
X/Open CAE Specification

Message Store API (XMS)

X/Open Company Ltd.

 June 1993, X/Open Company Limited and X.400 API Association

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Message Store API (XMS)

ISBN: 1 872630 83 9
X/Open Document Number: C305

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification (1993)

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Abbreviations .. 2
 1.3 The Message Store .. 3
 1.4 Mandatory and Optional Features of the Interface 5
 1.5 Conformance ... 7
 1.6 Object Management ... 9
 1.6.1 Syntax... 9
 1.6.2 Value ... 9
 1.6.3 OM Attribute .. 9
 1.6.4 OM Object ... 9
 1.6.5 OM Class ... 10
 1.6.6 Package .. 11
 1.6.7 Package Closure ... 11
 1.6.8 Workspace ... 11
 1.6.9 Descriptor.. 11
 1.6.10 Use of Objects ... 12
 1.7 Conventions Used in this Specification ... 13

Chapter 2 C Language Binding... 15
 2.1 Introduction ... 15
 2.2 C Naming Convention... 16
 2.3 Use and Implementation of Interfaces ... 18
 2.4 Function Return Values ... 18
 2.5 Compilation and Linking.. 19

Chapter 3 Description .. 21
 3.1 Introduction ... 21
 3.2 Services ... 22
 3.2.1 Sequence of Interface Functions ... 23
 3.3 Session... 24
 3.4 Function Arguments .. 25
 3.4.1 Attribute... 25
 3.4.2 AVA... 26
 3.5 Function Results.. 27
 3.5.1 Invoke-ID... 27
 3.5.2 Result.. 27
 3.5.3 Status .. 28
 3.6 Synchronous and Asynchronous Operations 28
 3.7 Security ... 29

Message Store API (XMS): iii

Contents

Chapter 4 Interface Functions.. 31
 4.1 Data Types.. 31
 Feature() ... 32
 Invoke-ID()... 33
 Status()... 34
 4.2 Functional Units.. 35
 4.3 Function Definitions... 36
 Bind().. 37
 Cancel-Submission() ... 39
 Check-Alert() ... 40
 Delete() ... 41
 Fetch .. 43
 Initialize() .. 45
 List() ... 47
 Receive-Result()... 49
 Register().. 51
 Register-MS() .. 53
 Shutdown() .. 55
 Submit() ... 56
 Summarize()... 58
 Unbind()... 60
 Wait().. 61

Chapter 5 Interface Class Definitions... 63
 5.1 Introduction ... 63
 5.2 Class Hierarchy... 64
 5.3 Address... 66
 5.4 Alert-Address .. 66
 5.5 Attribute.. 66
 5.6 Attribute-Defaults... 66
 5.7 Attribute-Selection.. 67
 5.8 AVA.. 67
 5.9 Auto-Action ... 68
 5.10 Auto-Action-Deregistration ... 68
 5.11 Auto-Action-Registration ... 69
 5.12 Auto-Alert-Registration-Parameter .. 69
 5.13 Auto-Forward-Arguments.. 70
 5.14 Auto-Forward-Registration-Parameter.. 73
 5.15 Bind-Argument ... 74
 5.16 Bind-Result... 75
 5.17 Change-Credentials.. 76
 5.18 Check-Alert-Result ... 76
 5.19 Common-Controls.. 77
 5.20 Creation-Time-Range... 78
 5.21 Credentials ... 78
 5.22 Default-Delivery-Controls .. 79
 5.23 Delete-Argument .. 80
 5.24 Deliverable-Content-Types... 81

iv X/Open CAE Specification (1993)

Contents

 5.25 EITs... 81
 5.26 Fetch-Argument .. 82
 5.27 Fetch-Attribute-Defaults ... 82
 5.28 Fetch-Result.. 83
 5.29 Filter... 83
 5.30 Filter-Item... 84
 5.31 Item.. 84
 5.32 Item-To-Forward... 84
 5.33 Items .. 85
 5.34 Label-And-Redirection.. 85
 5.35 Labels-And-Redirections... 86
 5.36 List-Argument... 87
 5.37 List-Attribute-Defaults .. 87
 5.38 List-Result... 88
 5.39 MS-Entry-Information ... 88
 5.40 MS-Entry-Information-Selection ... 89
 5.41 MTS-Identifier ... 89
 5.42 OR-Name.. 89
 5.43 Password... 89
 5.44 Range... 90
 5.45 Register-Argument... 91
 5.46 Register-MS-Argument ... 93
 5.47 Restrictions... 94
 5.48 Security-Label.. 94
 5.49 Selector.. 95
 5.50 Sequence-Number-Range ... 96
 5.51 Session... 96
 5.52 Strong-Credentials.. 97
 5.53 Submission-Results .. 97
 5.54 Submitted-Communique .. 97
 5.55 Submitted-Message.. 97
 5.56 Submitted-Probe ... 98
 5.57 Summarize-Argument... 98
 5.58 Summary .. 99
 5.59 Summary-Present ... 99
 5.60 Summary-Requests .. 100
 5.61 Summary-Result ... 100
 5.62 Wait-Result... 101

Chapter 6 Errors.. 103
 6.1 Introduction ... 103
 6.2 OM Class Hierarchy... 104
 6.3 Error... 106
 6.4 Attribute-Error... 107
 6.5 Attribute-Problem... 108
 6.6 Auto-Action-Request-Error .. 109
 6.7 Auto-Action-Request-Problem .. 109
 6.8 Bind-Error... 110

Message Store API (XMS): v

Contents

 6.9 Cancel-Submission-Error .. 110
 6.10 Communications-Error.. 111
 6.11 Delete-Error.. 111
 6.12 Delete-Problem.. 112
 6.13 Element-of-Service-Not-Subscribed-Error .. 112
 6.14 Fetch-Restriction-Error .. 113
 6.15 Fetch-Restriction-Problem .. 114
 6.16 Inconsistent-Request-Error... 115
 6.17 Invalid-Parameters-Error .. 115
 6.18 Library-Error.. 116
 6.19 Originator-Invalid-Error.. 117
 6.20 Range-Error.. 118
 6.21 Recipient-Improperly-Specified-Error ... 118
 6.22 Register-Rejected-Error ... 119
 6.23 Remote-Bind-Error ... 119
 6.24 Security-Error .. 120
 6.25 Sequence-Number-Error ... 120
 6.26 Sequence-Number-Problem ... 121
 6.27 Service-Error .. 121
 6.28 Submission-Control-Violated-Error ... 122
 6.29 System-Error.. 122
 6.30 Unsupported-Critical-Function-Error .. 123

Chapter 7 MS General Attributes Class Definitions............................... 125
 7.1 Introduction ... 125
 7.2 MS Attribute Types... 126
 7.3 Class Hierarchy... 129
 7.4 Syntax Definitions... 130
 7.4.1 Entry-Status... 130
 7.4.2 Entry-Type... 130
 7.4.3 Priority.. 130
 7.4.4 Security-Classification .. 131

Chapter 8 MS IM Attributes Class Definitions .. 133
 8.1 Introduction ... 133
 8.2 MS Interpersonal Messaging Attribute Types 134
 8.3 Class Hierarchy... 138
 8.4 Body... 140
 8.5 Body-Part-Synopsis .. 140
 8.6 G3-Fax-Data ... 141
 8.7 Heading... 142
 8.8 IPM-Synopsis... 144
 8.9 Message-Body-Part-Synopsis... 144
 8.10 Non-Message-Body-Part-Synopsis ... 145
 8.11 Teletex-Data ... 146
 8.12 Teletex-Parameters ... 146
 8.13 Syntax Definitions... 147
 8.13.1 Acknowledgment-Mode.. 147

vi X/Open CAE Specification (1993)

Contents

 8.13.2 Discard-Reason .. 147
 8.13.3 IA5-Repertoire.. 147
 8.13.4 Importance .. 147
 8.13.5 IPM-Entry-Type.. 148
 8.13.6 Non-Receipt-Reason ... 148
 8.13.7 Sensitivity.. 148
 8.13.8 Videotex-Syntax... 148

Chapter 9 Headers... 149
 9.1 <xms.h> .. 150
 9.2 <xmsga.h>.. 159
 9.3 <xmsima.h> ... 162

Chapter 10 A Programming Example... 167

Appendix A Runtime Binding.. 175
 A.1 OS/2 .. 175
 A.1.1 Service Provider Requirements... 175
 A.1.2 Client Application Requirements... 176
 A.2 UNIX System V Release 4.0 .. 176

 Glossary ... 179

 Index... 187

List of Figures

1-1 MS and UA Interface Operations ... 3
3-1 Sequence of Interface Functions ... 23

List of Tables

1-1 Features and their Object Identifiers.. 5
2-1 C Naming Conventions.. 16
3-1 Interface Functions .. 22
4-1 Interface Data Types.. 31
4-2 Functional Units... 35
5-1 OM Attributes of an Alert-Address ... 66
5-2 OM Attributes of Attribute-Defaults... 66
5-3 OM Attributes of Attribute-Selection.. 67
5-4 OM Attributes of Auto-Action.. 68
5-5 OM Attributes of Auto-Action-Registration.. 69
5-6 OM Attributes of Auto-Alert-Registration-Parameter 69
5-7 OM Attributes of Auto-Forward-Arguments.. 70
5-8 OM Attributes of Auto-Forward-Registration-Parameter 73
5-9 OM Attributes of Bind-Argument.. 74
5-10 OM Attributes of Bind-Result ... 75
5-11 OM Attributes of Change-Credentials .. 76

Message Store API (XMS): vii

Contents

5-12 OM Attributes of Check-Alert-Result ... 76
5-13 OM Attributes of Common-Controls .. 77
5-14 OM Attributes of Creation-Time-Range ... 78
5-15 OM Attributes of Credentials.. 78
5-16 OM Attributes of Default-Delivery-Controls .. 79
5-17 OM Attributes of Delete-Argument... 80
5-18 OM Attributes of Deliverable-Content-Types ... 81
5-19 OM Attributes of Fetch-Argument .. 82
5-20 OM Attributes of Fetch-Result .. 83
5-21 OM Attributes of Item-To-Forward ... 84
5-22 OM Attributes of Items... 85
5-23 OM Attributes of Label-And-Redirection... 85
5-24 OM Attributes of Labels-And-Redirections... 86
5-25 OM Attributes of List-Argument ... 87
5-26 OM Attributes of List-Result ... 88
5-27 OM Attributes of MS-Entry-Information.. 88
5-28 OM Attributes of MS-Entry-Information-Selection................................ 89
5-29 OM Attributes of Password... 89
5-30 OM Attributes of Range ... 90
5-31 OM Attributes of Register-Argument ... 91
5-32 OM Attributes of Register-MS-Argument.. 93
5-33 OM Attributes of Restrictions .. 94
5-34 OM Attributes of Selector .. 95
5-35 OM Attributes of Sequence-Number-Range.. 96
5-36 OM Attributes of Session ... 96
5-37 OM Attributes of Strong-Credentials .. 97
5-38 OM Attributes of Summarize-Argument ... 98
5-39 OM Attributes of Summary .. 99
5-40 OM Attributes of Summary-Present.. 99
5-41 OM Attributes of Summary-Requests... 100
5-42 OM Attributes of Summary-Result.. 100
5-43 OM Attributes of Wait-Result ... 101
6-1 OM Attributes of Error ... 106
6-2 OM Attributes of Attribute-Error... 107
6-3 OM Attributes of Attribute-Problem... 108
6-4 OM Attributes of Auto-Action-Request-Error .. 109
6-5 OM Attributes of Auto-Action-Request-Problem................................... 109
6-6 OM Attributes of Delete-Error.. 111
6-7 OM Attributes of Delete-Problem .. 112
6-8 OM Attributes of Fetch-Restriction-Error... 113
6-9 OM Attributes of Fetch-Restriction-Problem... 114
6-10 OM Attributes of Recipient-Improperly-Specified-Error...................... 118
6-11 OM Attributes of Security-Error... 120
6-12 OM Attributes of Sequence-Number-Error.. 120
6-13 OM Attributes of Sequence-Number-Problem.. 121
7-1 Object Identifiers for MS Attribute Types... 126
7-2 Value Syntax for MS Attribute Types .. 128
8-1 Object Identifiers for MS Interpersonal Messaging Attribute Types .. 134

viii X/Open CAE Specification (1993)

Contents

8-2 Value Syntax for MS Interpersonal Messaging Attribute Types.......... 136
8-3 OM Attributes of Body ... 140
8-4 OM Attributes of Body-Part-Synopsis .. 140
8-5 OM Attributes of G3-Fax-Data ... 141
8-6 OM Attributes of Heading... 142
8-7 OM Attributes of IPM-Synopsis ... 144
8-8 OM Attributes of Message-Body-Part-Synopsis 144
8-9 OM Attributes of Non-Message-Body-Part-Synopsis............................ 145
8-10 OM Attributes of Teletex-Data.. 146
8-11 OM Attributes of Teletex-Parameters.. 146

Message Store API (XMS): ix

Contents

x X/Open CAE Specification (1993)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable system environment, called the Common
Applications Environment (CAE). This environment covers the standards, above the hardware
level, that are needed to support open systems. It provides for portability and interoperability of
applications, and allows users to move between systems with a minimum of retraining.

The components of the Common Applications Environment are defined in X/Open CAE
Specifications. These contain, among other things, an evolving portfolio of practical application
programming interfaces (APIs), which significantly enhance portability of application programs
at the source code level, and definitions of, and references to, protocols and protocol profiles,
which significantly enhance the interoperability of applications.

The X/Open CAE Specifications are supported by an extensive set of conformance tests and a
distinct X/Open trademark - the XPG brand - that is licensed by X/Open and may be carried
only on products that comply with the X/Open CAE Specifications.

The XPG brand, when associated with a vendor’s product, communicates clearly and
unambiguously to a procurer that the software bearing the brand correctly implements the
corresponding X/Open CAE Specifications. Users specifying XPG-conformance in their
procurements are therefore certain that the branded products they buy conform to the CAE
Specifications.

X/Open is primarily concerned with the selection and adoption of standards. The policy is to
use formal approved de jure standards, where they exist, and to adopt widely supported de facto
standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organisations to assist in the creation of formal standards covering the needed
functions, and to make its own work freely available to such organisations. Additionally,
X/Open has a commitment to align its definitions with formal approved standards.

X/Open Specifications

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the long-life specifications that
form the basis for conformant and branded X/Open systems. They are intended to be used
widely within the industry for product development and procurement purposes.

Message Store API (XMS): xi

Preface

Developers who base their products on a current CAE Specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future XPG brand (if not referenced already), and that a variety of compatible, XPG-branded
systems capable of hosting their products will be available, either immediately or in the near
future.

CAE Specifications are not published to coincide with the launch of a particular XPG brand,
but are published as soon as they are developed. By providing access to its specifications in
this way, X/Open makes it possible for products that conform to the CAE (and hence are
eligible for a future XPG brand) to be developed as soon as practicable, enhancing the value
of the XPG brand as a procurement aid to users.

• Preliminary Specifications

These are specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations, that are
released in a controlled manner for the purpose of validation through practical
implementation or prototyping. A Preliminary Specification is not a ‘‘draft’’ specification.
Indeed, it is as stable as X/Open can make it, and on publication has gone through the same
rigorous X/Open development and review procedures as a CAE Specification.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by formal
standards organisations, and product development teams are intended to develop products
on the basis of them. However, because of the nature of the technology that a Preliminary
Specification is addressing, it is untried in practice and may therefore change before being
published as a CAE Specification. In such a case the CAE Specification will be made as
upwards-compatible as possible with the corresponding Preliminary Specification, but
complete upwards-compatibility in all cases is not guaranteed.

In addition, X/Open periodically publishes:

• Snapshots

Snapshots are ‘‘draft’’ documents, which provide a mechanism for X/Open to disseminate
information on its current direction and thinking to an interested audience, in advance of
formal publication, with a view to soliciting feedback and comment.

A Snapshot represents the interim results of an X/Open technical activity. Although at the
time of publication X/Open intends to progress the activity towards publication of an
X/Open Preliminary or CAE Specification, X/Open is a consensus organisation, and makes
no commitment regarding publication.

Similarly, a Snapshot does not represent any commitment by any X/Open member to make
any specific products available.

X/Open Guides

X/Open Guides provide information that X/Open believes is useful in the evaluation,
procurement, development or management of open systems, particularly those that are
X/Open-compliant.

X/Open Guides are not normative, and should not be referenced for purposes of specifying or
claiming X/Open-conformance.

xii X/Open CAE Specification (1993)

Preface

This Document

This document is a CAE Specification (see above).

The Message Store Application Program Interface provides an API to the Message Store
functions similar to those described in X.413 in an X.400 Message Handling System. This
document describes this program interface.

A compliant system shall meet the definitive requirements described in this Message Store API
Preliminary Specification.

The content of this specification has been developed in collaboration with the X.400 API
Association. This is one of several specifications that X/Open has developed in collaboration
with the X.400 API Association. Other documents include:

• OSI-Abstract-Data Manipulation (XOM) API

• API to Directory Services (XDS)

• API to Electronic Mail (X.400)

• Guide to Selected X.400 and Directory Services APIs

• EDI Messaging Package.

Message Store API (XMS): xiii

Trade Marks

X/Open and the ‘X’ device are trademarks of X/Open Company Limited in the U.K. and other
countries.

xiv X/Open CAE Specification (1993)

Referenced Documents

The following documents are referenced in this Specification:

ANSI C
Information Processing - Programming Language C, ISO Draft International Standard DIS
9899 (also known as ‘‘ANSI C’’, American National Standard X3.159 -1989).

MHS-1984

CCITT X.400 (1984) includes the following:

Recommendation X.400, Message Handling Systems: System Model - Service Elements,
International Telegraph and Telephone Consultative Committee (CCITT) Red Book, Fascicle
VIII.7, International Telecommunications Union, 1984, pp. 3-38.

Recommendation X.401, Message Handling Systems: Basic Service Elements and Optional
User Facilities, Ibid., pp. 39-45.

Recommendation X.408, Message Handling Systems: Encoded Information Type
Conversion Rules, Ibid., pp. 46-61.

Recommendation X.409, Message Handling Systems: Presentation Transfer Syntax and
Notation, Ibid., pp. 62-93.

Recommendation X.410, Message Handling Systems: Remote Operations and Reliable
Transfer Service, Ibid., pp. 93-126.

Recommendation X.411, Message Handling Systems: Message Transfer Layer, Ibid., pp.
127-182.

Recommendation X.420, Message Handling Systems: Interpersonal Messaging User Agent
Layer, Ibid. pp 182-219.

Recommendation X.430, Message Handling Systems: Access Protocol for Teletex terminals,
Ibid. pp 219-266.

MHS-1988

CCITT X.400 (1988) includes the following:

Recommendation X.400, Message Handling Systems: System Model - Service Elements,
International Telegraph and Telephone Consultative Committee (CCITT) Blue Book,
Fascicle VIII.7, International Telecommunications Union, 1988. See also ISO 10021-1.

Recommendation X.402, Message Handling Systems: Overall Architecture, Ibid. See also
ISO 10021-2.

Recommendation X.403, Message Handling Systems: Conformance Testing, Ibid.

Recommendation X.407, Message Handling Systems: Abstract Service Definition
Conventions, Ibid. See also ISO 10021-3.

Recommendation X.408, Message Handling Systems: Encoded Information Type
Conversion Rules, Ibid.

Recommendation X.411, Message Handling Systems: Message Transfer System: Abstract
Service Definition and Procedures, Ibid. See also ISO 10021-4.

Message Store API (XMS): xv

Referenced Documents

Recommendation X.413, Message Handling Systems: Message Store: Abstract Service
Definition, Ibid. See also ISO 10021-5.

Recommendation X.419, Message Handling Systems: Protocol Specifications, Ibid. See also
ISO 10021-6.

Recommendation X.420, Message Handling Systems: Interpersonal Messaging System, Ibid.
See also ISO 10021-7.

MHS
MHS Implementor’s Guide, Version 5, CCITT Special Rapporteur Q18/VII Message
Handling Systems, February 1991.

XDS
API to Directory Services (XDS), CAE Specification, X/Open Company Limited and X.400
API Association, C190, 1991.

XOM
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification, X/Open Company
Limited and X.400 API Association, C180, 1991.

XSH
X/Open Portability Guide, Issue 4 (XPG4), System Interfaces and Headers, CAE
Specification, C203, X/Open Company Limited, 1992.

X.400
API to Electronic Mail (X.400), CAE Specification, X/Open Company Limited and X.400 API
Association, C191, 1991.

X.411
Recommendation X.411, Message Handling Systems: Message Transfer System: Abstract
Service Definition and Procedures, International Telegraph and Telephone Consultative
Committee (CCITT) Blue Book, Fascicle VIII.7, International Telecommunications Union,
1988. See also ISO 10021-4.

X.413
Recommendation X.413, Message Handling Systems: Message Store: Abstract Service
Definition and Procedures, Ibid. See also ISO 10021-5.

X.420
Recommendation X.420, Message Handling Systems: Message Store: Interpersonal
Messaging System, Ibid. See also ISO 10021-7.

xvi X/Open CAE Specification (1993)

Chapter 1

Introduction

1.1 Overview
The Message Store Application Program Interface (MS API) provides an Application Program
Interface (API) to the Message Store (MS) functions similar to those described in X.413 (see
reference X.413) in an X.400 Message Handling System. A brief description of the MS is given in
Section 1.3 on page 3.

This interface is designed to offer services that are consistent with, but not limited to, the 1988
CCITT X.413 Recommendations and the ISO 10021-5 Standard. The CCITT Recommendations
and the ISO Standard were developed in close collaboration and are technically aligned.
Hereafter, they are referred to as the Standards.

The interface is designed for operational interactions with a Message Store. Although the
semantics of the interface are derived from X.413, this specification does not require for
conformance that an implementation of the interface or the MS itself actually make use of the
MS (P7) protocol of X.413.

The MS interface uses facilities provided by the XOM Specification (see reference XOM). Section
1.6 on page 9 presents some of the important definitions used in the XOM API.

Message Store API (XMS) 1

Abbreviations Introduction

1.2 Abbreviations
The objects defined in this document are to be understood in the context provided by the MS
standards X.413 (see reference X.413).

In addition to the abbreviations used to identify the Referenced Documents, the following are
abbreviations used throughout this document:

API Application Program Interface

ASN.1 Abstract Syntax Notation One

AVA Attribute Value Assertion

BER Basic Encoding Rules

CCITT International Telegraph and Telephone Consultative Committee

FU Functional Unit

IA5 International Alphabet Number 5

ID identifier

IM Interpersonal Messaging

IPM interpersonal message

IPN interpersonal notification

ISO International Organization for Standardization

MS Message Store

OM Object Management

OSI Open Systems Interconnection

X.400 APIA X.400 API Association

2 X/Open CAE Specification (1993)

Introduction The Message Store

1.3 The Message Store
The Message Store (MS) Abstract Service is defined in X.413 (see reference X.413). The MS acts as
an intermediary between the Message Transfer System (MTS) and the User Agent (UA). The main
function of the MS is to accept delivery of messages on behalf of a single end-user and to store
the messages for subsequent retrieval by the end-user’s UA. The MS also makes available the
message submission and administration services of the MTS to the UA. In this intermediate
capacity, the MS can provide the UA with additional functionality compared to direct
submission to the MTS. The indirect submission services offered by the MS also includes
forwarding of messages stored in the MS.

User
Agent
(UA)

Message
Store
(MS)

Retrieval

Indirect

Submission

Administration

information
base(s)

Figure 1-1 MS and UA Interface Operations

The MS Abstract Service defines operations that can be grouped into two sets.

One set interfaces to the MTS and provides the Delivery, Submission and Administration
services. This set corresponds to the X.400 P3 protocol.

The other set of operations interfaces with the UA and corresponds to the P7 protocol (refer to
Figure 1-1). These operations, in turn, may be classified thus:

• Retrieval

— list

— fetch

— delete

— register-MS

— alert

— summarise

Message Store API (XMS) 3

The Message Store Introduction

• Indirect Submission

— submit message

— submit probe

— cancel submission

• Administration

— register

— change credentials
Note: This API does not include a function for Change-Credentials.

In addition, the following are provided:

• MS-Bind

• MS-Unbind

The P7 protocol gives a UA access to the MS. The MS allows the UA to submit messages, to
retrieve messages (or parts of such messages) and to perform administrative functions such as
registration of the MS (and/or UA) capabilities.

The MS stores and maintains databases known as information bases. The Standards define three
types of information bases: stored messages (for delivered messages and reports), inlog and outlog
(these last two are for logging purposes).

An MS may provide special support for various types of messages, such as interpersonal
messages (IPMs). X.413 discusses how to support IPMs.

The elements in an information base of the MS are known as entries. An entry represents a single
object (such as a delivered message) within the information base. An entry consists of a set of
MS attributes. Each entry is identified by the MS attribute Sequence-Number which is unique
within an information base and generated when a new entry is created.

An MS attribute provides a piece of information about, or derived from, the data to which the
entry corresponds. An attribute consists of an attribute type which identifies the class of
information given by an attribute and its corresponding attribute value(s) which are particular
instances of that class appearing in the entry. Attributes that can have exactly a single value
associated with them are termed single-valued, whereas those that can have more than one value
at a time are termed multi-valued (e.g., Other-Recipient-Names). The standards define certain
general-purpose attributes, termed General Attributes, for the stored messages information bases
(see reference X.413, Clause 11). Examples of such MS General Attributes types are Entry-Type,
Sequence-Number, Originator-Name and Report-Delivery-Envelope. An MS that supports
Interpersonal Messaging (IM) will also recognise specific IM attributes and can take appropriate
actions on these attributes.

4 X/Open CAE Specification (1993)

Introduction Mandatory and Optional Features of the Interface

1.4 Mandatory and Optional Features of the Interface
This document defines an API that application programs can use to access the functionality of
the underlying MS service. The interface neither defines nor implies any particular profile of the
service.

Note that nothing in this specification requires that the implementation of the interface or the
Message Store itself actually make use of the P7 protocol.

Options

Some behavioural aspects of the interface are implementation-defined. These are:

• the maximum number of outstanding asynchronous operations

• whether an asynchronous function call returns before the operation is submitted to the MS

• the text and language of error messages

The features that the present edition of this document defines are the functional units and
packages as shown in Table 1-1 below.

A functional unit (FU) is a collection of related functions. If an FU is supported by the service, all
interface functions within that FU must be supported.

See Section 1.6.6 on page 11 for the definition of a package.

Other documents, or other editions of this document, may define additional (e.g., proprietary)
features which may (but need not) themselves be FUs or packages.

Feature Object Identifier mandatory/
(ASN.1) suffix † optional

MS Package ms-pkg(1) mandatory
MS General Attributes Package ms-general-attr-pkg(2) mandatory
MS IM Attributes Package ms-im-attr-pkg(3) optional
MS FU ms-fu(4) mandatory
MS Submission FU ms-submission-fu(5) optional
MS Administration FU ms-administration-fu(6) optional
MS Alert FU ms-alert-fu(7) optional

† Each object identifier suffix is appended to:
{joint-iso-ccitt mhs-motis(6) group(6) white(1) api(2) ms(6)}

Table 1-1 Features and their Object Identifiers

This specification defines four FUs. See Section 4.2 on page 35 for the table listing the interface
functions available within each of these functional units.

This specification defines three packages, of which two are mandatory and one is optional. Use
of optional packages is negotiated through the Feature-List argument of the Initialize() function.
The packages defined are as follows:

• The Message Store Package, defined in Chapter 5, with the Errors defined in Chapter 6, is
mandatory.

• The Message Store General Attributes Package, defined in Chapter 7, is mandatory.

• The Message Store Interpersonal Messaging Attributes Package, defined in Chapter 8, is optional.

