setof-Set-Info-Status
— Specific-Error-Info
— Substring
— Substrings

5.2.4 SNMP package Objects

The abstract OM classes (in italics) are defined in the COMMON package.

Object (defined in the XOM Specification - see reference XOM)
— Application-Syntax
— Object-Syntax
— Pdu
— Pdus
— Simple-Syntax
— Trap-Pdu
— Var-Bind
— Variable-Bindings

Systems Management: Management Protocols API (XMP) 109

Common Management Service Package Interface Class Definitions

5.3 Common Management Service Package

5.3.1 Introduction

This section defines, in alphabetical order, the OM classes that constitute the Common
Management Service package (COMMON), together with the OM classes for the common
errors. The abstract OM class for service error is herein defined but its concrete OM subclasses
for the service specific errors are respectively defined in the CMIS Management Service package
and SNMP Management Service package.

The Object-Identifier associated with the Common Management Service package is {iso(1)
member-national-body(2) bsi(826) disc(0) xopen(1050) xmp-cae(6) common(1)}. This Object-Identifier
is represented by the constant Common-Package (MP_COMMON_PKG).

The constants which represent the OM classes and OM attributes in the C binding are defined in
the <xmp.h> header.

5.3.2 Common Management Service Class Hierarchy

The hierarchical organisation of the OM classes of the mandatory Common Package is shown in
Section 5.2.1 on page 107. The object definitions related to common errors returned at the
interface are listed in Section 5.2.2 on page 108; these are defined in Chapter 6.

The interface offers transparency to the used underlying protocol which may be CMIP, SNMP or
other protocol. It means that a CMIS management view can be provided even if the underlying
protocol is SNMP. In that case, naming and addressing of managed object instances obey RFC
1155 and RFC 1157 of Internet. Therefore, definition of Name, Address and Title subclasses
proper to the ISO world and the Internet world are gathered in the same Common package,
since they can be supplied as function arguments independently of the used abstract
management view.

5.3.3 Abort-Argument

An instance of OM class Abort-Argument is the information supplied as argument of a ACSE
Abort operation to be performed. It is returned from Receive() or from a synchronous
Assoc_req() call if a connected or partially connected session is aborted. The user can also issue
an abort request with this argument on a partially connected session that was received via
Receive() or was returned as a Result from an asynchronous Assoc_req() call.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
ACSE Arguments
abort-Source Integer - 1 -
abort-Diagnostic Enum(Abort-Diagnostic) - 0-1 -
user-Information Object(Association-Information) - 0-1 -

CMIP Arguments
cmip-Abort-Source Enum(Cmip-Abort-Source) - 1 -
cmip-User-Information Object(External) - 0-1 -

Table 5-1 OM Attributes of a Abort-Argument

110 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

ACSE Abort Arguments

Abort-Source
This specifies who aborted the association. Its value is one of:

• acse-service-user

• acse-service-provider

abort-Diagnostic
This specifies the reason for the abort request. Its value is one of:

• no-reason-given

• protocol-error

• authentication-mechanism-name-not-recognized

• authentication-mechanism-name-required

• authentication-failure

• authentication-required

user-Information
Additional user information that can be provided as part of the abort request. The content
of this attribute is exchanged in the ACSE ABRT-apdu.user-information field.

CMIP Abort Arguments

cmip-Abort-Source
This specifies who aborted the association. Its value is one of:

• cmise-service-user

• cmise-service-provider

cmip-User-Information
Additional CMISE user information that can be provided as part of the abort request. The
content of this attribute is exchanged in the CMIPAbortInfo.userInfo EXTERNAL field.

5.3.4 Access-Control

The OM class Access-Control represents access privileges. It is information of unspecified form
to be used as input to access control functions.

It is an abstract class, which has the attributes of its superclasses - Object

Most of the interface CMIS functions take an access control parameter, the value of which must
be an instance of one of the subclasses of this OM class. Thus this OM class serves to collect
together all possible representations of access control.

This specification defines two subclasses of this OM-class, and thus two representations for
access control:

Community-Name
Provides SNMP access control information.

External-AC
Provides an external defined access control.

Systems Management: Management Protocols API (XMP) 111

Common Management Service Package Interface Class Definitions

5.3.5 Acse-Args

An instance of OM class Acse-Args identifies ACSE specific arguments that will be used during
association establishment to a remote peer entity. These can be specified in the Session object if
ACM is enabled, or in the Assoc-Argument/Assoc-Resultobject if ACM is disabled.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
responder-Address Object(Address) - 0-1 -
responder-Title Object(Title) - 0-1 -
authentication-Information Object(Authentication-Information) - 0-1 -
application-Context String(Object-Identi fier) - 0-1 see below
user-Info Object(External) - 0-more -

Table 5-2 OM Attributes of a Acse-Args

The Acse-Args object collects together all the information which is ACSE specific for association
establishment.

responder-Address
Indicates the address of the responding program named by responder-Title.

responder-Title
Indicates the name of the program which will be used to service management service
requests. It may be a distinguished name (instance of OM class Form1) or a registered name
(instance of OM class Form2) which is used in name/network address resolution phase to
get the application process title, the application entity qualifier and the presentation
address. It may also be the Entity-Name of the responding program.

authentication-Information
Identifies the information to be used by peer entity authentication functions which provide
security services for all exchanges of this session.

application-Context
It is the application context name proposed by the user to be used on the management
associations. By default the ‘‘Systems-Management-Application-Context’ ’ is assumed as
specified in ISO/IEC 10040 (reference SMO).

user-Info
The user information proposed by the user to be exchanged during management connection
establishment other than the standard externals. The standard externals, such as SMASE-
User-Info and CMISE-specific-user-info are specified with the Standard-Externals and
Cmip-Assoc_Args objects respectively.

112 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

5.3.6 Address

The OM class Address represents the address of a particular management entity or method. It
contains various subclass types used to define the specific location to contact a particular agent
or manger. For example, the Network-Address subclass is typically used to define the location of
an SNMP agent or manager.

It is an abstract class which has the OM attributes of its superclasses - Object - and no other OM
attributes.

An address is an unambiguous name, label or number which identifies the location of the entity
or method. All addresses are represented as instances of some subclass of this OM class.

This specification defines two subclasses of this OM-class, and thus two representations for
address:

Presentation-Address (CMIS)
which is the presentation address of an OSI application entity, used for OSI
communications with it.

Network-Address (SNMP)

Vendors may define additional subclasses to represent other kinds of address.

5.3.7 AE-Title

An instance of the OM class AE-Title is an ACSE form of a Title. The ACSE protocol provides
for the transfer of an application entity title value by the transfer of its component values
(represented within this specification as OM classes Form1 and Form2). However, the OM class
AE-Title is provided for International Standards that reference a single syntactic structure for
application entity titles (for example, ISO/IEC 10165-2 imports this AE-Title form of Title, rather
than Form1 or Form2).

An instance of this OM class has the OM attributes of its superclass - Title - and additionally the
OM attributes listed in the table below. Exactly one OM attribute is permitted in an instance of
this class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
ae-Title-Form1 Object(DS-DN) - 0-1 -
ae-TitleForm2 String(Object-Identi fier) - 0-1 -

Table 5-3 OM Attributes of a AE-Title

ae-Title-Form1
The Distinguished Name form of an AE-Title used for external reference.

ae-Title-Form2
The Object Identifier form of an AE-Title used for external reference.

Systems Management: Management Protocols API (XMP) 113

Common Management Service Package Interface Class Definitions

5.3.8 Assoc-Argument

An instance of OM class Assoc-Argument is the information supplied as argument of a ACSE
Associate operation to be performed. This object is passed to Assoc_req() or returned from
Receive().

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
presentation-Layer-Args Object(Presentation-Layer-Args) - 0-1 -
acse-Args Object(Acse-Args) - 0-1 -
cmip-Assoc-Args Object(Cmip-Assoc-Args) - 0-1 -
standard-Externals Object(Standard-Externals) - 0-1 -
session Object(Session) - 0-1 -

Table 5-4 OM Attributes of a Assoc-Argument

presentation-Layer-Args
Indicates any presentation layer arguments needed during association establishment. If
none are supplied, the MIS provider will supply defaults if required.

Acse-Args
Indicates ACSE related arguments that will be used during association establishment. If
none are supplied, the MIS provider will supply defaults if required.

cmip-Assoc-Args
Indicates CMIP related arguments that will be used during association establishment. If
none are supplied, the MIS provider will supply defaults if required. The content of this
attribute is carried as an EXTERNAL in the ACSE associate request and response.

standard-Externals
Identifies other external arguments that will be used during association establishment. The
content of this attribute is carried as an EXTERNAL in the ACSE associate request and
response.

session
Used to return a partially connected Session object. This attribute must be empty when
Assoc_req() is called, and is supplied as a Result parameter by the MIS provider upon return
from that call. The partially connected session can either be aborted via Abort_req(), or can
become fully connected via Assoc_rsp(). To abort the partially connected session, one
would issue the abort request using the new partially connected session object. To accept or
refuse the new connection, one would issue the Assoc_rsp() using the session object that
received the associate indication.

5.3.9 Assoc-Diagnostic

An instance of OM class Assoc-Diagnostic is optionally part of an Assoc-Result object if an
association request is rejected.

An instance of this OM class has the OM attributes of its superclasses - Object, - and additionally
the OM attributes listed below. Exactly one OM attribute is permitted in an instance of this
class.

114 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

Value Value Value Value
OM Attribute Syntax Length Number Initially
acse-Service-User Integer - 0-1 -
acse-Service-Provider Integer - 0-1 -

Table 5-5 OM Attributes of an Assoc-Diagnostic

acse-Service-User
Indicates that the ACSE service user is rejecting the association, and the reason is one of:

• null

• no-reason-given

• application-context-name-not-supported

• calling-AP-title-not-recognized

• calling-AP-invocation-identifier-not-recognized

• calling-AE-qualifier-not-recognized

• calling-AE-invocation-identifier-not-recognized

• called-AP-title-not-recognized

• called-AP-invocation-identifier-not-recognized

• called-AE-qualifier-not-recognized

• called-AE-invocation-not-recognized

• authentication-mechanism-name-not-recognized

• authentication-mechanism-name-required

• authentication-failure

• authentication-required

acse-Service-Provider
Indicates that ACSE service provider is rejecting the association and the reason is one of:

• null

• no-reason-given

• no-common-acse-version

5.3.10 Association-Information

An instance of OM class Association-Information is the optional information supplied with
ACSE related calls.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Systems Management: Management Protocols API (XMP) 115

Common Management Service Package Interface Class Definitions

Value Value Value Value
OM Attribute Syntax Length Number Initially
assoc-Extern Object(External) - 0 or more -

Table 5-6 OM Attributes of a Association-Information

assoc-Extern
This specifies an external that contains user specified information relating to association
establishment. The content of this attribute is exchanged in ACSE External fields which are
part of AARQ, AARE, RLRQ, RLRE and ABRT pdus.

5.3.11 Assoc-Result

An instance of OM class Assoc-Result is a result of a successfully performed ACSE Associate
operation. It is also the information supplied as an argument of an ACSE Associate Response.
This object is passed to Assoc_rsp() or returned from Receive().

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
presentation-Layer-Args Object(Presentation-Layer-Args) - 0-1 -
acse-Args Object(Acse-Args) - 0-1 -
cmip-Assoc-Args Object(Cmip-Assoc-Args) - 0-1 -
standard-Externals Object(Standard-Externals) - 0-1 -
assoc-Result Integer - 1 accept
assoc-Diagnostic Object(Assoc-Diagnostic) - 0-1 -
session Object(Session) - 0-1 -

Table 5-7 OM Attributes of a Assoc-Result

presentation-Layer-Args
Indicates any presentation layer arguments needed during association establishment. If
none are supplied, the MIS provider will supply defaults if required.

acse-Args
Indicates ACSE related arguments that will be used during association establishment. If
none are supplied, the MIS provider will supply defaults if required.

cmip-Assoc-Args
Indicates CMIP related arguments that will be used during association establishment. If
none are supplied, the MIS provider will supply defaults if required. The content of this
attribute is carried as an EXTERNAL in the ACSE associate request and response.

standard-Externals
Identifies other external arguments that will be used during association establishment. The
content of this attribute is carried as an EXTERNAL in the ACSE associate request and
response.

assoc-Result
Specifies the acceptance or rejection of an association request. Its value is one of:

• accept

116 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

• reject-permanent

• reject-transient

assoc-Diagnostic
Associate diagnostic may be present if and only if the assoc-Result-Info is set to a rejected
status.

session
Used to return to the user a connected session object. This object may be used for all future
XMP calls pertaining to this new connection.

5.3.12 Authentication-Information

An instance of OM class Authentication-Information represents the authentication information.
It is information to be used as input to the security services.

An instance of this OM Class has the OM attributes of its superclass - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of this class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
charstring String(Graphic) - 0-1 -
bitstring String(Bit) - 0-1 -
external Object(External) - 0-1 -
other Object(Authentication-Other) - 0-1 -

Table 5-8 OM Attributes of an Authentication-Information

charstring
A graphic string to be used as input to security services.

bitstring
A bit string to be used as input to security services.

external
An ASN.1 EXTERNAL to be used as input to security services.

other
Any other data type representation to be used as input to security services.

5.3.13 Authentication-Other

An instance of OM class Authentication-Other represents any non-standard authentication
information.

An instance of this OM Class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
other-Mechanism-Name String(Object-Identi fier) - 1 -
other-Mechanism-Value Any - 1 -

Table 5-9 OM Attributes of an Authentication-Other

Systems Management: Management Protocols API (XMP) 117

Common Management Service Package Interface Class Definitions

other-Mechanism-Name
An object identifier which identifies the name of an authentication mechanism as described
by ISO/IEC 8650:1988/Amd.1:1990, Clause 12.3.

other-Mechanism-Value
Any authentication value appropriate for the mechanism identified by other-Mechanism-
Name.

5.3.14 AVA

An instance of OM class AVA (Attribute Value Assertion) is a proposition concerning the value
of a distinguishing attribute of a managed object instance .

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
naming-Attribute-Id String(Object-Identi fier) - 1 -
naming-Attribute-Value any - 1 -

Table 5-10 OM Attributes of an AVA

naming-Attribute-Id
The attribute type, which indicates the class of information given by this attribute.

Naming-Attribute-Value
The attribute values. The representation of the attribute value depends on the attribute
type. The OM value syntax, noted any which is allowed for this OM attribute, is
determined by the value of the naming-Attribute-Id OM attribute in accordance with the
rules expressed in section 3.5.1 and with the restrictions expressed in ISO/IEC 10165-1.

Its OM syntax must therefore be one of the following: Integer, Boolean, Null, Enum(*),
String(*), (Sequence) OM-Object or an OM_object that resolves to a single attribute of the
previous types (that is, a CHOICE OM-Object). Furthermore, if using
String(Encoding) , the BER must resolve to one of the previous syntaxes (that is no real
type or set/set-of type may be used).

5.3.15 Cmip-Assoc-Args

An instance of OM class Cmip-Assoc-Args identifies the CMIP specific arguments that are used
during association establishment to a remote peer entity. These can be specified in the session
object if ACM is enabled, or in the Assoc-Argument/Assoc-Result object if ACM is disabled.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
access-Control Object(Access-Control) - 0-1 -
CMIS-Functional-Units Integer - 0-1 see below
user-Info Object(External) - 0-1 -

Table 5-11 OM Attributes of a Cmip-Assoc-Args

118 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

access-Control
The access-Control that is included as part of the CMISE-User-Information, which is
exchanged during association establishment.

Only one OM subclass is supported: External-AC (External Access Control) .

CMIS-Functional-Units
It expresses the support of services primitives or parameters by the requestor for the
session. Its value is specified by OR-ing none, one, or more of the following values:

• fu-multiple-object-selection

• fu-filter

• fu-multiple-reply

• fu-cancel-get

• fu-extended-service.

By default, all bits are off, and only the kernel functional unit is assumed by the MIS
provider.

user-Info
The CMISE user information proposed by the user to be exchanged during management
connection establishment. The content of this attribute is exchanged in the
CMIPUserInfo.userInfo external field.

5.3.16 Community-Name

An instance of OM class Community-Name represents access privileges of Internet. It is
information of unspecified form to be used as input to access control functions.

An instance of this OM class has the OM attributes of its superclasses - Object, Access-Control -
and additionally the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
community String(Octet) - 1 -

Table 5-12 OM Attributes of a Community-Name

community
Name of the community to which belongs the management application. This name is used
as input to authentication service for SNMP.

5.3.17 Context

An instance of OM class Context comprises per-operation arguments that are accepted by most
of the interface functions.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Systems Management: Management Protocols API (XMP) 119

Common Management Service Package Interface Class Definitions

Value Value Value Value
OM Attribute Syntax Length Number Initially
Common Arguments
extensions Object(Extension) - 0 or more -

Service Controls
access-Control Object(Access-Control) - 0-1 -
mode Enum(Mode) - 1 confirmed
priority Enum(Priority) - 1 medium
responder-Address Object(Address) - 0-1 -
responder-Title Object(Title) - 0-1 -

Local Controls
asynchronous Boolean - 1 false
reply-Limit Integer - 0-1 -
time-Limit Integer - 0-1 -

Table 5-13 OM Attributes of a Context

The context collects together several outbound arguments passed to interface functions, which
are presumed to be relatively static for a given management user during a particular
management interaction. The context is used for only outbound arguments. The context is
passed as an argument to each function which interrogates or updates the Management
Information Base. Although the presumption is that infrequent changes to the context will be
made, the value of each argument can be changed between every operation if required. Each
argument is represented by one of the OM attributes of the Context OM class.

The context contains the Common Arguments defined in the Standards (reference CMISD),
except that all security information is omitted for reasons discussed in section 3.8. These are
made up of a number of service controls, explained below; possible extensions in the extensions
OM attribute; It also contains a number of arguments which provide local control over the
interface.

The OM attributes of the context OM class are:

Common Arguments

extensions
Any future standardised extensions that should be applied to the management
operation/notification.

Service Controls

access-Control
access-Control used as input to security services. Two OM subclasses Community-Name
and External-AC (External Access Control) are defined to be used according to the desired
security scheme. Community-Name is used exclusively within an SNMP environment, and
External-AC is used exclusively within a CMIS environment. The External-AC for CMISE
defines the access control that is part of CMISE requests, such as get, set. It is not defined
for the CMIP associate access control that is part of the ACSE association establishment
phase. To specify associate access control, see the Cmip-Assoc-Args object.

mode
Indicates that the management CMIS service is requested in a confirmed or non-confirmed
mode. Only meaningful for Set-req(), Event-Report-req() and Action-req() functions. Its
value is one of:

120 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

• confirmed

• non-confirmed.

priority
The priority, relative to other management service requests, at which the Management
Information Service Provider is to attempt to satisfy the request. This is not a guaranteed
service. This OM attribute is without effect if not supported by the MIS Provider. Its value
must be one of:

• low

• medium

• high.

responder-Address
Indicates the address of the responding program named by responder-Title. This value
identifies the intended recipient of a request or response.

responder-Title
Indicates the name of the program which will be used to service management service
requests. It may be a distinguished name (instance of OM class Form1) or a registered name
(instance of OM class Form2) which is used in name/network address resolution phase to
get the application process title, the application entity qualifier and the presentation
address. It may also be the Entity-Name of the responder (OM class Entity-Name).

Local Controls

asynchronous
Indicates that the interface should operate asynchronously or not as detailed in Section 3.7
on page 34. Only significant for those functions that can be called asynchronously as well as
synchronously.

The value is one of:

false
The operation is to be performed sequentially (synchronously), with the application
being blocked until a result or error is returned.

true
The operation is to be performed asynchronously (non-blocking). The application can
perform multiple concurrent asynchronous operations and can associate a result
obtained from Receive() with the original operation. The number of outstanding
concurrent operations is implementation-defined, by the value of the constant
(MP_MAX_OUTSTANDING_OPERATIONS), which is implementation-defined.

reply-Limit
Only meaningful for functions that are used synchronously and that may have linked
replies.

If present and greater than zero, the maximum number of linked replies about which Get-
req(), Set-req(), Action-req() or Delete-req() should return information (the last empty reply is
not counted in this number). If this limit is exceeded, the service is abandoned for the
possible remaining linked replies and a Library-Error (reply-limit-exceeded) is returned.
The function call results parameter contains the OM Object Multiple-Reply which contains
exactly this number of received partial results. Which objects are chosen is unspecified
(since it may depend on the timing of interactions between programs, among other
reasons).

Systems Management: Management Protocols API (XMP) 121

Common Management Service Package Interface Class Definitions

If present and less than or equal to zero, the attribute is ignored.

time-Limit
If present and greater than zero, the maximum elapsed time, in seconds, within which the
service should be provided (not the processing time devoted to the request). If this limit is
reached, the service is abandoned for the possible remaining linked replies and an error is
returned. A Library-Error (time-limit-exceeded) is returned. The function call results
parameter contains the OM Object Multiple-Reply which contains exactly the number of
received partial results. A result value ABSENT_OBJECT means no partial results were
received prior to the time limit.

Partial results may be returned only by Get-req(), Set-req(), Action-req(), or Delete-req().

If present and less than or equal to zero, the attribute is ignored.

Applications can assume that an object of OM class Context, created with default values of all its
OM attributes, will work with all the interface functions. Local administrators should ensure
that this is the case. The constant (MP_DEFAULT_CONTEXT) can be used as an argument to
interface functions instead of creating an OM object with default values.

5.3.18 DS-DN

An instance of OM class DS-DN represents a name of a directory object and/or a managed
object. It is a distinguished name which is used as input to the Directory, and/or in the naming
tree of the managed objects.