The service makes an optional feature available to the client only if the client requests it. The
client may request a set of features through the Feature-List argument to the Initialize() function;
the MS FU, the MS Package and the MS General Attributes Package are provided by the service

Message Store API (XMS) 5

Mandatory and Optional Features of the Interface Introduction

as default.

The following occurs if the client attempts to use a feature that the service has not made
available. If the MS FU is available and the client invokes a function in the other FUs, but that
FU is unavailable, the

feature-unavailable [MS_E_FEATURE_UNAVAILABLE]
error arises.

After initialising the interface with certain features negotiated, if the client attempts to invoke a
function not previously requested, the

feature-not-requested [MS_E_FEATURE_NOT_REQUESTED]
error arises.

If the client supplies, as a function argument, an object, one of whose subobjects is an instance of
a class not in any of the packages the interface had been initialised with, the

no-such-class [MS_E_NO_SUCH_CLASS]
error arises.

This specification does not mandate that any OM classes be encodable using OM-Encode() and
OM-Decode().

6 X/Open CAE Specification (1993)

Introduction Conformance

1.5 Conformance
A manufacturer shall claim conformance to this edition of this document only if it and its
product collectively satisfy the following requirements:

1. Interfaces

The manufacturer and product shall satisfy the following requirements related to
interfaces:

— The manufacturer shall identify the interface the product implements and state what
role the product plays for the client and/or the service.

— The product shall implement the OM interface as defined in the XOM API Specification
(see reference XOM), satisfying its conformance requirements and play the same roles
for that interface as it plays for the MS interface.

2. Features

The manufacturer and product shall satisfy the following requirements related to features
(see Section 1.4 on page 5):

— If the product plays the role of service for the MS interface, the manufacturer shall state
which features it implements.

— If the product plays the role of service for the MS interface, it shall implement the MS
FU and optionally, the Alert FU, the Submission FU, the Administration FU or any
combination of the three.

— If the product plays the role of service for the MS interface, it shall implement the MS
Package, MS General Attributes Package and optionally, the MS Interpersonal
Messaging Package.

3. Functions

The manufacturer and product shall satisfy the following requirements related to
functions:

— The product shall implement every aspect of every function in each FU for which it
plays the role of service.

4. Classes

The manufacturer and product shall satisfy the following requirements related to classes:

— Support for any of the packages defined in this specification only requires the service to
provide those classes which can be supported by the underlying implementation of the
MS.

Note: For example, not all implementations of an MS support all the MS attributes
defined in X.413 (see reference X.413). Therefore, the service need not support
the OM classes corresponding to these unsupported MS attributes.

— The product shall implement the closures of all classes it implements.

— The product shall state classes for which it provides the OM-Encode() and OM-
Decode() functions.

5. Protocols

The manufacturer and product shall satisfy the following requirements related to
protocols:

Message Store API (XMS) 7

Conformance Introduction

— If the product plays the role of service for the MS interface, the manufacturer shall state
whether or not it realises the interface by means of the X.413 Message Store (P7)
Protocol.

— If the product implements the P7 protocol, the manufacturer and product shall satisfy
the conformance requirements of the X.400 (1988) and relevant profiles with respect to
the protocol.

6. Options

The manufacturer and product shall satisfy the following requirements related to
implementation (see Section 1.4 on page 5):

— If the product plays the role of service for the MS interface, the manufacturer shall state
the behaviour of implementation-defined options.

7. Interpretation of ‘‘any’’ syntax

Wherever the word ‘‘any’’ appears in the syntax column of an attribute definition, this
shall be treated as the corresponding OM syntax wherever the underlying ASN.1 encoding
is a Universal simple type as listed in the XOM API Specification (see reference XOM),
otherwise it shall be treated as String(Encoding).

8 X/Open CAE Specification (1993)

Introduction Object Management

1.6 Object Management
The interface makes use of facilities provided by the XOM API (see reference XOM). These
facilities are introduced briefly below.

Note that some terms used (e.g., attribute) are also used in a different context when referring to
the Message Store. To avoid confusion, distinct names are used for each such term. Throughout
this document, care is taken to distinguish between OM attributes (refer to Section 1.6.3) and
attributes used with regard to the Message Store (refer to Section 1.3 on page 3). The unqualified
term attribute denotes the Message Store construct, whereas the phrase OM attribute denotes the
Object Management one.

1.6.1 Syntax

A syntax is the basis for the classification and representation of values in Object Management.
Examples of syntaxes are Boolean, Integer, String(Octet) and Object.

Syntaxes are defined in the Object Management specification and nowhere else, and are
themselves represented by integers.

1.6.2 Value

A value is a single datum or piece of information. Each value belongs to exactly one syntax by
which its representation is defined. A value may be as simple as a Boolean value (e.g., True) or
as complicated as an entire OM object (e.g., a Message).

1.6.3 OM Attribute

An OM attribute type is an arbitrary category into which a specification places some values.

OM attribute types are represented by integers assigned in the individual API service
specifications and are only meaningful within a particular package (see Section 1.6.6 on page 11).

An OM attribute is an OM attribute type together with an ordered sequence of one or more
values. OM attributes can occur only as parts of an OM object and the OM attribute type, and
values are constrained by the OM class specification of that OM object (see Section 1.6.5 on page
10).

The OM attribute type can be thought of as the name of the OM attribute.

There is no general representation for an OM attribute (see Section 1.6.9 on page 11), but a
descriptor represents an OM attribute type together with a single syntax and value.

1.6.4 OM Object

An OM object is a collection of OM attributes, the values of which can be accessed by means of
functions. The particular OM attribute types that may occur in an OM object are determined by
the OM class (see Section 1.6.5 on page 10) of the OM object as are the constraints on those OM
attributes. The OM class of an OM object is determined when the OM object is created and
cannot be changed.

OM objects are represented in the interface by a handle or opaque pointer. The internal
representation of an OM object is not specified though there is a defined data structure called a
descriptor list which can also be used directly in a program (see Section 1.6.9 on page 11).

Message Store API (XMS) 9

Object Management Introduction

1.6.5 OM Class

An OM class is a category of OM object set out in a specification. It determines the OM attributes
that may be present in the OM object and details the constraints on those OM attributes.

Each OM object belongs directly to exactly one OM class and is called an instance of that OM
class. The OM classes of OM objects form a tree; each OM class has exactly one immediate
superclass (except for the OM class Object, which is the root of the tree) and each OM class may
have an arbitrary number of subclasses. The tree structure is also known as the OM class
hierarchy. The importance of the OM class hierarchy stems from the inheritance property that is
discussed below.

Each OM class of OM object has a fixed list of OM attribute types and every OM object that is an
instance of the OM class has only these OM attributes (actually some OM attributes may not be
present in particular instances as permitted by the constraints in the OM class specification).
The list of OM attribute types that may appear in instances of an OM class has two parts. Each
OM class inherits all the OM attribute types. There is also a list of additional OM attribute types
that are permitted in the OM class. Any subclasses of this OM class will inherit all of these OM
attribute types from both lists.

Due to inheritance, an OM object is also said to be an instance of all its superclasses. It is
required that the OM class constraints of each superclass be met considering just those OM
attribute types that are permitted in the superclass.

The OM class hierarchy and the list of OM attribute types for each OM class are determined
solely by the interface specification and cannot be changed by a program.

The specification of a class may impose arbitrary constraints on its attributes. For instance, the
more common of these include the constraints to:

• restrict the syntaxes permitted for values of an attribute (often to a single syntax)

• restrict the particular values to a subset of those permitted by the syntax

• require one or more values of the attribute (i.e., a mandatory attribute)

• allow either zero or more values of the attribute (i.e., an optional attribute)

• permit multiple values, perhaps up to some limit known as the value number constraint

• restrict the length of strings (in octets), up to a limit known as the value length constraint.

Constraints may affect multiple attributes at a time; e.g., a rule that only one of a set of several
attributes may be present in any OM object.

Every OM object includes the OM class to which it belongs as the single value of the mandatory
OM attribute type Class which cannot be modified. The value of this OM attribute is an OSI
Object Identifier which is assigned to the OM class by the specification.

An abstract class is an OM class of which instances are forbidden. It may be defined as a
superclass in order to share OM attributes between OM classes or simply to ensure that the OM
class hierarchy is convenient for the interface definition.

In contrast to abstract classes, a concrete class is an OM class of which instances are permitted.

10 X/Open CAE Specification (1993)

Introduction Object Management

1.6.6 Package

A package is a set of OM classes that are grouped together by the specification.

A package is identified by an OSI Object Identifier which is assigned to the package by the
specification. Thus, the identity of each package is completely unique.

1.6.7 Package Closure

An OM class may be defined to have an OM attribute whose value is an OM object of an OM
class that is defined in another package. This is done to share definitions and to avoid
duplication.

A Package-Closure is a set of OM classes which need to be supported in order to be able to create
all possible instances of all classes defined in the package. (A formal definition is given in the
XOM API Specification - see reference XOM).

1.6.8 Workspace

Details of the representation of OM objects and of the implementation of the functions that are
used to manipulate them are not specified because they are not the concern of the application
programmer. However, the programmer sometimes needs to be aware of which
implementation is being used for a particular OM object.

A workspace is one or more Package-Closures, together with an implementation of the Object
Management functions that supports all the OM classes of OM objects in the Package-Closures.

The notion of a workspace also includes the storage used to represent OM objects and
management of that storage. The interested reader can refer to the XOM API Specification (see
reference XOM) for further details on how workspaces are implemented.

1.6.9 Descriptor

A descriptor is a defined data structure that is used to represent an OM attribute type and a single
value. The structure has three components: a type, a syntax and a value.

A descriptor list is an ordered sequence of descriptors that is used to represent several OM
attribute types and values.

Where the list contains several descriptors with the same OM attribute type (representing a
multi-valued OM attribute), the order of the values in the OM attribute is the same as the order
in the list. Such descriptors will always be adjacent.

Where the list contains a descriptor representing the OM class, this must occur before any
others.

A public object is a descriptor list that contains all the OM attribute values of an OM object,
including the OM class. Public objects are used to simplify client programs by enabling the use
of static data structures instead of a sequence of OM function calls.

A private object is an OM object created in a workspace using the OM functions or the functions
provided by an application-specific API. The term is simply used for contrast with a public
object.

Message Store API (XMS) 11

Object Management Introduction

1.6.10 Use of Objects

OM objects are used to represent data collections used in the interface, such as a message or
function results.

An important feature of the interface is that an instance of a subclass can be used wherever a
particular OM class is needed. This means both that the client can supply a subclass and that the
service can return a subclass. For example, the client can submit messages in any format which
is defined as a subclass of the class Submitted-Communique and the service can return an error in
any of the subclasses of the abstract class, Error.

Since the service may return a subclass of the specified OM class, the client should always use
the OM-Instance() function when checking the OM class of an OM object, rather than testing
the value of the Class OM attribute.

The subclassing mechanism is used within this specification to allow different specialisations of
a class to be used in the same manner in an interface. Additional specifications may define
packages containing subclasses which further specialise interface classes. These packages may
be for specific application domains (e.g., EDI Messaging classes) or for specific vendor products.
When the client supplies a subclass of a specified OM class as an argument, the service either
will recognise the subclass as an OM class of a service-supported package or will ignore all OM
attribute types which are not permitted in that OM class.

The client can generally supply either a public object or private object as an argument of the
interface functions. There are exceptions, such as the Session argument, which must be a private
object in the interests of efficiency. The interface will always return private objects. The client
can convert these into public objects by a call to OM-Get(), if required.

Note that public objects returned by OM-Get() are read-only and must not be modified in any
way.

12 X/Open CAE Specification (1993)

Introduction Conventions Used in this Specification

1.7 Conventions Used in this Specification
This specification describes a programming language-independent interface to the Message
Store together with a specific C language binding of this interface.

Certain conventions are used to identify particular items pertaining to this interface:

• Items in bold font are language-independent names and are spelled with hyphens between
words. The first letter of function names and arguments, OM class names and OM attributes
are capitalised (e.g., Completion-Flag), whereas the names of constants are in lower-case
(e.g., completed-operation). The names of functions are followed by parentheses (e.g.,
Bind()).

• Items in italic font spelled with underscores between words are either C language names or
the names of abstract OM classes. The names of errors are enclosed in brackets (e.g.,
[MS_E_NOSYS]), whereas the names of other constants are enclosed in braces (e.g.,
{MS_COMPLETED_OPERATION}). The names of functions are followed by parentheses
(e.g., ms_bind()). More details of the C language binding are given in Chapter 2. Italics are
also used for emphasis and in particular when introducing key terms.

Message Store API (XMS) 13

Introduction

14 X/Open CAE Specification (1993)

Chapter 2

C Language Binding

2.1 Introduction
This chapter is relevant for client programs written in the C language since it describes certain
characteristics of the C language binding to the Message Store interface. This chapter covers
function names, type definition (i.e., ‘‘typedef’’) names and constants. All the C identifiers are
derived from the language-independent names as explained below. There is a complete list of
all the identifiers in Chapter 9. For ease of use, some of these identifiers are defined in the
specification along with the language-independent names.

All C language names are set in an italic typeface; also a function() is indicated by its trailing
parentheses while a {CONSTANT} is sandwiched by braces except for names of [ERRORS] where
each is sandwiched by brackets.

The definitions of the C identifiers appear in these header files:

<xom.h> with definitions for the associated OM interface (see reference XOM)

<xomi.h> with definitions for the workspace interface (see reference XOM)

<xms.h> with definitions for the Message Store interface

<xmsga.h> with definitions for the Message Store General Attributes

<xmsima.h> with definitions for the Message Store Interpersonal Messaging Attributes

Message Store API (XMS) 15

C Naming Convention C Language Binding

2.2 C Naming Convention
The interface uses part of the C public namespace for its facilities. All identifiers start with the
letters ms, MS or OMP; more details of the conventions used are given in the following table
Table 2-0). Note that the interface reserves all identifiers starting with the letters msP for private
(i.e., internal) usage by implementations of the interface. It also reserves all identifiers starting
with the letters msX or MSX for vendor-specific extensions of the interface. Hence, client
programs should not use any identifier starting with these reserved letters.

The Object Management API uses similar, though not identical, naming conventions described
in the XOM Specification (see reference XOM). All its identifiers are prefixed by the letters om or
OM.

Item Prefix
reserved for implementors msP
reserved for implementors OMP
reserved for interface extensions msX
reserved for interface extensions MSX

<xms.h>
functions ms_
error ‘problem’ values MS_E_
OM class names MS_C_
OM value length limits MS_VL_
OM value number limits MS_VN_
other constants MS_

<xmsga.h>
MS attribute types MS_A_

<xmsima.h>
MS IM attribute types MS_IM_A_

Table 2-1 C Naming Conventions

A complete list of all identifiers used (except those beginning with msP, msX, MSX or OMP) are
given in Chapter 9. No implementation of the interface will use any other public identifiers.

The C identifiers are derived from the language-independent names used throughout this
specification by a systematic process which depends on the kind of name:

• Function names are entirely composed of lower-case letters and prefixed by ms_. Thus,
Receive-Result() becomes ms_receive_result().

• C function parameters are derived from the argument and result names by making them
entirely lower-case. In addition, the names of results are suffixed by _return. Thus, the
argument Selector becomes selector while the result Invoke-ID becomes invoke_id_return.

• OM class names are entirely composed of upper-case letters and prefixed by MS_C_. Thus,
Fetch-Result becomes MS_C_FETCH_RESULT.

• Enumeration tags are derived from the name of the corresponding OM syntax by prefixing
with MS_. The case of the letters is left unaltered. Thus, Enum(Problem) becomes
MS_Problem.

• Enumeration constants, as well as the names of OM attributes and all other constants except
errors are entirely composed of upper-case letters and prefixed by MS_. Thus, Stored-

16 X/Open CAE Specification (1993)

C Language Binding C Naming Convention

Messages becomes MS_STORED_MESSAGES.

• Errors are treated as a special case. Constants that are the possible values of the OM attribute
Problem of a subclass of the OM class Error are entirely composed of upper-case letters and
are prefixed by MS_E_. Thus, delete-restriction-problem becomes
MS_E_DELETE_RESTRICTION_PROBLEM.

• Where names exceed 31 characters in length, the C binding names are abbreviated to be
unique within the first 31 characters without affecting the alphabetical ordering of names
with the same MS_ prefix.

• The constants in the Value Length and Value Number columns of the OM class definition tables
are also assigned identifiers. (They have no names in the language-independent
specification.) Where the upper limit in one of these columns is not ‘1’ (one), it is given a
name consisting of the OM attribute name prefixed by MS_VL_ for value length or MS_VN_
for value numbers.

• The sequence of octets for each object identifier is also assigned an identifier for internal use
by certain OM macros. These identifiers are all upper-case letters and are prefixed by
OMP_O_. The XOM Specification (see reference XOM) gives further details on the use of
object identifiers.

Note that hyphens are translated everywhere to underscores.

Message Store API (XMS) 17

Use and Implementation of Interfaces C Language Binding

2.3 Use and Implementation of Interfaces
Chapter 3 contains the detailed descriptions for the interface functions. The following
statements in this subsection apply unless explicitly stated otherwise in Chapter 3.

If an argument to a function has an invalid value (such as a value outside the domain of the
function or a pointer outside the address space of the program), the behaviour is undefined.

Any function declared in a header may be implemented as a macro defined in the header so a
library function should not be declared explicitly if its header is included.

Any macro definition of a function can be suppressed locally by enclosing the name of the
function in parentheses because the name is not then followed by the left parenthesis that
indicates expansion of a macro function name. For the same syntactic reason, it is permitted to
take the address of a library function even if it is also defined as a macro. The use of #undef to
remove any macro definition will also ensure that an actual function is referred to. Any
invocation of a library function that is implemented as a macro will expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary;
hence it is generally safe to use arbitrary expressions as arguments. Likewise, those function-
like macros described in the following sections may be invoked in an expression wherever a
function with a compatible return data type could be called.

2.4 Function Return Values
The return value of a C function is always bound to the Status result of the language-
independent description. Functions return a value of type MS_status, which is an error
indication. If, and only if, the function succeeds, its value will be success, expressed in C by the
constant {MS_SUCCESS}. If a function returns with a status other than this, then it has not
updated the return parameters. The value of the status, in this case, is an error as described in
Chapter 6.

Since C does not provide multiple return values, functions must return all other results by
writing into storage passed by the client program. Any argument that is a pointer to such
storage has a name ending with _return. For example, the C parameter declaration Uint
*completion_flag_return indicates that the function will return an unsigned integer Completion-
Flag as a result, so the actual argument to the function must be the address of a suitable variable.
This notation allows the reader to distinguish between an input parameter that happens to be a
pointer and an output parameter where the ‘*’ is used to simulate the semantics of passing by
reference.

18 X/Open CAE Specification (1993)

C Language Binding Compilation and Linking

2.5 Compilation and Linking
All client programs that use this interface must include <xom.h>, <xms.h> and <xmsga.h>
headers in this order. If the optional MS Interpersonal Messaging Attributes Package is
supported, the <xmsima.h> header can be included after the other headers.

See Appendix A for details on run-time binding and the naming conventions for the libraries.

Message Store API (XMS) 19

C Language Binding

20 X/Open CAE Specification (1993)

Chapter 3

Description

3.1 Introduction
The interface comprises a number of functions together with many OM classes of OM objects
which are used as the arguments and results of the functions. Both the functions and the OM
objects are based closely on the Message Store Abstract Service as specified in X.413 (see
reference X.413).

The interface models interactions with the Message Store as service requests made through a
number of interface functions which take a number of input arguments. Each valid request causes
an operation within the Message Store which eventually returns a status and any result from the
operation.

All interactions between the user and the MS belong to a session which is represented by an OM
object passed as the first argument to most interface functions.

The MS Package (see Chapter 5 and Chapter 6) defines the classes that describe the arguments to
the interface functions. The Indirect Submission and Administration operations also require the
class definitions of the Message Handling Package (see reference MHS) to be imported.

The MS General Attributes Package (see Chapter 7 defines the classes that describe the MS
General Attributes. This package is needed to access the General Attributes of entries in the MS.

The MS Interpersonal Messaging Attributes Package (see Chapter 8) defines the classes that
describe the MS IM Attributes. If the client requires to view and access the MS entries with
individual IM attributes, this package must be supported. Even if the MS IM Attributes Package
is not supported, it is possible to use the interface to retrieve the message content as a whole
(encoded in ASN.1) but not the individual IM attributes.

The main features of the interface are described in the rest of this chapter.

Message Store API (XMS) 21

Services Description

3.2 Services
The Standards define the Abstract Service that the User Agent uses to interact with the Message
Store. Each operation of this Abstract Service maps to a single interface function with the same
name. Detailed specifications for these interface functions are given in Chapter 4.

In addition, there is a function, Receive-Result(), which has no counterpart in the Message Store
Abstract Service. This function is used in conjunction with asynchronous operations and is
explained in Section 3.6 on page 28.

The interface functions, Check-Alert(), Wait(), Initialize() and Shutdown() also have no
counterparts in the Message Store Abstract Service.

The interface functions are summarised in the table below Table 3-0). Functions that can execute
asynchronously are indicated by an ‘a’ in the table; all other functions always execute
synchronously.

Name Description
Bind Establish a session with the Message Store.

Cancel a message submitted with the deferred delivery
option.

a Cancel-Submission

Check if the MS has received new entries whose attributes
match the criteria previously supplied by the Register-MS()
function.

Check-Alert

a Delete Remove selected entries from an information base.

a Fetch Get information on a specific entry in an information base.

Initialize Initialise the interface, returning a workspace.

Return selected information for a list of entries of interest
from an information base.

a List

Receive-Result Retrieve the result of an asynchronously executed operation.

Modify various parameters held by the MTS regarding
delivery of messages to the MS.

a Register

a Register-MS Register or deregister various information with the MS.

Shutdown Shut down the interface, discarding the workspace.

a Submit Submit a communique (message or probe).

Summarise counts of selected entries in an information base.a Summarize

Unbind Terminate a session with the Message Store.

Return when a new entry is available in the Message Store
for retrieval or when a specified period of time has elapsed,
whichever occurs first.

a Wait

Table 3-1 Interface Functions

22 X/Open CAE Specification (1993)

Description Services

3.2.1 Sequence of Interface Functions

The interface has an initialisation and shutdown sequence that allows the negotiation of optional
features. This involves the functions Initialize() and Shutdown().

Every client program must first call Initialize() which returns a workspace. By default, this
workspace supports the standard MS Package (see Chapter 5 and Chapter 6) and the MS General
Attributes Package (see Chapter 7). The workspace can be extended to support the optional MS
Interpersonal Messaging Attributes Package (see Chapter 8) or any vendor extensions. Vendor
extensions may include additional packages and may also include additional or modified
functionality. All such packages or other extensions are identified by means of OSI Object
Identifiers.

Once the interface has been initialised, Initialize() may not be called again until Shutdown()
has been called. Figure 3-0 depicts the order and context in which each interface function can be
used.

Initialize()

Shutdown()

Bind()

Unbind()

Cancel-Submission(),
Check-Alert(),
Delete(),
Fetch(),
List(),
Register(),
Register-MS(),
Submit(),
Summarize(),
Wait(),
Receive-Result() if asynchronous mode supported

Figure 3-1 Sequence of Interface Functions

After negotiating a workspace with the required features, the client can use the workspace as
required. It can create and manipulate OM objects using the OM functions and can start one or
more MS sessions using Bind().

Each session is terminated using Unbind(), and all its OM objects released using OM-Delete();
finally the client should ensure that resources associated with the interface are released by
calling Shutdown().

It is possible to retain access to service-generated public objects after Shutdown() has been
called or to start another cycle by calling Initialize() if desired.

Message Store API (XMS) 23

Session Description

3.3 Session
A session provides information about a particular association between a client program and the
service. A session identifies the association (or connection) with the MS over which an MS
operation is to be sent. A session is commenced by a successful Bind() function and terminated
by the Unbind() function. Multiple sessions are allowed, if the maximum number of sessions
negotiated through Initialize() is more than one.

A session is described by an OM object of the class Session. An instance of this class is returned
by the Bind() function and this is subsequently passed as the first argument to most interface
functions.

Detailed specifications of the OM class Session are given in Chapter 5.

24 X/Open CAE Specification (1993)

Description Function Arguments

3.4 Function Arguments
Each interface function takes a number of input arguments (also called input parameters).
Session is an argument to several functions.

The Standards define specific arguments for each Abstract Service operation. These are mapped
onto corresponding arguments. Arguments that are specific to the MS Abstract Service are
grouped together as a single object. For example, one argument to the Fetch() interface function
is Fetch-Argument.

Full details of the arguments are presented in the interface function definitions of Chapter 4 and
the OM class definitions of Chapter 5.

All arguments that are OM objects can generally be supplied to the interface functions as public
objects (i.e., descriptor lists) or as private objects. Private objects must be created in the
workspace that was returned by Initialize(). In some cases, constants, representing default or
commonly used instances, can be supplied instead of OM objects.

Note that wherever a function is stated to accept an instance of a particular OM class as the
value of an argument, it will also accept an instance of any subclass of that OM class.

3.4.1 Attribute

Each MS attribute is represented in the interface by an OM object of the OM class Attribute
(defined in the XDS API Specification - see reference XDS). The type of the MS attribute is
represented by an OM attribute, Attribute-Type, within the OM object; the values of the MS
attribute are expressed as the values of the OM attribute Attribute-Values. The form of each
value of an MS attribute is determined by the attribute syntax associated with the type of the MS
attribute (see Section 7.2 on page 126, Section 8.2 on page 134, and reference X.413).

The representation of the attribute value depends on the attribute type and is determined as set
out below. This lists the manner in which a client program must supply values to the interface.
The interface follows the same rules when returning attribute values to the client.

The attribute type and the representation of the corresponding values may be defined in the
mandatory MS General Attributes Package defined in Chapter 7.

Additional attribute types and their OM representations may be defined in optional packages
(e.g., the MS Interpersonal Messaging Attributes Package defined in Chapter 8, or future
versions of this specification or by vendor extensions.

In the above cases, attribute values are represented as specified in the class definitions for the
packages supported.

Otherwise, the attribute type is not known and the unavailable-attribute-type
[MS_E_UNAVAILABLE_ATTRIBUTE_TYPE] error arises.

Where attribute values have OM syntax String(*), they may be long, segmented strings and the
functions OM-Read() and OM-Write() should be used to access them.

When an attribute value is returned indicating no fields present - for example the ASN.1
contains an empty SET - then the No-Value bit of the attribute value descriptor’s syntax is set,
and the descriptor’s value is not present.

Message Store API (XMS) 25

Function Arguments Description

3.4.2 AVA

An attribute value assertion (AVA) is an assertion about the value of an attribute of an (MS)
entry and, in the context of MS, can be true or false. It consists of an attribute type and a single
value. Loosely, the AVA is true if one of the values of the given attribute in the entry matches
the given value. An AVA is represented in the interface by an instance of the OM class AVA
(defined in the XDS API - see reference XDS) which is a subclass of Attribute constrained to
have precisely one value.

26 X/Open CAE Specification (1993)

Description Function Results

3.5 Function Results
All functions return a Status (i.e., the function result in the C binding). Some MS functions
return a Result. In the asynchronous mode, all functions return an Invoke-ID, which identifies
the particular invocation. (In the C binding, the Invoke-ID and Result are returned using
pointers that are supplied as arguments to the C function.) These three kinds of function results
are introduced below.

All OM objects returned by interface functions (results and errors) will be private objects in the
workspace returned by Initialize().

3.5.1 Invoke-ID

All interface functions that can be asynchronously invoked return an Invoke-ID which is an
integer identifying the particular invocation of the function on a particular session. The Invoke-
ID is only relevant for asynchronous functions and may be used later to receive the result and
status. Asynchronous operations are fully described in Section 3.6 on page 28 and the interface
functions that can be used to start them are indicated in Table 3-0 on page 22.