An instance of this OM class has the OM attributes of its superclasses - Object, Name - and
additionally the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
RDNs Object(DS-RDN) - 0 or more -

Table 5-14 OM Attributes of a DS-DN

RDNs
The sequence of RDNs that define for a directory object the path through the directory
information tree from its root to the object that the DS-DN denotes. The DS-DN of the root
is the null name (no RDNs values). The order of the values is significant: the first value is
closest to the root, the last value is the RDN of the object.

Concerning a managed object, the sequence of RDNs is composed of an initial part and a
final part. The initial part of the sequence, termed junction, defines the path through the
directory information tree from its root to the junction. The final part defines the path
through the management information tree from its root to the managed object. For further
information, see reference XDS.

122 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

5.3.19 DS-RDN

An instance of OM class DS-RDN is a relative distinguished name (RDN). An RDN uniquely
identifies an immediate subordinate of an object whose entry appears in the directory
information tree. An RDN also uniquely identifies an immediate subordinate of a managed
object in the management containment tree.

An instance of this OM class has the OM attributes of its superclasses - Object, Relative-Name -
and additionally the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
AVAs Object(AVA) - 1 or more -

Table 5-15 OM Attributes of a DS-RDN

AVAs
An AVA is the couple of information, attribute type and attribute value. The AVA attributes
types used for RDN may be directory attribute types selected for naming entries in the
directory or management attribute types selected for naming managed objects. This OM
attribute represents the AVAs that are defined as components of the directory object’s RDN
or the AVA that is defined in a name binding as single component of the managed object’s
RDN. The assertions shall be true of the object but of none of its siblings, and the attribute
types and values they contain shall appear in the object’s directory entry or managed object.
In the former, the order of the AVAs is not significant. In the latter, when using OSI systems
management attribute types, this OM attribute is restricted to a single AVA.

5.3.20 Entity-Name

An instance of OM class Entity-Name represents the node location of an manager/agent
process.

An instance of this OM class has the OM attributes of its superclasses - Object, Title - and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
entity String(Printable) - 1 -

Table 5-16 OM Attributes of an Entity-Name

entity
a management application name or a system name.

5.3.21 Extension

An instance of OM class Extension denotes a standardised extension to the management service
set out in the Standards. Such considered extensions will only be those incorporated after
Version 2 of the Standards (ISO IS CMIS/CMIP) or amendments of those Standards.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Systems Management: Management Protocols API (XMP) 123

Common Management Service Package Interface Class Definitions

Value Value Value Value
OM Attribute Syntax Length Number Initially
identifier string(Object-Identi fier) - 1 -
significance Boolean - 0-1 -
information any - 0-1 -

Table 5-17 OM Attributes of an Extension

Identifier
Identifies the service extension. The values of this OM attribute will be assigned only by
future versions of the Standards.

Significance
Its value is one of:

false
The originator will accept performance of the operation even if the extension is not
available.

true
The originator must have the extended operation performed, or else have an error
reported if it cannot be performed.

Information
This OM attribute supplies the parameters of the extension. Its syntax is determined by the
particular Identifier.

5.3.22 External-AC

An instance of OM class External-AC represents an external defined access control. It is
information of unspecified form to be used as input to access control functions.

An instance of this OM class has the OM attributes of its superclasses - Object, Access-Control -
and additionally the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
external-AC Object(External) - 1 -

Table 5-18 OM Attributes of a External-AC

external-AC
The access control attribute. This attribute is used as input to security services for CMIS.

5.3.23 Form1

An instance of OM class Form1 is the directory name form of an AE-Title. In that form the AE-
Title is formed by concatenating the AE-Qualifier relative distinguished name to the
distinguished name of the corresponding AP-Title. It is a distinguished name which is used as
input to the Directory.

An instance of this OM class has the OM attributes of its superclasses - Object, Title , AE-Title -
and additionally the OM attributes listed in the table below.

124 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

Value Value Value Value
OM Attribute Syntax Length Number Initially
AP-title-form1 Object(DS-DN) - 1 -
AE-qualifier-form1 Object(DS-RDN) - 0-1 -
AP-invocation Integer - 0-1 -
AE-invocation Integer - 0-1 -

Table 5-19 OM Attributes of a Form1

AP-title-form1
An application process title: it is a distinguished name.

AE-qualifier-form1
An application entity qualifier: it is a relative distinguished name.

AP-invocation
An application process invocation identifier.

AE-invocation
An application entity invocation identifier.

The attribute type identifier of each attribute value assertion composing the distinguished name
as the relative one is assumed to be a global form. Refer to Chapter 5 on page 105 for the
definition of the OM class Attribute-Id and that of the OM class AVA.

5.3.24 Form2

An instance of OM class Form2 is the form 2 to represent an application process name. The AE-
Title in object identifier form (form 2) is formed by concatenating the AE-Qualifier integer to the
object identifier of the corresponding AP-Title. It is a registered name, that is, an unambiguous
name which is assigned by registration.

An instance of this OM class has the OM attributes of its superclasses - Object, Title , AE-Title -
and additionally the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
AP-title-form2 String(Object-Identi fier) - 1 -
AE-qualifier-form2 Integer - 0-1 -
AP-invocation Integer - 0-1 -
AE-invocation Integer - 0-1 -

Table 5-20 OM Attributes of a Form2

AP-title-form2
An application process title: it is an ASN.1 object identifier name form.

AE-qualifier-form2
An application entity qualifier: it is an integer.

AP-invocation
An application process invocation identifier

AE-invocation
An application entity invocation identifier

Systems Management: Management Protocols API (XMP) 125

Common Management Service Package Interface Class Definitions

5.3.25 Functional-Unit-Package

An instance of OM class Functional-Unit-Package provides the systems management functional
unit packages for association establishment.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
functional-Unit-Package-Id String(Object-Identi fier) - 1 -
manager-Role-Functional-Unit String(Bit) - 0-1 -
agent-Role-Functional-Unit String(Bit) - 0-1 -

Table 5-21 OM Attributes of a Functional-Unit-Package

functional-Unit-Package-Id
The object identifier of a proposed Systems Management Functional Unit.

manager-Role-Functional-Unit
If not present, implies the manager role is not supported for this functional-Unit-Package.

agent-Role-Functional-Unit
If not present, implies the agent role is not supported for this functional-Unit-Package.

5.3.26 Name

This syntactic definition is imported from XDS specifications.

The OM class Name represents the name of an entry in the Directory service. It is an abstract
class that contains various subclass types used to define managed object instances. For example,
the DS-DN subclass is typically used for ISO managed object instance naming.

It is an abstract class, which has the attributes of its superclasses - Object - and no other OM
attributes.

A name unambiguously distinguishes the object from all other objects whose entries appear in
the Directory. A name is a distinguished name. It is unique, there are no other distinguished
names which identify the same object. This OM class serves to collect together all possible
representations of names of management application processes. It is used to construct an
instance of the OM class Session.

This specification defines three subclasses of this OM class, and thus three representations for
names:

DS-DN
Provides a representation for names, including distinguished names.

SNMP-Object-Name
Provides a representation for names of Internet object types.

Name-String
Provides an IA5 string representation for names.

It is expected that vendors will define additional subclasses to provide complete representations.

126 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

5.3.27 Name-String

An instance of OM class Name-String represents a string form of distinguishing name.

An instance of this OM class has the OM attributes of its superclasses - Object, Name - and
additionally the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
name-String String(IA5) - 1 -

Table 5-22 OM Attributes of a Name-String

name-String
The name is represented uniquely by an IA5 string which is an administratively assigned
name.

5.3.28 Network-Address

An instance of OM class Network-Address represents an address from one of possibly several
protocol families. Currently, only one protocol family, the Internet family, is present.

An instance of this OM class has the OM attributes of its superclasses - Object, Address - and
additionally the OM attributes listed in the table below. Exactly one OM attribute is permitted
in an instance of that OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
ip-Address String(Octet) 4 1 -

Table 5-23 OM Attributes of a Network-Address

ip-Address
Represents a 32-bit internet address. It is represented as an octet string of length 4, in
network byte-order.

5.3.29 Presentation-Address

An instance of OM class Presentation-Address is a presentation address of an OSI management
application entity, used for OSI communications with it.

An instance of this OM class has the OM attributes of its superclasses - Object, Address - and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
N-Addresses String(Octet) - 1 or more -
P-Selector String(Octet) - 0-1 -
S-Selector String(Octet) - 0-1 -
T-Selector String(Octet) - 0-1 -

Table 5-24 OM Attributes of a Presentation-Address

N-Addresses
The network addresses of the application entity.

Systems Management: Management Protocols API (XMP) 127

Common Management Service Package Interface Class Definitions

P-Selector
The presentation selector.

S-Selector
The session selector.

T-Selector
The transport selector.

5.3.30 Presentation-Context

An instance of OM class Presentation-Context lists the presentation contexts for association
establishment.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
presentation-Id Integer - 1 -
presentation-abstract String(Object-Identi fier) - 1 -

Table 5-25 OM Attributes of a Presentation-Context

presentation-Id
The user identification of the presentation context.

presentation-abstract
Identifies the abstract syntax. If no value is supplied, by default the abstract syntax name
CMIP-PCI, specified by ISO/IEC 9596-1 (reference CMIP), is supplied by the MIS provider.

5.3.31 Presentation-Layer-Args

An instance of OM class Presentation-Layer-Args identifies the presentation layer arguments
that will be used during association establishment. These can be specified in the session object if
ACM is enabled, or in the Assoc-Argument/Assoc-Result object if ACM is disabled.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
presentation-Context-List Object(Presentation-Context) - 0-more -

Table 5-26 OM Attributes of a Presentation-Layer-Args

presentation-Context-List
The list of presentation contexts.

128 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

5.3.32 Relative-Name

This syntactic definition is imported from XDS specifications. The OM class Relative-Name
represents a name of an application process in the Directory. It also represents a name of a
managed object in the Management Containment Tree.

It is an abstract class, which has the attributes of its superclasses - Object - and no other OM
attributes.

A relative distinguished name (RDN) is a part of a name, and only distinguishes the object from
the others that are its siblings. This OM class serves to collect together all possible
representations of RDNs. An argument of interface functions that contains an RDN, or an OM
attribute value that is an RDN, will be an instance of one of the subclasses of this OM class.

This specification defines one subclass of this OM class, and thus a single representation for
RDNs:

DS-RDN
Provides a representation for relative distinguished names.

It is expected that vendors will define additional subclasses to provide alternative
representations.

5.3.33 Release-Argument

An instance of OM class Release-Argument is the information supplied as argument of a ACSE
Release operation to be performed. This object is passed to Release-req() or returned from
Receive().

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
reason Integer - 0-1 -
user-Information Object(Association-Information) - 0-1 -

Table 5-27 OM Attributes of a Release-Argument

reason
Indicates the reason for initiating a release request. Its value is one of:

• normal

• urgent

• user-Defined.

user-Information
Optional user information that can be supplied with the release request.

Systems Management: Management Protocols API (XMP) 129

Common Management Service Package Interface Class Definitions

5.3.34 Release-Result

An instance of OM class Release-Result is the information supplied as an argument for
responding to a release request. This object is passed to Release_rsp() or returned from Receive().

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
reason Integer - 0-1 -
user-Information Object(Association-Information) - 0-1 -

Table 5-28 OM Attributes of a Release-Result

reason
Indicates the reason for initiating a release request. Its value is one of:

• normal

• not-finished

• user-Defined.

user-Information
Optional user information that can be supplied with the release request.

5.3.35 Session

An instance of OM class Session identifies a particular communication link from the application
program to the System Management Service provider or to a remote peer entity depending upon
the state of the session object itself. Session objects can be created with Automatic Connection
Management enabled or disabled. If ACM is enabled, then all of the ACSE connection
management, needed to deliver a management operation, is done by the System Management
Service provider. If ACM is disabled, the ACSE connection management is done by the user
before issuing or receiving System Management operations.

The use of and rules for the session object are different depending on whether ACM is enabled or
disabled. ACM is specified as part of Negotiate(). SNMP objects and requests can not be used
when ACM is disabled.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
requestor-Address Object(Address) - 0-1 -
requestor-Title Object(Title) - 0-1 -
role Integer - 0-1 see below
file-Descriptor Integer - 1 see below
presentation-Layer-Args Object(Presentation-Layer-Args) - 0-1 -
acse-Args Object(Acse-Args) - 0-1 -
cmip-Assoc-Args Object(Cmip-Assoc-Args) - 0-1 -
standard-Externals Object(Standard-Externals) - 0-1 -

Table 5-29 OM Attributes of a Session

130 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

Refer to Section 3.3 on page 24, for a description the three types of Session objects: ACM
EnabledSession, ACM Disabled Session, and Connected Session

The OM attributes of a Session are:

requestor-Address
Indicates the address of the requesting program named by requestor-Title. If both the
requestor-Address and requestor-Title are not specified, the service provider will supply a
default requestor-Address.

requestor-Title
Indicates the name of the requesting program, user of this session. It may be a
distinguished name (instance of OM class Form1) or a registered name (instance of OM class
Form2) which is used in name/network address resolution phase to get the application
process title, the application entity qualifier and the presentation address. It may also be the
entity-name of the requesting program.

role
Indicates the roles acted by the requestor. The role value is specified by OR-ing none, one, or
more of the following values:

managing
Invoker of management operations.

monitoring
Performer of management notifications.

performing
Performer of management operations.

reporting
Invoker of management notifications.

The manager role corresponds to the value managing, monitoring, or both, while the agent
role corresponds to the value performing, reporting, or both. In each case, both roles
(default value) are assumed to be acted if this OM attribute is not specified.

file-Descriptor OPTIONAL FUNCTIONALITY
Indicates the file descriptor associated with the session. The file descriptor may be used by
implementors of the Wait() function. The file descriptor may be used in subsequent calls to
vendor-specific system facilities to suspend the process (for example, System V poll() or
BSD (Berkeley Software Distribution) select()). Its use for any other purpose is unspecified.

If the implementation does not define any suitable suspension facilities, or if the session is
not started, the value is No-Valid-File-Descriptor -1
(MP_NO_VALID_FILE_DESCRIPTOR).

presentation-Layer-Args
Indicates any presentation layer arguments needed during association establishment. If
none are supplied, the MIS provider will supply defaults if required.

acse-Args
Indicates ACSE related arguments that will be used during association establishment. If
none are supplied, the MIS provider will supply defaults if required.

cmip-Assoc-Args
Indicates CMIP related arguments that will be used during association establishment. If
none are supplied, the MIS provider will supply defaults if required. The content of this
attribute is carried as an EXTERNAL in the ACSE associate request and response.

Systems Management: Management Protocols API (XMP) 131

Common Management Service Package Interface Class Definitions

standard-Externals
Identifies other external arguments that will be used during association establishment. The
content of this attribute is carried as an EXTERNAL in the ACSE associate request and
response.

5.3.36 SMASE-User-Data

An instance of OM class SMASE-User-Data provides the SMASE profile for association
establishment.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
smfu-Packages Object(Functional-Unit-Package) - 0 or more -
systems-Management-User-Information String(Graphic) - 0-1 -

Table 5-30 OM Attributes of a SMASE-User-Data

smfu-Packages
The System Management Functional Units (SMFUs) proposed by the SMASE user to be
exchanged during management connection establishment.

systems-Management-User-Information
Implementation-specific SMASE user information, as defined in ISO/IEC 10040 (reference
SMO).

5.3.37 SNMP-Object-Name

An instance of OM class SNMP-Object-Name represents an identifier of an object type. Such
names are used to identify managed objects of the Internet community.

An instance of this OM class has the OM attributes of its superclasses - Object, Name - and
additionally the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
object-Name String(Object-Identi fier) - 1 -

Table 5-31 OM Attributes of an SNMP-Object-Name

object-Name
The name is represented uniquely as an OBJECT IDENTIFIER which is an administratively
assigned name.

132 X/Open CAE Specification (1994)

Interface Class Definitions Common Management Service Package

5.3.38 Standard-Externals

An instance of OM class Standard-Externals identifies a list of externals that have been
standardised and that are are used during ACSE association establishment to a remote peer
entity. These can be specified in the session object if ACM is enabled, or in the Assoc-
Argument/Assoc-Result object if ACM is disabled.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
SMASE-User-Data Object(SMASE-User-Data) - 0-1 -

Table 5-32 OM Attributes of a Standard-Externals

The Standard-Externals object collects together all the standardised externals that could be used
during ACSE association establishment. Only the SMASE-User-Data object currently exists, but
in the future it is conceivable that there would be standard external definitions for Shared
Management Knowledge and CMISE-TP.

SMASE-User-Data
SMASE User Data proposed by the user to be exchanged during management connection
establishment; refer to SMO for additional detail. The content of this attribute is exchanged
using the ACSE-apdu.AARQ-apdu.user-information or ACSE-apdu.AARE-apdu.user-
information.

5.3.39 Title

The OM class Title contains various subclass types used to define the specific management
process or system name responsible for a managed object instance.

It is an abstract class, which has the attributes of its superclasses - Object.

This specification defines four subclasses of this OM-class, and thus four representations for
Title. All four representations provide the name of a manager/agent process or its location.

AE-Title
Provides a single external representation for application entity titles.

Entity-Name
Provides the name of a non-global representation for application names.

Form1
Provides a global representation for application entity titles, based on Distinguished Names.

Form2
Provides a global representation for application entity titles, based on OBJECT
IDENTIFIERS.

It is expected that vendors will define additional subclasses to provide complete representations.

An application process is identified by its Title, which is a registration-structured name as
defined in ISO/IEC 9834-1 and ISO 8650/Cor.1 (see reference ACSE).

Systems Management: Management Protocols API (XMP) 133

CMIS Management Service Package Interface Class Definitions

5.4 CMIS Management Service Package

5.4.1 Introduction

This section defines, in alphabetical order, the OM classes that constitute the CMIS Management
Service package (CMIS-COMMON),

The Object-Identifier associated with the CMIS Management Service package is {iso(1) member-
national-body(2) bsi(826) disc(0) xopen(1050) xmp-cae(6) cmis(2)}. This Object-Identifier is
represented by the constant CMIS-Package (MP_CMIS_PKG).

The constants which represent the OM classes and OM attributes in the C binding are defined in
the <xmp_cmis.h> header.

5.4.2 CMIS Management Service Class Hierarchy

The hierarchical organisation of the OM classes defined in this section is shown in section
Section 5.2.3 on page 108, indicating which OM classes inherit additional OM attributes from
their superclasses. Subclassification is indicated by indentation, and the names of abstract OM
classes are rendered in italics.

5.4.3 Action-Error

An instance of OM class Action-Error is the information associated to an error for an CMIS
action that was attempted to be performed.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
action-Error-Info Object(Action-Error-Info) - 1 -

Table 5-33 OM Attributes of an Action-Error

managed-Object-Class
The class of the managed object that attempted to perform the action.

managed-Object-Instance
The instance of the managed object that attempted to perform the action.

current-Time
Time at which the response was generated.

action-Error-Info
Contains error information as result of the action requested.

134 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.4 Action-Error-Info

An instance of OM class Action-Error-Info documents one action-related problem encountered
while performing an action as requested on a particular managed object.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
error-Status Enum(Error-Status) - 1 -
error-Info Object(Error-Info) - 1 -

Table 5-34 OM Attributes of an Action-Error-Info

error-Status
The error notification for the operation. Its value is one of:

access-denied
The requested action was not performed for security reasons.

no-such-action
The action type specified is not supported.

no-such-argument
The argument specified is not recognised or supported.

invalid-argument-value
The argument value was out of range or otherwise inappropriate.

error-Info
The additional information.

5.4.5 Action-Info

An instance of OM class Action-Info is the information of an action to be performed.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
action-Type Object(Action-Type-Id) - 1 -
action-Info-Arg any - 0-1 -

Table 5-35 OM Attributes of an Action-Info

action-Type
The action type, which indicates a particular action that is to be performed.

action-Info-Arg
The extra information when necessary to further define the nature, variations, or operands
of the action to be performed. The syntax and semantics of this OM attribute depend upon
the action requested. The OM value syntax, noted any which is allowed for this OM
attribute, is determined by the value of the action-Type OM attribute in accordance with the
rules expressed in Section 3.5.2 on page 29.

Systems Management: Management Protocols API (XMP) 135

CMIS Management Service Package Interface Class Definitions

5.4.6 Action-Reply

An instance of OM class Action-Reply is the information associated to a reply of a performed
action.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
action-Type Object(Action-Type-Id) - 1 -
action-Reply-Info any - 1 -

Table 5-36 OM Attributes of an Action-Reply

action-Type
The action type, which indicates a particular action that was performed.

action-Reply-Info
The reply information of the action performed on a managed object. The syntax and
semantics of this OM attribute depend upon the action performed. The OM value syntax,
noted any which is allowed for this OM attribute, is determined by the value of the action-
Type OM attribute in accordance with the rules expressed in Section 3.5.2 on page 29.

5.4.7 Action-Type-Id

An instance of OM class Action-Type-Id represents an identifier of an action.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
global-Form String(Object-Identi fier) - 0-1 -
local-Form Integer - 0-1 -

Table 5-37 OM Attributes of an Action-Type-Id

global-Form
A registered action type identifier.

local-Form
Where this alternative is used, the permissible values for the integers and their meanings are
defined as part of the application context in which they are used.