The numerical value returned from a call that successfully invokes an asynchronous operation is
guaranteed to be unique among all outstanding operations within a given session. The value is
such as could be returned from the Remote Operations Service Element (ROSE) defined in
CCITT X.219/X.229 and ISO 9072.

The value of the Invoke-ID returned for a synchronous function call is unspecified, as is that for
a call that fails to invoke an operation.

3.5.2 Result

Certain functions return a result only if they succeed. For unsuccessful outcomes, errors from
such functions are reported in the Status described below (as are errors from all other
operations).

The value of Result returned by a function that invokes an asynchronous operation is
unspecified. The result of an asynchronous operation is returned by a subsequent call to
Receive-Result().

The result is returned in a private object whose OM class is appropriate to the particular
function. The format of such results is driven both by the Abstract Service and by the need to
provide asynchronous execution of these functions. To simplify processing of asynchronous
results, the result of a single function is returned in a single OM object (corresponding to the
abstract result defined in the Standards). The components of the result of a function are
represented by OM attributes in the Result object. All information in the Abstract Service result
is made available to the client. The result can be examined using functions provided in the XOM
Specification - see reference XOM).

Any attribute values in the result are represented as described in Section 3.4.1 on page 25.

Message Store API (XMS) 27

Function Results Description

3.5.3 Status

Every interface function returns a Status value, which is either the constant success
{MS_SUCCESS} or an error. Errors are represented by private objects whose OM classes are
subclasses of Error, unless the interface has not been initialised succesfully in which case the
constant No-Workspace {MS_NO_WORKSPACE} is used. Details of all errors are given in
Chapter 6.

Other results of functions are not valid unless the status result has the value success.

3.6 Synchronous and Asynchronous Operations
The support of asynchronous operations is an optional feature; and all operations are always
synchronous for implementations without such support. The support of asynchronous
operations is indicated by the value of max-outstanding-operations, described below.

Implementations that support asynchronous operations may be executed in either the
synchronous mode or the asynchronous mode; while implementations that do not can only be
executed in the synchronous mode.

The asynchronous mode is chosen by appropriately setting the value of the Maximum-
Outstanding-Operations-Requested attribute in the argument to Initialize(). If this number is
zero, all operations will be performed synchronously; however, if this number is greater than
zero, the asynchronous mode is requested.

In synchronous mode, all functions wait until the operation is complete before returning. Thus,
the thread of control is blocked within the interface after calling a function and it can make use
of the result immediately after the function returns. (Note that in a multi-threaded system, only
one thread in the process is blocked, and use of asynchronous mode is likely to be rare on such
systems. On conventional single-thread process systems, the entire process is blocked; and
hence the need for the asynchronous mode).

In asynchronous mode, some functions return before the operation is complete. The functions
that can be executed asynchronously are indicated in Section 3.2 on page 22. The application is
then able to continue with other processing while the operation is being performed by the
Message Store; and later can access the result by calling Receive-Result(). An application may
initiate several concurrent asynchronous operations on the same session before receiving any of
the results, subject to the limit described below. The results from asynchronously executed
operations are not guaranteed to be returned in any particular order.

An asynchronous function call returns an Invoke-ID which uniquely identifies the function
invocation. The (synchronous) function Receive-Result() returns an Invoke-ID corresponding
to an outstanding function invocation and the results of that invocation.

Implementations will also define a limit on the number of asynchronous operations that may be
outstanding at any one time on any one session. An asynchronous operation is outstanding
from the time the function is called until the result is returned by Receive-Result(). The limit is
given by the constant

max-outstanding-operations {MS_MAX_OUTSTANDING_OPERATIONS},
which can be negotiated through the Initialize() function. This limit has the value zero if
asynchronous operations are not supported. If the feature is present, it is guaranteed to be at
least one, so an application can always use the interface in asynchronous mode. While the
maximum number of operations is outstanding, attempts to call further asynchronous

28 X/Open CAE Specification (1993)

Description Synchronous and Asynchronous Operations

operations will report an MS Library-Error (too-many-operations).

A synchronous call, other than Receive-Result(), may return an MS Library-Error (mixed-
synchronous), if it is made on a session on which there are any outstanding asynchronous
operations. All asynchronous operations should be allowed to terminate and their results
should be obtained before making a synchronous call on the same session.

For asynchronous calls, certain forms of errors may be detected and reported immediately by the
service. In such instances, the function call returns an error immediately and no outstanding
operation is generated, and the value of the Invoke-ID is undefined. Errors detected after the
asynchronous function call has returned are reported later, in the result of the function retrieved
using the Receive-Result() function. All errors occurring during a synchronous request are
reported when the function returns. Full details of error handling are given in Chapter 6.

Clients should ensure that there are no outstanding asynchronous operations on a session when
Unbind() is called on that session. Once Unbind() has been called, there is no way to determine
whether any outstanding operations have been completed. No errors or results of any kind will
be reported to the client and outstanding calls may be left partially completed. Hence, it is
strongly recommended that before closing a session, Receive-Result() be called repeatedly until
the Completion-Flag takes the value of no-outstanding-operation.

3.7 Security
It is not the purpose of this interface specification to constrain the security policy of any
implementation or local administration. Such policies may differ widely according to the
requirements of different user groups.

Message Store API (XMS) 29

Description

30 X/Open CAE Specification (1993)

Chapter 4

Interface Functions

This chapter defines the MS interface functions. It specifies the functions that the service makes
available to the client, the data types used by the interface functions as well as the functional
units available for the client to request the usage of subsets of MS functions.

4.1 Data Types
This section defines, and the following table lists, the data types of the MS interface. The data
types of both the generic and C interfaces are specified. The interface also uses other data types,
e.g., Boolean, Object, Object Identifier, Private Object, String and intermediate data types of the
OM interface (see XOM Specification in Referenced Documents).

Data Type Description

Feature lists the features requested for a session

identifies a particular invocation of an interface function in the
asynchronous mode

Invoke-ID

indicates whether a function has succeeded or not; and if not, gives
the possible error value

Status

Table 4-1 Interface Data Types

Message Store API (XMS) 31

Feature() Interface Functions

NAME
Feature - type definition for requesting features for a session

SYNOPSIS
#include <xms.h>

typedef struct
{

OM_object_identifier feature;
OM_boolean activated;

} MS_feature;

DESCRIPTION
A data value of this type is used for requesting the features on a session. See Table 1-1 on page 5
for the object identifiers identifying the features defined in this specification.

32 X/Open CAE Specification (1993)

Interface Functions Invoke-ID()

NAME
Invoke-ID - type definition for identifying a particular interface function invocation in the
asynchronous mode

SYNOPSIS
#include <xms.h>

typedef OM_sint MS_invoke_id;

DESCRIPTION
A data value of this type is used for identifying a particular interface function invocation in the
asynchronous mode

Message Store API (XMS) 33

Status() Interface Functions

NAME
Status - type definition for indicating the outcome (success or error) of a function

SYNOPSIS
#include <xms.h>

typedef OM_private_object MS_status;

DESCRIPTION
A data value of this type is used for indicating the outcome (success or error) of a function. For
further information, refer to Section 3.5.3 on page 28.

34 X/Open CAE Specification (1993)

Interface Functions Functional Units

4.2 Functional Units
A client program may request certain features of the Message Store it would like to use for the
duration of an API session. Such features may be negotiated in terms of functional units and
packages. A functional unit (FU) is a collection of related functions. The following table shows
the interface functions available within each functional unit.

The MS FU is mandatory.

MS MS Submission MS Administration MS Alert

Bind Cancel-Submission Register Check-Alert
Delete Submit
Fetch
Initialize
List
Receive-Result †
Register-MS
Shutdown
Summarize
Unbind
Wait

† available only if asynchronous mode is supported

Table 4-2 Functional Units

Functional units are requested using the Feature-List argument to the Initialize() function.
After the interface has been initialised with certain features negotiated, if the client attempts to
invoke functions not previously negotiated, an error,

feature-not-requested [MS_E_FEATURE_NOT_REQUESTED],
occurs.

All FUs must be used together with the MS General Attributes Package (see Chapter 7). Note
that the functions of the Submission FU and the Administration FU require class definitions to
be imported from the Message Handling Package of X.400 API Specification (see reference
X.400).

Message Store API (XMS) 35

Function Definitions Interface Functions

4.3 Function Definitions
The following are the definitions of the interface functions along with their C bindings.

All errors, including Message Store errors (see reference X.413), are returned in Status (see
Section 3.5.3 on page 28.

36 X/Open CAE Specification (1993)

Interface Functions Bind()

NAME
Bind - establish a session with the Message Store

SYNOPSIS
#include <xms.h>

MS_status ms_bind (
OM_object bind_argument,
OM_private_object *bind_result_return,
OM_private_object *bound_session_return

);

DESCRIPTION
This function establishes a session with the Message Store. It must be called after Initialize()
and before any other Message Store interface functions are called.

ARGUMENTS

1. Bind-Argument (Object(Bind-Argument))
specifies information for establishing a session with the Message Store service provider,
together with details of the service required. This comprises:

— Initiator
specifies the OR-name of the initiator (i.e., the UA) of this session (or association) with
the MS.

— Initiator-Credentials
specifies the credentials of the initiator for authentication purposes.

— Security-Context
identifies the security context at which the initiator proposes to operate.

— Fetch-Restrictions
specifies the restrictions on entries to be returned as result of a Fetch() function. These
restrictions prevail until the Unbind() function is invoked.

— MS-Configuration-Request
if true, specifies the request to obtain information relating to which auto-actions and
optional attributes the MS provides support for. If false, no such request is being made.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not.

2. Bind-Result (Object(Bind-Result))
on successful completion, contains one or more of the following:

— Responder-Credentials
specifies the credentials of the MS.

— Available-Auto-Actions
specifies the set of all possible auto-actions that are supported by the MS (not just those
requested by the client), if the MS-Configuration-Request was made for the Bind()
function.

— Available-Attribute-Types
specifies the set of all optional MS attribute-types that are supported by the MS, if the
MS-Configuration-Request was made for the Bind() function.

Message Store API (XMS) 37

Bind() Interface Functions

— Alert-Indication
indicates an alert condition has occurred since the last successful Alert-indication.

— Content-Types-Supported
specifies a set of object-identifiers defining the content-types of which the MS has
knowledge, if the MS-Configuration-Request was made for the Bind() function.

3. Bound-Session (Object(Session))
upon successful completion, contains an instance of the Session class describing an
association between the client and the service. This value is then used as an input
argument, Session, to other functions (e.g., Fetch()).

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, too-many-sessions, miscellaneous.

The following Message Store errors may be returned:
authentication-error, no-workspace, unacceptable-security-context, unable-to-establish-
association.

This function can return a Communications-Error.

SEE ALSO
Unbind().

38 X/Open CAE Specification (1993)

Interface Functions Cancel-Submission()

NAME
Cancel-Submission - cancel a message submitted with the deferred delivery option

SYNOPSIS
#include <xms.h>

MS_status ms_cancel_submission (
OM_private_object session,
OM_object mts_identifier,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function attempts to cancel the delivery of a message submitted with the deferred delivery
option, regardless of the session in which it was submitted.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. MTS-Identifier (Object(MTS-Identifier))
refers to the MTS-Identifier assigned to the messages whose delivery is to be cancelled.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not, if used synchronously; or whether the
function has been initiated, if used asynchronously.

2. Invoke-ID (Integer)
specifies the Invoke-ID of the asynchronous operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, bad-class, no-such-class, asynchrony-not-supported, feature-
unavailable, feature-not-negotiated, out-of-memory, miscellaneous, too-many-operations.

The following Message Store errors may be returned:
deferred-delivery-cancellation-rejected, message-submission-identifier-invalid, no-workspace,
remote-bind-error.

This function can return a Communications-Error.

SEE ALSO
Submit().

Message Store API (XMS) 39

Check-Alert() Interface Functions

NAME
Check-Alert - check if the MS has received new entries whose attributes match the criteria
previously supplied by the Register-MS() function

SYNOPSIS
#include <xms.h>

MS_status ms_check_alert (
OM_private_object session,
OM_private_object *check_alert_result_return,

);

DESCRIPTION
This function is used to check if the MS has received new entries whose attributes match the
criteria previously supplied by the Register-MS() function.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not.

2. Result (Object(Check-Alert-Result))
if there are alerts, each element of the result may contain the following:

— Alert-Registration-Identifier
identifies which of the auto alert registrations resulted in the alert.

— New-Entry
if present, conveys the information from the new entry which was requested in the auto
alert registration parameter; otherwise, is absent when the user did not specify an auto
alert registration parameter.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-session, asynchrony-not-supported, feature-unavailable, feature-not-negotiated, out-
of-memory, miscellaneous, too many operations.

The following Message Store errors may be returned:
no-workspace, security-error.

This function can return a Communications-Error.

SEE ALSO
Register-MS(), Wait().

40 X/Open CAE Specification (1993)

Interface Functions Delete()

NAME
Delete - remove selected entries from an information base

SYNOPSIS
#include <xms.h>

MS_status ms_delete (
OM_private_object session,
OM_object delete_argument,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function is used to delete selected entries from an information base. A main-entry
and all its dependent child-entries may only be deleted together. This is achieved by
specifying just the main-entry as an argument. The function will only be successful
when operating on those information-bases permitted by the security-context and the
security-policy in force.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. Delete-Argument (Object(Delete-Argument))
specifies the argument for the Delete() function. It comprises:

— Information-Base-Type
specifies which information base type is being addressed (see Section 6.4.1 in
reference X.413). Its value must be one of the following:

— stored-messages {MS_STORED_MESSAGES}
specifies the repository containing entries for delivered messages and
reports (see Section 6.4 in reference X.413).

— inlog {MS_INLOG}

— outlog {MS_OUTLOG}

— Items
specifies the entries to be deleted.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not, if used synchronously; or
whether the function has been initiated, if used asynchronously.

2. Invoke-ID (Integer)
specifies the Invoke-ID of the asynchronous operation.

Message Store API (XMS) 41

Delete() Interface Functions

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, bad-class, no-such-class, asynchrony-not-supported,
feature-unavailable, feature-not-negotiated, out-of-memory, miscellaneous, too-many-
operations.

The following Message Store errors may be returned:
delete-error, invalid-parameter-error, no-workspace, range-error, security-error,
sequence-number-error, service-error.

This function can return a Communications-Error.

42 X/Open CAE Specification (1993)

Interface Functions Fetch

NAME
Fetch - get selected information from a specific entry in an information base

SYNOPSIS
#include <xms.h>

MS_status ms_fetch (
OM_private_object session,
OM_object fetch_argument,
OM_private_object *fetch_result_return,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function is used to obtain selected information from a specific entry in an
information base; alternatively, it is used to obtain the first entry from among several
entries of interest, in which case, the sequence numbers of the other selected entries are
also returned.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. Fetch-Argument (Object(Fetch-Argument))
specifies the argument for the Fetch() function. It comprises:

— Information-Base-Type
specifies which information base type is being addressed (see Section 6.3.1 in
reference X.413.) Its value must be one of the following:

— stored-messages {MS_STORED_MESSAGES}
specifies the repository containing entries for delivered messages and
reports (see Section 6.4 in reference X.413).

— inlog {MS_INLOG}

— outlog {MS_OUTLOG}

— Item
specifies the selector determining the entry to be fetched.

— Requested-Attributes
indicates what information from the selected entry is to be returned in the
result.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not, if used synchronously; or
whether the function has been initiated, if used asynchronously.

2. Result (Object(Fetch-Result))
on successful completion of a synchronous call, contains one or more of the
following:

— Entry-Information
specifies the requested entry-information from the selected entry (unless the
function returns without any entries being selected).

Message Store API (XMS) 43

Fetch Interface Functions

— List
specifies, in the case a search was performed and more than one entry
matching the selector were found, a list of sequence-numbers, in ascending
order, of these entries.

— Next
specifies, in the case where the number of entries selected would have been
greater if it were not for the limit specified in the selector, the sequence-
number for the next entry.

3. Invoke-ID (Integer)
specifies the Invoke-ID of the asynchronous operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, bad-class, no-such-class, asynchrony-not-supported,
feature-unavailable, feature-not-negotiated, out-of-memory, miscellaneous, too-many-
operations.

The following Message Store errors may be returned:
attribute-error, fetch-restriction-error, invalid-parameter-error, no-workspace, range-
error, security-error, sequence-number-error, service-error.

This function can return a Communications-Error.

44 X/Open CAE Specification (1993)

Interface Functions Initialize()

NAME
Initialize - initialise the interface, returning a workspace.

SYNOPSIS
#include <xms.h>

MS_status ms_initialize (
MS_feature feature_list[],
OM_sint *max_sessions,
OM_sint *max_outstanding_operations,
OM_workspace *workspace_return,

);

DESCRIPTION
This function performs any necessary initialisation of the interface, including creating a
workspace and making the mandatory features (see Section 1.4 on page 5) available. It
must be called before any other Message Store interface functions are called. If it is
subsequently called before Shutdown(), the result is unspecified.

ARGUMENTS

1. Feature-List (Feature-List)
identifies the additional features (FUs and packages) requested by the client. This
is an ordered sequence of features, each represented by an object identifier (see
Section 1.4 on page 5 for the features defined in this specification). The sequence
is terminated by an object identifier having no components (a length of zero and
any value of the data pointer in the C representation). Mandatory features are
made available even if no features are requested.

2. Maximum-Sessions-Requested (Integer)
indicates the maximum number of simultaneous MS sessions requested by the
client.

3. Maximum-Outstanding-Operations-Requested (Integer)
indicates the maximum number of outstanding asynchronous operations
requested by the client.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not.

2. Activated (Boolean-List)
if the function completed successfully, contains an ordered sequence of Boolean
values, with the same number of elements as the Feature-List. A value of true
indicates that the corresponding feature is part of the interface whereas a value of
false indicates that the corresponding feature is not available.

Message Store API (XMS) 45

Initialize() Interface Functions

In the C binding, this result is combined with the Feature-List argument as a
single array of structures of type MS_feature, which is defined as:

typedef struct
{

OM_object_identifier feature;
OM_boolean activated;

}
MS_feature;

3. Maximum-Sessions-In-Effect (Integer)
gives the maximum number of simultaneous MS sessions requested or the
maximum number that can be supported by the service, whichever value is
lesser.

In the C binding, the Maximum-Sessions-Requested argument and the
Maximum-Sessions-In-Effect result of the generic interface are realised as the
max_sessions argument.

4. Maximum-Outstanding-Operations-In-Effect (Integer)
gives the maximum number of outstanding asynchronous operations or the
maximum number that can be supported by the service, whichever value is
lesser. If the service does not support asynchronous operations, then the result
returned is zero; otherwise it is a positive integer.

In the C binding, the Maximum-Outstanding-Operations-Requested argument
and the Maximum-Outstanding-Operations-In-Effect result of the generic
interface are realised as the max_outstanding_operations argument.

5. Workspace (Workspace)
on successful completion, contains a handle to a workspace in which OM objects
can be created and manipulated. Objects created in this workspace may be used
as arguments to other interface functions.

ERRORS
This function can only return a No-Workspace error.

SEE ALSO
Shutdown().

46 X/Open CAE Specification (1993)

Interface Functions List()

NAME
List - return selected information for a list of entries of interest‘ from an information
base

SYNOPSIS
#include <xms.h>

MS_status ms_list (
OM_private_object session,
OM_object list_argument,
OM_private_object *list_result_return,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function is used to obtain selected information for a list of entries selected from an
information base.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. List-Argument (Object(List-Argument))
specifies the argument for the List() function. It comprises:

— Information-Base-Type
specifies which information base type is being addressed (see Section 6.3.1 in
reference X.413.) Its value must be one of the following:

— stored-messages {MS_STORED_MESSAGES}
This type specifies the repository containing entries for delivered messages
and reports (see Section 6.4 in reference X.413).

— inlog {MS_INLOG}

— outlog {MS_OUTLOG}

— Selector
determines the entries are to be returned.

— Requested-Attributes
indicates the information from the selected entry to be returned in the result.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not, if used synchronously; or
whether the function has been initiated, if used asynchronously.

2. Result (Object(List-Result))
on successful completion of a synchronous call, contains one or both of the
following:

— Next
specifies the sequence-number of the next entry that would have been selected
in the case where the number of entries selected would have been greater if it
were not for the limit specified in the Selector.

Message Store API (XMS) 47

List() Interface Functions

— Requested
specifies the requested entry-information from each selected entry (one or
more), in ascending order of sequence-number (unless the function returns
without any entries being selected).

3. Invoke-ID (Integer)
The Invoke-ID of the asynchronous operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, asynchrony-not-supported, feature-unavailable, feature-
not-negotiated, out-of-memory, miscellaneous, too-many-operations.

The following Message Store errors may be returned:
attribute-error, invalid-parameter-error, no-workspace, range-error, security-error,
sequence-number-error, service-error.

This function can return a Communications-Error.

48 X/Open CAE Specification (1993)

Interface Functions Receive-Result()

NAME
Receive-Result - retrieve the result of an asynchronously executed operation

SYNOPSIS
#include <xms.h>

MS_status ms_receive_result (
OM_private_object session,
OM_uint *completion_flag_return,
MS_status *operation_status_return,
OM_private_object *result_return,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function is used to retrieve the completed result of some operation previously
executed asynchronously.

The function results include two status indications. One, called, Status, indicates
whether this function call itself was successful; it is always returned. The other, called
Operation-Status, is used to return the status of the completed asynchronous operation
and is only returned if it exists.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not.

2. Completion-Flag (Unsigned-Integer)
indicates the status of outstanding asynchronous operations and has one of the
following values:

— completed-operation {MS_COMPLETED_OPERATION}
indicates that at least one outstanding asynchronous operation has completed
and the result for one is made available.

— outstanding-operation {MS_OUTSTANDING_OPERATION}
indicates that there are outstanding asynchronous operations, but none has
yet completed.

— no-outstanding-operation {MS_NO_OUTSTANDING_OPERATION}
indicates that there are no outstanding asynchronous operations.

This result is valid if Status has the value success.

On successful return with Completion-Flag having the value completed-
operation, the Status and the Invoke-ID of the completed operation are returned.

3. Operation-Status (Status)
indicates whether the asynchronous operation succeeded or not; if not, the
possible error values are those listed for the individual operation in the
corresponding function description.

This result is valid if Status has the value success and Completion-Flag has the
value completed-operation.

Message Store API (XMS) 49

Receive-Result() Interface Functions

4. Result (Object(*))
gives the result of the completed asynchronous operation. Its value will be the
constant Null-Result {MS_NULL_RESULT} if the operation was one that does not
return a result. Otherwise, the OM object’s OM class is that of the result of the
asynchronous operation and can be determined using the OM functions.

Note: the possible forms of ‘‘result_return’’ that Receive-Result() is required
to support is restricted to the results of interface functions within the
FUs supported.

This result is valid if Status has the value success and Completion-Flag has the
value completed-operation.

5. Invoke-ID (Integer)
specifies the Invoke-ID of the completed asynchronous operation whose result is
being returned. This result is valid if Status has the value success and
Completion-Flag has the value completed-operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-session, feature-unavailable, feature-not-negotiated, no-workspace, out-of-
memory, miscellaneous.

This function does not report any Message Store errors or a Communications-Error in
its Status result. (Any such errors related to the completed asynchronous operation are
reported in Operation-Status, as described above.)

SEE ALSO
All interface functions that can be asynchronously executed.

50 X/Open CAE Specification (1993)

Interface Functions Register()

NAME
Register - modify various parameters held by the MTS regarding delivery of messages
to the MS

SYNOPSIS
#include <xms.h>

MS_status ms_register (
OM_private_object session,
OM_object register_argument,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function is used to make long-term modifications to various parameters held by
the MTS regarding the delivery of messages to the MS.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. Register-Argument (Object(Register-Argument))
specifies how to modify (via the Register() function) various parameters held by
the MTS regarding delivery of messages to the MS. These parameters include the
following:

— User-Name
specifies the OR-name of the MS (this corresponds to the OR-name of the UA),
if the user-name is to be changed.

— User-Address
specifies the OR-address of the MS (this corresponds to the OR-name of the
UA), if it is required by the MTS and if it is to be changed.

— Deliverable-Encoded-Information-Types
indicates the encoded-information-types that the MTS shall permit to appear
in messages delivered to the MS, if they are to be changed. The MTS shall
reject as undeliverable any message for an MS for which the MS is not
registered to accept delivery of all of the encoded-information-types of the
message. Note that the MS may register to receive the undefined encoded-
information-type. This argument, Deliverable-Encoded-Information-Types,
also indicates the possible encoded-information-types to which implicit
conversion can be performed.

— Deliverable-Maximum-Content-Length
indicates the content-length, in octets, of the longest content message that the
MTS shall permit to appear in messages being delivered to the MS, if it is to be
changed. The MTS shall reject as undeliverable any message for an MS for
which the MS is not registered to accept delivery of messages of its size.

Message Store API (XMS) 51

Register() Interface Functions

— Default-Delivery-Controls
indicates default delivery controls which are registered using the Register()
function. The default delivery control arguments shall not admit messages
whose delivery are prohibited by the prevailing registered values of the
Deliverable-Encoded-Information-Types argument, the Deliverable-
Content-Types argument or the Deliverable-Maximum-Content-Length
argument.

— Deliverable-Content-Types
indicates the content-types that the MTS shall permit to appear in messages
delivered to the MS, if they are to be changed. The MTS shall reject as
undeliverable any message for an MS for which the MS is not registered to
accept delivery of all of the content-types of the message. Note that the MS
may register to receive the undefined content-type.

— Labels-And-Redirections
contains one or both of the following:

— the OR-name of an alternate recipient to which messages are to be
redirected, if this is to be changed.

— the security-labels of the UA, if they are to be changed.

RESULTS

1. Status (Status)
Whether the function succeeded or not, if used synchronously; or whether the
function has been initiated, if used asynchronously.

2. Invoke-ID (Integer)
The Invoke-ID of the asynchronous operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, asynchrony-not-supported, feature-unavailable, feature-
not-negotiated, no-workspace, out-of-memory, miscellaneous, too-many-operations.

The following Message Store errors may be returned:
register-rejected.

This function can return a Communications-Error.

52 X/Open CAE Specification (1993)

Interface Functions Register-MS()

NAME
Register-MS - register or deregister various information with the MS

SYNOPSIS
#include <xms.h>

MS_status ms_register_ms(
OM_private_object session,
OM_object register_ms_argument,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function is used to register or deregister various information with the MS.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. Register-MS-Argument (Object(Register-MS-Argument))
specifies the argument for the Register-MS() function. It comprises:

— Auto-Action-Registrations
specifies a set of auto-action-registrations, one for each auto-action to be
registered.

— Auto-Action-Deregistrations
specifies a set of auto-action-deregistrations, one for each auto-action to be
deregistered.

— List-Attribute-Defaults
specifies a default set of attribute-types to indicate which attributes should be
returned for any subsequent List() function if the entry-information-selection
argument is absent. This value replaces any previously registered default set.
If absent, no change will be applied to the registered default set.

— Fetch-Attribute-Defaults
specifies a default set of attribute-types to indicate which attributes should be
returned for any subsequent Fetch() function if the entry-information-
selection argument is absent. This value replaces any previously registered
default set. If absent, no change will be applied to the registered default set.

— Change-Credentials
specifies the old and new credentials of the end user, if change credentials was
requested.

— User-Security-Labels
contains the security-labels of the UA, if they are to be changed.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not, if used synchronously; or
whether the function has been initiated, if used asynchronously.

2. Invoke-ID (Integer)
specifies the Invoke-ID of the asynchronous operation.

Message Store API (XMS) 53

Register-MS() Interface Functions

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, bad-class, no-such-class, asynchrony-not-supported,
feature-unavailable, feature-not-negotiated, out-of-memory, miscellaneous, too-many-
operations.

The following Message Store errors may be returned:
attribute-error, auto-action-request-error, invalid-parameter-error, no-workspace,
security-error, service-error.