136 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.8 Attribute

An instance of OM class Attribute is an attribute of a managed object.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
attribute-Id Object(Attribute-Id) - 1 -
attribute-Value any - 1 -

Table 5-38 OM Attributes of an Attribute

attribute-Id
The attribute type, which indicates the class of information given by this attribute.

attribute-Value
The attribute values. The representation of the attribute value depends on the attribute
type. The OM value syntax, noted any which is allowed for this OM attribute, is
determined by the value of the Attribute-Id OM attribute in accordance with the rules
expressed in Section 3.5.1 on page 28.

5.4.9 Attribute-Error

An instance of OM class Attribute-Error documents one attribute-related problem encountered
while performing a set operation as requested on a particular occasion. It is the error
information while attempting to modify an attribute of a managed object.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
error-Status Enum(Error-Status) - 1 -
modify-Operator Integer - 0-1 -
attribute-Id Object(Attribute-Id) - 1 -
attribute-Value any - 0-1 -

Table 5-39 OM Attributes of an Attribute-Error

error-Status
The error notification for the operation. Its value is one of:

access-denied
The requested operation was not performed for security reasons.

no-such-attribute
The identifier for the specified attribute was not recognised.

invalid-attribute-value
The attribute value was out of range or otherwise inappropriate.

invalid-operation
The modify operator specified may not be performed on the specified attribute (for
example, set-to-default with no default defined).

Systems Management: Management Protocols API (XMP) 137

CMIS Management Service Package Interface Class Definitions

invalid-operator
The modify operator specified is not recognised.

modify-Operator
specifies the way in which the attribute was attempted to be modified. The possible
operators are:

• replace

• add-values

• remove-values

• set-to-default.

The modify-operator is present for the invalid-operation and invalid-operator error
indication.

attribute-Id
The attribute type, which indicates the class of information given by this attribute.

attribute-Value
The attribute values. The representation of the attribute value depends on the attribute
type. The OM value syntax, noted any which is allowed for this OM attribute, is
determined by the value of the Attribute-Id OM attribute in accordance with the rules
expressed in Section 3.5.1 on page 28. The attribute value is absent in set-to-default.

5.4.10 Attribute-Id

An instance of OM class Attribute-Id represents an identifier of a managed object attribute.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
global-Form String(Object-Identi fier) - 0-1 -
local-Form Integer - 0-1 -

Table 5-40 OM Attributes of a Attribute-Id

global-Form
A registered attribute type identifier.

local-Form
Where this alternative is used, the permissible values for the integers and their meanings are
defined as part of the application context in which they are used.

138 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.11 Attribute-Id-Error

An instance of OM class Attribute-Id-Error documents one attribute-related problem
encountered while performing a get operation as requested on a particular occasion.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
error-Status Enum(Error-Status) - 1 -
attribute-Id Object(Attribute-Id) - 1 -

Table 5-41 OM Attributes of an Attribute-Id-Error

error-Status
Identifies the attribute-related problem. Its value is one of:

access-denied
The requested operation was not performed for security reasons.

no-such-attribute
The identifier for the specified attribute was not recognised.

attribute-Id
The attribute type, which identifies the attribute, the value could not be read/modified and
whose the problem is associated.

5.4.12 Attribute-Id-List

An instance of OM class Attribute-Id-List represents an identifier of a managed object attribute
list.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
attribute-Id Object(Attribute-Id) - 0 or more -

Table 5-42 OM Attribute of an Attribute-Id-List

attribute-Id
The attribute type, which indicates the class of information given by this attribute.

5.4.13 Base-Managed-Object-Id

An instance of OM class Base-Managed-Object-Id is the pairing of the managed object class
identifier and the name of a managed object instance .

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Systems Management: Management Protocols API (XMP) 139

CMIS Management Service Package Interface Class Definitions

Value Value Value Value
OM Attribute Syntax Length Number Initially
base-Managed-Object-Class Object(Object-Class) - 1 -
base-Managed-Object-Instance Object(Object-Instance) - 1 -

Table 5-43 OM Attributes of a Base-Managed-Object-Id

base-Managed-Object-Class
The class of the base managed object (a managed object used as the starting point for the
selection of managed objects).

base-Managed-Object-Instance
The instance of the base managed object.

5.4.14 CMIS-Action-Argument

An instance of OM class CMIS-Action-Argument is the supplied argument information of an
CMIS action to be performed.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
base-Managed-Object-Class Object(Object-Class) - 1 -
base-Managed-Object-Instance Object(Object-Instance) - 1 -
access-Control Object(External-AC) - 0-1 -
synchronization Enum(CMIS-Sync) - 1 -
scope Object(Scope) - 0-1 -
filter Object(CMIS-Filter) - 0-1 -
action-Info Object(Action-Info) - 1 -

Table 5-44 OM Attributes of an CMIS-Action-Argument

base-Managed-Object-Class
The class of the managed object that is to be used as the starting point for the selection of
managed objects on which the filter (when supplied) is to be applied. Not meaningful if the
following base-Managed-Object-Instance parameter specifies the root of the Management
Information Tree.

base-Managed-Object-Instance
The instance of the base managed object.

access-Control
Access control information for the purpose of obtaining permission to perform the action on
the selected managed object(s).

synchronization
Indicates how to synchronise across the selected object instances. If this parameter is not
supplied, best effort synchronisation is assumed. If the base managed object alone is
selected for the operation, this parameter (if present) is ignored. Its value is one of:

atomic
All managed objects selected for the operation are checked to ascertain if they are able
to successfully perform it. If one or more is not able to successfully perform the
operation, then none perform it, otherwise all perform it.

140 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

best-effort
All managed objects selected for the operation are requested to perform it.

scope
Indicates the subtree, rooted at the base managed object, which is to be searched. When the
scope is not specified, the scoped managed object is the specified base managed object.

filter
Specifies the set of assertions that defines the filter test to be applied to the scoped managed
object(s). If the filter is not specified, all of the managed objects included by the scope are
selected.

action-Info
Specifies the action to be performed along with the argument.

5.4.15 CMIS-Action-Result

An instance of OM class CMIS-Action-Result is a result of a successfully performed CMIS
action. It may be omitted in the last response of multiple replies.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
action-Reply Object(Action-Reply) - 0-1 -

Table 5-45 OM Attributes of an CMIS-Action-Result

managed-Object-Class
The class of the managed object that performed the action. This parameter may be absent
only if the base object alone was specified as scope.

managed-Object-Instance
The instance of the managed object that performed the action. This parameter may be
absent only if the base object alone was specified as scope.

current-Time
Time at which the response was generated.

action-Reply
Contains the returned result information of the action successfully performed.

5.4.16 CMIS-Cancel-Get-Argument

An instance of OM class CMIS-Cancel-Get-Argument is the information supplied as argument
of a CMIS cancel-get operation.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Systems Management: Management Protocols API (XMP) 141

CMIS Management Service Package Interface Class Definitions

Value Value Value Value
OM Attribute Syntax Length Number Initially
get-Invoke-Id Integer - 1 -

Table 5-46 OM Attributes of a CMIS-Cancel-Get-Argument

get-Invoke-Id
The identifier assigned to the previously requested and currently outstanding get operation.

5.4.17 CMIS-Create-Argument

An instance of OM class CMIS-Create-Argument is the information supplied as argument of a
CMIS creation to be performed.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 1 -
create-Object-Instance Object(Create-Object-Instance) - 0-1 -
access-Control Object(External-AC) - 0-1 -
reference-Object-Instance Object(Object-Instance) - 0-1 -
attribute-List Object(Setof-Attribute) - 0-1 -

Table 5-47 OM Attributes of a CMIS-Create-Argument

managed-Object-Class
The class of the new managed object instance that is to be created.

create-Object-Instance
Object Instance information relevant to the managed object that is to be created.

access-Control
Access control information for the purpose of obtaining permission to create the specified
managed object.

reference-Object-Instance
An existing managed object instance of the same class as the managed object instance to be
created, the attribute values of which are used as default values for those not specified by
the attribute list parameter, excepting the distinguishing attribute to be used in the name of
the new managed object instance.

attribute-List
Specifies the set of attribute identifiers and values to be assigned to the new managed object
instance. The remaining attributes are assigned a set of default values according to the
object class definition of the new object.

None or exactly one of the two OM attributes managed-Object-Instance and superior-Object-
Instance is permitted to be supplied in an instance of that OM class.

142 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.18 CMIS-Create-Result

An instance of OM class CMIS-Create-Result is the result of a successfully performed CMIS
create operation.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
attribute-List Object(Setof-Attribute) - 0-1 -

Table 5-48 OM Attributes of a CMIS-Create-Result

managed-Object-Class
The class of the new created managed object.

managed-Object-Instance
The identifier of the new managed object instance. It must be returned if omitted from
Create-Argument.

current-Time
Time at which the response was generated.

attribute-List
Contains the complete list of all attribute identifiers and values that were assigned to the
new managed object instance, if any.

5.4.19 CMIS-Delete-Argument

An instance of OM class CMIS-Delete-Argument is the information supplied as argument of a
CMIS delete operation.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
base-Managed-Object-Class Object(Object-Class) - 1 -
base-Managed-Object-Instance Object(Object-Instance) - 1 -
access-Control Object(External-AC) - 0-1 -
synchronization Enum(CMIS-Sync) - 0-1 -
scope Object(Scope) - 0-1 -
filter Object(CMIS-Filter) - 0-1 -

Table 5-49 OM Attributes of a CMIS-Delete-Argument

base-Managed-Object-Class
The class of the managed object that is to be used as the starting point for the selection of
managed objects on which the filter (when supplied) is to be applied. Not meaningful if the
following base-Managed-Object-Instance parameter specifies the root of the Management
Information Tree.

Systems Management: Management Protocols API (XMP) 143

CMIS Management Service Package Interface Class Definitions

base-Managed-Object-Instance
The instance of the base managed object.

access-Control
Access control information for the purpose of obtaining permission to delete the specified
managed object(s).

synchronization
Indicates how to synchronise across the selected object instances. If this parameter is not
supplied, best effort synchronisation is performed. If the base managed object alone is
selected for the operation, this parameter (if present) is ignored. Its value is one of:

atomic
All managed objects selected for the operation are checked to ascertain if they are able
to successfully perform it. If one or more is not able to successfully perform the
operation, then none perform it, otherwise all perform it.

best-effort
All managed objects selected for the operation are requested to perform it.

scope
Indicates the subtree, rooted at the base managed object, which is to be searched. When the
scope is not specified, the scoped managed object is the specified base managed object.

filter
Specifies the set of assertions that defines the filter test to be applied to the scoped managed
object(s). If the filter is not specified, all of the managed objects included by the scope are
selected. All the selected managed objects are to be deleted.

5.4.20 CMIS-Delete-Result

An instance of OM class CMIS-Delete-Result is a result of a successful CMIS delete operation.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -

Table 5-50 OM Attributes of a CMIS-Delete-Result

managed-Object-Class
The class of the managed object deleted. It may be absent only if the base object alone was
specified.

managed-Object-Instance
The instance of the managed object deleted. It may be absent only if the base object alone
was specified.

current-Time
Time at which the response was generated.

144 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.21 CMIS-Event-Report-Argument

An instance of OM class CMIS-Event-Report-Argument is the supplied information about the
CMIS event.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 1 -
managed-Object-Instance Object(Object-Instance) - 1 -
event-Time String(Generalised-Time) - 0-1 -
event-Type Object(Event-Type-Id) - 1 -
event-Info any - 0-1 -

Table 5-51 OM Attributes of an CMIS-Event-Report-Argument

managed-Object-Class
The class of the managed object in which the event occurred.

managed-Object-Instance
The instance of the managed object in which the event occurred.

event-Time
Time at which the event was generated.

event-Type
The event type, which indicates a particular event being reported.

event-Info
It contains the information supplied with the event being reported. The syntax and
semantics of this OM attribute depend upon the event reported. The OM value syntax,
noted any which is allowed for this OM attribute, is determined by the value of the event-
Type OM attribute in accordance with the rules expressed in Section 3.5.2 on page 29.

5.4.22 CMIS-Event-Report-Result

An instance of OM class CMIS-Event-Report-Result is the result of a reported CMIS event
report.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
event-Reply Object(Event-Reply) - 0-1 -

Table 5-52 OM Attributes of an CMIS-Event-Report-Result

managed-Object-Class
The class of the managed object in which an event occurred.

Systems Management: Management Protocols API (XMP) 145

CMIS Management Service Package Interface Class Definitions

managed-Object-Instance
The instance of the managed object that notified the event.

current-Time
Time at which the response was generated.

event-Reply
Contains the returned result information to the event reported.

5.4.23 CMIS-Filter

An instance of OM class CMIS-Filter is a set of assertions that defines the filter test to be applied
to a managed object. A filter is an assertion about the presence or value of an attribute in a
managed object, or multiple assertions (that is, an expression involving simpler filters composed
together, referred to as nesting), using the logical operators and, or, and not. Each assertion may
be a test for equality, ordering, presence, or set comparison. Assertions about the value of an
attribute are evaluated according to the matching rules associated with the attribute syntax. If
an attribute value assertion is present in the filter and that attribute is not present in the scoped
managed object, then the result of the test for that attribute value assertion is evaluated as
FALSE. The managed object is selected if and only if the filter’s value is true.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below. Exactly one OM attribute is permitted in an instance of that OM
class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
item Object(Filter-Item) - 0-1 -
and Object(Setof-CMIS-Filter) - 0-1 -
or Object(Setof-CMIS-Filter) - 0-1 -
not Object(CMIS-Filter) - 0-1 -

Table 5-53 OM Attributes of a CMIS-Filter

item
A single assertion. Each assertion relates to just one attribute of the managed object to
which the filter test is intended to be applied.

and
A collection of simpler CMIS-filters. The filter is the logical conjunction of its components.
The filter is true unless any of the nested filters is false. If there are no nested components,
the filter is true.

or
A collection of simpler CMIS-filters. The filter is the logical disjunction of its components.
The filter is false unless any of the nested filters is true. If there are no nested components,
the filter is false.

not
A CMIS-Filter. The result of this filter is reversed. The filter is true if the enclosed filter is
false, and is false if the enclosed filter is true.

A library error will be returned by the XOM [see Reference 9] functions, if an attempt is made to
create a filter containing a loop; that is, a filter which contains itself, possibly through several
intermediate filters. Moreover, an OM attribute item must be present at least in a nested CMIS-
Filter in order to stop the recursion.

146 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.24 CMIS-Get-Argument

An instance of OM class CMIS-Get-Argument is the information supplied as argument of a
CMIS get operation to be performed.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
base-Managed-Object-Class Object(Object-Class) - 1 -
base-Managed-Object-Instance Object(Object-Instance) - 1 -
access-Control Object(External-AC) - 0-1 -
synchronization Enum(CMIS-Sync) - 0-1 -
scope Object(Scope) - 0-1 -
filter Object(CMIS-Filter) - 0-1 -
attribute-Id-List Object(Attribute-Id-List) - 0-1 -

Table 5-54 OM Attributes of a CMIS-Get-Argument

base-Managed-Object-Class
The class of the managed object that is to be used as the starting point for the selection of
managed objects on which the filter (when supplied) is to be applied. Not meaningful if the
following base-Managed-Object-Instance parameter specifies the root of the Management
Information Tree.

base-Managed-Object-Instance
The instance of the base managed object.

external-OM
Access control information for the purpose of obtaining permission to retrieve the attribute
value(s) from the specified managed object(s).

synchronization
Indicates how to synchronise across the selected object instances. If this parameter is not
supplied, best effort synchronisation is performed. If the base managed object alone is
selected for the operation, this parameter (if present) is ignored. Its value is one of:

atomic
All managed objects selected for the operation are checked to ascertain if they are able
to successfully perform it. If one or more is not able to successfully perform the
operation, then none perform it, otherwise all perform it.

best-effort
All managed objects selected for the operation are requested to perform it.

scope
Indicates the subtree, rooted at the base managed object, which is to be searched. When the
scope is not specified, the scoped managed object is the specified base managed object.

filter
Specifies the set of assertions that defines the filter test to be applied to the scoped managed
object(s). If the filter is not specified, all of the managed objects included by the scope are
selected.

attribute-Id-List
A list of identifiers specifying the attributes the value of which are to be returned. When not
specified, all attributes are assumed to be read.

Systems Management: Management Protocols API (XMP) 147

CMIS Management Service Package Interface Class Definitions

5.4.25 CMIS-Get-List-Error

An instance of OM class CMIS-Get-List-Error is the result of a CMIS get operation which failed
for one or more attributes.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
get-Info-List Object(Setof-Get-Info-Status) - 0-1 -

Table 5-55 OM Attributes of a CMIS-Get-List-Error

managed-Object-Class
The class of the managed object one or more attributes of which could not be read.

managed-Object-Instance
The identifier of the managed object instance one or more attributes of which could not be
read.

current-Time
Time at which the response was generated.

get-Info-List
Contains the list of all attribute identifiers and values that were read together with the
identifiers and the error notification of the attributes that could not be read.

5.4.26 CMIS-Get-Result

An instance of OM class CMIS-Get-Result is a result of a successfully performed CMIS get
operation.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
attribute-List Object(Setof-Attribute) - 0-1 -

Table 5-56 OM Attributes of a CMIS-Get-Result

managed-Object-Class
The class of the managed object none, one or more attributes of which were read. This
parameter may be absent only if the specified scope was base object alone.

managed-Object-Instance
The identifier of the managed object instance whose attribute values are returned. This
parameter may be absent only if the specified scope was base object alone.

148 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

current-Time
Time at which the response was generated.

attribute-List
Contains the list of all attribute identifiers and values that were read.

5.4.27 CMIS-Linked-Reply-Argument

An instance of OM class CMIS-Linked-Reply-Argument is the argument of a linked reply of a
requested operation.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below. Exactly one and only one attribute is present in an instance of
this OM-class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
get-Result Object(CMIS-Get-Result) - 0-1 -
get-List-Error Object(CMIS-Get-List-Error) - 0-1 -
set-Result Object(CMIS-Set-Result) - 0-1 -
set-List-Error Object(CMIS-Set-List-Error) - 0-1 -
action-Result Object(CMIS-Action-Result) - 0-1 -
processing-Failure Object(Processing-Failure) - 0-1 -
delete-Result Object(CMIS-Delete-Result) - 0-1 -
action-Error Object(Action-Error) - 0-1 -
delete-Error Object(Delete-Error) - 0-1 -

Table 5-57 OM Attributes of a CMIS-Linked-Reply-Argument

get-Result
Partial successful result of a get operation.

get-List-Error
Partial result of a get operation containing one or more attributes that could not be read.

set-Result
Partial successful result of a set operation.

set-List-Error
Partial result of a confirmed set operation containing one or more attributes that could not
be modified.

action-Result
Partial successful result of a confirmed action operation.

processing-Failure
General failure in processing the operation was encountered after partial results were sent.

delete-Result
Partial successful result of a confirmed delete operation.

action-Error
Partial negative result of a confirmed action operation.

delete-Error
Partial negative result of a confirmed delete operation.

Systems Management: Management Protocols API (XMP) 149

CMIS Management Service Package Interface Class Definitions

5.4.28 CMIS-Service-Error

An instance of OM class CMIS-Service-Error reports a management error related to the
provision of CMIS service.

An application is permitted to create or modify instances of this OM class. An instance of this
OM class has the OM attributes of its superclasses - Object, Error - and no other attributes.

The OM attributes of a CMIS-Service-Error are:

problem
This OM attribute is inherited from the superclass Error. Gives details of the CMIS service-
error. Each of the standard values is listed and is described along with the associated
parameter information under the following OM attribute parameter.

parameter
This OM attribute supplies additional information accompanying the service error
notification. Its OM value syntax, noted any, which is allowed for this OM attribute is
determined by the particular value of the OM attribute value problem.

Some error notifications do not define any additional information. In this case, the OM
attribute parameter is absent.

The possible causes of the failure and their associated parameter information are:

access-denied
The requested operation was not performed for security reasons.

No additional information. The OM attribute parameter is absent.

class-instance-conflict
The specified managed object instance is not a member of the specified class.

The OM attribute parameter identifies the managed object. Its syntax is
Object(Base-Managed-Object-Id) .

complexity-limitation
The requested operation was not performed because a parameter (Scope, Filter or
Synchronization) was too complex.

The OM attribute parameter reminds the too complex parameter. Its syntax is
Object(Complexity-Limitation) . This OM attribute may be absent.

duplicate-managed-object-instance
The new managed object instance value supplied by the create invoker was already
registered for a managed object of the specified class.

The OM attribute parameter specifies the already registered name. Its syntax is
Object(Object-Instance) .

get-list-error
One or more attribute values were not read.

The OM attribute parameter contains the attribute that could not be read together with
those that were read. The OM attribute parameter syntax is Object(CMIS-Get-
List-Error) .

invalid-argument-value
The event/action argument value specified was out of range or otherwise
inappropriate.

150 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

The OM attribute parameter contains the event type or the action type along with the
wrong argument value. Its syntax is Object(Invalid-Argument-Value) .

invalid-attribute-value
The attribute value specified was out of range or otherwise inappropriate.

The OM attribute parameter contains the attribute type along with the wrong attribute
value. The OM attribute parameter syntax is Object(Attribute) .

invalid-filter
The filter parameter contains an invalid assertion or an unrecognised logical operator.

The OM attribute parameter specifies the wrong filter expression. Its syntax is
Object(CMIS-Filter) .

invalid-scope
The value of the scope parameter is invalid.

The OM attribute parameter contains the wrong scope value. Its syntax is
Object(Scope) .

invalid-object-instance
The object instance name specified implied a violation of the naming rules.

The OM attribute parameter contains the wrong managed object instance name. Its
syntax is Object(Object-Instance) .

missing-attribute-value
A required attribute value was not supplied, and a default value was not available.

The OM attribute parameter identifies the attributes for which values were required and
were not supplied. The OM attribute parameter syntax is Object(Missing-
Attribute-Value) .

mistyped-operation
The get invoke identifier parameter does not refer to a get operation.

no-such-action
The action type specified is not recognised.

The OM attribute parameter specifies the action type. Its syntax is Object(No-Such-
Action) .

no-such-argument
The event/action information specified was not recognised.

The OM attribute parameter contains the event type or the action type and may contain
the object class the event/action is related to. Its syntax is Object(No-Such-
Argument) .

no-such-attribute
The identifier for a specified attribute or attribute group was not recognised.

The OM attribute parameter contains the unrecognised attribute identifier. The OM
attribute parameter syntax is Object(Attribute-Id) .

no-such-event-type
The event specified was not recognised.

The OM attribute parameter contains the event type and the object class the event refers
to. Its syntax is Object(No-Such-Event-Type) .

Systems Management: Management Protocols API (XMP) 151

CMIS Management Service Package Interface Class Definitions

no-such-invoke-id
The get invoke identifier parameter is not recognised.

The OM attribute parameter specifies the wrong invoke identifier. Its syntax is
Integer .

no-such-object-class
The class of the specified managed object was not recognised.

The OM attribute parameter contains the managed object class identifier. Its syntax is
Object(Object-Class) .

no-such-object-instance
The instance of the specified managed object was not recognised.

The OM attribute parameter contains the managed object instance name. Its syntax is
Object(Object-Instance) .

no-such-reference-object
The reference object instance parameter was not recognised.

The OM attribute parameter contains the name of the referenced managed object
instance. Its syntax is Object(Object-Instance) .

operation-cancelled
The get operation was cancelled by a cancel-get operation, and no further attribute
values will be returned by this invocation of the get service.

No additional information. The OM attribute parameter is absent.

processing-failure
A general failure in processing the operation was encountered.

The OM attribute parameter identifies a specific error along with specific information. Its
syntax is Object(Processing-Failure) . This OM attribute may be absent.

set-list-error
One or more attribute values were not modified.

The OM attribute parameter specifies a set of attributes, the values of those that were
modified and the values along with the modify operator of those that could not be
changed. The OM attribute parameter syntax is Object(CMIS-Set-List-Error) .

synchronization-not-supported
The type of synchronisation specified is not supported.

The OM attribute parameter specifies the not supported synchronisation. Its syntax is
Enum(CMIS-Sync) .

152 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.29 CMIS-Service-Reject

An instance of OM class CMIS-Service-Reject reports a ROSE Invoke Problem.

An application is permitted to create or modify instances of this OM class. An instance of this
OM class has the OM attributes of its superclasses - Object, Error - and no other attributes.

The OM attributes of a CMIS-Service-Reject are:

problem
This OM attribute is inherited from the superclass Error. Possible values for this OM
attribute are:

duplicate-invocation
The invoke identifier specified was allocated to another notification or operation.

mistyped-argument
One of the parameters supplied has not been agreed for use.

No additional information. The OM attribute parameter is absent.

resource-limitation
The operation was not performed due to resource limitation.

unrecognized-operation
The operation is not one of those agreed.

parameter
Always absent.

Systems Management: Management Protocols API (XMP) 153

CMIS Management Service Package Interface Class Definitions

5.4.30 CMIS-Set-Argument

An instance of OM class CMIS-Set-Argument is the information supplied as argument of a
CMIS set operation to be performed.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
base-Managed-Object-Class Object(Object-Class) - 1 -
base-Managed-Object-Instance Object(Object-Instance) - 1 -
access-Control Object(External-AC) - 0-1 -
synchronization Enum(CMIS-Sync) - 0-1 -
scope Object(Scope) - 0-1 -
filter Object(CMIS-Filter) - 0-1 -
modification-List Object(Modification-List) - 0 -1 -

Table 5-58 OM Attributes of a CMIS-Set-Argument

base-Managed-Object-Class
The class of the managed object that is to be used as the starting point for the selection of
managed objects on which the filter (when supplied) is to be applied. Not meaningful if the
following base-Managed-Object-Instance parameter specifies the root of the Management
Information Tree.

base-Managed-Object-Instance
The instance of the base managed object.

access-Control
Access control information for the purpose of obtaining permission to modify the attribute
value(s) of the specified managed object(s).

synchronization
Indicates how to synchronise across the selected object instances. If this parameter is not
supplied, best effort synchronisation is performed. If the base managed object alone is
selected for the operation, this parameter (if present) is ignored. Its value is one of:

atomic
meaning that all managed objects selected for the operation are checked to ascertain if
they are able to successfully perform it. If one or more is not able to successfully
perform the operation, then none perform it, otherwise all perform it.

best-effort
meaning that all managed objects selected for the operation are requested to perform it.

scope
Indicates the subtree, rooted at the base managed object, which is to be searched. When the
scope is not specified, the scoped managed object is the specified base managed object.

filter
Specifies the set of assertions that defines the filter test to be applied to the scoped managed
object(s). If the filter is not specified, all of the managed objects included by the scope are
selected.

modification-List
A list of triples specifying the attribute identifier, the modify operator along with the
attribute value to be set. Attribute value is absent in set to default operation.

154 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.31 CMIS-Set-List-Error

An instance of OM class CMIS-Set-List-Error is the result of a CMIS set operation which failed
for one or more attributes.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
set-Info-List Object(Setof-Set-Info-Status) - 0-1 -

Table 5-59 OM Attributes of a CMIS-Set-List-Error

managed-Object-Class
The class of the managed object one or more attributes of which could not be modified.

managed-Object-Instance
The identifier of the managed object instance one or more attributes of which could not be
modified.

current-Time
Time at which the response was generated.

set-Info-List
Contains the list of all attribute identifiers and values that were modified together with the
identifiers and the error notification of the attributes that could not be changed.

5.4.32 CMIS-Set-Result

An instance of OM class CMIS-Set-Result is a result of a successfully performed CMIS set
operation.

An instance of this OM class has the OM attributes of its superclass - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
attribute-List Object(Setof-Attribute) - 0-1 -

Table 5-60 OM Attributes of a CMIS-Set-Result

managed-Object-Class
The class of the managed object none, one or more attributes of which were modified. This
parameter may be absent if the base object alone was specified as scope.

managed-Object-Instance
The identifier of the managed object instance whose attribute values were modified. This
parameter may be absent if the base object alone was specified as scope.

Systems Management: Management Protocols API (XMP) 155

CMIS Management Service Package Interface Class Definitions

current-Time
Time at which the response was generated.

attribute-List
Contains the list of all attribute identifiers and values that were modified.

5.4.33 Complexity-Limitation

An instance of OM class Complexity-Limitation is the information supplied for describing a
complexity limitation error.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
scope Object(Scope) - 0-1 -
filter Object(CMIS-Filter) - 0-1 -
synchronization Enum(CMIS-Sync) - 0-1 -

Table 5-61 OM Attributes of a Complexity-Limitation

scope
Indicates that the complexity limitation is related to the specified scope.

filter
Indicates that the complexity limitation is related to the specified filter assertions.

synchronization
Indicates that complexity limitation is related to the specified across object synchronisation.
Its value is one of:

atomic
All managed objects selected for the operation are checked to ascertain if they are able
to successfully perform it. If one or more is not able to successfully perform the
operation, then none perform it, otherwise all perform it.

best-effort
All managed objects selected for the operation are requested to perform it.

5.4.34 Create-Object-Instance

An instance of OM class Create-Object-Instance is the object instance information provided for
a new managed object to be created.

An instance of this OM class has the OM attributes of its superclass Object - and additionally the
OM attributes listed below. Exactly one OM attribute is permitted in an instance of this OM
class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Instance Object(Object-Instance) - 0-1 -
superior-Object-Instance Object(Object-Instance) - 0-1 -

Table 5-62 OM Attributes of a Create-Object-Instance

156 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

managed-Object-Instance
The instance of the managed object that is to be registered.

superior-Object-Instance
An existing managed object instance that is to be the superior of the new managed object
instance.

5.4.35 Delete-Error

An instance of OM class Delete-Error documents one delete-related problem encountered while
performing a delete operation as requested on a particular managed object.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
current-Time String(Generalised-Time) - 0-1 -
delete-Error-Info Enum(Delete-Error-Info) - 1 -

Table 5-63 OM Attributes of a Delete-Error

managed-Object-Class
The class of the managed object that was attempted to be deleted.

managed-Object-Instance
The instance of the managed object that was attempted to be deleted.

current-Time
Time at which the response was generated.

delete-Error-Info
The error notification for the operation. Its value can only be:

access-denied
The requested delete operation was not performed for security reasons.

5.4.36 Error-Info

An instance of OM class Error-Info provides the additional information for an Action-Error-
Info.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attribute listed below. Exactly one OM attribute is permitted in an instance of this OM
class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
action-Type Object(Action-Type-Id) - 0-1 -
action-Argument Object(No-Such-Argument) - 0-1 -
argument-Value Object(Invalid-Argument-Value) - 0-1 -

Table 5-64 OM Attributes of an Error-Info

Systems Management: Management Protocols API (XMP) 157

CMIS Management Service Package Interface Class Definitions

action-Type
The action type, which indicates the action attempted to be performed.

action-Argument
The action type for which the argument was not expected and optionally the correlated
managed object class.

argument-Value
The action type and optionally the argument value that was inappropriate.

5.4.37 Event-Info

An instance of OM class Event-Info is the reply to an event report.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
event-Type Object(Event-Type-Id) - 1 -
event-Info any - 0-1 -

Table 5-65 OM Attributes of an Event-Reply

event-Type
The event type, which indicates a particular event reported.

event-Info
It contains the reply information to the event report. The syntax and semantics of this OM
attribute depend upon the event reported. The OM value syntax, noted any which is
allowed for this OM attribute, is determined by the value of the event-Type OM attribute in
accordance with the rules expressed in Section 3.5.2 on page 29.

5.4.38 Event-Reply

An instance of OM class Event-Reply is the reply to an event report.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
event-Type Object(Event-Type-Id) - 1 -
event-Reply-Info any - 0-1 -

Table 5-66 OM Attributes of an Event-Reply

event-Type
The event type, which indicates a particular event reported.

event-Reply-Info
It contains the reply information to the event report. The syntax and semantics of this OM
attribute depend upon the event reported. The OM value syntax, noted any which is
allowed for this OM attribute, is determined by the value of the event-Type OM attribute in
accordance with the rules expressed in Section 3.5.2 on page 29.

158 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.39 Event-Type-Id

An instance of OM class Event-Type-Id represents an identifier of an event report.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
global-Form String(Object-Identi fier) - 0-1 -
local-Form Integer - 0-1 -

Table 5-67 OM Attributes of an Event-Type-Id

global-Form
A registered event type identifier.

local-Form
Where this alternative is used, the permissible values for the integers and their meanings are
defined as part of the application context or the package in which they are used.

5.4.40 Filter-Item

An instance of OM class Filter-Item is a component of a CMIS-Filter. It is an assertion about the
existence or value of a single attribute type in a managed object.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below. Exactly one OM attribute is permitted in an instance of this OM
class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
equality Object(Attribute) - 0-1 -
substrings Object(Substrings) - 0 or more -
greater-Or-Equal Object(Attribute) - 0-1 -
less-Or-Equal Object(Attribute) - 0-1 -
present Object(Attribute-Id) - 0-1 -
subset-Of Object(Attribute) - 0-1 -
superset-Of Object(Attribute) - 0-1 -
non-Null-Set-Intersection Object(Attribute) - 0-1 -

Table 5-68 OM Attributes of a Filter-Item

The value of the filter item is undefined if:

• The attribute-Id is not known.

• The attribute-Value does not conform to the attribute syntax defined for that attribute
identifier.

Access control restrictions may also cause the value to be undefined.

equality
The filter item is true if the managed object contains an attribute of the specified type, the
attribute value of which is equal to that asserted (according to the equality matching rule in
force), and false otherwise.

Systems Management: Management Protocols API (XMP) 159

CMIS Management Service Package Interface Class Definitions

substrings
The filter is true if the managed object contains an attribute of the specified attribute type
the value of which contains all of the specified substrings in the given order, and false
otherwise. Those specified values depend on the attribute type.

greater-or-equal
The filter item is true if and only if the managed object contains an attribute of the specified
type and the asserted value is greater than or equal to the attribute value (using the
appropriate ordering algorithm).

less-or-equal
The filter item is true if and only if the managed object contains an attribute of the specified
type and the asserted value is less than or equal to the attribute value (using the appropriate
ordering algorithm).

present
The filter is true if the managed object contains an attribute of the specified type, and false
otherwise.

subset-Of
The filter item is true if and only if the managed object contains a set-valued attribute of the
specified type and the asserted value is a subset (in the mathematical sense) of the attribute
value.

superset-Of
The filter item is true if and only if the managed object contains a set-valued attribute of the
specified type and the asserted value is a superset (in the mathematical sense) of the
attribute value.

non-Null-Set-Intersection
The filter item is true if and only if the managed object contains a set-valued attribute of the
specified type and the intersection of the asserted value with the attribute value is not
empty.

5.4.41 Get-Info-Status

An instance of OM class Get-Info-Status represents a component of the returned attribute list in
a get operation.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of that OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
attribute-Id-Error Object(Attribute-Id-Error) - 0-1 -
attribute Object(Attribute) - 0-1 -

Table 5-69 OM Attributes of a Get-Info-Status

attribute-Id-Error
The attribute type along with the error notification of an attribute which could not be read.
The possible error notification is either access-denied or no-such-attribute.

attribute
The couple attribute type and value of an attribute read.

160 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.42 Invalid-Argument-Value

An instance of OM class Invalid-Argument-Value represents the information associated to an
Invalid Argument Value error notification.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of that OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
action-Value Object(Action-Info) - 0-1 -
event-Value Object(Event-Info) - 0-1 -

Table 5-70 OM Attributes of an Invalid-Argument-Value

action-Value
The action type and the wrong argument value (if any) of the action that could not be
performed.

event-Value
The event type and the wrong event information value (if any) of the event reported.

5.4.43 Missing-Attribute-Value

An instance of OM class Missing-Attribute-Value represents a list of attribute identifiers which
values are missing . Only significant for a create operation.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
set-Of-Attribute-Id Object(Attribute-Id) - 1 or more -

Table 5-71 OM Attributes of a Missing-Attribute-Value

set-Of-Attribute-Id
A list of attribute type identifiers.

5.4.44 Modification

An instance of OM class Modification specifies the modification on an attribute.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
modify-Operator Integer - 0-1 -
attribute-Id Object(Attribute-Id) - 1 -
attribute-Value any - 0-1 -

Table 5-72 OM Attributes of a Modification

Systems Management: Management Protocols API (XMP) 161

CMIS Management Service Package Interface Class Definitions

attribute-Id
The attribute type, which indicates the class of information given by this attribute, or the
identifier of an attribute group. An attribute group identifier can only be specified when the
set-to-default modify operator is specified.

attribute-Value
The attribute value(s) to be used in the modification. It must be present if modify-Operator
is not set-to-default.

The representation of the attribute value depends on the attribute type. The OM value
syntax, noted any which is allowed for this OM attribute, is determined by the value of the
attribute-Id OM attribute in accordance with the rules expressed in Section 3.5.1 on page 28.

modify-Operator
Specifies the way in which the attribute value(s) (if supplied) is/are to be applied to the
attribute. The possible operators are

replace
The attribute value(s) specified are used to replace the current value(s) of the attribute.

add-values
The attribute value(s) specified are to be added to the current value(s) of the attribute.
This operator is only applied to a set-valued attribute and performs a set union (in the
mathematical sense) between the current value(s) of the attribute and the attribute
value(s) specified.

remove-values
The attribute value(s) specified are be removed from the current value(s) of the
attribute. This operator is only applied to a set-valued attribute and performs a set
difference (in the mathematical sense) between the current value(s) of the attribute and
the attribute value(s) specified. Value(s) specified in the attribute value parameter
which are not in the current value(s) of the attribute do not cause an error to be
returned.

set-to-default
When this operator is applied to a single-valued attribute, the value of the attribute is
set to its default value. When this operator is applied to a set-valued attribute, the
value(s) of the attribute is/are set to their default value and only as many values as
defined by the default are assigned. When this operator is applied to an attribute
group, each member of the attribute group is set to its default value(s). If there is no
default value defined, the invalid operation error is to be returned.

The modify operator is optional, and if it is not specified, the replace operator is assumed.

5.4.45 Modification-List

An instance of OM class Modification-List represents a component of the modification list in a
set operation.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attribute listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
modification-List Object(Modification) - 0 or more -

Table 5-73 OM Attributes of a Modification-List

162 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

modification-List
A list containing zero or more individual Modification entries.

5.4.46 Multiple-Reply

An instance of OM class Multiple-Reply is the completed result of a Get/ Set action or Delete
synchronous confirmed operation.
Multiple replies to a single management operation may only occur if the invoker selects multiple
managed objects, or request an action on a single managed object in which the action is defined
to produce multiple responses.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below. OM-class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
replies Object(CMIS-Linked-Reply-Argument) - 1 or more -

Table 5-74 OM Attributes of a Multiple-Reply

replies
Result(s) of a Get/ Set action or Delete operation.

5.4.47 No-Such-Action

An instance of OM class No-Such-Action is the information associated to a No Such Action
error notification.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 1 -
action-Type Object(Action-Type-Id) - 1 -

Table 5-75 OM Attributes of a No-Such-Action

action-Type
The action type, which indicates a particular action.

managed-Object-Class
Identifies the managed object class the action is related to.

5.4.48 No-Such-Action-Id

An instance of OM class No-Such-Action-Id is an alternative of the information associated to a
No Such Argument error notification.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Systems Management: Management Protocols API (XMP) 163

CMIS Management Service Package Interface Class Definitions

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
action-Type Object(Action-Type-Id) - 1 -

Table 5-76 OM Attributes of a No-Such-Action-Id

action-Type
The action type which indicates a particular action.

managed-Object-Class
Identifies the managed object class the action is related to.

5.4.49 No-Such-Argument

An instance of OM class No-Such-Argument represents the information associated to a No Such
Argument error notification.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
action-Id Object(No-Such-Action-Id) - 0-1 -
event-Id Object(No-Such-Event-Id) - 0-1 -

Table 5-77 OM Attributes of a No-Such-Argument

action-Id
The action type and optionally the managed object class identifier of the action.

event-Id
The event type and optionally the managed object class which the event is related to.

5.4.50 No-Such-Event-Id

An instance of OM class No-Such-Event-Id is an alternative of the information associated to a
No Such Argument error notification.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 0-1 -
event-Type Object(Event-Type-Id) - 1 -

Table 5-78 OM Attributes of a No-Such-Event-Id

event-Type
The event type which indicates a particular event reported.

managed-Object-Class
Identifies the managed object class the event is related to.

164 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.51 No-Such-Event-Type

An instance of OM class No-Such-Event-Type is the information associated to a No Such Event
Type error notification.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 1 -
event-Type Object(Event-Type-Id) - 1 -

Table 5-79 OM Attributes of a No-Such-Event-Type

event-Type
The event type which indicates a particular event reported.

managed-Object-Class
Identifies the managed object class the event is related to.

5.4.52 Object-Class

An instance of OM class Object-Class represents an identifier of a managed object class.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
global-Form String(Object-Identi fier) - 0-1 -
local-Form Integer - 0-1 -

Table 5-80 OM Attributes of an Object-Class

global-Form
A registered object class identifier.

local-Form
Where this alternative is used, the permissible values for the integers and their meanings are
defined as part of the application context in which they are used.

5.4.53 Object-Instance

An instance of OM class Object-Instance represents a name of a managed object instance.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of this OM class.

Systems Management: Management Protocols API (XMP) 165

CMIS Management Service Package Interface Class Definitions

Value Value Value Value
OM Attribute Syntax Length Number Initially
distinguished-Name Object(DS-DN) - 0-1 -
local-DN Object(DS-DN) - 0-1 -
non-Specific-Form String(Octet) - 0-1 -

Table 5-81 OM Attributes of an Object-Instance

distinguished-Name
The sequence of RDNs that define the path through the MIT from its root to the managed
object that the Object-Instance denotes. The distinguished-Name of the root of the
Management Information Tree is the null name (no DS-RDNs values). The order of the
values is significant: the first value is closest to the root, and the last value is the DS-RDN of
the object.

This name may be considered as being in two parts:

• The initial part is interpreted as a system identifier relative to the global root of the
naming structure, and identifies the system managed object to which the operation is to
be directed.

• The final part is then interpreted relative to this system managed object and allows to
identify a managed object instance within the system.

The initial part may be used as input to the Directory Service to get the AE-title and the
address of the agent that is in charge of that managed object instance.

local-DN
This local form specifies the name with respect to some predefined context. The name is
interpreted relative to the system managed object corresponding to the program designed, if
any, in the used session as responder.

non-Specific-Form
Any other free form to designate a managed object instance unambiguously.

5.4.54 Processing-Failure

An instance of OM class Processing-Failure is the error notification of a processing failure.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
managed-Object-Class Object(Object-Class) - 1 -
managed-Object-Instance Object(Object-Instance) - 0-1 -
specific-Error-Info Object(Specific-Error-Info) - 1 -

Table 5-82 OM Attributes of a Processing-Failure

managed-Object-Class
The class of the managed object the error notification is related to.

managed-Object-Instance
The instance of the managed object the error notification is related to. It must be present if
conveyed in a linked reply of an action.

166 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

specific-Error-Info
Contains information of this error notification.