This function can return a Communications-Error.

54 X/Open CAE Specification (1993)

Interface Functions Shutdown()

NAME
Shutdown - shuts down the interface, discarding the workspace

SYNOPSIS
#include <xms.h>

void ms_shutdown (
void

);

DESCRIPTION
This function shuts down the interface established by Initialize(), and may enable the
service to release resources (in its workspace). All sessions will become invalid and no
other MS interface functions should be called after this function except for Initialize().
This function does not return any results or errors.

ARGUMENTS
None.

RESULTS
None.

ERRORS
None.

SEE ALSO
Initialize().

Message Store API (XMS) 55

Submit() Interface Functions

NAME
Submit - submit a communique (message or probe)

SYNOPSIS
#include <xms.h>

MS_status ms_submit (
OM_private_object session,
OM_object communique,
OM_private_object *submission_results_return,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
After verifying the integrity of the communique, this function submits a communique
(message or probe) by adding it to the submission queue to which the current session
provides access. A message may be submitted by requesting the forwarding of a
delivered message identified by its sequence-number.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. Communique (Object(Submitted-Communique))
specifies the object (a message or a probe) to be submitted. Its purported
originator shall be the user associated with the session. If the communique is a
private object, it is made inaccessible to the client; and is deleted at the discretion
of the service.

Note: If the subclass, Item-To-Forward, were used for this argument, it is
possible to request forwarding a delivered message identified by its MS
sequence-number. (The MS entry to be thus forwarded should be a
delivered message entry. Forwarding of entries that are not delivered
messages is not defined in this specification.)

RESULTS

1. Status (Status)
indicates whether the function succeeded or not, if used synchronously; or
whether the function has been initiated, if used asynchronously.

2. Result (Object(Submission-Results))
on successful completion of a synchronous call, contains the results of the
submission. For details, refer to the X.400 API (see reference X.400).

3. Invoke-ID (Integer)
specifies the Invoke-ID of the asynchronous operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, bad-class, no-such-class, asynchrony-not-supported,
feature-unavailable, feature-not-negotiated, out-of-memory, miscellaneous, too-many-
operations.

56 X/Open CAE Specification (1993)

Interface Functions Submit()

The following Message Store errors may be returned:
sequence-number-error, submission-control-violated, element-of-service-not-
subscribed, no-workspace, originator-invalid, recipient-improperly-specified,
inconsistent-request, security-error, unsupported-critical-function, remote-bind-error.

This function can return a Communications-Error.

SEE ALSO
Cancel-Submission().

Message Store API (XMS) 57

Summarize() Interface Functions

NAME
Summarize - summarise counts of selected entries in an information base

SYNOPSIS
#include <xms.h>

MS_status ms_summarize (
OM_private_object session,
OM_object summarize_argument,
OM_private_object *summarize_result_return,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function is used to obtain summary counts of selected entries in an information
base; in addition, a count of entries selected and their lowest and highest sequence-
numbers are also returned. Zero or more individual summaries may be requested.

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. Summarize-Argument (Object(Summarize-Argument))
specifies the argument for the Summarize() function. It comprises:

— Information-Base-Type
specifies which information base type is being addressed (see Section 6.3.1 in
reference X.413). Its value must be one of the following:

— stored-messages {MS_STORED_MESSAGES}
specifies the repository containing entries for delivered messages and
reports (see Section 6.4 in reference X.413).

— inlog {MS_INLOG}

— outlog {MS_OUTLOG}

— Selector
specifies the set of criteria for determining the entries which are to be
summarised.

— Summary-Requests
indicates the sequence of Attribute-Types for which summaries are requested.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not, if used synchronously; or
whether the function has been initiated, if used asynchronously.

2. Result (Object(Summary-Result))
on successful completion of a synchronous call, contains one or more of the
following:

— Next
is returned in the case where the number of entries selected would have been
greater if it were not for the limit specified in the selector. This would then
give the sequence-number for the next entry that would have been selected.

58 X/Open CAE Specification (1993)

Interface Functions Summarize()

— Count
gives the number of entries that matched the selection criteria.

— Span
gives the range of sequence-numbers of entries that matched the selection
criteria. It is absent if there were no such entries (i.e., Count value is zero).

— Summaries
is a sequential list of summaries; one for each summary-request. The
summaries are returned in the order that they were requested in the Summary
function.

3. Invoke-ID (Integer)
specifies the Invoke-ID of the asynchronous operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, bad-class, no-such-class, asynchrony-not-supported,
feature-unavailable, feature-not-negotiated, out-of-memory, miscellaneous, too-many-
operations.

The following Message Store errors may be returned:
attribute-error, invalid-parameter-error, no-workspace, range-error, security-error,
sequence-number-error, service-error.

This function can return a Communications-Error.

Message Store API (XMS) 59

Unbind() Interface Functions

NAME
Unbind - terminate a session with the Message Store

SYNOPSIS
#include <xms.h>

MS_status ms_unbind (
OM_private_object session

);

DESCRIPTION
This function terminates a session with the Message Store.

Note: This implies that the results of any outstanding asynchronous operations
initiated in this session can no longer be received and it is not possible to
know whether or not such operations succeeded. Any such operations may
have been carried out or terminated prematurely. For this reason, it is
recommended that all outstanding asynchronous operations be processed
using Receive-Result() before calling Unbind().

ARGUMENTS

1. Session (Object(Session))
specifies the MS session to be unbound.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-session, no-workspace, out-of-memory, miscellaneous.

This function can return a Communications-Error.

SEE ALSO
Bind().

60 X/Open CAE Specification (1993)

Interface Functions Wait()

NAME
Wait - return when a new entry is available in the Message Store for retrieval or when a
period of time has elapsed, whichever occurs first

SYNOPSIS
#include <xms.h>

MS_status ms_wait (
OM_private_object session,
OM_uint32 interval,
OM_private_object *wait_result_return,
MS_invoke_id *invoke_id_return

);

DESCRIPTION
This function returns when a new entry is available in the Message Store for retrieval or
when a period of time has elapsed, whichever occurs first. (see reference X.413 for the
definition of new, a possible value for the Entry-Status MS attribute.)

ARGUMENTS

1. Session (Object(Session))
specifies the MS session over which this function is performed.

2. Interval (Integer)
specifies the maximum length of time (in milliseconds) that the service is to wait
before returning a result when checking for entries in the Message Store available
for retrieval.

RESULTS

1. Status (Status)
indicates whether the function succeeded or not, if used synchronously; or
whether the function has been initiated, if used asynchronously.

2. Result (Object(Wait-Result))
on successful completion of a synchronous call, will be either:

— the constant No-New-Entries {MS_NO_NEW_ENTRIES} if there are no new
MS entries available for retrieval.

— a private object if there are new MS entries available for retrieval.

3. Invoke-ID (Integer)
specifies the Invoke-ID of the asynchronous operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors:
bad-argument, bad-session, asynchrony-not-supported, feature-unavailable, feature-
not-negotiated, no-workspace, out-of-memory, miscellaneous, too-many-operations.

This function can return a Communications-Error.

Message Store API (XMS) 61

Interface Functions

62 X/Open CAE Specification (1993)

Chapter 5

Interface Class Definitions

5.1 Introduction
This chapter defines, in alphabetical order, the OM classes that constitute the Message Store
Package. The errors defined in the next chapter also belong to this package. The Object
Identifier associated with this package is represented by the constant MS-Package
{MS_PACKAGE}. See Table 1-1 on page 5 for the value of this object identifier.

Note that the possible forms of ‘‘result_return’’ that Receive-Result() is required to support is
restricted to the results of interface functions within the FUs supported.

The concepts of Object Management were briefly described in Section 1.6 on page 9, and the
notation is introduced below. Full details are given in the XOM Specification (see reference
XOM).

Each OM class is described in a separate section which identifies the OM attributes specific to
that OM class. The OM classes and OM attributes for each OM class are listed in alphabetical
order. The OM attributes that may be found in an instance of an OM class are those OM
attributes specific to that OM class as well as those inherited from each of its superclasses.

The OM class-specific OM attributes are defined in a table. The table gives the name of each OM
attribute, the syntax of each of its values, any restrictions upon the length (in bits, octets/bytes
or characters) of each value, any restrictions upon the number of values and the value, if any, the
OM-Create() function supplies.

The constants that represent the OM classes and OM attributes in the C binding are defined in
the <xms.h> header (see Chapter 9).

Message Store API (XMS) 63

Class Hierarchy Interface Class Definitions

5.2 Class Hierarchy
This section depicts the hierarchical organisation of the classes defined in this chapter and thus
shows which classes inherit additional OM attributes from their superclasses. Subclassification
is indicated by indentation and the names of abstract classes are rendered in italics. Thus, for
instance, the concrete class Fetch-Attribute-Defaults is an immediate subclass of the abstract
class Attribute-Defaults which in turn is an immediate subclass of the abstract class Object.

The following symbols denote FUs in which a class is used.

Symbol FU in which a class is used
[M] MS FU
[S] Submission FU
[A] Administration FU
[C] Alert FU

Object (defined in XOM Spec.) [M] [S] [A] [C]
- Address (defined in XDS Spec.) [A]
- Alert-Address [M]
- Attribute (defined in XDS Spec.) [M]

- AVA (defined in XDS Spec.) [M]
- Filter-Item (defined in XDS Spec.) [M]

- Attribute-Defaults [M]
- Fetch-Attribute-Defaults [M]
- List-Attribute-Defaults [M]

- Attribute-Selection [M]
- Auto-Action [M]

- Auto-Action-Deregistration [M]
- Auto-Action-Registration [M]

- Auto-Alert-Registration-Parameter [M]
- Auto-Forward-Registration-Parameter [M]
- Bind-Argument [M]
- Bind-Result [M]
- Change-Credentials [M]
- Check-Alert-Result [C]
- Common-Controls [A]

- Default-Delivery-Controls [A]
- Creation-Time-Range [M]
- Credentials [M]
- Delete-Argument [M]
- Deliverable-Content-Types [A]
- EITs (defined in X.400 Spec.) [A]
- Error (see Chapter 6) [M]
- Fetch-Argument [M]
- Fetch-Result [M]
- Filter (defined in XDS Spec.) [M]
- Items [M]

- Item [M]
- Label-And-Redirection [A]
- Labels-And-Redirections [A]
- List-Argument [M]
- List-Result [M]

64 X/Open CAE Specification (1993)

Interface Class Definitions Class Hierarchy

- OR-Name defined in X.400 Spec. [M] [S] [A]
- MS-Entry-Information [M]
- MS-Entry-Information-Selection [M]
- MTS-Identifier (defined in X.400 Spec.) [S]
- Password [M]
- Range [M]
- Register-Argument [A]
- Register-MS-Argument [M]
- Restrictions [M]
- Security-Label (defined in [X.400 Spec.]) [M]
- Selector [M]
- Sequence-Number-Range [M]
- Session [M]
- Strong-Credentials [M]
- Submitted-Communique (defined in X.400 Spec.) [S]

- Submitted Message (defined in X.400 Spec.) [S]
- Item-to-Forward [S]
- Auto-Forward-Arguments [S]

- Submitted Probe (defined in X.400 Spec.) [S]
- Submission-Results (defined in X.400 Spec.) [S]
- Summarize-Argument [M]
- Summary [M]
- Summary-Present [M]
- Summary-Requests [M]
- Summary-Result [M]
- Wait-Result [M]

The client is not permitted to create or modify instances of certain OM classes because these OM
classes are only returned by the interface and never supplied to it. Such OM classes are:

• all subclasses of Error

• Bind-Result

• Check-Alert-Result

• Fetch-Result

• List-Result

• MS-Entry-Information

• Submission-Results

• Summary

• Summary-Present

• Summary-Result

• Wait-Result

Note that the terms ‘‘Entry-Information’’ and ‘‘Entry-Information-Selection’’ are used in both
X.500 and the MS protocols but they have different ASN.1 syntax definitions. Hence, we make
the distinction by using ‘‘MS-Entry-Information’’ and ‘‘MS-Entry-Information-Selection’’ in this
MS specification document.

Message Store API (XMS) 65

Class Hierarchy Interface Class Definitions

5.3 Address
As defined in the Directory Services Package in the XDS Specification (see reference XDS).

5.4 Alert-Address
The OM class Alert-Address gives the alert information to used by the auto-alert operation.

An instance of OM class Alert-Address has the OM attributes of its superclass: Object and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Address Object(External) - 1 -
Alert-Qualifier String(Octet) - 0-1 -

Table 5-1 OM Attributes of an Alert-Address

Address
Identifies the type of alert address to be invoked.

Alert-Qualifier
Contains any further information which need to be included with the auto-alert.

5.5 Attribute
As defined in the Directory Services Package in the XDS Specification (see reference XDS).

5.6 Attribute-Defaults
The OM class Attribute-Defaults specifies a default set of attribute-types to indicate which
attributes should be returned for any subsequent List or Fetch functions if the Entry-
Information-Selection argument is absent. If absent, no change will be applied to the registered
default.

The OM class Attribute-Defaults is an abstract class and has the OM attributes of its
superclasses: Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Attribute-Type String(Object-Identi fier) - 0/more -

Table 5-2 OM Attributes of Attribute-Defaults

Attribute-Type
This specifies the default set of attribute-types to indicate which attributes should be
returned for any subsequent List or Fetch functions if the Requested-Attributes OM
attribute of List-Argument or Fetch-Argument respectively were absent. If absent, no
change will be applied to the registered default.

66 X/Open CAE Specification (1993)

Interface Class Definitions Attribute-Defaults

5.7 Attribute-Selection
An instance of OM class Attribute-Selection describes the selection of attributes of an entry
being requested.

An instance of OM class Attribute-Selection has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Attribute-Type String(Object-Identi fier) - 1 -
From Integer - 0-1 -
Count Integer - 0-1 -

Table 5-3 OM Attributes of Attribute-Selection

Attribute-Type
This indicates the class of information given by this MS attribute.

From
This may only be present if the attribute-type is multi-valued. When an MS attribute is
multi-valued, this indicates the relative position of the first value to be returned. If it
specifies a value beyond those present in the MS attribute, no values are returned. If it
is omitted, values starting at the first value are returned.

Note that MS attributes are numbered starting at position 1.

Count
This may only be present if the attribute-type is multi-valued. When an MS attribute is
multi-valued, this gives the number of values to be returned. If there are less than
count values present in the MS attribute, all values are returned. If it is omitted, there is
no limit as to how many values are returned.

5.8 AVA
As defined in the Directory Services Package in the XDS Specification (see reference XDS).

Message Store API (XMS) 67

Auto-Action Interface Class Definitions

5.9 Auto-Action
The OM class Auto-Action describes an action that will occur automatically whenever the
associated registration criteria have been satisfied. The result of an action being invoked is
visible externally to the MS. Auto-actions are registered with the MS using the Register-MS()
function.

The OM class Auto-Action is an abstract class which has the OM attributes of its superclasses:
Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Type String(Object-Identi fier) - 1 -
Registration-ID Integer - 1 -

Table 5-4 OM Attributes of Auto-Action

Type
This indicates the class of auto-action type.

Registration-ID
This identifies a particular auto-action registration.

5.10 Auto-Action-Deregistration
An instance of OM class Auto-Action-Deregistration describes an auto-action-registration to be
deregistered using the Register-MS() function. Any auto-action with registration-identifier and
auto-action-type matching that specified is deregistered.

An instance of the OM class Auto-Action-Deregistration has the OM attributes of its
superclasses: Object, Auto-Action and no additional OM attributes.

68 X/Open CAE Specification (1993)

Interface Class Definitions Auto-Action-Registration

5.11 Auto-Action-Registration
An instance of OM class Auto-Action-Registration describes an auto-action-registration to be
registered using the Register-MS() function. The new auto-action-registration-parameter
supersedes any previously registered auto-action (if any) with that registration-identifier and
auto-action-type.

An instance of the OM class Auto-Action-Registration has the OM attributes of its superclasses:
Object, Auto-Action and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Registration-Parameter Any - 1 -

Table 5-5 OM Attributes of Auto-Action-Registration

Registration-Parameter
This specifies the object identifier of an auto-action type to which an auto-action
registration must conform.

5.12 Auto-Alert-Registration-Parameter
An instance of OM class Auto-Alert-Registration-Parameter specifies the criteria to determine
whether a user should be alerted to the delivery of a message into the stored message
information base.

An instance of the OM class Auto-Alert-Registration-Parameter has the OM attributes of its
superclass: Object, and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Filter Object(Filter) - 0-1 -
Alert-Address Object(Alert-Address) -1/more -
Requested-Attributes Object(MS EntryInformationSelection) - 0-1 -

Table 5-6 OM Attributes of Auto-Alert-Registration-Parameter

Filter
The set of criteria which a delivered message must satisfy for the auto alert function to
be activated with the given set of parameters.

Alert-Address
The types of alert services to be invoked.

Requested-Attributes
This indicates what information from the selected entries is to be included with the
auto-alert.

Message Store API (XMS) 69

Auto-Forward-Arguments Interface Class Definitions

5.13 Auto-Forward-Arguments
An instance of OM class Auto-Forward-Arguments describes the set of criteria to be used in the
auto-forwarding of a submitted message.

An instance of the OM class Auto-Forward-Arguments has the OM attributes of its superclass:
Object, and additionally the attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Alternate-Recipient-Allowed Boolean - 1 false
Confidentiality-Algorithm Object (Algorithm) - 0-1 -
Content-Correlator any 3-512 0-1 -
Content-Identi fier String (Printable) 1-16 0-1 -
Content-Return-Requested Boolean - 1 false
Conversion-Loss-Prohibited Boolean - 1 false
Conversion-Prohibited Boolean - 1 false
Deferred-Delivery-Time String (UTC Time) 0-17 0-1 -
Disclosure-Allowed Boolean - 1 false
Expansion-Prohibited Boolean - 1 false
Latest-Delivery-Time String (UTC Time) 0-17 0-1 -
Origin-Check Object (Algorithm and Result) - 0-1 -
Original-EITs Object (EITs) - 0-1 -
Originator-Certificate Object (Certificates)1 - 0-1 -
Originator-Name Object (OR Name) - 1 -
Originator-Return-Address Object (OR Address) - 0-1 -
Priority Enum (Priority) - 1 normal
Proof-of-Submission-Requested Boolean - 1 false
Reassignment-Prohibited Boolean - 1 false
Recipient-Descriptors Object (RD) - 1-32767 -
Security-Label Object (Security Label) - 0-1 -

1As defined in the XDS Specification (see Referenced Documents).

Table 5-7 OM Attributes of Auto-Forward-Arguments

Alternate Recipient Allowed
Whether the originator permits the MTS to deliver the subject message to an alternate
recipient. An MD may (but need not) assign a user, the alternate recipient, to accept
delivery of messages whose Recipient Descriptors attributes contain O/R names that
are invalid but recognised as meant to denote users of that MD.

Confidentiality Algorithm
Identifies the algorithm that the originator of the submitted message used to encrypt its
content and which the recipients may use to decrypt it.

The algorithm may be either symmetric or asymmetric. If the former, the associated
key may be derived from the Token attribute of any of the submitted message’s RDs or,
alternatively, distributed by some other means. If the latter, the originator may use the
intended recipient’s public key to encrypt the content, and the recipient may use the
associated secret key to decrypt it. The submitted message must be addressed to either
a single recipient or a group of recipients sharing the same key pair.

Content Correlator
Information facilitating the correlation with the submitted communique of any reports
it may provoke. This attribute is present at the option of the originator’s UA. It is not
conveyed to recipients at delivery.

70 X/Open CAE Specification (1993)

Interface Class Definitions Auto-Forward-Arguments

Content Identifier
Information facilitating the correlation with the submitted communique of any reports
it may provoke. This attribute is present at the option of the originator’s UA. It is
conveyed to recipients at delivery.

Content Return Requested
Whether the Content attribute is to be included as the like-named attribute of any
NDRs the submitted message provokes.

Conversion Loss Prohibited
Whether the originator prohibits the MTS from converting the subject message (should
such conversion be necessary) if it would cause loss of information as defined in X.408.

Conversion Prohibited
Whether the originator prohibits the MTS from converting the subject message (should
such conversion be necessary) under any circumstances.

Deferred Delivery Time
The date and time, if any, before which the submitted message shall not be delivered.
Delivery deferral is normally the responsibility of the MD that originates the submitted
message. Thus messages whose Deferred Delivery Time attributes are present shall be
transferred between MDs only by bilateral agreement between those MDs.

Disclosure Allowed
Whether the O/R names of other recipients are to be indicated to each recipient at
delivery.

Expansion Prohibited
Whether the originator instructs the MTS to issue an NDR rather than expand a DL if
the O/R name specified for any of the recipients proves to denote a DL not a user.

Latest Delivery Time
The date and time after which the MTS is to treat the submitted message as
undeliverable if it has not yet been delivered to a particular recipient.

Origin Check
A means by which a third party (e.g., a user or an MTA) can verify the submitted
communique’s origin. This attribute is present at the option of the originator’s UA. The
algorithm involved is applied to an instance of the Origin Check Basis class.

Original EITs
The EITs of the Content attribute of the subject message. This attribute is present at the
option of the originator’s UA.

Originator Certificate
The originator’s certificate. Generated by a trusted source (for example, a CA), it
constitutes a verified copy of the originator’s PAEK. This attribute is present at the
option of the originator’s UA.

Originator Name
The O/R name of the submitted communique’s originator.

Originator Return Address
The postal O/R address of the submitted message’s originator. It shall be present if the
originator supplied a postal O/R address for an intended recipient or included physical
delivery among a recipient’s preferred delivery modes. It may also be present if a
recipient DL contains, or is likely to contain, one or more members for whom physical
delivery is required.

Message Store API (XMS) 71

Auto-Forward-Arguments Interface Class Definitions

Priority The relative priority at which the submitted message is to be transferred. For its
defined values, see Section 5.3.9, Priority.

Proof of Submission Requested
Whether the originator of the submitted message requires proof of its submission.

Reassignment Prohibited
Whether the originator prohibits the intended recipients from redirecting the submitted
communique.

Recipient Descriptors
The RDs of the submitted communique’s intended recipients.

Security Label
The security label associated with the submitted communique. It must be assigned in
line with the security policy in force.

72 X/Open CAE Specification (1993)

Interface Class Definitions Auto-Forward-Registration-Parameter

5.14 Auto-Forward-Registration-Parameter
An instance of OM class Auto-Forward-Registration-Parameter specifies the criteria to
determine whether a delivered message should be forwarded.

An instance of the OM class Auto-Forward-Registration-Parameter has the OM attributes of its
superclasses: Object, and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Auto-Forward-Arguments Object(Auto-Forward-Arguments) - 1 -
Delete-After-Auto-Forward Boolean - 1 true
Filter Object(Filter) - 0-1 -
Other-Parameters String(Octet) - 0-1 -

Table 5-8 OM Attributes of Auto-Forward-Registration-Parameter

Auto-Forward-Arguments
The set of arguments to be used for each auto-forward message-submission operation.

Delete-After-Auto-Forward
If true, an entry is to be deleted after auto-forwarding. If false, it is not deleted.

Filter
The set of criteria which a delivered message must satisfy for the message to be auto-
forwarded with the given set of parameters.

Other-Parameters
Optional extra information to be used in auto-forwarding.

Message Store API (XMS) 73

Bind-Argument Interface Class Definitions

5.15 Bind-Argument
An instance of OM class Bind-Argument specifies information necessary for establishing a
session with the Message Store, together with details of the service required.

An instance of OM class Bind-Argument has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Initiator Object(OR-Name) † - 1 -
Initiator-Credentials Object(Credentials) - 1 -
Security-Context Object(Security-Label) - 0/more -
Fetch-Restrictions Object(Restrictions) - 0-1 -
MS-Configuration-Request Boolean - 1 false

† As defined in the X.400 Specification (see reference X.400).

Table 5-9 OM Attributes of Bind-Argument

Initiator
This specifies the OR-Name of the initiator (i.e., the UA) of this session (or association)
with the MS.

Initiator-Credentials
This specifies the credentials of the initiator for authentication purposes.

Security-Context
This identifies the security context at which the initiator proposes to operate.

Fetch-Restrictions
This specifies the restrictions on entries to be returned as result of a Fetch() function.
These restrictions prevail until the Unbind() function is issued.

MS-Configuration-Request
If true, this specifies the request to obtain information relating to which auto-actions
and optional attributes the MS provides support for. If false, no such request is being
made.

74 X/Open CAE Specification (1993)

Interface Class Definitions Bind-Result

5.16 Bind-Result
An instance of OM class Bind-Result describes the result returned from the Bind() function. It
provides information about the MS capabilities, if requested.

An instance of OM class Bind-Result has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Responder-Credentials Object(Credentials) - 1 -
Available-Auto-Actions String(Object-Identi fier) - 0/more -
Available-Attribute-Types String(Object-Identi fier) - 0/more -
Alert-Indication Boolean - 1 false
Content-Types-Supported String(Object-Identi fier) - 0/more -

Table 5-10 OM Attributes of Bind-Result

Responder-Credentials
This contains the credentials of the MS.

Available-Auto-Actions
This specifies the set of all possible auto-actions that are supported by the MS (not just
those requested by the UA). This is only present if the MS-Configuration-Request was
made for the Bind() function.

Available-Attribute-Types
This specifies the set of all optional MS attribute-types that are supported by the MS.
This is only present if the MS-Configuration-Request was made for the Bind() function.

Alert-Indication
If true, this indicates an alert condition has occurred since the last successful Alert-
indication.

Content-Types-Supported
This specifies a set of object-identifiers defining the content-types of which the MS has
knowledge. This is only present if the MS-Configuration-Request was made for the
Bind() function.

Message Store API (XMS) 75

Change-Credentials Interface Class Definitions

5.17 Change-Credentials
An instance of OM class Change-Credentials gives the user’s current (old) credentials and the
new credentials to which the user would like to change.

An instance of OM class Change-Credentials has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Old-Credentials Object(Credentials) - 1 -
New-Credentials Object(Credentials) - 1 -

Table 5-11 OM Attributes of Change-Credentials

Old-Credentials
This specifies the user’s current credentials. This may be credentials for either simple or
strong authentication.

New-Credentials
This specifies the credentials to which the user would like to change.

Note: This shall be the same type (i.e., simple or strong) as the Old-Credentials.

5.18 Check-Alert-Result
An instance of OM class Check-Alert-Result gives information regarding an alert when a new
entry has been entered into the Message Store in response to Check-Alert().

An instance of OM class Check-Alert-Result has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Alert-Registration-Identifier Integer - 1 -
New-Entry Object(MS-Entry-Information) - 0-1 -

Table 5-12 OM Attributes of Check-Alert-Result

Alert-Registration-Identifier
This identifies which auto alert registrations resulted in the alert.

New-Entry
If present, this conveys the information from the new entry which was requested in the
auto alert registration parameter. This is absent if the user did not specify an auto alert
registration parameter.

76 X/Open CAE Specification (1993)

Interface Class Definitions Common-Controls

5.19 Common-Controls
The OM class Common-Controls indicates the control parameters, which are related to delivery
and submission, common to the classes Default-Delivery-Controls, Delivery-Controls and
Submission-Controls (although the latter two are not used by functions defined in this
specification).

The OM class Common-Controls is an abstract class and has the OM attributes of its
superclasses: Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Restrict Boolean - 1 true
Permissible-Operations String(Bit) - 0-1 -
Permissible-Maximum-Content-Length Integer - 0-1 -
Permissible-Lowest-Priority Enum(Priority) † - 0-1 -

† As defined in the X.400 Specification (see reference X.400).

Table 5-13 OM Attributes of Common-Controls

Note: The following control parameters apply either to delivery or to submission (the latter
being indicated in brackets []). For further details, see sections 8.3.1.3.1 and 8.2.1.4.1 in
reference X.411.

Restrict
This indicates whether the controls on the delivery-port [or submission-port] abstract
operations are to be updated (‘true’) or removed (‘false’).

Permissible-Operations
This indicates the abstract operations that the MTS may invoke on the MS or UA.

Permissible-Maximum-Content-Length
This indicates the content-length, in octets, of the longest content message that the MTS
shall deliver to the MS or UA via the Message-Delivery abstract operation [or the MS or
UA shall submit to the MTS via the Message-Submission abstract operation].

Permissible-Lowest-Priority
This indicates the priority of the lowest priority message that the MTS shall deliver to
the MS or UA via the Message-Delivery abstract operation [or the MS or UA shall
submit to the MTS via the Message-Submission abstract operation].

Message Store API (XMS) 77

Creation-Time-Range Interface Class Definitions

5.20 Creation-Time-Range
An instance of OM class Creation-Time-Range identifies a contiguous sequence of entries based
on their times of creation.

An instance of OM class Creation-Time-Range has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
From String(UTC-Time) - 0-1 -
To String(UTC-Time) - 0-1 -

Table 5-14 OM Attributes of Creation-Time-Range

From
This indicates creation-time that is the lower bound for the range. If absent, the default
is no lower bound; and the selection begins with the entry with the earliest creation-
time in the information base.

To
This indicates creation-time that is the upper bound for the range. If absent, the default
is no upper bound; and the selection finishes with the entry with the latest creation-
time in the information base.

5.21 Credentials
An instance of OM class Credentials holds either a simple password when simple
authentication is used or strong credentials when strong authentication is used.

An instance of OM class Credentials has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Simple Object(Password) - 0-1 † -
Strong Object(Strong-Credentials) - 0-1 † -

† No instance will contain both of the above OM attributes.

Table 5-15 OM Attributes of Credentials

Simple
This is the password used for simple authentication.

Strong
This specifies the credentials used for strong authentication.

78 X/Open CAE Specification (1993)

Interface Class Definitions Default-Delivery-Controls

5.22 Default-Delivery-Controls
An instance of OM class Default-Delivery-Controls gives the default control parameters related
to delivery.

An instance of OM class Default-Delivery-Controls has the OM attributes of its superclasses:
Object, Common-Controls and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Permissible-Content-Types-Int Integer † - 0/more -
Permissible-Content-Types String(Object-Identi fier) † - 0/more -
Permissible-EITs Object(EITs) ‡ - 0-1 -

† For services based on MHS-1984 (see reference MHS-1984), only attribute "Permissible-Content-Types-
Int" is available. For services based on MHS-1988 (see reference MHS-1988), either "Permissible-Content-
Types-Int" or "Permissible-Content-Types" is available.

‡ As defined in the X.400 Specification (see reference X.400).

Table 5-16 OM Attributes of Default-Delivery-Controls

Permissible-Content-Types-Int
Permissible-Content-Types

This indicates the content-types that shall appear in messages the MTS shall deliver to
the MS via the Message-Delivery abstract operation. Content-Type identifies the
syntax and semantics of the value of the OM attribute Content of the OM class
Message. Its defined values are as prescribed for the like-named attribute specific to
the OM class Communique of the Message Handling Package of the X.400 Specification
(see reference X.400).

Permissible-EITs
This indicates the encoded-information-types that shall appear in messages the MTS
shall deliver to the MS via the Message-Delivery abstract operation.

Message Store API (XMS) 79

Delete-Argument Interface Class Definitions

5.23 Delete-Argument
An instance of OM class Delete-Argument describes the arguments for the Delete() function.

An instance of OM class Delete-Argument has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Information-Base-Type Integer - 0-1 stored-messages
Items Object(Items) - 1 -

Table 5-17 OM Attributes of Delete-Argument

Information-Base-Type
This specifies which information base type is being addressed (see Section 6.3.1 in
reference X.413). Its value must be one of the following:

— stored-messages {MS_STORED_MESSAGES}
This type specifies the repository containing entries for delivered messages and
reports (see Section 6.4 in reference X.413).

— inlog {MS_INLOG}

— outlog {MS_OUTLOG}

The default is stored-messages {MS_STORED_MESSAGES}.

Items

This determines which entries are to be deleted.

80 X/Open CAE Specification (1993)

Interface Class Definitions Deliverable-Content-Types

5.24 Deliverable-Content-Types
An instance of OM class Deliverable-Content-Types indicates which content-types that the
MTS shall permit to appear in messages delivered to the MS.

An instance of OM class Deliverable-Content-Types has the OM attributes of its superclasses:
Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Content-Type-Int Integer † - 1/more -
Content-Type String(Object-Identi fier) † - 1/more -

† For services based on MHS-1984 (see reference MHS-1984), only attribute Content-Type-Int" is available.
For services based on MHS-1988 (see reference MHS-1988), either "Content-Type-Int" or "Content-Type" is
available.

Table 5-18 OM Attributes of Deliverable-Content-Types

Content-Type-Int
Content-Type

This identifies the syntax and semantics of the value of the OM attribute Content of the
OM class Message. Its defined values are as prescribed for the like-named attribute
specific to the OM class Communique of the Message Handling Package in the X.400
Specification (see reference X.400).

5.25 EITs
As defined in the Message Handling Package in the X.400 Specification (see reference X.400).

Message Store API (XMS) 81

Fetch-Argument Interface Class Definitions

5.26 Fetch-Argument
An instance of OM class Fetch-Argument describes the arguments for the Fetch() function.

An instance of OM class Fetch-Argument has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Information-Base-Type Integer - 0-1 stored-messages
Item Object(Item) - 1 -
Requested-Attributes Object(MS-Entry-Information-Selection) - 0-1 -

Table 5-19 OM Attributes of Fetch-Argument

Information-Base-Type
This specifies which information base type is being addressed (see Section 6.3.1 in
reference X.413). Its value must be one of the following:

— stored-messages {MS_STORED_MESSAGES}
This type specifies the repository containing entries for delivered messages and
reports (see Section 6.4 in reference X.413.)

— inlog {MS_INLOG}

— outlog {MS_OUTLOG}

The default is stored-messages {MS_STORED_MESSAGES}.

Item
This determines which entry is to be fetched.

Requested-Attributes
This indicates what information from the selected entry is to be returned in the result.

Note: If absent, it implies that information about the entry itself, rather than the
attributes of the entry, is requested.

5.27 Fetch-Attribute-Defaults
An instance of OM class Fetch-Attribute-Defaults, for the Register-MS() function, specifies a
default set of attribute-types to indicate which attributes should be returned for any subsequent
Fetch() functions if the Entry-Information-Selection argument is absent. This value replaces any
previously registered default set.

An instance of OM class Fetch-Attribute-Defaults has the OM attributes of its superclasses:
Object, Attribute-Defaults, and no additional OM attributes.

82 X/Open CAE Specification (1993)

Interface Class Definitions Fetch-Result

5.28 Fetch-Result
An instance of OM class Fetch-Result gives the result of a successful Fetch() function.

An instance of OM class Fetch-Result has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Entry-Information Object(MS-Entry-Information) - 0-1 -
List Integer - 0/more -
Next Integer - 0-1 -

Table 5-20 OM Attributes of Fetch-Result

Entry-Information
This is the set of MS attributes from one entry as requested in the argument to the
Fetch() function. This is not present if a search was performed but no entry was
selected.

List
This is returned in the case that a search was performed and more than one entry was
found that matched the search selector. This would then give the sequence-numbers, in
ascending order, of these further entries.

Next
This is returned in the case where the number of entries selected would have been
greater if it were not for the limit specified in the selector. This would then give the
sequence-number for the next entry that would have been selected.

5.29 Filter
As defined in the Directory Services Package in the XDS Specification (see reference XDS).

Note: The following points out some differences regarding the interpretation of filters as
defined by the Directory and the MS standards. Consequently, these are additional
constraints on the OM class Filter in the context of MS.

a. In the MS, a Filter-Item may only be true or false, whereas it may be true, false or
undefined in the Directory.

b. In the MS, the definitions of the greater-or-equal and less-or-equal Filter-Item-
Types are the opposite of those in the Directory. Furthermore, they fail to yield
true in the event of equality.

For further details, refer to the CCITT Special Rapporteur Q18/VII MHS Implementor’s
Guide (see reference MHS).

Message Store API (XMS) 83

Filter-Item Interface Class Definitions

5.30 Filter-Item
As defined in the Directory Services Package in the XDS Specification (see reference XDS).

See also the note under Section 5.29 on page 83.

5.31 Item
An instance of the OM class Item identifies the criterion for selecting a single MS entry to be
returned by the Fetch() function.

An instance of the OM class Item has the OM attributes of its superclasses: Object, Items and no
additional OM attributes.

Additional Constraints

1. Selector
If present, this specifies a set of entries of which the one with the lowest sequence-number
is the entry to be chosen.

2. Precise
If present, there shall be precisely a single value which would identify an MS entry by its
sequence-number.

5.32 Item-To-Forward
An instance of the OM class Item-To-Forward gives the sequence-number identifying the single
entry that is to be forwarded by the MS-Submit() function.

Note: The entry to be forwarded should be a delivered message entry. Forwarding of entries
that are not delivered messages is not defined in this specification.

An instance of the OM class Item-To-Forward has the OM attributes of its superclasses: Object,
Submitted-Message and the additional OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Sequence-Number Integer - 1 -

Table 5-21 OM Attributes of Item-To-Forward

Sequence-Number
This identifies the MS entry, by its sequence number, that is to be forwarded via
indirect submission.

84 X/Open CAE Specification (1993)

Interface Class Definitions Items

5.33 Items
An instance of the OM class Items identifies the criterion for selecting MS entries to be removed
by the Delete() function.

An instance of the OM class Items has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Selector Object(Selector) - 0-1 † -
Precise Integer - 0/more † -

† No instance will contain both of the above OM attributes.

Table 5-22 OM Attributes of Items

Selector
If present, this specifies a set of entries to be chosen.

Precise
If present, this is a list of sequence-number(s) to precisely identify the entries to be
chosen based on their sequence-numbers.

5.34 Label-And-Redirection
An instance of OM class Label-And-Redirection indicates a set of security-label and the OR-
Name of an alternate-recipient.

An instance of OM class Label-And-Redirection has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Security-Label Object(Security-Label) † - 0-1 -
Alternate-Recipient Object(OR-Name) † - 0-1 -

† As defined in the X.400 Specification (see reference X.400).

Table 5-23 OM Attributes of Label-And-Redirection

Security-Label
This identifies the user-security-label.

Alternate-Recipient
This identifies the OR-Name of an alternate-recipient.

Message Store API (XMS) 85

Labels-And-Redirections Interface Class Definitions

5.35 Labels-And-Redirections
An instance of OM class Labels-And-Redirections indicates a set of security-label and the OR-
Name of alternate-recipient pair.

An instance of OM class Labels-And-Redirections has the OM attributes of its superclasses:
Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Label-And-Redirection Object(Label-And-Redirection) - 1/more -

Table 5-24 OM Attributes of Labels-And-Redirections

Label-And-Redirection
This identifies either one or both of the following:

— a security-label

— the OR-Name of an alternate-recipient

86 X/Open CAE Specification (1993)

Interface Class Definitions List-Argument

5.36 List-Argument
An instance of OM class List-Argument describes the arguments for the List() function.

An instance of OM class List-Argument has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Information-Base-Type Integer - 0-1 stored-messages
Selector Object(Selector) - 1 -
Requested-Attributes Object(MS-Entry-Information-Selection) - 0-1 -

Table 5-25 OM Attributes of List-Argument

Information-Base-Type
This specifies which information base type is being addressed (see Section 6.3.1 in
reference X.413). Its value must be one of the following:

— stored-messages {MS_STORED_MESSAGES}
This type specifies the repository containing entries for delivered messages and
reports (see Section 6.4 in reference X.413.)

— inlog {MS_INLOG}

— outlog {MS_OUTLOG}

The default is stored-messages {MS_STORED_MESSAGES}.

Selector
This determines which entries are to be listed.

Requested-Attributes
This indicates what information from the selected entry is to be returned in the result.

Note: If absent, it implies that information about the entry itself, rather than the
attributes of the entry, is requested.

5.37 List-Attribute-Defaults
An instance of OM class List-Attribute-Defaults, for the Register-MS() function, specifies a
default set of attribute-types to indicate which attributes should be returned for any subsequent
List() function if the Entry-Information-Selection argument is absent. This value replaces any
previously registered default set.

An instance of OM class List-Attribute-Defaults has the OM attributes of its superclasses:
Object, Attribute-Defaults, and no additional OM attributes.

Message Store API (XMS) 87

List-Result Interface Class Definitions

5.38 List-Result
An instance of OM class List-Result gives the result of a successful List() function.

An instance of OM class List-Result has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Next Integer - 0-1 -
Requested Object(MS-Entry-Information) - 0/more -

Table 5-26 OM Attributes of List-Result

Next
This is returned in the case where the number of entries selected would have been
greater if it were not for the limit specified in the selector. This would then give the
sequence-number for the next entry that would have been selected.

Requested
This is the set of MS attributes of the entries requested in the argument to the List()
function. This is not present if a search was performed but no entries were selected.

5.39 MS-Entry-Information
An instance of OM class MS-Entry-Information describes information about an MS entry.

An instance of OM class MS-Entry-Information has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Sequence-Number Integer - 1 -
Attributes Object(Attribute) - 0/more -

Table 5-27 OM Attributes of MS-Entry-Information

Sequence-Number
This identifies precisely the entry that is to be chosen.

Attributes
This identifies the MS attributes, or those requested, of an MS entry.

88 X/Open CAE Specification (1993)

Interface Class Definitions MS-Entry-Information-Selection

5.40 MS-Entry-Information-Selection
An instance of OM class MS-Entry-Information-Selection indicates which MS attributes of an
entry are being requested.

An instance of OM class MS-Entry-Information-Selection has the OM attributes of its
superclasses: Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Selection Object(Attribute-Selection) - 1/more -

Table 5-28 OM Attributes of MS-Entry-Information-Selection

Selection
This indicates which MS attributes of an entry are being requested.

5.41 MTS-Identifier
As defined in the Message Handling Package in the X.400 Specification (see reference X.400).

5.42 OR-Name
As defined in the Message Handling Package in the X.400 Specification (see reference X.400).

5.43 Password
An instance of OM class Password gives the simple password for simple authentication.

An instance of OM class Password has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
IA5-String String(IA5) - 0-1 † -
Octet-String String(Octet) - 0-1 † -

† No instance will contain more than one of the above OM attributes.

Table 5-29 OM Attributes of Password

IA5-String
This specifies the simple password in IA5 string format.

Octet-String
This specifies the simple password in Octet string format.

Message Store API (XMS) 89

Range Interface Class Definitions

5.44 Range
An instance of OM class Range is used to select a contiguous sequence of entries, based on either
their sequence-numbers or creation-times, from an information base (see Section 8.1.1 in
reference X.413.)

An instance of OM class Range has the OM attributes of its superclasses: Object and additionally,
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Sequence-Number-Range Object(Sequence-Number-Range) - 0-1 † -
Creation-Time-Range Object(Creation-Time-Range) - 0-1 † -

† No instance will contain both of the above OM attributes.

Table 5-30 OM Attributes of Range

Sequence-Number-Range
This identifies a contiguous sequence of entries based on their sequence-numbers.

Creation-Time-Range
This identifies a contiguous sequence of entries based on the times the entries were
created.

90 X/Open CAE Specification (1993)

Interface Class Definitions Register-Argument

5.45 Register-Argument
An instance of OM class Register-Argument specifies how to modify (via the Register()
function) various parameters held by the MTS regarding delivery of messages to the MS.

An instance of OM class Register-Argument has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Name Object(OR-Name) † - 0-1 -
Address Object(Address) ‡ - 0-1 -
Deliverable-EIT Object(EITs) † - 0-1 -
Deliverable-Maximum-Content- Integer - 0-1 -
Length
Default-Delivery-Controls Object(Default-Delivery-Controls) - 0-1 -
Deliverable-Content-Types Object(Deliverable-Content-T ypes) - 0-1 -
Labels-And-Redirections Object(Labels-And-Redirections) - 0-1 -

† As defined in the X.400 Specification (see reference X.400).

‡ As defined in the XDS Specification (see reference XDS).

Table 5-31 OM Attributes of Register-Argument

Name
This specifies the OR-Name of the MS (this corresponds to the OR-Name of the UA), if
the user-name is to be changed.

Address
This specifies the address of the MS, if it is required by the MTS and if it is to be
changed. This may contain one of the following forms of address:

— the X.121-address and/or the TSAP-ID (transport service access point identifier).

— the PSAP-ID (presentation service access point identifier).

Deliverable-Encoded-Information-Types
This indicates the encoded-information-types that the MTS shall permit to appear in
messages delivered to the MS, if they are to be changed. The MTS shall reject as
undeliverable any message for an MS for which the MS is not registered to accept
delivery of all of the encoded-information-types of the message. Note that the MS may
register to receive the undefined encoded-information-type. This OM attribute,
Deliverable-Encoded-Information-Types also indicates the possible encoded-
information-types to which implicit conversion can be performed.

Deliverable-Maximum-Content-Length
This indicates the content-length, in octets, of the longest content message that the MTS
shall permit to appear in messages being delivered to the MS, if it is to be changed. The
MTS shall reject as undeliverable any message for an MS for which the MS is not
registered to accept delivery of messages of its size.

Default-Delivery-Controls
This indicates default delivery controls which are registered using the Register()
function. The default delivery control OM attributes shall not admit messages whose
delivery are prohibited by the prevailing registered values of the Deliverable-
Encoded-Information-Types OM attribute, the Deliverable-Content-Types OM
attribute or the Deliverable-Maximum-Content-Length OM attribute.

Message Store API (XMS) 91

Register-Argument Interface Class Definitions

Deliverable-Content-Types
This indicates the content-types that the MTS shall permit to appear in messages
delivered to the MS, if they are to be changed. The MTS shall reject as undeliverable
any message for an MS for which the MS is not registered to accept delivery of all of the
content-types of the message. Note that the MS may register to receive the undefined
content-type.

Labels-And-Redirections
This contains either one or both of the following:

— the OR-Name of an alternate recipient to which messages are to be redirected, if this
is to be changed.

— the security-label of the UA, if they are to be changed.

92 X/Open CAE Specification (1993)

Interface Class Definitions Register-MS-Argument

5.46 Register-MS-Argument
An instance of OM class Register-MS-Argument specifies the information to be registered or
de-registered through the Register-MS() function.

An instance of OM class Register-MS-Argument has the OM attributes of its superclasses:
Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Auto-Action-Registrations Object(Auto-Action-Registration) - 0/more -
Auto-Action-Deregistrations Object(Auto-Action-Deregistration) - 0/more -
List-Attribute-Defaults Object(List-Attribute-Defaults) - 0-1 -
Fetch-Attribute-Defaults Object(Fetch-Attribute-Defaults) - 0-1 -
Change-Credentials Object(Change-Credentials) - 0-1 -
User-Security-Labels Object(Security-Label) - 0/more -

Table 5-32 OM Attributes of Register-MS-Argument

Auto-Action-Registrations
This is a set of auto-action-registrations, one for each auto-action to be registered.

Auto-Action-Deregistrations
This is a set of auto-action-deregistrations, one for each auto-action to be deregistered.

List-Attribute-Defaults
This specifies a default set of attribute types to indicate which attributes should be
returned for any subsequent List() function if the Requested-Attributes OM attribute of
List-Argument is absent.

Fetch-Attribute-Defaults
This specifies a default set of attribute types to indicate which attributes should be
returned for any subsequent Fetch() function if the Requested-Attributes OM attribute
of Fetch-Argument is absent.

Change-Credentials
If change credentials is requested, this specifies the old and new credentials of the end
user.

User-Security-Labels
This contains the security-labels of the UA, if they are to be changed.

Message Store API (XMS) 93

Restrictions Interface Class Definitions

5.47 Restrictions
An instance of OM class Restrictions describes the restrictions on entries to be returned as result
of a Fetch() function.

An instance of OM class Restrictions has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Allowed-Content-Types String(Object-Identi fier) - 0/more -
Allowed-EITs String(Object-Identi fier) - 0/more -
Max-Content-Length Integer - 0-1 -

Table 5-33 OM Attributes of Restrictions

Allowed-Content-Types
This specifies the content-types that the UA is prepared to accept as a result of a
Fetch() function invocation. Any message with a content-type other than the ones
specified will not be returned; but result in an error, unless the Fetch() function has
explicitly overridden the restriction. If absent, the default is that no fetch-restrictions
on content-types need to be performed.

Allowed-EITs
This specifies the encoded-information-types that the UA is prepared to accept as a
result of a Fetch() function. For any message with an EIT other than the ones specified,
a filtering will occur so that disallowed EIT parts are not returned along with the text of
the message. If the entire message consists of disallowed EITs, an error will be
reported. No filtering will occur if the Fetch() function has been explicitly overridden.
If absent, the default is that no fetch-restrictions on EITs need to be performed.

Max-Content-Length
This specifies the maximum content length that the UA is prepared to accept as a result
of a Fetch() function invocation. Any message with a content-length exceeding this
maximum will not be returned but will result in an error, unless the Fetch() function
has explicitly overridden the restriction. If absent, the default is that no fetch-
restrictions on content-length need to be performed.

5.48 Security-Label
As defined in the Message Handling Package in the X.400 Specification (see reference X.400).

94 X/Open CAE Specification (1993)

Interface Class Definitions Selector

5.49 Selector
An instance of OM class Selector is used to describe the criteria for selecting entries from an
information base where the selection operates in three stages, as follows:

• Firstly, the total set of entries in the information base may be restricted to a particular
contiguous set by specifying its range.

• Secondly, entries from within this set may be selected by specifying a filter which the
selected entry must satisfy.

• Thirdly, a limit may be imposed on the number of entries thus selected; in this case, it is those
entries with the lowest sequence-numbers which are selected.

An instance of OM class Selector has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Child-Entries Boolean - 1 false
Range Object(Range) - 0-1 -
Filter Object(Filter) - 0-1 -
Limit Integer - 0-1 -
Override String(Bit) - 0-1 -

Table 5-34 OM Attributes of Selector

Child-Entries
This indicates whether or not child entries are considered for selection. If false, only
the main-entries are considered for selection. If true, both main-entries and child-
entries are considered for selection.

Range
This specifies the contiguous set of entries selected in the first stage of the selection
process as mentioned above. If absent, the default is unbounded.

Filter
This specifies the filter (or selection criterion) for the second stage of the selection
process as mentioned above. If absent, the default is all entries within the specified range.

Limit
This is the upper limit on the number of entries selected in the third stage of the
selection process as mentioned above. If absent, the default is all entries are returned.

Override
See Section 8.1.3 in reference X.413. This identifies any override restrictions, if required.

Message Store API (XMS) 95

Sequence-Number-Range Interface Class Definitions

5.50 Sequence-Number-Range
An instance of OM class Sequence-Number-Range identifies a contiguous sequence of entries
based their sequence-numbers.

An instance of OM class Sequence-Number-Range has the OM attributes of its superclasses:
Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
From-Int Integer - 0-1 -
To-Int Integer - 0-1 -

Table 5-35 OM Attributes of Sequence-Number-Range

From-Int
This indicates the sequence-number that is the lower bound for the range. If absent, the
default is no lower bound; and the selection begins with the entry with the lowest
sequence-number in the information base.

To-Int
This indicates the sequence-number that is the upper bound for the range. If absent,
the default is no upper bound; and the selection finishes with the entry with the highest
sequence-number in the information base.

5.51 Session
An instance of OM class Session provides information for a particular association between a
client program and the Message Store.

An instance of OM class Session has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Initiator Object(OR-Name) † - 1 -
File-Descriptor Integer - 0-1 (see below)

† As defined in the X.400 Specification (see reference X.400).

Table 5-36 OM Attributes of Session

Initiator
This specifies the OR-Name of the initiator (i.e., the UA) of this session (or association)
with the MS.

File-Descriptor (Optional Functionality)
This indicates the file descriptor associated with the session. The file descriptor may be
used in subsequent calls to vendor-specific system facilities to suspend the process
(e.g., UNIX System V poll() or Berkeley Source Distribution select()). Its use for other
purposes is unspecified.

96 X/Open CAE Specification (1993)

Interface Class Definitions Strong-Credentials

5.52 Strong-Credentials
An instance of OM class Strong-Credentials gives the credentials for strong authentication.

An instance of OM class Strong-Credentials has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Bind-Token Object(Asymmetric-Token) † - 0-1 -
Certificate Object(Certificates) ‡ - 0-1 -

† As defined in the X.400 Specification (see reference X.400).

‡ As defined in the XDS Specification (see reference XDS).

Table 5-37 OM Attributes of Strong-Credentials

Bind-Token
This specifies the token used to convey to the protected security-relevant information.

Certificate
This specifies the certificate used to convey a verified copy of the public asymmetric
encryption key of the subject of the certificate.

5.53 Submission-Results
As defined in the Message Handling Package in the X.400 Specification (see reference X.400).

5.54 Submitted-Communique
As defined in the Message Handling Package in the X.400 Specification (see reference X.400).

5.55 Submitted-Message
As defined in the Message Handling Package in the X.400 Specification (see reference X.400).

Message Store API (XMS) 97

Submitted-Probe Interface Class Definitions

5.56 Submitted-Probe
As defined in the Message Handling Package in the X.400 Specification (see reference X.400).

5.57 Summarize-Argument
An instance of OM class Summarize-Argument specifies the argument for the Summarize()
function.

An instance of OM class Summarize-Argument has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Information-Base-Type Integer - 0-1 stored-messages
Selector Object(Selector) - 1 -
Summary-Requests Object(Summary-Requests) - 0-1 -

Table 5-38 OM Attributes of Summarize-Argument

Information-Base-Type
This specifies which information base type is being addressed (see Section 6.3.1 in
reference X.413). Its value must be one of the following:

stored-messages {MS_STORED_MESSAGES}
This type specifies the repository containing entries for delivered messages and
reports (see Section 6.4 in reference X.413.)

— inlog {MS_INLOG}

— outlog {MS_OUTLOG}

The default is stored-messages {MS_STORED_MESSAGES}.

Selector
This is the set of criteria for determining which entries shall be summarised.

Summary-Requests
This indicates the sequence of attribute-types for which summaries are requested.

98 X/Open CAE Specification (1993)

Interface Class Definitions Summary

5.58 Summary
An instance of OM class Summary describes part of the result returned by the Summary()
function; it summarises the count of entries based on the presence (and then, based on the actual
attribute-values) or absence of certain various attribute-types of the entries, as requested.

An instance of OM class Summary has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Absent Integer - 0-1 -
Present Object(Summary-Present) - 0/more -

Table 5-39 OM Attributes of Summary

Absent
This is a count of the entries that do not contain an attribute of the attribute-type
specified in the request. This is absent if there are no such entries.

Present
This gives a list of summaries for the entries that do contain an attribute of the
attribute-type specified, broken down by the attribute-values actually present. This is
absent if there are no such entries.

5.59 Summary-Present
An instance of OM class Summary-Present describes part of the result returned by the
Summary() function; in particular, it gives the count of entries that contain attributes of the
specified attribute-type for the specified attribute-value.

An instance of OM class Summary-Present has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
AVA Object(AVA) - 1 -
Count Integer - 0-1 -

Table 5-40 OM Attributes of Summary-Present

AVA
This specifies an attribute value assertion (i.e., it specifies the attribute-type and a
particular attribute-value); the Summary() function returns, in Count, the total of the
entries satisfying this attribute value assertion.

Count
This is a count of the entries which do contain the attribute of the specified attribute-
type and whose value matches the specified attribute-value. This is absent if there are
no such entries.

Message Store API (XMS) 99

Summary-Requests Interface Class Definitions

5.60 Summary-Requests
An instance of OM class Summary-Requests describes the sequence of attribute-types for which
summaries are requested in the Summary() function.