5.4.55 Scope

An instance of OM class Scope indicates the subtree, rooted at the base managed object, which is
to be searched. The default scope is the base object alone.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute which specifies the
level of search is permitted in an instance of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
named-Numbers Integer - 0-1 -
individual-Levels Integer - 0-1 -
base-To-Nth-Level Integer - 0-1 -

Table 5-83 OM Attributes of a Scope

named-Numbers
Indicates the usual levels. Its value is one of:

base-Object
The base object alone.

first-Level-Only
The first level subordinates of the base object.

whole-Subtree
The base object and all of its subordinates.

individual-Levels
Positive integer indicates the level to be selected.

base-To-Nth-Level
Positive integer N indicates the depth, that is, from the range of levels (0 - N) that is to be
selected. The base object and all of its subordinates down to and including the Nth level.

With individual levels and base to Nth levels, a value of 0 has the same semantics as base object
alone.

With individual levels, a value of 1 has the same semantics as first level only.

5.4.56 Set-Info-Status

An instance of OM class Set-Info-Status represents a component of the returned attribute list in
a set operation.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
one of the OM attributes listed in the table below. Exactly one OM attribute is permitted in an
instance of this OM class.

Systems Management: Management Protocols API (XMP) 167

CMIS Management Service Package Interface Class Definitions

Value Value Value Value
OM Attribute Syntax Length Number Initially
attribute-Error Object(Attribute-Error) - 0-1 -
attribute Object(Attribute) - 0-1 -

Table 5-84 OM Attributes of a Set-Info-Status

attribute-Error
The attribute type along with the error notification of an attribute which could not be
modified.

attribute
The couple attribute type and value of an attribute modified.
Note that a security problem arises when returning the (set-to-default) value of an attribute that was
set to its default value.

5.4.57 Setof-Attribute

An instance of OM class Setof-Attribute represents an identifier of a managed object attribute
list.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
attribute-Id Object(Attribute) - 0 or more -

Table 5-85 OM Attribute of a Setof-Attribute

attribute-Id
A list of zero or more attribute identifiers.

5.4.58 Setof-CMIS-Filter

An instance of OM class Setof-CMIS-Filter is a list of CMIS-Filters

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
filter Object(CMIS-Filter) - 0 or more -

Table 5-86 OM Attribute of a Setof-Get-Info-Status

filter
A list of zero or more CMIS-Filters.

168 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

5.4.59 Setof-Get-Info-Status

An instance of OM class Setof-Get-Info-Status represents a component of the returned attribute
list in a get operation.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
get-Info-Status Object(Get-Info-Status) - 0 or more -

Table 5-87 OM Attribute of a Setof-Get-Info-Status

get-Info-Status
A list containing zero or more individual Get-Info-Status values.

5.4.60 Setof-Set-Info-Status

An instance of OM class Setof-Set-Info-Status represents a component of the returned attribute
list in a set operation.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attribute listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
set-Info-Status Object(Set-Info-Status) - 0 or more -

Table 5-88 OM Attribute of a Setof-Get-Info-Status

set-Info-Status
A list containing zero or more individual Set-Info-Status values.

5.4.61 Specific-Error-Info

An instance of OM class Specific-Error-Info is a single error type and its associated information.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
error-Id String(Object-Identi fier) - 1 -
error-Info any - 1 -

Table 5-89 OM Attributes of a Specific-Error-Info

error-Id
Indicates a particular error.

error-Info
The extra information when necessary to further define the nature of the error notified. The
syntax and semantics of this OM attribute depend upon the error notified. The OM value
syntax, noted any which is allowed for this OM attribute, is determined by the value of the

Systems Management: Management Protocols API (XMP) 169

CMIS Management Service Package Interface Class Definitions

Error-Id OM attribute in accordance with the following rules:

• The first possibility is that the error type and the representation of the corresponding
values is defined in a package, such as the selected error types that are defined in the
Management Content packages (for example, see reference DMI). In this case, error
values are represented as specified. Additional error types and their OM representations
may be defined in future versions of this specification or by vendor extensions.

• The second possibility is that the error type is not known but the value is an ASN.1
simple type, such as Integer-Type or String-Type, then the value is represented in the
corresponding type specified in the XOM specification (see reference XOM).

• The last possibility is that the error type is not known and the value is an ASN.1
structured type. In this case, the value is represented in BER (with OM syntax
String(Encoding)) .

In cases 1 and 2, the API provides automatic encode/decode functionality.

Where error values have OM syntax String(*) , they may be long segmented strings, and
the functions OM_Read() and OM_Write() should be used to access them.

5.4.62 Substring

An instance of OM class Substring identifies the string attribute involved in a substrings
assertion of a Filter-Item.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
attribute-Id Object(Attribute-Id) - 1 -
substring Any - 1 -

Table 5-90 OM Attributes of a Substring

attribute-Id
The attribute type, which indicates the class of information given by this attribute.

substring
The attribute values. The representation of the attribute value is determined by the attribute
type.

5.4.63 Substrings

An instance of OM class Substrings identifies the string involved in a substrings assertion of a
Filter-Item.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below. Exactly one OM attribute is permitted in an instance of this OM
class.

170 X/Open CAE Specification (1994)

Interface Class Definitions CMIS Management Service Package

Value Value Value Value
OM Attribute Syntax Length Number Initially
initial-Substring Object(Substring) - 0-1 -
any-Substring Object(Substring) - 0-1 -
final-Substring Object(Substring) - 0-1 -

Table 5-91 OM Attributes of Substrings

initial-Substring
If present, the substring that is to match the initial portion of the attribute value.

any-Substring
If present, a set of substrings, each of them being to match a portion of the attribute value.

final-Substring
If present, the substring that is to match the final portion of the attribute value.

Systems Management: Management Protocols API (XMP) 171

SNMP Management Service package Interface Class Definitions

5.5 SNMP Management Service package

5.5.1 Introduction

This section defines, in alphabetical order, the OM classes that constitute the SNMP
Management Service package (SNMP).

The Object-Identifier associated with the SNMP Management Service package is {iso(1) member-
national-body(2) bsi(826) disc(0) xopen(1050) xmp-cae(6) snmp(3)}. This Object-Identifier is
represented by the constant SNMP-Package (MP_SNMP_PKG).

The constants which represent the OM classes and OM attributes in the C binding are defined in
the <xmp_snmp.h> header.

5.5.2 SNMP Management Service Class Hierarchy

The hierarchical organisation of the OM classes defined in this section is shown in Section 5.2.4
on page 109, and indicates which OM classes inherit additional OM attributes from their
superclasses. Subclassification is indicated by indentation, and the names of abstract OM classes
are rendered in italics. Thus, for example, the concrete class SNMP-Service-Error is an
immediate subclass of the abstract class Service-Error which in turn is an immediate subclass of
the abstract class Error which in turn is an immediate subclass of the abstract class Object. The
Encode function may apply only on the OM class Object-Syntax . The Create function applies to
all concrete OM classes.

5.5.3 Application-Syntax

An instance of OM class Application-Syntax is the data value of an application-wide type, the
syntax of which corresponds to defined ASN.1 types which are constructed on ASN.1 primitive
types.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed in the table below. Exactly one OM attribute is permitted in an instance
of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
address Object(Network-Address) - 0-1 -
counter Integer - 0-1 -
gauge Integer - 0-1 -
ticks Integer - 0-1 -
arbitrary String(Octet) - 0-1 -

Table 5-92 OM Attributes of an Application-Syntax

address
Represents an address from one of possibly several protocol families.

counter
A data value of syntax Integer .
It represents a non-negative integer which monotonically increases until it reaches a
maximum value, when it wraps around and starts increasing again from zero. The
maximum value for counters is 232-1 (i.e. 4294967295)

172 X/Open CAE Specification (1994)

Interface Class Definitions SNMP Management Service package

gauge
A data value of syntax Integer .
It represents a non-negative integer which may increase or decrease, but which latches at a
maximum value. The maximum value for gauges is 232-1 (i.e. 4294967295)

ticks
A data value of syntax Integer .
It represents a non-negative integer which counts the time in hundredths of a second since
some epoch.

arbitrary
A data value of syntax String .
The capability to pass arbitrary ASN.1 syntax. A value is encoded using the ASN.1 basic
rules into a string of octets. This, in turn, is encoded as an OCTET STRING, in effect
"double-wrapping" the original ASN.1 value.

5.5.4 Object-Syntax

An instance of OM class Object-Syntax is the data value of any object type, the syntax of which
corresponds to either a simple type or an application-wide type or a building set/sequence of
them.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed in the table below. Exactly one OM attribute is permitted in an instance
of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
simple Object(Simple-Syntax) - 0-1 -
application-wide Object(Application-Syntax) - 0-1 -

Table 5-93 OM Attributes of an Object-Syntax

simple
A data value of simple type.

application-wide
A data value of application-wide syntax.

5.5.5 Pdu

An instance of OM class Pdu is the contents of an SNMP Protocol Data Unit.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
request-ID Integer - 1 -
error-Status Integer - 1 -
error-Index Integer - 1 -
variable-Bindings Object(Variable-Bindings) - 1 -

Table 5-94 OM Attributes of a Pdu

Systems Management: Management Protocols API (XMP) 173

SNMP Management Service package Interface Class Definitions

request-ID
The integer which identifies this Pdu, used to distinguish among outstanding requests.

error-Status
A non-zero value which identifies any error condition associated with this Pdu. Possible
values of error-Status are:

• gen-err

• read-only

• bad-value

• no-such-name

• too-big

• no-error

error-Index
Present only if error-Status is non-zero, error-Index optionally identifies which variable in the
variable-Bindings attribute caused the error.

variable-Bindings
A list of variable names and corresponding values. Some Pdus are concerned only with the
name of the variable and not its value (for example, the get-Request Pdu). In this case the
value portion of the binding is ignored.

5.5.6 Pdus

An instance of OM class Pdus is an SNMP Protocol Data Unit.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed in the table below. Exactly one OM attribute is permitted in an instance
of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
get-Request Object(Pdu) - 0-1 -
get-Next-Request Object(Pdu) - 0-1 -
get-Response Object(Pdu) - 0-1 -
set-Request Object(Pdu) - 0-1 -
trap Object(Trap-Pdu) - 0-1 -

Table 5-95 OM Attributes of Pdus

get-Request
An SNMP Get-Request PDU.

get-Next-Request
An SNMP Get-Next-Request PDU.

get-Response
An SNMP Get-Response PDU, returned as a result to Get-Request, Get-Next-Request,
Set-Request PDUs.

set-Request
An SNMP Set-Request PDU.

174 X/Open CAE Specification (1994)

Interface Class Definitions SNMP Management Service package

trap
An SNMP Trap PDU.

5.5.7 Simple-Syntax

An instance of OM class Simple-Syntax is the data value of a Simple type, the syntax of which
corresponds to every ASN.1 primitive types. Only the ASN.1 primitive types INTEGER, OCTET
STRING, OBJECT IDENTIFIER, and NULL are permitted. These are sometimes referred to as
non-aggregate types.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed in the table below. Exactly one OM attribute is permitted in an instance
of this OM class.

Value Value Value Value
OM Attribute Syntax Length Number Initially
number Integer - 0-1 -
string String(Octet) - 0-1 -
object String(Object-Identi fier) - 0-1 -
empty Null - 0-1 -

Table 5-96 OM Attributes of a Simple-Syntax

number
A data value of syntax Integer . If an enumerated INTEGER is listed as an object type,
then a named-number having the value 0 shall not be present in the list of enumerations.
Use of this value is prohibited.

empty
No data value syntax.

object
A data value of syntax Object-Identifier .

string
A data value of syntax String .

5.5.8 Trap-Pdu

An instance of OM class TraoPdu is an SNMP Trap Protocol Data Unit.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
enterprise String(Object-Identi fier) - 1 -
agent-Addr Object(Network-Address) - 1 -
generic-Trap Integer - 1 -
specific-Trap Integer - 1 -
time-Stamp Integer - 1 -
variable-Bindings Object(Variable-Bindings) - 1 -

Table 5-97 OM Attributes of a Trap-Pdu

Systems Management: Management Protocols API (XMP) 175

SNMP Management Service package Interface Class Definitions

enterprise
The identity of the object type generating the trap.

agent-Addr
The network address of the object generating the trap.

generic-Trap
Identifies the type of generic trap. Possible values of the attribute generic-Trap are:

• enterprise-specific

• egp-neighbor-loss

• authentication-failure

• link-up

• link-down

• warm-start

• cold-start

specific-Trap
A sub-identifier for enterprise-specific generic-Trap types. Present but ignored if the
generic-Trap type is not enterprise-specific.

time-Stamp
The time elapsed between the last (re)initialisation of the network entity and the generation
of the trap.

variable-Bindings
A list of variable names and corresponding values which are ‘‘interesting’’ (that is, relevant
to the trap).

5.5.9 Var-Bind

An instance of OM class Var-Bind is the pairing of the name of a variable to the variable’s value.
The term variable refers to an instance of a managed object.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
name String(Object-Identi fier) - 1 -
value Object(Object-Syntax) - 1 -

Table 5-98 OM Attributes of a Var-Bind

name
The identifier of the object type.

value
The value of the designated object.

176 X/Open CAE Specification (1994)

Interface Class Definitions SNMP Management Service package

5.5.10 Variable-Bindings

An instance of OM class Variable-Bindings is a set of instances of the OM class Var-Bind.

An instance of this OM class has the OM attributes of its superclasses - Object - and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
var-Bind Object(Var-Bind) - 0 or more -

Table 5-99 OM Attributes of Variable-Bindings

var-Bind
A sequence of zero or more Var-Bind OM objects.

Systems Management: Management Protocols API (XMP) 177

Interface Class Definitions

178 X/Open CAE Specification (1994)

Chapter 6

Errors

6.1 Introduction
This chapter defines the errors that can arise in the use of the interface and describes the
methods used to report them. There are basically two types of errors:

• Management Protocol Standards Errors

• API Function Call Errors.

Management Protocol Standards Errors are defined within a management protocol specification
such as ISO/IEC 9596-1 for CMIP and RFC1157 for SNMP. This type of error is referred to as a
Service-Error. Service-Errors may be created by applications as arguments on response function
calls (for example, Get_rsp()) and appear as results on request function calls (for example,
Get_req()) with a status of success [MP_SUCCESS]. Service-Errors also appear as results of
Receive() with a status of success [MP_SUCCESS] and an Operation-Notification-Status of
success [MP_SUCCESS]. A Service-error is a private object containing details of the problem
which occurred and including other relative information.

Service Errors are reported using three OM classes, two of which are subclasses of the OM class
Error:

• CMIS-Service-Error, defined as part of the CMIS Package and discussed in Chapter 5.

• CMIS-Service-Reject, defined as part of the CMIS Package and discussed in Chapter 5.

• Pdus, defined as part of the SNMP Package and discussed in Chapter 5.

API function call errors are defined by this specification. This type of error is referred to as a
Function-Call-Error . and it has sub-categories of Communications-Errors , Library-Errors and
System-Errors.

Function-Call-Errors are reported to the application program by means of the Status which is a
result of every function (it is the function result in the C language binding). A function which
completes successfully returns the value success ((MP_status)0) [MP_SUCCESS], whilst one
which is not successful returns an error. The error is an integer. In a few cases, additional
function calls can be used to gain additional error information as discussed below.

The error constants [MP_NO_WORKSPACE], [MP_INVALID_SESSION], and
[MP_INSUFFICIENT_RESOURCES] can be returned by all functions except Error_message() and
Initialize ():

• [MP_NO WORKSPACE] should be returned if Initialize () is not invoked before calling any
other function.

• [MP_INVALID_SESSION} should be returned if an invalid session object is passed into the
function.

• [MP_INSUFFICIENT_RESOURCES] should be returned if the function is unable to complete
due to resource problems, for example, lack of memory.

The function call Get_Last_Error() may be used to report an additional integer value when the
error constant is [MP_E_COMMUNICATIONS_PROBLEM], [MP_E_BROKEN_SESSION] or
[MP_E_SYSTEM].

Systems Management: Management Protocols API (XMP) 179

Introduction Errors

The function call Validate_Object () may be used to report an additional private object containing
details related to an error constant of [MP_E_BAD_ARGUMENT].

The situation is more complicated for asynchronous operations, because these can fail at two
stages: either before the remote operation is started, or during it. The first type is reported
immediately in the status of the invoking function, whilst the second is returned as the
Operation-Notification-Status result of a later call to Receive().

Errors are classified into several OM subclasses of the OM class Error.

This specification defines the subclasses CMIS-Service-Error and CMIS-Service-Reject in the
CMIS package to represent errors of CMIS service, and the subclass Pdus in the SNMP package
to represent errors of SNMP service. (This subclass is not a subclass of the OM class Error).

The Standards specify different kinds of service errors:

• CMIS service errors:

access-denied,
class-instance-conflict,
complexity-limitation,
duplicate-managed-object-instance,
get-list-error,
invalid-argument-value,
invalid-attribute-value,
invalid-filter,
invalid-operation,
invalid-operator,
invalid-scope,
invalid-object-instance,
missing-attribute-value,
mistyped-operation,
no-such-action,
no-such-attribute,
no-such-argument,
no-such-event-type,
no-such-invoke-id,
no-such-object-class,
no-such-object-instance,
no-such-reference-object,
operation-cancelled,
processing-failure,
set-list-error,
synchronization-not-supported.

• CMIS service rejects:

duplicate-invocation,
mistyped-argument,
resource-limitation,
unrecognized-operation.

180 X/Open CAE Specification (1994)

Errors Introduction

• SNMP service errors:

too-big,
no-such-name,
bad-value,
read-only,
gen-err.

The OM classes defined in this chapter are part of the Common Management Service package
introduced in Section 5.3 on page 110.

In order to allow automatic connection management (that is, transparent connection
establishment and release), the interface may not communicate with a program when Bind() is
called, but may defer it until a management operation or management notification is requested.
Because of this flexibility, all functions can return the same errors as Bind(). For example, a Get
operation may return an authentication error because the connection was deferred until access
was actually needed.

Systems Management: Management Protocols API (XMP) 181

OM Class Hierarchy Errors

6.2 OM Class Hierarchy
The hierarchical organisation of the OM classes defined in this chapter is shown in Section 5.2.2
on page 108, and indicates how OM attributes are inherited from superclasses. Subclassification
is indicated by indentation, and the names of abstract OM classes are rendered in italics.

Thus, for example, the concrete OM class CMIS-Service-Error is an immediate subclass of the
abstract OM class Error, which in turn is an immediate subclass of the abstract OM class Object.

An Action-Error-Info or an Attribute-Id-Error or an Attribute-Error as a Delete-Error defined in
the package CMIP is not a subclass of Error because it is not reported as a Status result for the
whole operation, though it expresses a problem encountered on a per managed object basis or
on a per attribute basis.

6.2.1 Bad-Argument

An instance of OM class Bad-Argument reports additional information for locating the first
detected bad OM sub-object and bad OM attribute.

An instance of this OM class has the OM attributes of its superclasses - Object- and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
OM-Subobject Object(*) - 1 -
OM-Class String(Object-Identi fier) - 1 -
OM-Attribute Integer - 1 -
OM-Index Integer - 1 -
OM-Bad-Argument Enum(Bad-Argument) - 1 -

Table 6-1 OM Attributes of a Bad-Argument

The OM attributes of a Bad-Argument are:

OM-subobject
The handle to the first detected bad OM-subobject in the tree.

OM-Class
The Object-Identifier of the OM-subobject. This information is redundant but convenient.

OM-Attribute
The attribute name of the first bad OM-attribute of the OM-subobject, or of the first missing
mandatory OM-attribute.

OM-Index
The index of the first bad occurrence of this OM-attribute (starting from zero). Takes the
value zero in the case of a missing mandatory OM attribute .

OM-Bad-Argument The additional error. Its value is one of:

missing-attribute
The attribute is required, but is missing.

invalid-attribute
The attribute is invalid.

exclusive-attribute
This attribute is exclusive with a previous one.

182 X/Open CAE Specification (1994)

Errors OM Class Hierarchy

not-multi-valued
This attribute is not multi-valued, but more than one value was found.

bad-syntax
This attribute has a bad syntax.

bad-value
This attribute has a bad value.

6.2.2 Communications-Error

Communications errors report an error occurring in the other OSI services supporting the
Management Information Services.

Communications errors include those arising in Remote Operation, Association Control,
Presentation, Session, and Transport.

The following error constants are considered Communications-Error values:

communications-problem
A communication problem with the peer entity (Manager or Agent) involved in the current
operation/notification, occurred. No more results will be returned for the outstanding
operation or notification. This problem may be temporary.

If a synchronous call has returned a communications problem, additional information may
be received by issuing a Receive() on the related session. For example, synchronous calls
may fail because a connected session has been aborted by the remote peer. The abort
indication would be received via Receive().

The OM attribute parameter may be present with additional information.

broken-session
A fatal access problem to the MIS provider occurred. The involved session is abruptly
terminated (no longer usable). No more results will be returned for the outstanding
operation or notification. Further usage of this session would return the Library-Error
session-terminated.

The OM attribute parameter may be present with additional information.

An additional integer value may be returned if the application issues the Get-Last-Error() call.
The value of the integer is MIS-provider specific. It is not possible to standardise the values
since there is no standard for the MIS provider. However, most MIS providers provide some
error value when a communications error occurs.

An applications program might use this to check whether the MIS provider has had a fatal error,
some temporary problem, or whether a request was made for something which this MIS
provider does not support. Most MIS providers offer a range of error codes which define specific
error conditions of this nature.

Systems Management: Management Protocols API (XMP) 183

OM Class Hierarchy Errors

6.2.3 Error

The OM class Error comprises the parameters common to all errors.