An instance of OM class Summary-Requests has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Requested-Str String(Object-Identi fier) - 0/more -

Table 5-41 OM Attributes of Summary-Requests

Requested-Str
This is the sequence of attribute-types for which summaries are requested. This is only
present if a summary is requested.

5.61 Summary-Result
An instance of OM class Summary-Result gives the result of a successful Summary() function.

An instance of OM class Summary-Result has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Next Integer - 0-1 -
Count Integer - 1 -
Span Object(Sequence-Number-Range) - 0-1 -
Summaries Object(Summary) - 0/more -

Table 5-42 OM Attributes of Summary-Result

Next
This is returned in the case where the number of entries selected would have been
greater if it were not for the limit specified in the selector. This would then give the
sequence-number for the next entry that would have been selected.

Count
This gives the number of entries that matched the selection criteria.

Span
This gives the range of sequence-numbers of entries that matched the selection criteria.
It is absent if there were no such entries (i.e., Count value is zero).

Summaries
This is a sequential list of summaries; one for each summary-request. The summaries
are returned in the order that they were requested in the Summary() function.

100 X/Open CAE Specification (1993)

Interface Class Definitions Wait-Result

5.62 Wait-Result
An instance of OM class Wait-Result gives the result of a successful Wait() function.

An instance of OM class Wait-Result has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Wait-New-Available Boolean - 1 true

Table 5-43 OM Attributes of Wait-Result

Wait-New-Available
This indicates whether any new MS entries have become available for retrieval. Its
value is true if new entries in the MS have become available for retrieval, and false if
otherwise.

Message Store API (XMS) 101

Interface Class Definitions

102 X/Open CAE Specification (1993)

Chapter 6

Errors

6.1 Introduction
This chapter defines the errors that can arise in the use of the interface and describes the method
used to report them.

Errors are reported to the application program by means of the Status that is returned by most
functions (it is the function result in the C language binding). A function which completes
successfully returns the value Success {MS_SUCCESS}. When a function is not successful it will
return a private object that contains details about the problem which prevented its successful
completion, unless no workspace exists (that is, if Initialize() has not been called successfully)
in which case the function returns the error constant no-workspace[MS_NO_WORKSPACE].

There are two types of failure for asynchronous operations. The first type is reported
immediately in the status of the invoking function whereas the second type is returned as the
Operation-Status result of a later call to Receive-Result(). However, the distinction between
these two types of failure is implementation-dependent.

Errors are classified into several OM classes. The Standards (see reference X.413) classify errors
into several different kinds.

The interface also defines three more kinds of error:

• Library-Error

• Communications-Error

• System-Error

Each of these is represented by an OM class and these are detailed below in alphabetical order.
All of them inherit the OM attribute Problem from their superclass Error, which is described
first.

All the OM classes defined in this chapter are part of the Message Store package introduced in
the previous chapter. The possible errors that each interface function may generate are listed for
the respective interface functions in Chapter 4. Errors are mandatory only if the applicable FU is
supported.

Message Store API (XMS) 103

OM Class Hierarchy Errors

6.2 OM Class Hierarchy
This section depicts the hierarchical organisation of the classes defined in this chapter and thus,
indicates the inheritance of additional OM attributes from its superclass(es) by each class.
Subclassification is indicated by indentation and the names of abstract classes are rendered in
italics. Thus, for instance, the concrete class Attribute-Problem is an immediate subclass of the
abstract class Error which in turn is an immediate subclass of the abstract class Object.

Object (defined in the XOM Specification - see reference XOM)

• Attribute-Error

• Auto-Action-Request-Error

• Delete-Error

• Fetch-Restriction-Error

• Sequence-Number-Error

• Error

— Attribute-Problem

— Auto-Action-Request-Problem

— Bind-Error

— Cancel-Submission-Error

— Communications-Error

— Delete-Problem

— Element-Of-Service-Not-Subscribed-Error

— Fetch-Restriction-Problem

— Inconsistent-Request-Error

— Invalid-Parameters-Error

— Library-Error

— Originator-Invalid-Error

— Range-Error

— Recipient-Improperly-Specified-Error

— Register-Rejected-Error

— Remote-Bind-Error

— Security-Error

— Service-Error

— Sequence-Number-Problem

— Submission-Control-Violated-Error

— System-Error

— Unsupported-Critical-Function-Error

104 X/Open CAE Specification (1993)

Errors OM Class Hierarchy

The client program is not permitted to create or modify any instances of these OM classes.
Furthermore, this specification does not mandate that any OM classes be translatable using
OM_Encode() and OM_Decode().

Note that an Attribute-Error, not a subclass of Error, is special in that it may report several
problems at a time; each problem is reported in an Attribute-Problem, which is a subclass of
Error. The situation is similar for Auto-Action-Request-Error, Delete-Error and Fetch-
Restriction-Error along with their corresponding Problem classes.

Message Store API (XMS) 105

Error Errors

6.3 Error
The OM class Error consists of parameters common to all errors.

It is an abstract class which has the OM attributes of its superclasses: Object and additionally, the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Problem Enum(Problem) - 1 -

Table 6-1 OM Attributes of Error

Problem

This indicates the type of error. A number of possible values are defined but
implementations may define additional values. Implementations will not return other
values for error conditions described in this chapter. Each of the standard values listed
below is described under the relevant error OM class to which it applies. The possible
values are:

action-type-not-subscribed invalid-feature
asynchrony-not-supported invalid-parameters
attribute-type-not-subscribed message-submission-identi fier-invalid
authentication-error miscellaneous
bad-argument no-such-class
bad-class no-such-entry
bad-session originator-invalid
busy out-of-memory
child-entry-specified register-rejected
communications-problem remote-bind-error
content-length-problem reversed
content-type-problem security
deferred-delivery-cancellation-rejected submission-control-violated
delete-restriction-problem too-many-operations
eit-problem too-many-sessions
element-of-service-not-subscribed unable-to-establish-association
feature-not-negotiated unacceptable-security-context
feature-unavailable unavailable
inappropriate-for-operation unavailable-action-type
inappropriate-matching unavailable-attribute-type
inconsistent-request unsupported-critical-function
invalid-attribute-value unwilling-to-perform

106 X/Open CAE Specification (1993)

Errors Attribute-Error

6.4 Attribute-Error
An instance of OM class Attribute-Error reports one or more attribute-related problems
encountered while performing a function as requested on a particular occasion (see Section 9.2 in
reference X.413.)

An instance of OM class Attribute-Error has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Attribute-Problems Object(Attribute-Problem) - 1/more -

Table 6-2 OM Attributes of Attribute-Error

Attribute-Problems
This provides information about the attribute-related problem. An Attribute-Error can
report several problems at a time.

Message Store API (XMS) 107

Attribute-Problem Errors

6.5 Attribute-Problem
An instance of OM class Attribute-Problem documents one attribute-related problem
encountered while performing a function as requested on a particular occasion (see Section 9.2 in
reference X.413).

An instance of OM class Attribute-Problem has the OM attributes of its superclasses: Object,
Error and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Attribute-Type String(Object-Identi fier) - 1 -
Attribute-Value any - 0-1 -

Table 6-3 OM Attributes of Attribute-Problem

Attribute-Type
This indicates the type of the attribute with which the problem is associated.

Attribute-Value
This indicates the value of the attribute with which the problem is associated.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is one of:

— attribute-type-not-subscribed
means that an attribute-type used as argument to the function is not one of those to
which the client has subscribed.

— inappropriate-for-operation
means that an attribute-type used as an argument of the function is unsuitable for
its required use.

— inappropriate-matching
means that the filter contains a filter-item in which an attribute is matched using an
operation (equality, ordering or substrings) that is not defined for that attribute.

— invalid-attribute-value
means that a purported attribute-value specified as an argument of the function
does not conform to the data-type for the attribute-type concerned.

— unavailable-attribute-type
means that a purported attribute-type used as an argument of the function is not
one of those which is supported by the MS. If the MS is able to carry out the
operation anyway, it is not prohibited from so doing.

108 X/Open CAE Specification (1993)

Errors Auto-Action-Request-Error

6.6 Auto-Action-Request-Error
An instance of OM class Auto-Action-Request-Error reports one or more problems related to
registration of an auto-action.

An instance of OM class Auto-Action-Request-Error has the OM attributes of its superclasses:
Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Auto-Action Object(Auto-Action - 1/more -

-Request-Problems -Request-Problem)

Table 6-4 OM Attributes of Auto-Action-Request-Error

Auto-Action-Request-Problems
This indicates type of problems that apply to the given auto-actions. An Auto-Action-
Request-Error can report several problems at a time.

6.7 Auto-Action-Request-Problem
An instance of OM class Auto-Action-Request-Problem documents the type of problem
encountered when attempting to register an auto-action.

An instance of OM class Auto-Action-Request-Problem has the OM attributes of its
superclasses: Object, Error and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Type String(Object-Identi fier) - 1 -

Table 6-5 OM Attributes of Auto-Action-Request-Problem

Type
This identifies the auto-action type for which a problem is encountered when
attempting to register it.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is one of:

— action-type-not-subscribed
means that an action-type used as argument to the function is not one of those to
which the client has subscribed.

— unavailable-action-type
means that the action-type used as an argument of the function is not one of those
supported by the MS.

Message Store API (XMS) 109

Bind-Error Errors

6.8 Bind-Error
An instance of OM class Bind-Error indicates an error associated with the Bind() function.

An instance of OM class Bind-Error has the OM attributes of its superclasses: Object, Error and
no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is one of:

— authentication-error
means that the Bind() function failed because the client’s Credentials are not
acceptable or are improperly specified.

— unable-to-establish-association
means that the MS has rejected the client’s attempt to establish an association with
the Bind() function.

— unacceptable-security-context
means that the Bind() function failed because the Security-Context proposed by the
client for the Bind() function is unacceptable to the MS.

6.9 Cancel-Submission-Error
An instance of OM class Cancel-Submission-Error indicates a disruption in the performance of
the Cancel-Submission() function.

An instance of OM class Cancel-Submission-Error has the OM attributes of its superclasses:
Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error:

Problem
This identifies the problem. Its value is one of :

— deferred-delivery-cancellation-rejected
means that the MTS cannot cancel the deferred delivery of a message, either
because the message has already been progressed for transfer and/or delivery, or
because the MTS had provided the originator with proof-of-submission.

— message-submission-identifier-invalid
means that the deferred delivery of a message cannot be cancelled due to the invalid
message-submission-identifier specified.

— remote-bind-error
means that the function requested cannot be performed because the MS is unable to
bind to the MTS.

110 X/Open CAE Specification (1993)

Errors Communications-Error

6.10 Communications-Error
An instance of OM class Communications-Error reports an error occurring in the other
communications services supporting the MS. Such errors may include those arising in Remote
Operation, Association Control, Presentation, Session and Transport.

An instance of OM class Communications-Error has the OM attributes of its superclasses:
Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— communications-problem
means that an error has occurred in the other communications services supporting
the MS. Such errors include those arising in Remote Operation, Association
Control, Presentation, Session and Transport.

6.11 Delete-Error
An instance of OM class Delete-Error reports one or more problems encountered while
attempting to delete one or more entries from an information base.

An instance of OM class Delete-Error has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Delete-Problems Object(Delete-Problem) - 1/more -

Table 6-6 OM Attributes of Delete-Error

Delete-Problems
This provides information about problems encountered when attempting to delete one
or more entries in an information base. Any number of individual problems may be
indicated, each problem is reported along with the sequence-number of the entry
causing the problem. A Delete-Error can report several problems at a time.

Message Store API (XMS) 111

Delete-Problem Errors

6.12 Delete-Problem
An instance of OM class Delete-Problem documents the type of problem encountered when
attempting to delete an entry in an information base and also identifies the sequence-number of
the entry.

An instance of OM class Delete-Problem has the OM attributes of its superclasses: Object, Error
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Sequence-Number Integer - 1 -

Table 6-7 OM Attributes of Delete-Problem

Sequence-Number
This identifies the sequence-number of the entry causing the problem, Problem.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is one of:

— child-entry-specified
means that an attempt has been made to delete a child-entry.

— delete-restriction-problem
means that an attempt has been made to violate a restriction specified for the
Delete() function.

6.13 Element-of-Service-Not-Subscribed-Error
An instance of OM class Element-Of-Service-Not-Subscribed-Error reports that the requested
operation cannot be provided by the MTS because the MS has not subscribed to one of the
elements of service the request requires.

An instance of OM class Element-Of-Service-Not-Subscribed-Error has the OM attributes of its
superclasses: Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— element-of-service-not-subscribed
means that the requested operation cannot be provided by the MTS because the MS
has not subscribed to one of the elements of service the request requires.

112 X/Open CAE Specification (1993)

Errors Fetch-Restriction-Error

6.14 Fetch-Restriction-Error
An instance of OM class Fetch-Restriction-Error reports an attempt to violate a restriction
associated with the Fetch() function.

An instance of OM class Fetch-Restriction-Error has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Fetch-Restriction Object(Fetch-Restriction - 1/more -

-Problems -Problem)

Table 6-8 OM Attributes of Fetch-Restriction-Error

Fetch-Restriction-Problems
This provides information about an attempt to violate a restriction associated with the
Fetch() function. A Fetch-Restriction-Error can report several problems at a time.

Message Store API (XMS) 113

Fetch-Restriction-Problem Errors

6.15 Fetch-Restriction-Problem
An instance of OM class Fetch-Restriction-Problem reports on a Fetch restriction violation
problem that was encountered.

An instance of OM class Fetch-Restriction-Problem has the OM attributes of its superclasses:
Object, Error and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Content-Type-Int Integer † - 0-1 -
Content-Type String(Object-Identi fier) † - 0-1 -
EITs String(Object-Identi fier) - 0/more -
Content-Length Integer - 0-1 -

† For services based on MHS-1984 (see reference MHS-1984), only attribute "Content-Type-Int" is
available. For services based on MHS-1988 (see reference MHS-1988), either "Content-Type-Int" or
"Content-Type" is available.

Table 6-9 OM Attributes of Fetch-Restriction-Problem

Content-Type-Int
Content-Type

This indicates the content-type of the message with which the Fetch restriction problem
is associated.

EIT
This indicates the encoded-information-types requested in the Fetch() function that are
disallowed by the Fetch restrictions currently in effect.

Content-Length
This indicates the content-length of the message with which the Fetch restriction
problem is associated.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is one of:

— content-length-problem
means that the content-length of the message being fetched exceeds that permitted
by the Fetch restrictions currently in effect.

— content-type-problem
means that the content-type of the message being fetched is disallowed by the Fetch
restrictions currently in effect.

— eit-problem
means that the encoded-information-types requested in the Fetch() function are
disallowed by the Fetch restrictions currently in effect.

114 X/Open CAE Specification (1993)

Errors Inconsistent-Request-Error

6.16 Inconsistent-Request-Error
An instance of OM class Inconsistent-Request-Error reports a problem where the requested
operation cannot be provided by the MTS because the MS has made an inconsistent request.

An instance of OM class Inconsistent-Request-Error has the OM attributes of its superclasses:
Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— inconsistent-request
means that the requested operation cannot be provided by the MTS because the MS
has made an inconsistent request.

6.17 Invalid-Parameters-Error
An instance of OM class Invalid-Parameters-Error indicates a semantic problem in the set of
parameters received for a function. This error would be used, for example, to report that an
optional parameter was present in the wrong context, or to report that a value for one of the
parameters is inappropriate.

An instance of OM class Invalid-Parameters-Error has the OM attributes of its superclasses:
Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— invalid-parameters
means that there is a semantics problem in the set of parameters received for a
function; this error would be used, for example, to report that an optional parameter
was present in the wrong context, or to report that a value for one of the parameters
is inappropriate.

Message Store API (XMS) 115

Library-Error Errors

6.18 Library-Error
An instance of OM class Library-Error reports an error detected by the interface function library.

An instance of OM class Library-Error has the OM attributes of its superclasses: Object, Error and
no additional OM attributes.

Each function has several possible errors which can be detected by the interface library itself and
which are returned directly by the function call. These errors occur when the library itself is
capable of performing an action, submitting a service request or deciphering a response from the
MS.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem

This identifies the problem. Its value is one of:

— asynchrony-not-supported
means that the client requested the function be performed asynchronously when the
service does not support asynchronous operations.

— bad-argument
means that a bad argument was supplied; e.g., using an instance of an OM class
Attribute with no values of the OM attribute Attribute-Value as an input argument
to a function will result in this error (since every MS attribute always has at least
one value).

— bad-class
means that the OM class of an argument is not supported for this function.

— bad-session
means that there is no such session over which to present the function.

— feature-unavailable
means that either the function to be invoked or the OM class of some argument
supplied is not supported by the service.

— feature-not-negotiated
means that either the functional unit(s) negotiated at Initialize() does include this
function being invoked or the package(s) negotiated at Initialize() does include the
OM class of some argument supplied.

— miscellaneous
means that a miscellaneous error has occurred. This error will be returned if the
interface cannot clear a transient system error by retrying the affected system call.

— no-such-class
means that the argument supplied has a subobject which is an instance of a class not
in the currently negotiated package(s).

— out-of-memory
means that no more memory can be allocated.

— too-many-operations
means that no more functions can be performed until at least one asynchronous
operation has completed.

116 X/Open CAE Specification (1993)

Errors Library-Error

— too-many-sessions means that no more sessions can be bound with the message
store until at least one existing session has unbound.

6.19 Originator-Invalid-Error
An instance of OM class Originator-Invalid-Error reports that the communique cannot be
submitted because the originator was incorrectly identified.

An instance of OM class Originator-Invalid-Error has the OM attributes of its superclasses:
Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— originator-invalid
means that the communique cannot be submitted because the originator was
incorrectly identified.

Message Store API (XMS) 117

Range-Error Errors

6.20 Range-Error
An instance of OM class Range-Error reports a problem related to the limit specified in a selector
as an argument to a function.

An instance of OM class Range-Error has the OM attributes of its superclasses: Object, Error and
no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— reversed
means that the upper bound indicated a sequence-number or creation-time before
that indicated by the lower bound.

6.21 Recipient-Improperly-Specified-Error
An instance of OM class Recipient-Improperly-Specified-Error gives the recipient names that
were improperly specified in a communique presented for submission.

An instance of OM class Recipient-Improperly-Specified-Error has the OM attributes of its
superclasses: Object, Error and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Recipients Object(OR-Name) † - 1/more -

† As defined in the X.400 API Specification (see reference X.400).

Table 6-10 OM Attributes of Recipient-Improperly-Specified-Error

Recipients
This lists the improperly specified recipients of the communique presented for
submission.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is one of:

— recipient-improperly-specified
means that the communique cannot be submitted because it is directed to
improperly specified recipients.

118 X/Open CAE Specification (1993)

Errors Register-Rejected-Error

6.22 Register-Rejected-Error
An instance of OM class Register-Rejected-Error indicates that the Register() function has been
rejected.

An instance of OM class Register-Rejected-Error has the OM attributes of its superclasses:
Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— register-rejected
means that the Register() function has been rejected.

6.23 Remote-Bind-Error
An instance of OM class Remote-Bind-Error reports that the requested function cannot be
provided by the MS because the MS is unable to bind to the MTS.

An instance of OM class Remote-Bind-Error has the OM attributes of its superclasses: Object,
Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— remote-bind-error
means that requested function cannot be provided by the MS because the MS is
unable to bind to the MTS.

Message Store API (XMS) 119

Security-Error Errors

6.24 Security-Error
An instance of OM class Security-Error reports that the requested operation could not be
provided by the MTS because it would violate the security policy in effect.

An instance of OM class Security-Error has the OM attributes of its superclasses: Object, Error
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Security-Problem Integer - 1 -

Table 6-11 OM Attributes of Security-Error

Security-Problem
This identifies the cause of the violation of the security policy.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— security
means that the requested operation could not be provided by the MTS because it
would violate the security policy in effect.

6.25 Sequence-Number-Error
An instance of OM class Sequence-Number-Error reports one or more problems related to the
sequence-numbers specified as argument to a function.

An instance of OM class Sequence-Number-Error has the OM attributes of its superclasses:
Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Sequence-Number Object(Sequence-Number - 1/more -

-Problems -Problem)

Table 6-12 OM Attributes of Sequence-Number-Error

Sequence-Number-Problems
This gives the sequence-numbers specified as argument to a function that caused
whatever problems. A Sequence-Number-Error can report several problems at a time.

120 X/Open CAE Specification (1993)

Errors Sequence-Number-Problem

6.26 Sequence-Number-Problem
An instance of OM class Sequence-Number-Problem documents the type of problem related to
sequence-numbers specified as argument to a function.

An instance of OM class Sequence-Number-Problem has the OM attributes of its superclasses:
Object, Error and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Sequence-Number Integer - 1 -

Table 6-13 OM Attributes of Sequence-Number-Problem

Sequence-Number
This identifies the sequence-number of the entry causing the problem.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— no-such-entry
means that the sequence-number supplied does not match that of any entry in the
information base.

6.27 Service-Error
An instance of OM class Service-Error reports a problem related to MS service.

An instance of OM class Service-Error has the OM attributes of its superclasses: Object, Error and
no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is one of:

— busy
means that the MS, or some part of it, is presently too busy to perform the requested
function but may be able to do so after a short while.

— unavailable
means that the MS, or some part of it, is presently unavailable.

— unwilling-to-perform
means that the MS is not prepared to execute the requested function because it
would lead to excessive consumption of resources.

Message Store API (XMS) 121

Submission-Control-Violated-Error Errors

6.28 Submission-Control-Violated-Error
An instance of OM class Submission-Control-Violated-Error reports the violation by the MS of
a control on submission imposed by the MTS.

An instance of OM class Submission-Control-Violated-Error has the OM attributes of its
superclasses: Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— submission-control-violated
means that the MS has violated a control on submission imposed by the MTS.

6.29 System-Error
An instance of OM class System-Error reports an error occurring in the underlying operating
system.

An instance of OM class System-Error has the OM attributes of its superclasses: Object, Error and
no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is the same as that of errno defined in the C
language.

The standard names of system errors are defined in the X/Open Portability Guide,
Issue 4 (XPG4), System Interface and Headers (see reference XSH), and additional
names may be defined by an implementation.

If a transient error occurs [EINTR] or [EAGAIN] implementations will retry the affected
function and will not report these errors. If such an error persists, they may report the
Library-Error (miscellaneous) or an implementation-defined library error.

122 X/Open CAE Specification (1993)

Errors Unsupported-Critical-Function-Error

6.30 Unsupported-Critical-Function-Error
An instance of OM class Unsupported-Critical-Function-Error reports that an argument of the
function was marked as critical-for submission but is unsupported by the MTS.

An instance of OM class Unsupported-Critical-Function-Error has the OM attributes of its
superclasses: Object, Error and no additional OM attributes.

Additional Constraints

The following OM attribute is inherited from the superclass Error.

Problem
This identifies the problem. Its value is:

— unsupported-critical-function
means that an argument of the function was marked as critical-for-submission but
is unsupported by the MTS.

Message Store API (XMS) 123

Errors

124 X/Open CAE Specification (1993)

Chapter 7

MS General Attributes Class Definitions

7.1 Introduction
The MS standards define a number of MS attribute types, known as General-Attributes. This
chapter lists the names for each of these MS attribute types and defines OM classes to represent
those which are not represented directly by OM syntaxes. These constitute the Message Store
General Attributes Package. The values of MS attributes are not restricted to those discussed in
this chapter; new attribute types and syntaxes to be used in conjunction with an MS may be
created in the future. Implementations are likely to add additional definitions. Section 3.4.1 on
page 25 defines how the values of other syntaxes are represented in the interface.

The constants and OM classes defined in this chapter are additional to those in the MS Package
(see Chapter 5 and Chapter 6), and they allow MS entries to be utilised.

This Message Store General Attributes Package is mandatory in that the service is required to
provide those classes which can be supported by the underlying implementation of the MS (refer
to Section 1.5 on page 7. For example, not all implementations of an MS support all the MS
attributes defined in X.413 (see reference X.413). Therefore, the service need not support the OM
classes corresponding to these unsupported MS attributes.

The object identifier associated with the Message Store General Attributes Package is
represented by the constant:

Message-Store-General-Attributes-Package {MS_GENERAL_ATTRIBUTES_PACKAGE}

See Table 1-1 on page 5 for the value of this object identifier. The C constants associated with
this package are given in the <xmsga.h> header.

The Object Management concepts and notation used in this chapter are introduced in Section 1.6
on page 9 of this document and are fully explained in the XOM Specification (see reference
XOM). A complete explanation of the meaning of the MS attributes and object classes is not
given since this is outside the scope of this specification (see reference X.413). The purpose here
is simply to present the representation of these items in the interface.

Message Store API (XMS) 125

MS Attribute Types MS General Attributes Class Definitions

7.2 MS Attribute Types
This section presents the MS attribute types defined in the Standards for use in MS entries. Each
MS entry is composed of a number of MS attributes which comprises an attribute type along
with one or more attribute values. The form of each value of an MS attribute is determined by
the attribute syntax associated with the type of the attribute.

Note the distinction between MS attributes used with regard to the MS (see Section 1.3 on page
3) and OM attributes (see Section 1.6.3 on page 9). The term MS attribute or the unqualified term
attribute is used to denote the MS construct, whereas the phrase OM attribute is used to denote
the Object Management one.

In the interface, MS attributes appear as instances of the OM class Attribute with the attribute
type represented as the value of the OM attribute Attribute-Type and the attribute value(s)
represented as the value(s) of the OM attribute Attribute-Values. Each attribute type has an
object identifier, assigned by the Standards, which is the value of the OM attribute Attribute-
Type. These object identifiers are represented in the interface by constants with the same name
as the MS attribute prefixed with A- for ease of identification (and correspondingly, the C
variables begin with MS_A_).

This section contains two tables.

The first tabulates the names of the MS attribute types defined in the Standards, together with
the object identifiers associated with each of them.

The second table gives the names of the MS attribute types together with the OM Value Syntax
used in the interface to represent values of that MS attribute type. This OM Value Syntax is the
syntax of the OM attribute Attribute-Values. The table also includes the range of lengths
permitted for the string types, and an indication of whether the MS attribute can be multi-
valued. Note that many of the OM Value Syntaxes are defined in the Message Handling Package
of the X.400 Specification (see reference X.400).

126 X/Open CAE Specification (1993)

MS General Attributes Class Definitions MS Attribute Types

Attribute Type Object Identifier †

A-Child-Sequence-Numbers 0
A-Content 1
A-Content-Con fidentiality-Algorithm-Identi fier 2
A-Content-Correlator 3
A-Content-Identi fier 4
A-Content-Integrity-Check 5
A-Content-Length 6
A-Content-Returned 7
A-Content-Type 8
A-Conversion-With-Loss-P rohibited 9
A-Converted-EITs 10
A-Creation-Time 11
A-Delivered-EITs 12
A-Delivery-Flags 13
A-DL-Expansion-History 14
A-Entry-Status 15
A-Entry-Type 16
A-Intended-Recipient-Name 17
A-Message-Delivery-Envelope 18
A-Message-Delivery-Identifier 19
A-Message-Delivery-Time 20
A-Message-Origin-Authentication-Check 21
A-Message-Security-Label 22
A-Message-Submission-Time 23
A-Message-Token 24
A-Original-EITs 25
A-Originator-Certificate 26
A-Originator-Name 27
A-Other-Recipient-Names 28
A-Parent-Sequence-Number 29
A-Per-Recipient-Report-Delivery-Fields 30
A-Priority 31
A-Proof-Of-Delivery-Request 32
A-Redirection-History 33
A-Report-Delivery-Envelope 34
A-Reporting-DL-Name 35
A-Reporting-MTA-Certificate 36
A-Report-Origin-Authentication-Check 37
A-Security-Classification 38
A-Sequence-Number 39
A-Subject-Submission-Identi fier 40
A-This-Recipient-Name 41

† These object identifiers are preceded by:
{joint-iso-ccitt(2) mhs-motis(6) ms(4) attribute types(3)}

Table 7-1 Object Identifiers for MS Attribute Types

Message Store API (XMS) 127

MS Attribute Types MS General Attributes Class Definitions

Value (s)ingle/
Attribute Type OM Value Syntax Length (m)ulti

-valued

A-Child-Sequence-Numbers Integer - m
A-Content Object(General-Content) - s
A-Content-Con fidentiality-Algorithm-Id String(Object-Identi fier) - s
A-Content-Correlator any - s
A-Content-Identi fier String(Printable) - s
A-Content-Integrity-Check Object(Algorithm-And-Result) - s
A-Content-Length Integer - s
A-Content-Returned Boolean - s
A-Content-Type String(Object-Identi fier) - s
A-Conversion-With-Loss-P rohibited Boolean - s
A-Converted-EITs String(Object-Identi fier) - m
A-Creation-Time String(UTC-Time) 0-17 s
A-Delivered-EITs String(Object-Identi fier) - m
A-Delivery-Flags Boolean - s
A-DL-Expansion-History Object(Expansion-Record) - m
A-Entry-Status Enum(Entry-Status) - s
A-Entry-Type Enum(Entry-Type) - s
A-Intended-Recipient-Name Object(OR-Name) - s
A-Message-Delivery-Envelope Object(Delivery-Envelope) - s
A-Message-Delivery-Identifier Object(MTS-Identifier) - s
A-Message-Delivery-Time String(UTC-Time) 0-17 s
A-Message-Origin-Authentication-Check Object(Algorithm-And-Result) - s
A-Message-Security-Label Object(Security-Label) - s
A-Message-Submission-Time String(UTC-Time) 0-17 s
A-Message-Token Object(Asymmetric-Token) - s
A-Original-EITs String(Object-Identi fier) - m
A-Originator-Certificate Object(Certificates) - s
A-Originator-Name Object(OR-Name) - s
A-Other-Recipient-Names Object(OR-Name) - m
A-Parent-Sequence-Number Integer - s
A-Per-Recipient-Report-Delivery-Fields Object(Delivered-Per-Recipient-Report) - m
A-Priority Enum(Priority) - s
A-Proof-Of-Delivery-Request Boolean - s
A-Redirection-History Object(Redirection-Record) - m
A-Report-Delivery-Envelope Object(Deliver-Report) - s
A-Reporting-DL-Name Object(OR-Name) - s
A-Reporting-MTA-Certificate Object(Certificates) - s
A-Report-Origin-Authentication-Check Object(Algorithm-And-Result) - s
A-Security-Classification Enum(Security-Classification) - s
A-Sequence-Number Integer - s
A-Subject-Submission-Identi fier Object(MTS-Identifier) - s
A-This-Recipient-Name Object(OR-Name) - s

Table 7-2 Value Syntax for MS Attribute Types

128 X/Open CAE Specification (1993)

MS General Attributes Class Definitions Class Hierarchy

7.3 Class Hierarchy
This section depicts the hierarchical organisation of the classes defined in this chapter
and thus shows which classes inherit additional OM attributes from their superclasses.
Subclassification is indicated by indentation and the names of abstract classes are
rendered in italics. Thus, for instance, the concrete class Delivered-Per-Recipient-NDR
is an immediate subclass of the abstract class Delivered-Per-Recipient-Report which in turn
is an immediate subclass of the abstract class Object.

Object (defined in the XOM Specification)

— Algorithm (defined in the X.400 Specification)

— Algorithm-And-Result (defined in the X.400 Specification)

— Asymmetric-Token (defined in the X.400 Specification)

— Certificates (defined in the XDS Specification)

— General-Content (defined in the X.400 Specification)

— Delivered-Report (defined in the X.400 Specification)

— Expansion-Record (defined in the X.400 Specification)

— MTS-Identifier (defined in the X.400 Specification)

— OR-Name (defined in the X.400 Specification)

— Delivered-Per-Recipient-Report (defined in the X.400 Specification)

— Delivered-Per-Recipient-DR (defined in the X.400 Specification)

— Delivered-Per-Recipient-NDR (defined in the X.400 Specification)

— Redirection-Record (defined in the X.400 Specification)

— Security-Label (defined in the X.400 Specification)

Message Store API (XMS) 129

Syntax Definitions MS General Attributes Class Definitions

7.4 Syntax Definitions
This section defines the MS class enumeration syntaxes, i.e., the syntaxes in the
Enumeration group specific to MS General Attributes.

7.4.1 Entry-Status

An instance of the enumeration syntax Entry-Status indicates the current processing
status of an MS entry. Its value is chosen from the following:

• new

The message has neither been accessed via the List() function nor has it been
automatically processed by the MS.

• listed

The message has been accessed via the List() function or the Fetch() function but it
has yet to be completely ‘‘processed’’.

• processed

The message has been ‘‘completely fetched’’ or the MS has performed some auto
action on it. The exact definition of ‘‘completely fetched’’ is content-specific and is
defined by the corresponding content-specific standards. The Entry-Status of a
(non)-delivery notification becomes processed when the delivered report envelope is
retrieved.

7.4.2 Entry-Type

An instance of the enumeration syntax Entry-Type indicates the type of an MS entry. Its
value is chosen from the following:

• delivered-message

• delivered-report

• returned-content

7.4.3 Priority

An instance of the enumeration syntax Priority indicates the priority of the delivered
message. Its value is chosen from the following:

• normal

• low

• urgent

130 X/Open CAE Specification (1993)

MS General Attributes Class Definitions Syntax Definitions

7.4.4 Security-Classification

An instance of the enumeration syntax Security-Classification indicates security
classification of a message. Its value is chosen from the following:

• unmarked

• unclassified

• restricted

• confidential

• secret

• top-secret

Message Store API (XMS) 131

MS General Attributes Class Definitions

132 X/Open CAE Specification (1993)

Chapter 8

MS IM Attributes Class Definitions

8.1 Introduction
The MS interface may be used with MS attributes other than those in the mandatory
Message Store General Attributes Package described in Chapter 7. Other attribute types
and syntaxes may be used in conjunction with an MS. This chapter describes one such
optional package, the Message Store Interpersonal Messaging (MS IM) Attributes Package.

This MS IM Attributes Package contains all definitions for the Interpersonal Messaging MS
attributes as defined in the standards (see Annex J of reference X.420). Note that these
attributes referred to as the Interpersonal Messaging MS Attributes in the X.420 will be
known as the MS IM Attributes in this specification.

This chapter lists the names for each of these MS IM attribute types and defines OM
classes to represent those which are not represented directly by OM syntaxes.

The MS IM Attributes Package is optional. The constants and OM classes defined in this
chapter are additional to those in the MS Package (see Chapter 5 and Chapter 6), and
they are not essential to the working of the interface but instead allow the access of the
MS IM attributes.

The object identifier associated with the MS IM Attributes Package is represented by the
constant:

Message-Store-Interpersonal-Messaging-Attributes-Package
{MS_IM_ATTRIBUTES_PACKAGE}.

See Table 1-1 on page 5 for the value of this object identifier. The C constants associated
with this package are given in the <xmsima.h> header.

The Object Management concepts and notation used in this chapter are introduced in
Section 1.6 on page 9 of this document and are fully explained in the XOM Specification
(see reference XOM). A complete explanation of the meaning of the MS IM attributes
and object classes is not given since this is outside the scope of this specification (for
details, see reference X.420). The purpose here is simply to present the representation of
these items in the interface.

Message Store API (XMS) 133

MS Interpersonal Messaging Attribute Types MS IM Attributes Class Definitions

8.2 MS Interpersonal Messaging Attribute Types
This section presents the MS Interpersonal Messaging attribute types defined in the
X.420 standards (see reference X.420) for use in MS entries. Each MS entry is composed
of a number of MS attributes which comprise an attribute type along with one or more
attribute values. The form of each value of an MS IM attribute is determined by the
attribute syntax associated with the type of the attribute.

Note the distinction between MS attributes used with regard to the MS (see Section 1.3
on page 3 and OM attributes (see Section 1.6.3 on page 9. The term MS attribute or the
unqualified term attribute is used to denote the MS construct, whereas the phrase OM
attribute is used to denote the Object Management one.

In the interface, MS IM attributes appear as instances of the OM class Attribute with the
attribute type represented as the value of the OM attribute Attribute-Type and the
attribute value(s) represented as the value(s) of the OM attribute Attribute-Values. Each
attribute type has an object identifier, assigned by the Standards, which is the value of
the OM attribute Attribute-Type. These object identifiers are represented in the interface
by constants with the same name as the MS IM attribute prefixed with IM- for ease of
identification (and correspondingly, the C variables begin with MS_IM_).

This section contains two tables.

The first tabulates the names of the MS IM attribute types defined in Annex J of X.420
(see reference X.420), together with their respective object identifiers.

The second table gives the names of the MS IM attribute types together with the OM
Value Syntax used in the interface and the range of lengths permitted for the string types,
and an indication of whether the MS attribute can be multi-valued. The OM Value
Syntax is the syntax of the OM attribute Attribute-Values. Note that many of the OM
Value Syntaxes are defined in the Interpersonal Messaging Package of the X.400 API
Specification (see reference X.400).

Table 8-1 Object Identifiers for MS Interpersonal Messaging Attribute Types

† These object identifiers are preceded by:
{joint-iso-ccitt(2) mhs-motis(6) ipms(1)}

MS IM Attributes Object Identifier †
IM-Acknowledgment-Mode 9,9
IM-Authorizing-Users 7,10
IM-Auto-Forward-Comment 9,6
IM-Auto-Forwarded 7,9
IM-Bilaterally-Defined-Body-Parts 8,10
IM-Blind-Copy-Recipients 7,13
IM-Body 8,0
IM-Conversion-EITs 9,3
IM-Copy-Recipients 7,12
IM-Discard-Reason 9,5
IM-Expiry-Time 7,5
IM-Extended-Body-Part-Types 8,12
IM-G3-Fax-Body-Parts 8,3
IM-G3-Fax-Data 8,22

134 X/Open CAE Specification (1993)

MS IM Attributes Class Definitions MS Interpersonal Messaging Attribute Types

MS IM Attributes Object Identifier †
IM-G3-Fax-Parameters 8,15
IM-G4-Class1-Body-Parts 8,4
IM-Heading 7,0
IM-IA5-Text-Body-Parts 8,1
IM-IA5-Text-Data 8,20
IM-IA5-Text-Parameters 8,13
IM-Importance 7,7
IM-Incomplete-Copy 7,17
IM-IPM-Entry-Type 6,0
IM-IPM-Preferred-Recipient 9,2
IM-IPM-Synopsis 6,1
IM-IPN-Originator 9,1
IM-Languages 7,18
IM-Message-Body-Parts 8,8
IM-Message-Data 8,26
IM-Message-Parameters 8,19
IM-Mixed-Mode-Body-Parts 8,9
IM-Nationally-Defined-Body-Parts 8,11
IM-Non-Receipt-Reason 9,4
IM-NRN-Requestors 7,20
IM-Obsoleted-IPMs 7,14
IM-Originator 7,2
IM-Primary-Recipients 7,11
IM-Receipt-Time 9,8
IM-Related-IPMs 7,15
IM-Replied-To-IPM 7,3
IM-Reply-Recipients 7,16
IM-Reply-Requestors 7,21
IM-Reply-Time 7,6
IM-Returned-IPM 9,7
IM-RN-Requestors 7,19
IM-Sensitivity 7,8
IM-Subject 7,4
IM-Subject-IPM 9,0
IM-Suppl-Receipt-Info 9,10
IM-Teletex-Body-Parts 8,5
IM-Teletex-Data 8,23
IM-Teletex-Parameters 8,16
IM-This-IPM 7,1
IM-Videotex-Body-Parts 8,6
IM-Videotex-Data 8,24
IM-Videotex-Parameters 8,17

Message Store API (XMS) 135

MS Interpersonal Messaging Attribute Types MS IM Attributes Class Definitions

Table 8-2 Value Syntax for MS Interpersonal Messaging Attribute Types

Value (s)ingle/
MS IM Attributes OM Value Syntax Length (m)ulti

-valued

IM-Acknowledgment-Mode Enum(Acknowledgment-Mode) - s
IM-Authorizing-Users Object(OR-Descriptor) - m
IM-Auto-Forward-Comment String(Printable) 0-256 s
IM-Auto-Forwarded Boolean - s
IM-Bilaterally-Defined-Body-Parts Object(Bil-Defined-Body-Part) - m
IM-Blind-Copy-Recipients Object(Recipient-Speci fier) - m
IM-Body Object(Body) - s
IM-Conversion-EITs String(Object-Identi fier) - m
IM-Copy-Recipients Object(Recipient-Speci fier) - m
IM-Discard-Reason Enum(Discard-Reason) - s
IM-Expiry-Time String(UTC-Time) 0-17 s
IM-Extended-Body-Part-Types String(Object Identifier) - m
IM-G3-Fax-Body-Parts Object(G3-Fax-Body-Part) - m
IM-G3-Fax-Data Object(G3-Fax-Data) - m
IM-G3-Fax-Parameters Object(G3-Fax-NBPs) - s
IM-G4-Class1-Body-Parts Object(G4-Class1-Body-P art) - m
IM-Heading Object(Heading) - s
IM-IA5-Text-Body-Parts Object(IA5-Text-Body-Part) - m
IM-IA5-Text-Data String(IA5) - m
IM-IA5-Text-Parameters Enum(IA5-Repertoire) - m
IM-Importance Enum(Importance) - s
IM-Incomplete-Copy Boolean - s
IM-IPM-Entry-Type Enum(IPM-Entry-Type) - s
IM-IPM-Preferred-Recipient Object(OR-Descriptor) - s
IM-IPM-Synopsis Object(IPM-Synopsis) - s
IM-IPN-Originator Object(OR-Descriptor) - s
IM-Languages String(Printable) 2-5 m
IM-Message-Body-Parts Object(Message-Body-Part) - m
IM-Message-Data Object(Interpersonal-Message) - s
IM-Message-Parameters Object(Delivery-Envelope) - s
IM-Mixed-Mode-Body-Parts Object(Mixed-Mode-Body-P art) - m
IM-Nationally-Defined-Body-Parts Object(Nat-De fined-Body-Part) - m
IM-Non-Receipt-Reason Enum(Non-Receipt-Reason) - s
IM-NRN-Requestors Object(OR-Descriptor) - m
IM-Obsoleted-IPMs Object(IPM-Identi fier) - m
IM-Originator Object(OR-Descriptor) - s
IM-Primary-Recipients Object(Recipient-Speci fier) - m
IM-Receipt-Time String(UTC-Time) 0-17 s
IM-Related-IPMs Object(IPM-Identi fier) - m
IM-Replied-To-IPM Object(IPM-Identi fier) - s
IM-Reply-Recipients Object(OR-Descriptor) - m
IM-Reply-Requestors Object(OR-Descriptor) - m
IM-Reply-Time String(UTC-Time) 0-17 s
IM-Returned-IPM Object(IPM-Identi fier) - s
IM-RN-Requestors Object(OR-Descriptor) - m
IM-Sensitivity Enum(Sensitivity) - s
IM-Subject String(Teletex) 0-128 s

136 X/Open CAE Specification (1993)

MS IM Attributes Class Definitions MS Interpersonal Messaging Attribute Types

Value (s)ingle/
MS IM Attributes OM Value Syntax Length (m)ulti

-valued
IM-Subject-IPM Object(IPM-Identi fier) - s
IM-Suppl-Receipt-Info String(Printable) 1-256 s
IM-Teletex-Body-Parts Object(Teletex-Body-Part) - m
IM-Teletex-Data Object(Teletex-Data) - m
IM-Teletex-Parameters Object(Teletex-Parameters) - m
IM-This-IPM Object(IPM-Identi fier) - s
IM-Videotex-Body-Parts Object(Videotex-Body-P art) - m
IM-Videotex-Data String(Videotex) - m
IM-Videotex-Parameters Enum(Videotex-Syntax) - m

Message Store API (XMS) 137

Class Hierarchy MS IM Attributes Class Definitions

8.3 Class Hierarchy
This section depicts the hierarchical organisation of the classes defined in this chapter
and thus shows which classes inherit additional OM attributes from their superclasses.
Subclassification is indicated by indentation and the names of abstract classes are
rendered in italics. Thus, for instance, the concrete class Bilaterally-Defined-Body-Part
is an immediate subclass of the abstract class Body-Part which in turn is an immediate
subclass of the abstract class Object.

Object (defined in the XOM Specification - see reference XOM)

— Body-Part (defined in the X.400 API Specification - see reference X.400)

— Bilaterally-Defined-Body-Part (defined in the X.400 API Specification)

— Body (defined in the X.400 API Specification)

— G3-Fax-Body-Part (defined in the X.400 API Specification)

— G4-Class1-Body-Part (defined in the X.400 API Specification)

— IA5-Text-Body-Part (defined in the X.400 API Specification)

— Message-Body-Part (defined in the X.400 API Specification)

— Mixed-Mode-Body-Part (defined in the X.400 API Specification)

— Nationally-Defined-Body-Part (defined in the X.400 API Specification)

— Teletex-Body-Part (defined in the X.400 API Specification)

— Teletex-Data

— Teletex-Parameters

— Videotex-Body-Part (defined in the X.400 API Specification)

— Body-Part-Synopsis

— Content (defined in the X.400 API Specification)

— Interpersonal-Message (defined in the X.400 API Specification)

— Interpersonal-Notification (defined in the X.400 API Specification)

— Non-Receipt-Notification (defined in the X.400 API Specification)

— Receipt-Notification (defined in the X.400 API Specification)

— Extensible-Object (defined in the X.400 API Specification)

— Delivery-Envelope (defined in the X.400 API Specification)

— G3-Fax-Data (defined in the X.400 API Specification)

— G3-Fax-NBPs (defined in the X.400 API Specification)

— Heading

— IPM-Identifier (defined in the X.400 API Specification)

— IPM-Synopsis

— Message-Body-Part-Synopsis

138 X/Open CAE Specification (1993)

MS IM Attributes Class Definitions Class Hierarchy

— Non-Message-Body-Part-Synopsis

— OR-Descriptor (defined in the X.400 API Specification)

— Recipient-Specifier (defined in the X.400 API Specification)

Message Store API (XMS) 139

Body MS IM Attributes Class Definitions

8.4 Body
An instance of OM class Body gives all the body parts of a message.

An instance of OM class Body has the OM attributes of its superclasses: Object and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Body-Part Object(Body-Part) - 0/more -

Table 8-3 OM Attributes of Body

Body-Part
A body part of the message.

8.5 Body-Part-Synopsis
An instance of OM class Body-Part-Synopsis gives the synopsis for an individual body
part.

An instance of OM class Body-Part-Synopsis has the OM attributes of its superclasses:
Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Message-Body-Part-Synopsis Object(Message-Body-Part-Synopsis) - 0-1 -
Non-Message-Body-Part- Object(Non-Message-Body-P art- - 0-1 -
Synopsis Synopsis)

Table 8-4 OM Attributes of Body-Part-Synopsis

Note: No instance will contain more than one of the above OM attributes.

Message-Body-Part-Synopsis
This is the synopsis of a body part that is of type Message.

Non-Message-Body-Part-Synopsis
This is gives the synopsis of a body part that is of type other than Message.

140 X/Open CAE Specification (1993)

MS IM Attributes Class Definitions G3-Fax-Data

8.6 G3-Fax-Data
An instance of OM class G3-Fax-Data gives the image data of a G3 facsimile body part of
an interpersonal message.

An instance of OM class G3-Fax-Data has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Images String(Bit) - 0/more -

Table 8-5 OM Attributes of G3-Fax-Data

Images
The G3 facsimile images.

Message Store API (XMS) 141

Heading MS IM Attributes Class Definitions

8.7 Heading
An instance of OM class Heading gives all the heading fields of an interpersonal
message.

An instance of OM class Heading has the OM attributes of its superclasses: Object, and
additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
This-IPM Object(IPM-Identi fier) - 1 -
Originator Object(OR-Descriptor) - 0-1 -
Authorizing-Users Object(OR-Descriptor) - 0/more -
Primary-Recipients Object(Recipient-Speci fier) - 0/more -
Copy-Recipients Object(Recipient-Speci fier) - 0/more -
Blind-Copy-Recipients Object(Recipient-Speci fier) - 0/more -
Replied-To-IPM Object(IPM-Identi fier) - 0-1 -
Obsoleted-IPMs Object(IPM-Identi fier) - 0/more -
Related-IPMs Object(IPM-Identi fier) - 0/more -
Subject String(Teletex) 0-128 0-1 -
Expiry-Time String(UTC-Time) 0-17 0-1 -
Reply-Time String(UTC-Time) 0-17 0-1 -
Reply-Recipients Object(OR-Descriptor) - 0/more -
Importance Enum(Importance) - 1 normal
Sensitivity Enum(Sensitivity) - 0-1 -
Auto-Forwarded Boolean - 1 false
Extensions Object(Attribute) - 0/more -

Table 8-6 OM Attributes of Heading

This-IPM
This identifies the interpersonal message.

Originator
This identifies the originator of the interpersonal message.

Authorizing-Users
This identifies zero or more users who authorised the origination of the
interpersonal message.

Primary-Recipients
This identifies zero or more users and distribution lists who are the ‘‘primary
recipients’’ of the interpersonal message.

Copy-Recipients
This identifies zero or more users and distribution lists who are the ‘‘copy
recipients’’ of the interpersonal message.

Blind-Copy-Recipients
This identifies zero or more users and distribution lists who are the ‘‘blind copy
recipients’’ of the interpersonal message. A blind copy recipient is one whose
role is not disclosed to primary and copy recipients.

Replied-To-IPM
This identifies the interpersonal message to which the present interpersonal
message is a reply.

Obsoleted-IPMs
This identifies the interpersonal messages that the authorising users consider

142 X/Open CAE Specification (1993)

MS IM Attributes Class Definitions Heading

the present interpersonal message to obsolete.

Related-IPMs
This identifies the interpersonal messages that the authorising users consider
related to the present interpersonal message.

Subject
This identifies the subject of the interpersonal message.

Expiry-Time
This identifies when the authorising users consider the interpersonal message
to lose its validity.

Reply-Time
This identifies when the authorising users request (but do not demand) that any
replies to the present interpersonal message be originated.

Reply-Recipients
This identifies zero or more users or distribution lists whom the authorising
users request (but do not demand) be among the preferred recipients of any
replies to the present interpersonal message.

Importance
This identifies the importance (low, normal or high) that the authorising users
attach to the interpersonal message.

Sensitivity
This identifies the sensitivity (personal, private or company-confidential) that
the authorising users attribute to the interpersonal message.

Auto-Forwarded
This indicates whether the interpersonal message is a result of auto-forwarding.

Extensions
This conveys information accommodated by no other heading field. Some
extensions (e.g., Languages, Incomplete-Copy) are defined in X.420, Annex A
(see reference X.420).

Message Store API (XMS) 143

IPM-Synopsis MS IM Attributes Class Definitions

8.8 IPM-Synopsis
An instance of OM class IPM-Synopsis describes the structure, characteristics, size and
processing status of an interpersonal message at the granularity of individual body parts.

An instance of OM class IPM-Synopsis has the OM attributes of its superclasses: Object
and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Body-Part-Synopsis Object(Body-Part-Synopsis) - 0/more -

Table 8-7 OM Attributes of IPM-Synopsis

Body-Part-Synopsis
This is synopsis for an individual body part.

8.9 Message-Body-Part-Synopsis
An instance of OM class Message-Body-Part-Synopsis gives the synopsis of a body part
that is of type Message.

An instance of OM class Message-Body-Part-Synopsis has the OM attributes of its
superclasses: Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Sequence-Number Integer - 1 -
Synopsis Object(IPM-Synopsis) - 1 -

Table 8-8 OM Attributes of Message-Body-Part-Synopsis

Sequence-Number
This is the sequence number assigned by the MS to the entry that the Message
body part represents.

Synopsis
This is the synopsis of the interpersonal message that forms the content of the
message that contains the body part.

144 X/Open CAE Specification (1993)

MS IM Attributes Class Definitions Non-Message-Body-Part-Synopsis

8.10 Non-Message-Body-Part-Synopsis
An instance of OM class Non-Message-Body-Part-Synopsis gives the synopsis of a body
part that is of type other than Message.

An instance of OM class Non-Message-Body-Part-Synopsis has the OM attributes of its
superclasses: Object and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Type String(Object-Identi fier) - 1 -
Parameters Object(External) † - 1 -
Size Integer - 1 -
Processed Boolean - 1 false

† As defined in the XOM Specification (see reference XOM).

Table 8-9 OM Attributes of Non-Message-Body-Part-Synopsis

Type
This is the extended type of the body part (i.e., the Direct-reference component
of its Data component).

Parameters
This is the format and control parameters of the body part (i.e., its Parameters
component).

Size
This is size in octets of the encoding of the Encoding component of the body
part’s Data component when the BER of X.209 (see reference X.209) are
followed.

Processed
This indicates whether or not the body part has been conveyed to the UA by
means of the List() or the Fetch() function.

Message Store API (XMS) 145

Teletex-Data MS IM Attributes Class Definitions

8.11 Teletex-Data
An instance of OM class Teletex-Data gives the data of a Teletex body part of an
interpersonal message.

An instance of OM class Teletex-Data has the OM attributes of its superclasses: Object
and additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Teletex-Document String(Teletex) - 0/more -

Table 8-10 OM Attributes of Teletex-Data

Teletex-Document
A page of the Teletex document.

8.12 Teletex-Parameters
An instance of OM class Teletex-Parameters describes the parameters of a Teletex body
part of an interpersonal message.

An instance of OM class Teletex-Parameters has the OM attributes of its superclasses:
Object, Teletex-Body-Part (defined in the IM Package in the X.400 API Specification - see
reference X.400) and additionally, the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Number-Of-Pages Integer - 0-1 -

Table 8-11 OM Attributes of Teletex-Parameters

Number-Of-Pages
This indicates the number of pages contained in a Teletex body part of an
interpersonal message.

Additional Constraints:

The inherited attribute Teletex-Document shall not be present.

146 X/Open CAE Specification (1993)

MS IM Attributes Class Definitions Syntax Definitions

8.13 Syntax Definitions
This section defines the MS IM class enumeration syntaxes, i.e., the syntaxes in the
Enumeration group specific to Interpersonal Messaging MS attributes.

8.13.1 Acknowledgment-Mode

An instance of the enumeration syntax Acknowledgment-Mode identifies how a report
notification may be originated. Its value is chosen from the following:

• automatic
The originator authorises report notifications in a blanket manner.

• manual
The originator authorises report notifications individually.

8.13.2 Discard-Reason

An instance of the enumeration syntax Discard-Reason indicates why an IPM may be
discarded. Its value is chosen from the following:

• ipm-expired
The time identified by the IPM’s Expiry-Time attribute arrives and expired IPMs are
being discarded.

• ipm-obsoleted
The Obsoleted-IPMs attribute of another IPM delivered to the recipient identifies the
IPM and obsolete IPMs are being discarded.

• no-discard
The IPM is not discarded.

• user-terminated
The recipient’s IM subscription is terminated.

8.13.3 IA5-Repertoire

An instance of the enumeration syntax IA5-Repertoire identifies the character set to
which the text portion of an IA5 Text Body Part is constrained. Its value is chosen from
the following:

• IA5
The full IA5 character set (which is similar to ASCII).

• ITA2
The ITA2 (i.e., Telex) character set.

8.13.4 Importance

An instance of the enumeration syntax Importance identifies the importance that an IM’s
authorising users may attach to the IM. Its value is chosen from the following: high, low
or routine. These values are not defined by this document but are given meaning by
users.

Message Store API (XMS) 147

Syntax Definitions MS IM Attributes Class Definitions

8.13.5 IPM-Entry-Type

An instance of the enumeration syntax IPM-Entry-Type identifies the type of
Interpersonal Messaging entry. Its value is chosen from the following:

IPM The entry is an interpersonal message.