It is an abstract OM class, which has the OM attributes of its superclasses - Object - and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
problem Integer - 1 -
parameter any - 0-1 -

Table 6-2 OM Attributes of an Error

Details of errors are returned in an instance of a subclass of this OM class. Each such subclass
represents a particular kind of error, and is one of:

• CMIS-Service-Error

• CMIS-Service-Reject.

The OM attributes of an Error are:

problem
Gives details of the error. A number of possible values are defined, but implementations
may define additional values. Implementations will not return other values for error
conditions described in this chapter. Each of the standard values is listed and is described
under the relative error OM class.

parameter
This OM attribute supplies additional information accompanying the service error
notification. Its OM value syntax, noted any, which is allowed for this OM attribute is
determined by the particular value of the OM attribute value problem.

Some error notifications do not define any additional information. In this case, the OM
attribute parameter may be absent.

6.2.4 Library-Error

Library errors report an error detected by the interface function library.

Each function has several possible errors which can be detected by the library itself, and which
are returned directly by the subroutine. These errors occur when the library itself is incapable of
performing an action, submitting a service request, or parsing a response from the system
management service.

The following error constants are considered Library-Error values that identify the particular
library error which has occurred. The ERRORS section of each function description lists just
those which that function can return.

The possible cause of the failure and their associated information are:

bad-address
An invalid address was supplied.

bad-argument
A bad argument was supplied. The application program may use the Validate-Object ()
function call to receive more detailed information.

184 X/Open CAE Specification (1994)

Errors OM Class Hierarchy

bad-class
The OM class of an argument or a result or a linked-reply or an error is not supported for
this operation.

bad-context
An invalid context argument was supplied.

bad-error
A bad service-error was supplied.

bad-linked-reply
A bad linked-reply was supplied.

bad-procedural-use
The procedural use of linked reply is not compliant with the standards, or the permitted
service primitive chaining is violated.

bad-result
A bad result was supplied.

bad-session
An invalid session was supplied.

bad-title
An invalid title was supplied.

bad-workspace
An invalid workspace argument was supplied.

miscellaneous
A miscellaneous error occurred in interacting with the system management service. This
error will be returned if the interface cannot clear a transient system error by retrying the
affected system call.

no-such-operation
The library has no knowledge of the designated operation or notification in progress or that
the response mismatches the invoked operation/notification.

not-supported
An attempt was made to use optional functionality, which is not available in this
implementation or which was not agreed for use on that session.

reply-limit-exceeded
The maximum number of linked replies about which the requested service should return
information is reached.

session-terminated
The session is terminated and thus results of outstanding operation are no longer available.

time-limit-exceeded
The maximum elapsed time within the requested service should be provided is reached.

too-many-operations
No more management operations can be performed until at least one asynchronous
operation has completed.

too-many-sessions
No more management sessions can be started.

Systems Management: Management Protocols API (XMP) 185

OM Class Hierarchy Errors

6.2.5 Service-Error

The OM classes CMIS-Service-Error, CMIS-Service-Reject, and Pdus report management errors
related to the provision of service.

This specification defines OM classes for reporting CMIS service errors, each of which has the
OM attributes of its superclasses - Object, Error- and no other attributes:

CMIS-Service-Error
Corresponding to errors of the CMIS service.

CMIS-Service-Reject
Corresponding to errors of the ROSE service.

This specification uses the OM class Pdus, defined in the SNMP package, for reporting SNMP
service errors.

These OM classes are used to report errors in compliance with the respective standard.

6.2.6 System-Error

System errors report an error occurring in the underlying operating system.

The error constant [MP_E_SYSTEM_ERROR] is the only value in this Function-Call-Error
category.

An additional integer value may be returned if the application issues the Get_Last_Error()
function call. Its value is the same as that of errno defined in the C language.

The standard names of system errors are defined in the X/Open Portability Guide (see reference
XPG, and additional names may be implementation-defined.

If a transient error occurs ([EINTR] or [EAGAIN]), implementations will retry the affected
operation and will not report these errors. If such an error persists they may report the Library
error (miscellaneous) or an implementation-defined library error.

186 X/Open CAE Specification (1994)

Chapter 7

C Headers

This chapter sets out the symbols which are defined in the C headers.

Where the values of the symbols are indicated, the values are an integral part of the interface.

Where a value is not given, the value on a particular system will be determined by the vendor or
by an administrator.

7.1 <xmp.h>
The <xmp.h> header declares the interface functions, the structures passed to and from those
functions, and the defined constants used by the functions and structures.

All application programs which include this header must first include the OSI-Abstract-Data
Manipulation header <xom.h>.

All Object Identifiers are represented by constants defined in the headers. These constants are
used with the macros defined in the XOM API (see reference XOM). A constant is defined to
represent the Object Identifier of the Common Management Service package:

OMP_O_MP_COMMON_PKG
"\x2a\x86\x3a\x00\x88\x1a\x06\x01"

Constants are also defined to represent the Object Identifiers for Features defined by this
specification:

OMP_O_MP_AUTOMATIC_CONNECTION_MANAGEMENT
"\x2a\x86\x3a\x00\x88\x1a\x06\x01\x01"

OMP_O_MP_AUTOMATIC_DECODING
"\x2a\x86\x3a\x00\x88\x1a\x06\x01\x02"

Prototypes are defined for the following functions:

mp_abandon(),
mp_abort_req(),
mp_action_req(),
mp_action_rsp(),
mp_assoc_req(),
mp_assoc_rsp(),
mp_bind(),
mp_cancel_get_req(),
mp_cancel_get_rsp(),
mp_create_req(),
mp_create_rsp(),
mp_delete_req(),
mp_delete_rsp(),
mp_error_message(),
mp_event_report_req(),
mp_event_report_rsp(),
mp_get_assoc_info(),
mp_get_last_error(),
mp_get_next(),
mp_get_req(),
mp_get_rsp(),

Systems Management: Management Protocols API (XMP) 187

<xmp.h> C Headers

mp_initialize(),
mp_negotiate().
mp_receive(),
mp_release_req(),
mp_release_rsp(),
mp_set_req(),
mp_set_rsp(),
mp_shutdown(),
mp_unbind(),
mp_validate_object(),
mp_wait()

Defined constants

Intermediate object identifier macro

#define mpP_comn(X) (OMP_O_MP_COMMON_PKG# #X)

OM class names (prefixed MP_C_)

Every application program which makes use of a class or other Object Identifier must explicitly
import it into every compilation unit (C source program) which uses it. Each such class or
Object Identifier name must be explicitly exported from just one compilation unit.

In the header file, OM class constants are prefixed with the OPM_O prefix to denote that they are
OM classes. However, when using the OM_IMPORT and OM_EXPORT macros, the base names
(without the OMP_O prefix) should be used. For example:

OM_IMPORT(MP_C_AVA)

OMP_O_MP_C_ABORT_ARGUMENT mpP_comn(\x87\x69)
OMP_O_MP_C_ACCESS_CONTROL mpP_comn(\x87\x6A)
OMP_O_MP_C_ACSE_ARGS mpP_comn(\x87\x6B)
OMP_O_MP_C_ADDRESS mpP_comn(\x87\x6C)
OMP_O_MP_C_AE_TITLE mpP_comn(\x87\x6D)
OMP_O_MP_C_ASSOC_ARGUMENT mpP_comn(\x87\x6E)
OMP_O_MP_C_ASSOC_DIAGNOSTIC mpP_comn(\x87\x6F)
OMP_O_MP_C_ASSOCIATION_INFORMATION mpP_comn(\x87\x70)
OMP_O_MP_C_ASSOC_RESULT mpP_comn(\x87\x71)
OMP_O_MP_C_AUTHENTICATION_INFORMATION mpP_comn(\x87\x72)
OMP_O_MP_C_AUTHENTICATION_OTHER mpP_comn(\x87\x73)
OMP_O_MP_C_AVA mpP_comn(\x87\x74)
OMP_O_MP_C_BAD_ARGUMENT mpP_comn(\x87\x75)
OMP_O_MP_C_CMIP_ASSOC_ARGS mpP_comn(\x87\x76)
OMP_O_MP_C_COMMUNITY_NAME mpP_comn(\x87\x77)
OMP_O_MP_C_CONTEXT mpP_comn(\x87\x78)
OMP_O_MP_C_DS_DN mpP_comn(\x87\x79)
OMP_O_MP_C_DS_RDN mpP_comn(\x87\x7A)
OMP_O_MP_C_ENTITY_NAME mpP_comn(\x87\x7B)
OMP_O_MP_C_ERROR mpP_comn(\x87\x7C)
OMP_O_MP_C_EXTENSION mpP_comn(\x87\x7D)
OMP_O_MP_C_EXTERNAL_AC mpP_comn(\x87\x7E)
OMP_O_MP_C_FORM1 mpP_comn(\x87\x7F)
OMP_O_MP_C_FORM2 mpP_comn(\x88\x00)
OMP_O_MP_C_FUNCTIONAL_UNIT_PACKAGE mpP_comn(\x88\x01)

188 X/Open CAE Specification (1994)

C Headers <xmp.h>

OMP_O_MP_C_NAME mpP_comn(\x88\x02)
OMP_O_MP_C_NAME_STRING mpP_comn(\x88\x03)
OMP_O_MP_C_NETWORK_ADDRESS mpP_comn(\x88\x04)
OMP_O_MP_C_PRESENTATION_ADDRESS mpP_comn(\x88\x05)
OMP_O_MP_C_PRESENTATION_CONTEXT mpP_comn(\x88\x06)
OMP_O_MP_C_PRESENTATION_LAYER_ARGS mpP_comn(\x88\x07)
OMP_O_MP_C_RELATIVE_NAME mpP_comn(\x88\x08)
OMP_O_MP_C_RELEASE_ARGUMENT mpP_comn(\x88\x09)
OMP_O_MP_C_RELEASE_RESULT mpP_comn(\x88\x0A)
OMP_O_MP_C_SESSION mpP_comn(\x88\x0B)
OMP_O_MP_C_SMASE_USER_DATA mpP_comn(\x88\x0C)
OMP_O_MP_C_SNMP_OBJECT_NAME mpP_comn(\x88\x0D)
OMP_O_MP_C_STANDARD_EXTERNALS mpP_comn(\x88\x0E)
OMP_O_MP_C_TITLE mpP_comn(\x88\x0F)

The OM attribute names which are defined are listed below.

MP_ABORT_DIAGNOSTIC (OM_type)11001
MP_ABORT_SOURCE (OM_type)11002
MP_ACCESS_CONTROL (OM_type)11003
MP_ACSE_ARGS (OM_type)11004
MP_ACSE_ASSOC_ARGS (OM_type)11005
MP_ACSE_SERVICE_PROVIDER (OM_type)11006
MP_ACSE_SERVICE_USER (OM_type)11007
MP_AE_INVOCATION (OM_type)11008
MP_AE_QUALIFIER_FORM1 (OM_type)11009
MP_AE_QUALIFIER_FORM2 (OM_type)11010
MP_AE_TITLE_FORM1 (OM_type)11011
MP_AE_TITLE_FORM2 (OM_type)11012
MP_AGENT_ROLE_FUNCTIONAL_UNIT (OM_type)11013
MP_APPLICATION_CONTEXT (OM_type)11014
MP_AP_INVOCATION (OM_type)11015
MP_AP_TITLE_FORM1 (OM_type)11016
MP_AP_TITLE_FORM2 (OM_type)11017
MP_ASSOC_EXTERN (OM_type)11018
MP_ASYNCHRONOUS (OM_type)11019
MP_AUTHENTICATION_INFORMATION (OM_type)11020
MP_AVAS (OM_type)11021
MP_BITSTRING (OM_type)11022
MP_CHARSTRING (OM_type)11023
MP_CMIP_ABORT_SOURCE (OM_type)11024
MP_CMIP_ASSOC_ARGS (OM_type)11025
MP_CMIP_USER_INFORMATION (OM_type)11026
MP_CMIS_FUNCTIONAL_UNITS (OM_type)11027
MP_COMMUNITY (OM_type)11028
MP_ENTITY (OM_type)11029
MP_EXTENSIONS (OM_type)11030
MP_EXTERNAL (OM_type)11031
MP_EXTERNAL_AC (OM_type)11032
MP_FILE_DESCRIPTOR (OM_type)11033
MP_FUNCTIONAL_UNIT_PACKAGE_ID (OM_type)11034
MP_IDENTIFIER (OM_type)11035
MP_INFORMATION (OM_type)11036
MP_IP_ADDRESS (OM_type)11037

Systems Management: Management Protocols API (XMP) 189

<xmp.h> C Headers

MP_MANAGER_ROLE_FUNCTIONAL_UNIT (OM_type)11038
MP_MODE (OM_type)11039
MP_NAME_STRING (OM_type)11040
MP_NAMING_ATTRIBUTE_ID (OM_type)11041
MP_NAMING_ATTRIBUTE_VALUE (OM_type)11042
MP_N_ADDRESSES (OM_type)11043
MP_OBJECT_NAME (OM_type)11044
MP_OTHER (OM_type)11045
MP_OTHER_MECHANISM_NAME (OM_type)11046
MP_OTHER_MECHANISM_VALUE (OM_type)11047
MP_PRESENTATION_ABSTRACT (OM_type)11048
MP_PRESENTATION_CONTEXT_LIST (OM_type)11049
MP_PRESENTATION_ID (OM_type)11050
MP_PRESENTATION_LAYER_ARGS (OM_type)11051
MP_PRIORITY (OM_type)11052
MP_P_SELECTOR (OM_type)11053
MP_RDNS (OM_type)11054
MP_REASON (OM_type)11055
MP_REPLY_LIMIT (OM_type)11056
MP_REQUESTOR_ADDRESS (OM_type)11057
MP_REQUESTOR_TITLE (OM_type)11058
MP_RESPONDER_ADDRESS (OM_type)11059
MP_RESPONDER_TITLE (OM_type)11060
MP_ROLE (OM_type)11061
MP_SIGNIFICANCE (OM_type)11062
MP_SMASE_USER_DATA (OM_type)11063
MP_SMFU_PACKAGES (OM_type)11064
MP_STANDARD_EXTERNALS (OM_type)11065
MP_SYSTEMS_MANAGEMENT_USER_INFORMATION (OM_type)11066
MP_S_SELECTOR (OM_type)11067
MP_TIME_LIMIT (OM_type)11068
MP_T_SELECTOR (OM_type)11069
MP_USER_INFO (OM_type)11070
MP_USER_INFORMATION (OM_type)11071

The following enumeration tags and enumeration constants are defined for use as values of the
corresponding OM attributes:

MP_T_CMIS_Functional_Units:

MP_T_FU_CANCEL_GET 1
MP_T_FU_FILTER 2
MP_T_FU_MULTIPLE_OBJECT_SELECTION 4
MP_T_FU_UNITS_EXTENDED_SERVICE 8
MP_T_FU_MULTIPLE_REPLY 16

MP_T_Request-Mask:

MP_T_PRESENTATION_CONTEXT_LIST 1
MP_T_RESPONDER_ADDRESS 2
MP_T_RESPONDER_TITLE 4
MP_T_APPLICATION_CONTEXT 8
MP_T_AUTHENTICATION_INFORMATION 16
MP_T_ACSE_USER_INFO 32
MP_T_CMIS_FUNCTIONAL_UNITS 64

190 X/Open CAE Specification (1994)

C Headers <xmp.h>

MP_T_ACCESS_CONTROL 128
MP_T_USER_INFO 256
MP_T_SMASE_USER_DATA 512

MP_T_Abort_Source:

MP_T_ABORT_SOURCE_ACSE_SERVICE_USER 1
MP_T_ABORT_SOURCE_ACSE_SERVICE_PROVIDER 2

MP_T_Abort_Diagnostic:

MP_T_ABORT_DIAGNOSTIC_NO_REASON_GIVEN 1
MP_T_ABORT_DIAGNOSTIC_PROTOCOL_ERROR 2
MP_T_ABORT_DIAGNOSTIC_AUTHENTICATION_MECHANISM_NAME_NOT_RECOGNIZED 3
MP_T_ABORT_DIAGNOSTIC_AUTHENTICATION_MECHANISM_NAME_REQUIRED 4
MP_T_ABORT_DIAGNOSTIC_AUTHENTICATION_FAILURE 5
MP_T_ABORT_DIAGNOSTIC_AUTHENTICATION_REQUIRED 6

MP_T_CMIP_Abort_Source:

MP_T_CMIP_ABORT_SOURCE_CMISE_SERVICE_PROVIDER 1
MP_T_CMIP_ABORT_SOURCE_CMISE_SERVICE_PROVIDER 2

MP_T_ACSE_Service_User:

MP_T_ACSE_SERVICE_USER_NULL 1
MP_T_ACSE_SERVICE_USER_NO_REASON_GIVEN 2
MT_T_ACSE_SERVICE_USER_APPLICATION_CONTEXT_NAME_NOT_SUPPORTED 3
MT_T_ACSE_SERVICE_USER_CALLING_AP_TITLE_NOT_RECOGNIZED 4
MT_T_ACSE_SERVICE_USER_CALLING_AP_INVOCATION_IDENTIFIER_NOT_RECOGNIZED 5
MT_T_ACSE_SERVICE_USER_CALLING_AE_QUALIFIER_NOT_RECOGNIZED 6
MT_T_ACSE_SERVICE_USER_CALLING_AE_INVOCATION_IDENTIFIER_NOT_RECOGNIZED 7
MT_T_ACSE_SERVICE_USER_CALLED_AP_TITLE_NOT_RECOGNIZED 8
MT_T_ACSE_SERVICE_USER_CALLED_AP_INVOCATION_IDENTIFIER_NOT_RECOGNIZED 9
MT_T_ACSE_SERVICE_USER_CALLED_AE_QUALIFIER_NOT_RECOGNIZED 10
MT_T_ACSE_SERVICE_USER_CALLED_AE_INVOCATION_IDENTIFIER_NOT_RECOGNIZED 11
MT_T_ACSE_SERVICE_USER_AUTHENTICATION_MECHANISM_NAME_NOT_RECOGNIZED 12
MT_T_ACSE_SERVICE_USER_AUTHENTICATION_MECHANISM_NAME_REQUIRED 13
MT_T_ACSE_SERVICE_USER_AUTHENTICATION_FAILURE 14
MT_T_ACSE_SERVICE_USER_AUTHENTICATION_REQUIRED 15

MP_T_ACSE_Service_Provider:

MP_T_ACSE_SERVICE_PROVIDER_NULL 1
MP_T_ACSE_SERVICE_PROVIDER_NO_REASON_GIVEN 2
MT_T_ACSE_SERVICE_PROVIDER_NO_COMMON_ACSE_VERSION 3

MP_T_Assoc_Result:

MP_T_ACCEPT 1
MP_T_REJECT_PERMANENT 2
MT_T_REJECT_TRANSIENT 3

Systems Management: Management Protocols API (XMP) 191

<xmp.h> C Headers

MP_T_Mode:

MP_T_CONFIRMED 1
MP_T_NON_CONFIRMED 2

MP_T_Priority:

MP_T_LOW 1
MP_T_MEDIUM 2
MP_T_HIGH 3

MP_T_Asynchronous:

MP_T_FALSE 1
MP_T_TRUE 2

MP_T_Reason:

MP_T_NORMAL 1
MP_T_URGENT 2
MP_T_USER_DEFINED 3
MP_T_NOT_FINISHED 4

MP_E_Problem:

MP_E_BAD_ADDRESS 1001
MP_E_BAD_ARGUMENT 1002
MP_E_BAD_CLASS 1003
MP_E_BAD_CONTEXT 1004
MP_E_BAD_ERROR 1005
MP_E_BAD_LINKED_REPLY 1006
MP_E_BAD_PROCEDURAL_USE 1007
MP_E_BAD_RESULT 1008
MP_E_BAD_SESSION 1009
MP_E_BAD_SYNTAX 1010
MP_E_BAD_TITLE 1011
MP_E_BAD_VALUE 1012
MP_E_BAD_WORKSPACE 1013
MP_E_BROKEN_SESSION 1014
MP_E_COMMUNICATIONS_PROBLEM 1015
MP_E_EXCLUSIVE_ATTRIBUTE 1016
MP_E_INVALID_CONNECTION_ID 1017
MP_E_INVALID_ATTRIBUTE_ID 1018
MP_E_MISCELLANEOUS 1019
MP_E_MISSING_ATTRIBUTE 1020
MP_E_NOT_MULTI_VALUED 1021
MP_E_NOT_SUPPORTED 1022
MP_E_NO_SUCH_OPERATION 1023
MP_E_REPLY_LIMIT_EXCEEDED 1024
MP_E_SESSION_TERMINATED 1025
MP_E_SYSTEM_ERROR 1026
MP_E_TIME_LIMIT_EXCEEDED 1027
MP_E_TOO_MANY_OPERATIONS 1028
MP_E_TOO_MANY_SESSIONS 1029

192 X/Open CAE Specification (1994)

C Headers <xmp.h>

MP_T_Role:

MP_T_MANAGING 1
MP_T_MONITORING 2
MP_T_PERFORMING 4
MP_T_REPORTING 8

The typedef name MP_status is defined as:

typedef int MP_status;

The following constants are defined:

MP_SUCCESS ((MP_status)0)
MP_NO_WORKSPACE ((MP_status)1)
MP_INVALID_SESSION ((MP_status)2)
MP_INSUFFICIENT_RESOURCES ((MP_status)3)

The following constants are defined:

MP_ACTIVATE 0
MP_DEACTIVATE 1
MP_QUERY_STATE 2
MP_QUERY_SUPPORTED 3

The following structures are defined:

typedef struct
{

OM_object-identifier feature;
OM_sint request;
OM_boolean response;

}
MP_feature;

typedef struct
{

OM_private_object bound_session;
OM_boolean activated;

}
MP_waiting_sessions;

The following constants, of type OM_Object, are defined:

MP_ABSENT_OBJECT ((OM_object)0)
MP_DEFAULT_CONTEXT ((OM_object)0)
MP_DEFAULT_SESSION ((OM_object)0)

The following integer constants are defined:

MP_ABORT_IND 16
MP_ACTION_CNF 1
MP_ACTION_IND 2
MP_ASSOC_CNF 17
MP_ASSOC_IND 18
MP_CANCEL_GET_CNF 3

Systems Management: Management Protocols API (XMP) 193

<xmp.h> C Headers

MP_CANCEL_GET_IND 4
MP_CREATE_CNF 5
MP_CREATE_IND 6
MP_DELETE_CNF 7
MP_DELETE_IND 8
MP_EVENT_REPORT_CNF 9
MP_EVENT_REPORT_IND 10
MP_GET_CNF 11
MP_GET_IND 12
MP_GET_NEXT_IND 13
MP_RELEASE_CNF 19
MP_RELEASE_IND 20
MP_SET_CNF 14
MP_SET_IND 15

MP_COMPLETED 1
MP_INCOMING 2
MP_NOTHING 3
MP_OUTSTANDING 4
MP_PARTIAL 5

MP_NO_VALID_FILE_DESCRIPTOR -1

MP_MAX_OUTSTANDING_OPERATIONS implementation-defined

The following function prototypes are defined:

extern MP_status mp_abandon(
OM_private_object session,
OM_sint32 invoke_id

);

extern MP_status mp_abort_req(
OM_private_object session,
OM_private_object context,
OM_object argument

);

extern MP_status mp_action_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object * result_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_action_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

extern MP_status mp_assoc_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object * result_return,
OM_sint32 * invoke_id_return

194 X/Open CAE Specification (1994)

C Headers <xmp.h>

);

extern MP_status mp_assoc_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

extern MP_status mp_bind(
OM_object session,
OM_workspace workspace,
OM_private_object * bound_session_return

);

extern MP_status mp_cancel_get_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_sint32 * invoke_id_return

);

extern MP_status mp_cancel_get_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);
extern MP_status mp_create_req(

OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object * result_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_create_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

extern MP_status mp_delete_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_objt * result_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_delete_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

extern OM_sint mp_error_message(

Systems Management: Management Protocols API (XMP) 195

<xmp.h> C Headers

MP_status error,
OM_sint length,
unsigned char * error_text_return

);

extern MP_status mp_event_report_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object * result_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_event_report_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

extern MP_status mp_get_assoc_info(
OM_private_object receive_result_or_argument,
OM_uint request_mask,
OM_uint result_mask,
OM_public_object * pres_layer_args,
OM_public_object * acse_args,
OM_public_object * cmip_assoc_args,
OM_public_object * standard_externals

);

extern MP_status mp_get_last_error(
OM_workspace workspace,
OM_uint32 * additional_error_return

);

extern MP_status mp_get_next_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object * result_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_get_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object * result_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_get_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

extern OM_workspace mp_initialize(

196 X/Open CAE Specification (1994)

C Headers <xmp.h>

void
);

extern MP_status mp_negotiate(
MP_feature feature_list[],
OM_workspace workspace

);

extern MP_status mp_receive(
OM_private_object session,
OM_private_object context,
OM_sint * primitive_return,
OM_sint * completion_flag_return,
MP_status * operation_notification_status_return,
OM_private_object * result_or_argument_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_release_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object * result_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_release_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

extern MP_status mp_set_req(
OM_private_object session,
OM_private_object context,
OM_object argument,
OM_private_object * result_return,
OM_sint32 * invoke_id_return

);

extern MP_status mp_set_rsp(
OM_private_object session,
OM_private_object context,
OM_object response,
OM_sint32 invoke_id

);

extern void mp_shutdown(
OM_workspace workspace

);

extern MP_status mp_unbind(
OM_private_object session

);

extern MP_status mp_validate_object(
OM_workspace workspace,
OM_object test_object,

Systems Management: Management Protocols API (XMP) 197

<xmp.h> C Headers

OM_private_object * bad_argument_return
);

extern MP_status mp_wait(
MP_waiting_sessions bound_session_list[],
OM_workspace workspace,
OM_uint32 timeout

);

198 X/Open CAE Specification (1994)

C Headers <xmp_cmis.h>

7.2 <xmp_cmis.h>
The <xmp_cmis.h> header declares the interface functions, the structures passed to and from
those functions, and the defined constants used by the functions and structures.

All application programs which include this header must first include the OSI-Abstract-Data
Manipulation header <xom.h>.

All Object Identifiers are represented by constants defined in the headers. These constants are
used with the macros defined in the XOM API (see reference XOM). A constant is defined to
represent the Object Identifier of the CMIS Management Service package:

OMP_O_MP_CMIS_PKG
"\x2a\x86\x3a\x00\x88\x1a\x06\x02"/fP

Defined constants

Intermediate object identifier macro

#define mpP_cmis(X) (OMP_O_MP_CMIS_PKG# #X)

OM class names (prefixed MP_C_)

Every application program which makes use of a class or other Object Identifier must explicitly
import it into every compilation unit (C source program) which uses it. Each such class or
Object Identifier name must be explicitly exported from just one compilation unit.

In the header file, OM class constants are prefixed with the OPM_O prefix to denote that they are
OM classes. However, when using the OM_IMPORT and OM_EXPORT macros, the base names
(without the OMP_O prefix) should be used. For example:

OM_IMPORT(MP_C_EVENT_REPLY)

OMP_O_MP_C_ACTION_ERROR mpP_cmis(\x8F\x51)
OMP_O_MP_C_ACTION_ERROR_INFO mpP_cmis(\x8F\x52)
OMP_O_MP_C_ACTION_INFO mpP_cmis(\x8F\x53)
OMP_O_MP_C_ACTION_REPLY mpP_cmis(\x8F\x54)
OMP_O_MP_C_ACTION_TYPE_ID mpP_cmis(\x8F\x55)
OMP_O_MP_C_ATTRIBUTE mpP_cmis(\x8F\x56)
OMP_O_MP_C_ATTRIBUTE_ERROR mpP_cmis(\x8F\x57)
OMP_O_MP_C_ATTRIBUTE_ID mpP_cmis(\x8F\x58)
OMP_O_MP_C_ATTRIBUTE_ID_ERROR mpP_cmis(\x8F\x59)
OMP_O_MP_C_ATTRIBUTE_ID_LIST nsP_cmis(\x8F\x5A)
OMP_O_MP_C_BASE_MANAGED_OBJECT_ID mpP_cmis(\x8F\x5B)
OMP_O_MP_C_CMIS_ACTION_ARGUMENT mpP_cmis(\x8F\x5C)
OMP_O_MP_C_CMIS_ACTION_RESULT mpP_cmis(\x8F\x5D)
OMP_O_MP_C_CMIS_CANCEL_GET_ARGUMENT mpP_cmis(\x8F\x5E)
OMP_O_MP_C_CMIS_CREATE_ARGUMENT mpP_cmis(\x8F\x5F)
OMP_O_MP_C_CMIS_CREATE_RESULT mpP_cmis(\x8F\x60)
OMP_O_MP_C_CMIS_DELETE_ARGUMENT mpP_cmis(\x8F\x61)
OMP_O_MP_C_CMIS_DELETE_RESULT mpP_cmis(\x8F\x62)
OMP_O_MP_C_CMIS_EVENT_REPORT_ARGUMENT mpP_cmis(\x8F\x63)
OMP_O_MP_C_CMIS_EVENT_REPORT_RESULT mpP_cmis(\x8F\x64)
OMP_O_MP_C_CMIS_FILTER mpP_cmis(\x8F\x65)
OMP_O_MP_C_CMIS_GET_ARGUMENT mpP_cmis(\x8F\x66)
OMP_O_MP_C_CMIS_GET_LIST_ERROR mpP_cmis(\x8F\x67)

Systems Management: Management Protocols API (XMP) 199

<xmp_cmis.h> C Headers

OMP_O_MP_C_CMIS_GET_RESULT mpP_cmis(\x8F\x68)
OMP_O_MP_C_CMIS_LINKED_REPLY_ARGUMENT mpP_cmis(\x8F\x69)
OMP_O_MP_C_CMIS_SERVICE_ERROR mpP_cmis(\x8F\x6A)
OMP_O_MP_C_CMIS_SERVICE_REJECT mpP_cmis(\x8F\x6B)
OMP_O_MP_C_CMIS_SET_ARGUMENT mpP_cmis(\x8F\x6C)
OMP_O_MP_C_CMIS_SET_LIST_ERROR mpP_cmis(\x8F\x6D)
OMP_O_MP_C_CMIS_SET_RESULT mpP_cmis(\x8F\x6E)
OMP_O_MP_C_COMPLEXITY_LIMITATION mpP_cmis(\x8F\x6F)
OMP_O_MP_C_CREATE_OBJECT_INSTANCE mpP_cmis(\x8F\x70)
OMP_O_MP_C_DELETE_ERROR mpP_cmis(\x8F\x71)
OMP_O_MP_C_ERROR_INFO mpP_cmis(\x8F\x72)
OMP_O_MP_C_EVENT_INFO mpP_cmis(\x8F\x73)
OMP_O_MP_C_EVENT_REPLY mpP_cmis(\x8F\x74)
OMP_O_MP_C_EVENT_TYPE_ID mpP_cmis(\x8F\x75)
OMP_O_MP_C_FILTER_ITEM mpP_cmis(\x8F\x76)
OMP_O_MP_C_GET_INFO_STATUS mpP_cmis(\x8F\x77)
OMP_O_MP_C_INVALID_ARGUMENT_VALUE mpP_cmis(\x8F\x78)
OMP_O_MP_C_MISSING_ATTRIBUTE_VALUE mpP_cmis(\x8F\x79)
OMP_O_MP_C_MODIFICATION mpP_cmis(\x8F\x7A)
OMP_O_MP_C_MODIFICATION_LIST mpP_cmis(\x8F\x7B)
OMP_O_MP_C_MULTIPLE_REPLY mpP_cmis(\x8F\x7C)
OMP_O_MP_C_NO_SUCH_ACTION mpP_cmis(\x8F\x7D)
OMP_O_MP_C_NO_SUCH_ACTION_ID mpP_cmis(\x8F\x7E)
OMP_O_MP_C_NO_SUCH_ARGUMENT mpP_cmis(\x8F\x7F)
OMP_O_MP_C_NO_SUCH_EVENT_ID mpP_cmis(\x90\x00)
OMP_O_MP_C_NO_SUCH_EVENT_TYPE mpP_cmis(\x90\x01)
OMP_O_MP_C_OBJECT_CLASS mpP_cmis(\x90\x02)
OMP_O_MP_C_OBJECT_INSTANCE mpP_cmis(\x90\x03)
OMP_O_MP_C_PROCESSING_FAILURE mpP_cmis(\x90\x04)
OMP_O_MP_C_SCOPE mpP_cmis(\x90\x05)
OMP_O_MP_C_SET_INFO_STATUS mpP_cmis(\x90\x06)
OMP_O_MP_C_SETOF_ATTRIBUTE mpP_cmis(\x90\x07)
OMP_O_MP_C_SETOF_CMIS_FILTER mpP_cmis(\x90\x08)
OMP_O_MP_C_SETOF_GET_INFO_STATUS mpP_cmis(\x90\x09)
OMP_O_MP_C_SETOF_SET_INFO_STATUS mpP_cmis(\x90\x0A)
OMP_O_MP_C_SPECIFIC_ERROR_INFO mpP_cmis(\x90\x0B)
OMP_O_MP_C_SUBSTRING mpP_cmis(\x90\x0C)
OMP_O_MP_C_SUBSTRINGS mpP_cmis(\x90\x0D)

The OM attribute names which are defined are listed below.

MP_ACTION_ARGUMENT (OM_type)11101
MP_ACTION_ERROR (OM_type)11102
MP_ACTION_ERROR_INFO (OM_type)11103
MP_ACTION_ID (OM_type)11104
MP_ACTION_INFO (OM_type)11105
MP_ACTION_INFO_ARG (OM_type)11106
MP_ACTION_REPLY (OM_type)11107
MP_ACTION_REPLY_INFO (OM_type)11108
MP_ACTION_RESULT (OM_type)11109
MP_ACTION_TYPE (OM_type)11110
MP_ACTION_VALUE (OM_type)11111
MP_AND (OM_type)11112
MP_ANY_SUBSTRING (OM_type)11113

200 X/Open CAE Specification (1994)

C Headers <xmp_cmis.h>

MP_ARGUMENT_VALUE (OM_type)11114
MP_ATTRIBUTE (OM_type)11115
MP_ATTRIBUTE_ERROR (OM_type)11116
MP_ATTRIBUTE_ID (OM_type)11117
MP_ATTRIBUTE_ID_ERROR (OM_type)11118
MP_ATTRIBUTE_ID_LIST (OM_type)11119
MP_ATTRIBUTE_LIST (OM_type)11120
MP_ATTRIBUTE_VALUE (OM_type)11121
MP_BASE_MANAGED_OBJECT_CLASS (OM_type)11122
MP_BASE_MANAGED_OBJECT_INSTANCE (OM_type)11123
MP_BASE_TO_NTH_LEVEL (OM_type)11124
MP_CREATE_OBJECT_INSTANCE (OM_type)11125
MP_CURRENT_TIME (OM_type)11126
MP_DELETE_ERROR (OM_type)11127
MP_DELETE_ERROR_INFO (OM_type)11128
MP_DELETE_RESULT (OM_type)11129
MP_DISTINGUISHED_NAME (OM_type)11130
MP_EQUALITY (OM_type)11131
MP_ERROR_ID (OM_type)11132
MP_ERROR_INFO (OM_type)11133
MP_ERROR_STATUS (OM_type)11134
MP_EVENT_ID (OM_type)11135
MP_EVENT_INFO (OM_type)11136
MP_EVENT_REPLY (OM_type)11137
MP_EVENT_REPLY_INFO (OM_type)11138
MP_EVENT_TIME (OM_type)11139
MP_EVENT_TYPE (OM_type)11140
MP_EVENT_VALUE (OM_type)11141
MP_FILTER (OM_type)11142
MP_FINAL_SUBSTRING (OM_type)11143
MP_GET_INFO_LIST (OM_type)11144
MP_GET_INFO_STATUS (OM_type)11145
MP_GET_INVOKE_ID (OM_type)11146
MP_GET_LIST_ERROR (OM_type)11147
MP_GET_RESULT (OM_type)11148
MP_GLOBAL_FORM (OM_type)11149
MP_GREATER_OR_EQUAL (OM_type)11150
MP_INDIVIDUAL_LEVELS (OM_type)11151
MP_INITIAL_SUBSTRING (OM_type)11152
MP_ITEM (OM_type)11153
MP_LESS_OR_EQUAL (OM_type)11154
MP_LOCAL_DN (OM_type)11155
MP_LOCAL_FORM (OM_type)11156
MP_MANAGED_OBJECT_CLASS (OM_type)11157
MP_MANAGED_OBJECT_INSTANCE (OM_type)11158
MP_MODIFICATION_LIST (OM_type)11159
MP_MODIFY_OPERATOR (OM_type)11160
MP_NAMED_NUMBERS (OM_type)11161
MP_NON_NULL_SET_INTERSECTION (OM_type)11162
MP_NON_SPECIFIC_FORM (OM_type)11163
MP_NOT (OM_type)11164
MP_OR (OM_type)11165
MP_PRESENT (OM_type)11166
MP_PROCESSING_FAILURE (OM_type)11167
MP_REFERENCE_OBJECT_INSTANCE (OM_type)11168

Systems Management: Management Protocols API (XMP) 201

<xmp_cmis.h> C Headers

MP_REPLIES (OM_type)11169
MP_SCOPE (OM_type)11170
MP_SET_INFO_LIST (OM_type)11171
MP_SET_INFO_STATUS (OM-type)11172
MP_SET_LIST_ERROR (OM_type)11173
MP_SET_OF_ATTRIBUTE_ID (OM_type)11174
MP_SET_RESULT (OM_type)11175
MP_SPECIFIC_ERROR_INFO (OM_type)11176
MP_SUBSET_OF (OM_type)11177
MP_SUBSTRING (OM_type)11178
MP_SUBSTRINGS (OM_type)11179
MP_SUPERIOR_OBJECT_INSTANCE (OM_type)11180
MP_SUPERSET_OF (OM_type)11181
MP_SYNCHRONIZATION (OM_type)11182

The following enumeration tags and enumeration constants are defined for use as values of the
corresponding OM attributes:

MP_T_CMIS_Sync:

MP_T_BEST_EFFORT 0
MP_T_ATOMIC 1

MP_T_Modify_Operator:

MP_T_REPLACE 0
MP_T_ADD_VALUES 1
MP_T_REMOVE_VALUES 2
MP_T_SET_TO_DEFAULT 3

MP_E_Problem:

MP_E_ACCESS_DENIED 2
MP_E_CLASS_INSTANCE_CONFLICT 19
MP_E_COMPLEXITY_LIMITATION 20
MP_E_DUPLICATE_MANAGED_OBJECT_INSTANCE 11
MP_E_GET_LIST_ERROR 7
MP_E_INVALID_ARGUMENT_VALUE 15
MP_E_INVALID_ATTRIBUTE_VALUE 6
MP_E_INVALID_FILTER 4
MP_E_INVALID_OBJECT_INSTANCE 17
MP_E_INVALID_OPERATION 24
MP_E_INVALID_OPERATOR 25
MP_E_INVALID_SCOPE 16
MP_E_MISSING_ATTRIBUTE_VALUE 18
MP_E_MISTYPED_OPERATION 21
MP_E_NO_SUCH_ACTION 9
MP_E_NO_SUCH_ARGUMENT 14
MP_E_NO_SUCH_ATTRIBUTE 5
MP_E_NO_SUCH_EVENT_TYPE 13
MP_E_NO_SUCH_INVOKE_ID 22
MP_E_NO_SUCH_OBJECT_CLASS 0
MP_E_NO_SUCH_OBJECT_INSTANCE 1
MP_E_NO_SUCH_REFERENCE_OBJECT 12
MP_E_OPERATION_CANCELLED 23

202 X/Open CAE Specification (1994)

C Headers <xmp_cmis.h>

MP_E_PROCESSING_FAILURE 10
MP_E_SET_LIST_ERROR 8
MP_E_SYNCHRONIZATION_NOT_SUPPORTED 3

MP_E_Invoke_Problem:

MP_E_DUPLICATE_INVOCATION 0
MP_E_MISTYPED_ARGUMENT 2
MP_E_RESOURCE_LIMITATION 3
MP_E_UNRECOGNIZED_OPERATION 1

MP_T_Scope:

MP_T_BASE_OBJECT 0
MP_T_FIRST_LEVEL_ONLY 1
MP_T_WHOLE_SUBTREE 2

Systems Management: Management Protocols API (XMP) 203

<xmp_snmp.h> C Headers

7.3 <xmp_snmp.h>
The <xmp_snmp.h> header declares the interface functions, the structures passed to and from
those functions, and the defined constants used by the functions and structures.

All application programs which include this header must first include the OSI-Abstract-Data
Manipulation header <xom.h>.

All Object Identifiers are represented by constants defined in the headers. These constants are
used with the macros defined in the XOM API (see reference XOM). A constant is defined to
represent the Object Identifier of the SNMP Management Service package:

OMP_O_MP_SNMP_PKG
"\x2a\x86\x3a\x00\x88\x1a\x06\x03"

Defined constants

Intermediate object identifier macro

#define mpP_snmp(X) (OMP_O_MP_SNMP_PKG# #X)

OM class names (prefixed MP_C_)

Every application program which makes use of a class or other Object Identifier must explicitly
import it into every compilation unit (C source program) which uses it. Each such class or
Object Identifier name must be explicitly exported from just one compilation unit.

In the header file, OM class constants are prefixed with the OPM_O prefix to denote that they are
OM classes. However, when using the OM_IMPORT and OM_EXPORT macros, the base names
(without the OMP_O prefix) should be used. For example:

OM_IMPORT(MP_C_OBJECT_SYNTAX)

OMP_O_MP_C_APPLICATION_SYNTAX mpP_snmp(\x97\x39)
OMP_O_MP_C_OBJECT_SYNTAX mpP_snmp(\x97\x3A)
OMP_O_MP_C_PDU mpP_snmp(\x97\x3B)
OMP_O_MP_C_PDUS mpP_snmp(\x97\x3C)
OMP_O_MP_C_SIMPLE_SYNTAX mpP_snmp(\x97\x3D)
OMP_O_MP_C_TRAP_PDU mpP_snmp(\x97\x3E)
OMP_O_MP_C_VAR_BIND mpP_snmp(\x97\x3F)
OMP_O_MP_C_VARIABLE_BINDINGS mpP_snmp(\x97\x40)

The OM attribute names which are defined are listed below.

MP_ADDRESS (OM_type)11201
MP_AGENT_ADDR (OM_type)11202
MP_APPLICATION_WIDE (OM_type)11203
MP_ARBITRARY (OM_type)11204
MP_COUNTER (OM_type)11205
MP_EMPTY (OM_type)11206
MP_ENTERPRISE (OM_type)11207
MP_ERROR_INDEX (OM_type)11208
MP_ERROR_STATUS (OM_type)11209
MP_GAUGE (OM_type)11210
MP_GENERIC_TRAP (OM_type)11211

204 X/Open CAE Specification (1994)

C Headers <xmp_snmp.h>

MP_GET_NEXT_REQUEST (OM_type)11212
MP_GET_REQUEST (OM_type)11213
MP_GET_RESPONSE (OM_type)11214
MP_NAME (OM_type)11215
MP_NUMBER (OM_type)11216
MP_OBJECT (OM_type)11217
MP_REQUEST_ID (OM_type)11218
MP_SET_REQUEST (OM_type)11219
MP_SIMPLE (OM_type)11220
MP_SPECIFIC_TRAP (OM_type)11221
MP_STRING (OM_type)11222
MP_TICKS (OM_type)11223
MP_TIME_STAMP (OM_type)11224
MP_TRAP (OM_type)11225
MP_VALUE (OM_type)11226
MP_VAR_BIND (OM_type)11227
MP_VARIABLE_BINDINGS (OM_type)11228

The following enumeration tags and enumeration constants are defined for use as values of the
corresponding OM attributes:

MP_T_Generic_Trap:

MP_T_AUTHENTICATION_FAILURE 1
MP_T_COLD_START 2
MP_T_EGP_NEIGHBOR_LOSS 3
MP_T_ENTERPRISE_SPECIFIC 4
MP_T_LINK_DOWN 5
MP_T_LINK_UP 6
MP_T_WARM_START 7

MP_E_Problem:

MP_E_BAD_VALUE 3001
MP_E_GEN_ERR 3002
MP_E_NO_SUCH_NAME 3003
MP_E_READ_ONLY 3004
MP_E_TOO_BIG 3005

Systems Management: Management Protocols API (XMP) 205

C Headers

206 X/Open CAE Specification (1994)

Glossary

This document makes use of many terms which are used to describe both the Management
Information Services and OSI-Abstract-Data Manipulation; attribute is an example of one such
term. In these cases the two meanings of the term are indicated by annotation with (Service) or
(Object).

Words in italics in the explanations are cross-references to other listings in the glossary.

The following code letters are used to identify sources:
[(S): reference adapted from the Standards]
[(O): reference adapted from OSI-Abstract-Data Manipulation API Specification]
[(F): reference adapted from OSI/Network Management Forum]
[(X): reference from X/Open Portability Guide]

Abstract Class
An OM class of OM object of which instances are forbidden. An abstract class typically serves to
document the similarities between instances of two or more concrete classes. (O)

abstract services
The Standards define a number of Abstract Services which are the primitive services used in
order to interact with managed objects. These services include the ability to issue requests and
responses for object creation and deletion, setting or retrieving attribute values and invoking
object actions.

Abstract Syntax Notation One
A notation which both enables complicated types to be defined and also enables values of these
types to be specified. See reference "ASN.1) .

access point
The point at which an Abstract Service is obtained. (A connection between a manager and an
agent.) (S)

address
An unambiguous name, label or number which identifies the location of a particular entity or
service. See also presentation address. (S)

agent
An OSI program which contributes to the distributed management activity, making use of the
management information services, which for a particular exchange of management information
has taken an agent role. (S)

agent role
The role adopted by a management entity which makes managed objects visible to other
management entities by receiving operations and issuing notifications on behalf of managed
objects. (F)

argument
Information which is passed to a function or operation/notification and which specifies the details
of the processing to be performed.

ASN.1
See Abstract Syntax Notation One.

Systems Management: Management Protocols API (XMP) 207

Glossary

association
A cooperative relationship between two entities formed by the exchange of application protocol
control information. (S)

asynchronous completion
An asynchronous operation is complete when a corresponding synchronous operation would
complete and any associated status fields have been updated.

asynchronous operation
An operation that does not of itself cause the process requesting the operation to be blocked
from further use of the CPU. This implies that the process and the operation are running
concurrently.

attribute - service
A property of a particular type concerning a managed object and appearing in the definition of
the managed object. An attribute has a value. (S)

attribute - object
See OM attribute .

attribute syntax
A definition of the set of values which an attribute may assume. It includes the data type, in
ASN.1, and, usually, one or more matching rules by which values may be compared.

attribute type - service
That component of an attribute which indicates the class of information given by that attribute.
It is an Object Identifier, and so completely unique. or an Integer, which is unique but within a
particular application context. (S)

attribute type - object
Any of various categories into which the client dynamically groups values on the basis of their
semantics. It is an integer, unique only within the package . (O)

attribute value - service
A particular instance of the class of information indicated by an attribute type . (S)

attribute value - object
An atomic information object. (O)

attribute value assertion (AVA)
An assertion that a particular attribute of a managed object has a particular value. A
proposition, which may be true, false, or undefined, concerning the value of an attribute of
managed object . (F)

attribute value syntax
See Syntax (Object).

Basic Encoding Rules
A set of rules used to encode ASN.1 values as strings of octets.

BER
See Basic Encoding Rules.

behaviour
In the context of managed objects, the sequence of attributes and notifications exhibited by a
managed object, due to the occurrence of management operations on, and events within the
scope of, the managed object. (F)

208 X/Open CAE Specification (1994)

Glossary

class - service
See Managed Object Class .

class - object
See OM class .

concrete class
An OM class of which instances are permitted. (O)

containment
A relationship that exists between two managed object instances of the same or different classes,
where one managed object (superior) can be regarded as the exclusive owner or container of the
other (subordinate). (F)

containment relationship
See containment .

descriptor
A defined data structure which is used to represent an OM attribute type and a single value.

descriptor list
An ordered sequence of descriptors which is used to represent several OM attribute types and
values .

directory
A collection of open systems which co-operate to hold a logical data base of information about a
set of objects in the real world. (S)

distinguished encoding
Restrictions to the Basic Encoding Rules designed to ensure a unique encoding of each ASN.1
value, defined in clause 8.7 of reference SMO .

Distinguished Name
The name of a managed object which consists of a sequence of the relative distinguished names
of its superiors in the naming tree, starting at the root, and working to the managed object to be
identified. (F)

Distinguished Value
An attribute value in an attribute which has been designated to appear in the RDN of the managed
object. (S)

filter
An assertion about the presence or value of certain attributes of an entry in order to limit the
scope of a search. (S)

function
A programming language construct, modelled after the mathematical concept. A function
encapsulates some behaviour. It is given some arguments as input, performs some processing,
and returns some results. Also known as procedures, subprograms or subroutines. cf. operation .

immediate subordinate
In the MIT, a managed object instance is an immediate subordinate of another if its distinguished
name is formed by appending its RDN to the distinguished name of the other managed object
instance.

immediate superior
In the MIT, a managed object instance is the immediate superior of another if its distinguished name,
followed by the RDN of the other, forms the distinguished name of the other managed object
instance.

Systems Management: Management Protocols API (XMP) 209

Glossary

implementation-defined
The feature is not consistent across all implementations, and each implementation will provide
documentation of its behaviour. (X)

Invoke ID
An integer used to distinguish one (management) operation/notification from all other
outstanding ones.

Local Distinguished Name
A name of a managed object (which may be ambiguous out of context), formed from the
sequence of the relative distinguished names of the managed object, and each of its superior
instances, but not necessarily all the way back to the root. (F)

may
With respect to implementations, the feature is optional. Applications should not rely on the
existence of the feature. (X)

managed object
Anything in some ‘world’, generally resources in the world of telecommunications and
information processing or some part thereof, which is identifiable (can be named), and which it
is subject to management and thus of interest to become information of the MIB. A view of one
or more resources; these resources may exist independently of management concerns, or may
exist to support the management of other resources. A managed object may also represent a
relationship between resources. (F) A managed object is the abstracted view of such a resource
that represents its properties as seen by and for the purposes of management. (S)

managed object class
A generic classification shared by a set of similar managed objects that have similar properties
and fulfil similar purposes. (S)

managed object instance
A member of a managed object class, distinguishable by an identifier from other instances of that
class. (S)

Management Information Base (MIB)
The conceptual repository of management information. The complete set of information to
which the Management Information Services provide access and which includes all of the pieces
of information which can be read or manipulated using the operations of the Management
Information Services. It is made up of managed objects . The MIB of an agent is the set of managed
objects made visible by the agent. (S)

Management Information Tree (MIT)
The MIB considered as a tree, expressing the containment relationships between the managed
objects . (S)

management notification
The act of informing about an event which occurred in a managed object. (S)

management interaction
A single management operation or a single notification or an identified set of logically related
management operations and notifications during which the manager and agent role do not
change. (S)

management operation
A single act on a managed object to effect systems management (S)

manager
An OSI program which contributes to the distributed management activity, making use of the

210 X/Open CAE Specification (1994)

Glossary

management information services, which for a particular exchange of management information
has taken a manager role. (S)

manager role
The role adopted by a management entity which issues operations on, and receives notifications
from, managed objects in another management entity. (F)

name
A construct that singles out a particular managed object from all other managed objects. A
name must be unambiguous (that is, denote just one managed object instance), however it need
not be unique (that is, be the only name which unambiguously denotes the managed object).

name binding
A naming rule which specifies allowed superior-subordinate pairs of managed object classes and
which attribute is to be used in the relative distinguished name. (F)

notification
See Management Notification .

notification type
A named data-type defining a specific kind of notification. (S)

object
An object is a composite information object comprising zero or more OM attributes of different
types.

object identifier
A value (distinguishable from all other such values) which is associated with an information
object. (X.208)

OM attribute
An OM attribute comprises one or more values of a particular type (and therefore syntax). (O)

OM class
A static grouping of OM objects, within a specification, based on both their semantics and their
form. (O)

operation
Processing performed upon a managed object to provide a service, such as a get operation. It is
given some arguments as input, performs some processing, and returns some results. A
program invokes an operation by calling an interface function . See management operation .

outstanding operation
An operation , invoked asynchronously (ie. with Asynchronous = true in the context), which has
not yet been the subject of a call to Abandon() " or " Receive-Results() .

package
A specified group of related OM classes, denoted by an Object Identifier

presentation address
An unambiguous name which is used to identify a set of presentation-service-access-points.
Loosely, it is the network address of an OSI service.

private object
An OM object created in a workspace using the OSI-Abstract-Data Manipulation functions. The
term is simply used for contrast with a public object .

process
An address space, a single thread of control that executes within that address space, and its
required system resources. As opposed to a ‘system process’, or the OSI usage of the term

Systems Management: Management Protocols API (XMP) 211

Glossary

‘application process’. On a system that implements threads , a process is redefined to consist of
an address space with one or more threads executing within that address space and their
required system resources.

public object
A descriptor list which contains all the OM attributes of an OM object .

Relative Distinguished Name (RDN)
A set of Attribute Value Assertions (AVAs), each of which is true, concerning the distinguished
values of a particular managed object instance relative to its superior.

result
Information which is returned from a function or operation and which constitutes the outcome of
the processing which was performed.

root
The base level of the naming tree; the superior of all other managed objects in the tree. (F)

schema
The Management Schema is the set of rules and constraints concerning MIT structure, object
class definitions, attribute types and syntaxes which characterise the MIB.

service controls
A group of parameters applied to all management operations/notifications, which direct or
constrain the provision of the service. (S)

session
A sequence of management operations and notifications requested by a particular client using
the same Session OM object.

shared management knowledge
A shared view between management entities of the structure and meaning of the management
information those management entities intend to exchange. X

should
With respect to implementations, the feature is recommended, but it is not a mandatory
requirement. Applications should not rely on the existence of the feature.

With respect to applications, the word is used to give guidelines for recommended
programming practice. These guidelines should be followed if maximum portability is desired.
(X)

subclass
A managed object class whose specification is derived from an existing object class specification
(its superclass). ’Subclass’ is a transitive relationship. (F)

subordinate managed object
A managed object instance farther from the root in the naming tree (MIT), contained in a
superior managed object and named within the scope of its superior managed object. (S) In the
MIT, a managed object instance is subordinate to another if its distinguished name includes that of
the other as a prefix.

superior managed object
A managed object instance closer to the root in the naming tree (MIT), containing one or more
subordinate managed objects. The superior managed objects is the scope for naming its
subordinate managed objects. (S) In the MIT, a managed object instance is superior to another if its
distinguished name is included as a prefix of the distinguished name of other. Each entry has
exactly one immediate superior.

212 X/Open CAE Specification (1994)

Glossary

syntax - management
See Attribute Syntax .

syntax - object
An OM syntax is any of various categories into which the OSI-Abstract-Data Manipulation
specification statically groups values on the basis of their form. These categories are additional
to the OM type of the value. (O)

thread
A single sequential flow of control within a process.

undefined
A feature is undefined if this document imposes no portability requirements on applications for
erroneous program construct or erroneous data. Implementations may specify the result of
using the feature, but such specifications are not guaranteed to be consistent across all
implementations. (X) That is, it is a programming error to use the feature, unless the particular
implementation specifies the result. Note that an undefined result is completely unpredictable
and may include abnormal program termination.

unspecified
A feature is unspecified if this document imposes no portability requirements on applications
for correct program construct or erroneous data. Implementations may specify the result of
using the feature, but such specifications are not guaranteed to be consistent across all
implementations. (X) That is, it is always permissible to use the feature, but the result is not
known unless specified by the particular implementation.

user
The end user of the Management Information Services; the entity or person which accesses the
Management Information Services. Refers here to the application program which is calling the
interface. (S)

value
See Attribute Value .

will
The feature is required to be implemented and applications can rely on its existence. (X)

workspace
A space in which OM objects of certain OM classes can be created, together with an
implementation of the OSI-Abstract-Data Manipulation functions which supports those OM
classes.

Systems Management: Management Protocols API (XMP) 213

Glossary

214 X/Open CAE Specification (1994)

Index

#undef ...17
<xmp.h> ...187

enumerations...190
OM attribute names...189
OM class names..188

<xmp_cmis.h>...199
enumerations...202
OM attribute names...200
OM class names..199

<xmp_snmp.h>...204
enumerations...205
OM attribute names...204
OM class names..204

Abandon()..46
abbreviations ...12
Abort-req()...47
Abstract Class..207
Abstract Service ..19
abstract services..207
Abstract Syntax Notation One.............................207
access point..207
Access-Control ..111
action function arguments......................................29
Action-Error...134
Action-Error-Info..135
Action-Info...135
Action-Reply..136
Action-req() ...48
Action-rsp() ...50
Action-Type-Id..136
address..3, 22
Address...113
address..207
address resolution ..39
administrative details ..27
AE-Title...113
agent ...4, 19, 24, 34, 207
agent role..3, 207
API...1, 12
Application Program Interface1
Application-Syntax ..172
argument..19, 28, 30, 207
ASN.1..12, 30, 207
Assoc-req() ..52
Assoc-rsp() ..54
association..208

asynchronous completion208
asynchronous operation34, 180, 208
attribute ..3, 8, 28
Attribute ...137
attribute - object ..208
attribute - service ..208
attribute syntax ...208
attribute type - object...208
attribute type - service...208
attribute value - object...208
attribute value - service...208
attribute value assertion (AVA)...........................208
attribute value syntax..208
Attribute-Error ..137
Attribute-Id..138
Attribute-Id-Error...139
Attribute-Id-List..139
Authentication-Information.................................117
Authentication-Other ..117
AVA...12, 28, 118
Bad-Argument...182
Base-Managed-Object-Id139
Basic Encoding Rules...208
behaviour ...208
BER ..12, 208
Bind() ..56
C binding..2
C Headers...187
C language binding..15, 179
C Naming Conventions ..16
Cancel-Get-req()...58
Cancel-Get-rsp()...59
CCITT..12
class - object ...209
class - service ...209
class hierarchy...107
CMIP ...5, 7, 12
CMIS ...5, 7, 12, 37, 105
CMIS Management Service package..........105, 134
CMIS package objects..108
CMIS services ..5
CMIS-Action-Argument140
CMIS-Action-Result...141
CMIS-Cancel-Get-Argument141
CMIS-Create-Argument..142
CMIS-Create-Result ...143

Systems Management: Management Protocols API (XMP) 215

Index

CMIS-Delete-Argument..143
CMIS-Delete-Result ...144
CMIS-Event-Report-Argument145
CMIS-Event-Report-Result145
CMIS-Filter...146
CMIS-Get-Argument ...147
CMIS-Get-List-Error ..148
CMIS-Get-Result...148
CMIS-Linked-Reply-Argument...........................149
CMIS-Service-Error..150
CMIS-Service-Reject ..153
CMIS-Set-Argument ..154
CMIS-Set-List-Error ...155
CMIS-Set-Result..155
COMMON ...105
common error definitions108
Common Management Service package...........105
common objects ..107
Communications-Error ...183
Community-Name ...119
Complexity-Limitation..156
concrete class...209
confirmation...6
connection management...................................10, 38
containment ...209
containment relationship......................................209
context ..19, 27
Context ...119
Create-Object-Instance ..156
Create-req() ...61
Create-rsp() ...63
decoding ...29
Delete-Error ...157
Delete-req()..65
Delete-rsp()..67
descriptor ...9, 209
descriptor list...209
directory ...209
dispatching...39
distinguished encoding...209
Distinguished Name..209
Distinguished Value...209
DMI..12
DN..12
DS-DN...122
DS-RDN..123
encoding ...29
Entity-Name ..123
error ..22, 40, 179, 184
error constant ..179
Error-Info..157

Error-Message()..69
Event-Info...158
Event-Reply ...158
Event-Report-req()...70
Event-Report-rsp()...72
Event-Type-Id..159
Extension..123
External-AC ...124
filter ...209
Filter-Item...159
Form1 ..124
Form2 ..125
function ..19, 28, 209
function prototypes187, 194
function sequencing...40
Functional-Unit-Package126
Get-Assoc-Info()...74
Get-Info-Status ..160
Get-Last-Error() ..76
Get-Next-req() ..77
Get-req()...79
Get-rsp()...81
IETF ...12
immediate subordinate ...209
immediate superior..209
implementation-defined210
Initialize()...83
interface ..1
interface functions ..21
interface state definition..40
introductory concepts..3
Invalid-Argument-Value.......................................161
Invoke ID..210
Invoke-ID ...32
IP ..12
IPS ..12
ISO ...12
Kerberos..37
Library-Error..184
Local Distinguished Name...................................210
managed object ...4, 210
managed object class ...210
managed object instance210
management application ..3
Management Contents package....................11, 105
Management Information Base3
Management Information Base (MIB)................210
Management Information Tree (MIT)210
management interaction210
management notification210
management operation ...210

216 X/Open CAE Specification (1994)

Index

Management Program...3
management protocol..5
management service package11
manager ...4, 19, 24, 34, 210
manager role..3, 211
may ..210
MIB ..1, 3, 12
MIM...12
MIS...4, 12
MIS provider..6, 10
MIS providers..4
Missing-Attribute-Value161
MIT ..12
Modification ..161
Modification-List ..162
Multiple-Reply..163
name ...3, 22, 126, 211
name binding...211
name resolution ..39
Name-String ..127
negotiate ...11
Negotiate()...84
negotiation sequence ...21
Network-Address...127
NMF...12
No-Such-Action ..163
No-Such-Action-Id...163
No-Such-Argument ...164
No-Such-Event-Id...164
No-Such-Event-Type ...165
notification...19, 211
notification type..211
object ...8, 211
object identifier...................................3, 105, 187, 211
Object-Class ...165
Object-Instance ...165
Object-Syntax ..173
OM...12
OM attribute ..8, 211
OM attribute extensions..106
OM class ...8, 211
OM object ...8
operation ..19, 211
optional functionality ..10
OSI ...12
outstanding operation ...211
package...8, 11, 211
package-closure ..8
Pdu...173
Pdus...174
performer resolution..38

presentation address..211
Presentation-Address ..127
Presentation-Context ...128
private object...9, 28, 211
process ..211
Processing-Failure ..166
profile ..10
protocol ...4-5
public object ..9, 28, 212
RDN...12
Receive() ..87
reference model...3
Relative Distinguished Name (RDN).................212
Relative-Name ..129
Release-req()..91
Release-rsp()..93
request...6
response..30
result ...19, 32, 212
return value..17
RFC..12, 110
root...212
ROSE ...12
schema ..212
Scope ...167
security ...19, 37
service ...4, 20
service controls ...212
service package ...105
Service-Error..186
session ..19, 24, 212
Set-Info-Status ...167
Set-req()..95
Set-rsp()..97
Setof-Attribute ..168
Setof-CMIS-Filter..168
Setof-Get-Info-Status ...169
Setof-Set-Info-Status ..169
shared management knowledge212
should ...212
Shutdown()..99
Simple-Syntax ...175
SMASE-User-Data..132
SMI...12
SNMP ...1, 5, 7, 12, 37, 105
SNMP Management Service package........105, 172
SNMP package objects ..109
SNMP Services ..7
SNMP-Object-Name ..132
Specific-Error-Info..169
Standards..1

Systems Management: Management Protocols API (XMP) 217

Index

status...19, 32, 179
status value ..33
subclass...212
subordinate managed object212
Substring ..170
Substrings...170
success ..179
superior managed object.......................................212
synchronous operation34, 180
syntax ..8
syntax - management ..213
syntax - object..213
System-Error..186
TCP ..12
terminology..12
thread ..213
title ...3, 22
Title..133
Trap-Pdu...175
Unbind()...100
undef ...17
undefined ...213
unspecified...213
use of fonts ...2
user ..3, 213
Validate-Object() ..101
value..8, 213
Var-Bind..176
Variable-Binding...177
Wait() ..102
will ...213
workspace ..8, 213
XDS..12
XMP...12
xmp.h ..15, 18
xmp_cmis.h..15, 18
xmp_snmp.h..15, 18
XOM..12, 105, 187
XOM API ..8
xom.h ..15, 18

218 X/Open CAE Specification (1994)