RN The entry is a receipt notification.

NRN The entry is a non-receipt notification.

8.13.6 Non-Receipt-Reason

An instance of the enumeration syntax Non-Receipt-Reason indicates why a user may
not receive an IM after its delivery to him. Its value is chosen from the following:

• ipm-auto-forwarded
The IPM is automatically forwarded.

• ipm-discarded
The IPM is discarded.

8.13.7 Sensitivity

An instance of the enumeration syntax Sensitivity indicates how sensitive an IM’s
authorising users may consider the IM to be. Its value is chosen from the following:

• company-confidential
The IM should be handled according to company-defined procedures for confidential
information.

• not-sensitive
The IM is not sensitive.

• personal
The IM is addressed to its intended recipients as individuals, not as professionals.

• private
The IM should be disclosed to no other than its intended recipients.

8.13.8 Videotex-Syntax

An instance of the enumeration syntax Videotex-Syntax identifies the syntax of the data
portion of a Videotex body part. Its value is chosen from the following:

data-syntax-1 Data syntax 1 as defined by T.100.

data-syntax-2 Data syntax 2 as defined by T.100.

data-syntax-3 Data syntax 3 as defined by T.100.

ids The IDS syntax as defined by T.100.

unspecified The syntax is unspecified.

148 X/Open CAE Specification (1993)

Chapter 9

Headers

This chapter gives the symbols which are defined in these C headers:

<xms.h>
<xmsga.h>
<xmsima.h>

Where the values of the symbols are indicated, the values are an integral part of the
interface. Where a value is not given, the value on a particular system will be
determined by the vendor or by an administrator.

Message Store API (XMS) 149

<xms.h> Headers

9.1 <xms.h>
The <xms.h> defines MS_PACKAGE, the constant value for the Message Store package.
It also declares the interface functions, the data structures passed to and from those
functions and the defined constants used by the functions and data structures for the
Message Store package.

All client programs that include this header must first include the Object Management
header <xom.h> (see reference XOM).

All object identifiers are represented by constants defined in the header. These constants
are used with the macros defined in the XOM API Specification.

/*
* xms.h (Message Store Package)
*/

#ifndef XMS_HEADER
#define XMS_HEADER

/* MS Package object identifier */

#define OMP_O_MS_PACKAGE "\x56\x06\x01\x02\x06\x01"

/* Type Definitions */

typedef OM_private_object MS_status;

typedef OM_sint MS_invoke_id;

typedef struct
{

OM_object_identifier feature;
OM_boolean activated;

}
MS_feature;

150 X/Open CAE Specification (1993)

Headers <xms.h>

/* Interface Functions - Function Prototypes */

MS_status ms_bind (
OM_object bind_argument,
OM_private_object *bind_result_return,
OM_private_object *bound_session_return

);

MS_status ms_cancel_submission (
OM_private_object session,
OM_object mts_identifier,
MS_invoke_id *invoke_id_return

);

MS_status ms_check_alert (
OM_private_object session,
OM_private_object *check_alert_result_return,

);

MS_status ms_delete (
OM_private_object session,
OM_object delete_argument,
MS_invoke_id *invoke_id_return

);

MS_status ms_fetch (
OM_private_object session,
OM_object fetch_argument,
OM_private_object *fetch_result_return,
MS_invoke_id *invoke_id_return

);

MS_status ms_initialize (
MS_feature feature_list[],
OM_sint *max_sessions,
OM_sint *max_outstanding_operations,
OM_workspace *workspace_return,

);

MS_status ms_list (
OM_private_object session,
OM_object list_argument,
OM_private_object *list_result_return,
MS_invoke_id *invoke_id_return

);

Message Store API (XMS) 151

<xms.h> Headers

MS_status ms_receive_result (
OM_private_object session,
OM_uint *completion_flag_return,
MS_status *operation_status_return,
OM_private_object *result_return,
MS_invoke_id *invoke_id_return

);

MS_status ms_register (
OM_private_object session,
OM_object register_argument,
MS_invoke_id *invoke_id_return

);

MS_status ms_register_ms(
OM_private_object session,
OM_object register_ms_argument,
MS_invoke_id *invoke_id_return

);

void ms_shutdown (
void

);

MS_status ms_submit (
OM_private_object session,
OM_object communique,
OM_private_object *submission_results_return,
MS_invoke_id *invoke_id_return

);

MS_status ms_summarize (
OM_private_object session,
OM_object summarize_argument,
OM_private_object *summarize_result_return,
MS_invoke_id *invoke_id_return

);

MS_status ms_unbind (
OM_private_object session

);

MS_status ms_wait (
OM_private_object session,
OM_uint32 interval,
OM_private_object *wait_result_return,
MS_invoke_id *invoke_id_return

);

152 X/Open CAE Specification (1993)

Headers <xms.h>

/* Classes */

/*
* Note: Every client program must explicitly import into
* every compilation unit (C source program) the classes or
* Object Identifiers that it uses. Each of these classes or
* Object Identifier names must then be explicitly exported from
* just one compilation unit.
* Importing and exporting can be done using the OM_IMPORT and
* OM_EXPORT macros respectively (see the XOM API Specification).
* For instance, the client program uses
* OM_IMPORT(MS_C_ATTRIBUTE_DEFAULTS)
* which in turn will make use of
* OMP_O_MS_C_ATTRIBUTE_DEFAULTS
* defined below.
*/

#define OMP_O_MS_C_ALERT_ADDRESS "\x56\x06\x01\x02\x06\x01\x01"
#define OMP_O_MS_C_ATTRIBUTE_DEFAULTS "\x56\x06\x01\x02\x06\x01\x02"
#define OMP_O_MS_C_ATTRIBUTE_ERROR "\x56\x06\x01\x02\x06\x01\x03"
#define OMP_O_MS_C_ATTRIBUTE_PROBLEM "\x56\x06\x01\x02\x06\x01\x04"
#define OMP_O_MS_C_ATTRIBUTE_SELECTION "\x56\x06\x01\x02\x06\x01\x05"
#define OMP_O_MS_C_AUTO_ACTION "\x56\x06\x01\x02\x06\x01\x06"
#define OMP_O_MS_C_AUTO_ACTION_DEREGISTRATION "\x56\x06\x01\x02\x06\x01\x07"
#define OMP_O_MS_C_AUTO_ACTION_REGISTRATION "\x56\x06\x01\x02\x06\x01\x08"
#define OMP_O_MS_C_AUTO_ACTION_REQUEST_ERROR "\x56\x06\x01\x02\x06\x01\x09"
#define OMP_O_MS_C_AUTO_ACTION_REQUESTPROBLEM "\x56\x06\x01\x02\x06\x01\x0A"
#define OMP_O_MS_C_AUTO_ALERT_REG_PARAMETERS "\x56\x06\x01\x02\x06\x01\x0B"
#define OMP_O_MS_C_AUTO_FORWARD_ARGUMENTS "\x56\x06\x01\x02\x06\x01\x0C"
#define OMP_O_MS_C_AUTO_FORWARD_REG_PARAMETERS "\x56\x06\x01\x02\x06\x01\x0D"
#define OMP_O_MS_C_BIND_ARGUMENT "\x56\x06\x01\x02\x06\x01\x0E"
#define OMP_O_MS_C_BIND_ERROR "\x56\x06\x01\x02\x06\x01\x0F"
#define OMP_O_MS_C_BIND_RESULT "\x56\x06\x01\x02\x06\x01\x10"
#define OMP_O_MS_C_CANCEL_SUBMISSION_ERROR "\x56\x06\x01\x02\x06\x01\x11"
#define OMP_O_MS_C_CHANGE_CREDENTIALS "\x56\x06\x01\x02\x06\x01\x12"
#define OMP_O_MS_C_CHECK_ALERT_RESULT "\x56\x06\x01\x02\x06\x01\x13"
#define OMP_O_MS_C_COMMON_CONTROLS "\x56\x06\x01\x02\x06\x01\x14"
#define OMP_O_MS_C_COMMUNICATIONS_ERROR "\x56\x06\x01\x02\x06\x01\x15"
#define OMP_O_MS_C_CREATION_TIME_RANGE "\x56\x06\x01\x02\x06\x01\x16"
#define OMP_O_MS_C_CREDENTIALS "\x56\x06\x01\x02\x06\x01\x17"
#define OMP_O_MS_C_DEFAULT_DELIVERY_CONTROLS "\x56\x06\x01\x02\x06\x01\x18"
#define OMP_O_MS_C_DELETE_ARGUMENT "\x56\x06\x01\x02\x06\x01\x19"
#define OMP_O_MS_C_DELETE_ERROR "\x56\x06\x01\x02\x06\x01\x1A"
#define OMP_O_MS_C_DELETE_PROBLEM "\x56\x06\x01\x02\x06\x01\x1B"
#define OMP_O_MS_C_DELIVERABLE_CONTENT_TYPES "\x56\x06\x01\x02\x06\x01\x1C"
#define OMP_O_MS_C_ELMT_NOT_SUBSCRIBED_ERROR "\x56\x06\x01\x02\x06\x01\x1D"
#define OMP_O_MS_C_ERROR "\x56\x06\x01\x02\x06\x01\x1E"
#define OMP_O_MS_C_FETCH_ARGUMENT "\x56\x06\x01\x02\x06\x01\x1F"
#define OMP_O_MS_C_FETCH_ATTRIBUTE_DEFAULTS "\x56\x06\x01\x02\x06\x01\x20"
#define OMP_O_MS_C_FETCH_RESTRICTION_ERROR "\x56\x06\x01\x02\x06\x01\x21"
#define OMP_O_MS_C_FETCH_RESTRICTION_PROBLEM "\x56\x06\x01\x02\x06\x01\x22"
#define OMP_O_MS_C_FETCH_RESULT "\x56\x06\x01\x02\x06\x01\x23"
#define OMP_O_MS_C_INCONSISTENT_REQUEST_ERROR "\x56\x06\x01\x02\x06\x01\x24"
#define OMP_O_MS_C_INVALID_PARAMETERS_ERROR "\x56\x06\x01\x02\x06\x01\x25"
#define OMP_O_MS_C_ITEM "\x56\x06\x01\x02\x06\x01\x26"
#define OMP_O_MS_C_ITEM_TO_FORWARD "\x56\x06\x01\x02\x06\x01\x27"
#define OMP_O_MS_C_ITEMS "\x56\x06\x01\x02\x06\x01\x28"
#define OMP_O_MS_C_LABEL_AND_REDIRECTION "\x56\x06\x01\x02\x06\x01\x29"
#define OMP_O_MS_C_LABELS_AND_REDIRECTIONS "\x56\x06\x01\x02\x06\x01\x2A"
#define OMP_O_MS_C_LIBRARY_ERROR "\x56\x06\x01\x02\x06\x01\x2B"
#define OMP_O_MS_C_LIST_ARGUMENT "\x56\x06\x01\x02\x06\x01\x2C"
#define OMP_O_MS_C_LIST_ATTRIBUTE_DEFAULTS "\x56\x06\x01\x02\x06\x01\x2D"

Message Store API (XMS) 153

<xms.h> Headers

#define OMP_O_MS_C_LIST_RESULT "\x56\x06\x01\x02\x06\x01\x2E"
#define OMP_O_MS_C_MS_ENTRY_INFO_SELECTION "\x56\x06\x01\x02\x06\x01\x2F"
#define OMP_O_MS_C_MS_ENTRY_INFORMATION "\x56\x06\x01\x02\x06\x01\x30"
#define OMP_O_MS_C_ORIGINATOR_INVALID_ERROR "\x56\x06\x01\x02\x06\x01\x31"
#define OMP_O_MS_C_PASSWORD "\x56\x06\x01\x02\x06\x01\x32"
#define OMP_O_MS_C_RANGE "\x56\x06\x01\x02\x06\x01\x33"
#define OMP_O_MS_C_RANGE_ERROR "\x56\x06\x01\x02\x06\x01\x34"
#define OMP_O_MS_C_RECIPIENT_IMPROPER_ERROR "\x56\x06\x01\x02\x06\x01\x35"
#define OMP_O_MS_C_REGISTER_ARGUMENT "\x56\x06\x01\x02\x06\x01\x36"
#define OMP_O_MS_C_REGISTER_MS_ARGUMENT "\x56\x06\x01\x02\x06\x01\x37"
#define OMP_O_MS_C_REGISTER_REJECTED_ERROR "\x56\x06\x01\x02\x06\x01\x38"
#define OMP_O_MS_C_REMOTE_BIND_ERROR "\x56\x06\x01\x02\x06\x01\x39"
#define OMP_O_MS_C_RESTRICTIONS "\x56\x06\x01\x02\x06\x01\x3A"
#define OMP_O_MS_C_SECURITY_ERROR "\x56\x06\x01\x02\x06\x01\x3B"
#define OMP_O_MS_C_SELECTOR "\x56\x06\x01\x02\x06\x01\x3C"
#define OMP_O_MS_C_SEQUENCE_NUMBER_ERROR "\x56\x06\x01\x02\x06\x01\x3D"
#define OMP_O_MS_C_SEQUENCE_NUMBER_PROBLEM "\x56\x06\x01\x02\x06\x01\x3E"
#define OMP_O_MS_C_SEQUENCE_NUMBER_RANGE "\x56\x06\x01\x02\x06\x01\x3F"
#define OMP_O_MS_C_SERVICE_ERROR "\x56\x06\x01\x02\x06\x01\x40"
#define OMP_O_MS_C_SESSION "\x56\x06\x01\x02\x06\x01\x41"
#define OMP_O_MS_C_STRONG_CREDENTIALS "\x56\x06\x01\x02\x06\x01\x42"
#define OMP_O_MS_C_SUBMIT_CTRL_VIOLATED_ERROR "\x56\x06\x01\x02\x06\x01\x43"
#define OMP_O_MS_C_SUMMARIZE_ARGUMENT "\x56\x06\x01\x02\x06\x01\x44"
#define OMP_O_MS_C_SUMMARY "\x56\x06\x01\x02\x06\x01\x45"
#define OMP_O_MS_C_SUMMARY_PRESENT "\x56\x06\x01\x02\x06\x01\x46"
#define OMP_O_MS_C_SUMMARY_REQUESTS "\x56\x06\x01\x02\x06\x01\x47"
#define OMP_O_MS_C_SUMMARY_RESULT "\x56\x06\x01\x02\x06\x01\x48"
#define OMP_O_MS_C_SYSTEM_ERROR "\x56\x06\x01\x02\x06\x01\x49"
#define OMP_O_MS_C_UNSUPT_CRITICAL_FUNC_ERROR "\x56\x06\x01\x02\x06\x01\x4A"
#define OMP_O_MS_C_WAIT_RESULT "\x56\x06\x01\x02\x06\x01\x4B"

154 X/Open CAE Specification (1993)

Headers <xms.h>

/* OM Attribute Names */

#define MS_ABSENT ((OM_type) 1201)
#define MS_Address ((OM_type) 1202)
#define MS_Alert_Indication ((OM_type) 1203)
#define MS_ALERT_ADDRESS ((OM_type) 1204)
#define MS_ALERT_QUALIFIER ((OM_type) 1205)
#define MS_ALERT_REGISTRATION_IDENTIFIER ((OM_type) 1206)
#define MS_Allowed_Content_Types ((OM_type) 1207)
#define MS_Allowed_EITs ((OM_type) 1208)
#define MS_ALTERNATE_RECIPIENT ((OM_type) 1209)
#define MS_ALTERNATE_RECIPIENT_ALLOWED ((OM_type) 1210)
#define MS_ATTRIBUTE_TYPE ((OM_type) 1211)
#define MS_ATTRIBUTE_PROBLEMS ((OM_type) 1212)
#define MS_ATTRIBUTE_VALUE ((OM_type) 1213)
#define MS_ATTRIBUTES ((OM_type) 1214)
#define MS_Auto_Action_Deregistrations ((OM_type) 1215)
#define MS_Auto_Action_Registrations ((OM_type) 1216)
#define MS_Auto_Action_Request-Problems ((OM_type) 1217)
#define MS_AUTO_FORWARD_ARGUMENTS ((OM_type) 1218)
#define MS_AVA ((OM_type) 1219)
#define MS_Available_Attribute_Types ((OM_type) 1220)
#define MS_Available_Auto_Actions ((OM_type) 1221)
#define MS_BIND_TOKEN ((OM_type) 1222)
#define MS_CERTIFICATE ((OM_type) 1223)
#define MS_Change_Credentials ((OM_type) 1224)
#define MS_Child_Entries ((OM_type) 1225)
#define MS_CONFIDENTIALITY_ALGORITHM ((OM_type) 1226)
#define MS_CONTENT_CORRELATOR ((OM_type) 1227)
#define MS_CONTENT_IDENTIFIER ((OM_type) 1228)
#define MS_CONTENT_LENGTH ((OM_type) 1229)
#define MS_CONTENT_RETURN_REQUESTED ((OM_type) 1230)
#define MS_CONTENT_TYPE ((OM_type) 1231)
#define MS_CONTENT_TYPE-INT ((OM_type) 1232)
#define MS_CONVERSION_LOSS_PROHIBITED ((OM_type) 1233)
#define MS_CONVERSION_PROHIBITED ((OM_type) 1234)
#define MS_Content_Types_Supported ((OM_type) 1235)
#define MS_COUNT ((OM_type) 1236)
#define MS_CREATION_TIME_RANGE ((OM_type) 1237)
#define MS_Default_Delivery_Controls ((OM_type) 1238)
#define MS_DEFERRED_FELIVERY_TIME ((OM_type) 1239)
#define MS_DELETE_AFTER_AUTO_FORWARD ((OM_type) 1240)
#define MS_DELETE_PROBLEMS ((OM_type) 1241)
#define MS_Deliverable_Content_Types ((OM_type) 1242)
#define MS_Deliverable_EIT ((OM_type) 1243)
#define MS_Deliverable_Max_Content_Len ((OM_type) 1244)
#define MS_DISCLOSURE_ALLOWED ((OM_type) 1245)
#define MS_eitS ((OM_type) 1246)
#define MS_ENTRY_INFORMATION ((OM_type) 1247)
#define MS_EXPANSION_PROHIBITED ((OM_type) 1248)
#define MS_Fetch_Attribute_Defaults ((OM_type) 1249)
#define MS_Fetch_Restriction-Problems ((OM_type) 1250)
#define MS_Fetch_Restrictions ((OM_type) 1251)
#define MS_FILE_DESCRIPTOR ((OM_type) 1252)
#define MS_Filter ((OM_type) 1253)
#define MS_FROM ((OM_type) 1254)
#define MS_FROM-INT ((OM_type) 1255)
#define MS_IA5_String ((OM_type) 1256)

Message Store API (XMS) 155

<xms.h> Headers

#define MS_INFORMATION_BASE_TYPE ((OM_type) 1257)
#define MS_Initiator ((OM_type) 1258)
#define MS_Initiator_Credentials ((OM_type) 1259)
#define MS_ITEM ((OM_type) 1260)
#define MS_ITEMS ((OM_type) 1261)
#define MS_LABEL_AND_REDIRECTION ((OM_type) 1262)
#define MS_Labels_And_Redirections ((OM_type) 1263)
#define MS_LSTEST_DELIVERY_TIME ((OM_type) 1264)
#define MS_Limit ((OM_type) 1265)
#define MS_LIST ((OM_type) 1266)
#define MS_List_Attribute_Defaults ((OM_type) 1267)
#define MS_Max_Content_Length ((OM_type) 1268)
#define ms_MS_Configuration_Request ((OM_type) 1269)
#define MS_Name ((OM_type) 1270)
#define MS_NEW_CREDENTIALS ((OM_type) 1271)
#define MS_NEW_ENTRY ((OM_type) 1272)
#define MS_NEXT ((OM_type) 1273)
#define MS_OCTET_String ((OM_type) 1274)
#define MS_OLD_CREDENTIALS ((OM_type) 1275)
#define MS_ORIGIN_CHECK ((OM_type) 1276)
#define MS_ORIGINAL_EITS ((OM_type) 1277)
#define MS_ORIGINATOR_CERTIFICATE ((OM_type) 1278)
#define MS_ORIGINATOR_NAME ((OM_type) 1279)
#define MS_ORIGINATOR_RETURN_ADDRESS ((OM_type) 1280)
#define MS_OTHER_PARAMETERS ((OM_type) 1281)
#define MS_Override ((OM_type) 1282)
#define MS_Permissible_Content_Types ((OM_type) 1283)
#defing MS_PERMISSIBLE_CONTENT_TYPES_I ((OM_type) 1284)
#define MS_Permissible_EITs ((OM_type) 1285)
#define MS_Permissible_Lowest_Priority ((OM_type) 1286)
#define MS_Permissible_Max_Content_Len ((OM_type) 1287)
#define MS_Permissible_Operations ((OM_type) 1288)
#define MS_PRECISE ((OM_type) 1289)
#define MS_PRESENT ((OM_type) 1290)
#define MS_PRIORITY ((OM_type) 1291)
#define MS_PROBLEM ((OM_type) 1292)
#define MS_PROOF_OF_SUBMISSION_REQUESTED ((OM_type) 1293)
#define MS_Range ((OM_type) 1294)
#define MS_REASSIGNMENT_PROHIBITED ((OM_type) 1295)
#define MS_RECIPIENTS ((OM_type) 1296)
#define MS_RECIPIENT_DESCRIPTORS ((OM_type) 1297)
#define MS_REGISTRATION_ID ((OM_type) 1298)
#define MS_REGISTRATION_PARAMETER ((OM_type) 1299)
#define MS_REQUESTED ((OM_type) 1300)
#define MS_REQUESTED_ATTRIBUTES ((OM_type) 1301)
#define MS_REQUESTED_STR ((OM_type) 1302)
#define MS_Responder_Credentials ((OM_type) 1303)
#define MS_Restrict ((OM_type) 1304)
#define MS_Security_Context ((OM_type) 1305)
#define MS_SECURITY_LABEL ((OM_type) 1306)
#define MS_SECURITY_PROBLEM ((OM_type) 1307)
#define MS_SELECTION ((OM_type) 1308)
#define MS_SELECTOR ((OM_type) 1309)
#define MS_SEQUENCE_NUMBER ((OM_type) 1310)
#define MS_SEQUENCE_NUMBER-PROBLEMS ((OM_type) 1311)
#define MS_SEQUENCE_NUMBER_RANGE ((OM_type) 1312)
#define MS_SIMPLE ((OM_type) 1313)
#define MS_SPAN ((OM_type) 1314)

156 X/Open CAE Specification (1993)

Headers <xms.h>

#define MS_STRONG ((OM_type) 1315)
#define MS_SUMMARIES ((OM_type) 1316)
#define MS_SUMMARY_REQUESTS ((OM_type) 1317)
#define MS_TO ((OM_type) 1318)
#define MS_TO-INT ((OM_type) 1319)
#define MS_TYPE ((OM_type) 1320)
#define MS_User_Security_Labels ((OM_type) 1321)
#define MS_WAIT_NEW_AVAILABLE ((OM_type) 1322)

/* Enumeration */
/*

* The following enumeration tags and enumeration constants
* are defined for use as values of the corresponding OM attributes.
*/

/* Enumeration Tags for MS_Problem: */

#define MS_E_action_type_not_subscribed ((OM_enumeration) 1)
#define MS_E_asynchrony_not_supported ((OM_enumeration) 2)
#define MS_E_attrib_type_not_subscribed ((OM_enumeration) 3)
#define MS_E_authentication_error ((OM_enumeration) 4)
#define MS_E_bad_argument ((OM_enumeration) 5)
#define MS_E_bad_class ((OM_enumeration) 6)
#define MS_E_bad_session ((OM_enumeration) 7)
#define MS_E_busy ((OM_enumeration) 8)
#define MS_E_child_entry_specified ((OM_enumeration) 9)
#define MS_E_communications_problem ((OM_enumeration) 10)
#define MS_E_content_length_problem ((OM_enumeration) 11)
#define MS_E_content_type_problem ((OM_enumeration) 12)
#define MS_E_defer_deliv_cancel_reject ((OM_enumeration) 13)
#define MS_E_delETE_rESTRICTION_PROBLEM ((OM_enumeration) 14)
#define MS_E_eit_problem ((OM_enumeration) 15)
#define MS_E_elmt_serv_not_subscribed ((OM_enumeration) 16)
#define MS_E_feature_not_negotiated ((OM_enumeration) 17)
#define MS_E_feature_unavailable ((OM_enumeration) 18)
#define MS_E_inappropriate_for_operatn ((OM_enumeration) 19)
#define MS_E_inappropriate_matching ((OM_enumeration) 20)
#define MS_E_inconsistent_request ((OM_enumeration) 21)
#define MS_E_invalid_attribute_value ((OM_enumeration) 22)
#define MS_E_invalid_FEATURE ((OM_enumeration) 23)
#define MS_E_invalid_parameters ((OM_enumeration) 24)
#define MS_E_message_submiT_id_invalid ((OM_enumeration) 25)
#define MS_E_miscellaneous ((OM_enumeration) 26)
#define MS_E_no_such_class ((OM_enumeration) 27)
#define MS_E_no_such_entry ((OM_enumeration) 28)
#define MS_E_originator_invalid ((OM_enumeration) 29)
#define MS_E_out_of_memory ((OM_enumeration) 30)
#define MS_E_recipient_improperly_specified ((OM_enumeration) 31)
#define MS_E_register_rejected ((OM_enumeration) 32)
#define MS_E_remote_bind_error ((OM_enumeration) 33)
#define MS_E_reversed ((OM_enumeration) 34)
#define MS_E_security ((OM_enumeration) 35)
#define MS_E_submission_ctrl_violated ((OM_enumeration) 36)
#define MS_E_too_many_operations ((OM_enumeration) 37)
#define MS_E_too_many_sessions ((OM_enumeration) 38)
#define MS_E_unable_establish_associatn ((OM_enumeration) 39)
#define MS_E_unacceptable_securE_contxt ((OM_enumeration) 40)

Message Store API (XMS) 157

<xms.h> Headers

#define MS_E_unavailable ((OM_enumeration) 41)
#define MS_E_unavailable_action_type ((OM_enumeration) 42)
#define MS_E_unavailable_attribute_type ((OM_enumeration) 43)
#define MS_E_unsupported_critical_func ((OM_enumeration) 44)
#define MS_E_unwilling_to_perfoRM ((OM_enumeration) 45)

/* Constants */

#define MS_DEFAULT_FEATURE_LIST ((MS_feature) 0)
#define MS_SUCCESS ((MS_status) 0)
#define MS_NO_WORKSPACE ((MS_status) 1)

/* Constants of type OM_object */

#define MS_NO_FILTER ((OM_object) 0)
#define MS_NO_NEW_ENTRIES ((OM_object) 0)
#define MS_NULL_RESULT ((OM_object) 0)
#define MS_OPERATION_NOT_STARTED ((OM_object) 0)

/* Constants of type Integer */

/* Completion-Flag (Unsigned-Integer): */

#define MS_COMPLETED_OPERATION ((OM_uint) 1)
#define MS_OUTSTANDING_OPERATION ((OM_uint) 2)
#define MS_NO_OUTSTANDING_OPERATION ((OM_uint) 3)

/* Information-Base-Type (Integer): */

#define MS_STORED_MESSAGES ((OM_integer) 0)
#define MS_INLOG ((OM_integer) 1)
#define MS_OUTLOG ((OM_integer) 2)

#endif /* XMS_HEADER */

158 X/Open CAE Specification (1993)

Headers <xmsga.h>

9.2 <xmsga.h>
The <xmsga.h> header defines MS_GENERAL_ATTRIBUTES_PACKAGE, the constant
value for the MS General Attributes Package. It also defines the object identifiers of the
MS General Attribute types supported by this package (see Chapter 7).

All client programs that include this header must first include the Object Management
header <xom.h> (see reference XOM) and the <xms.h> header.

/*
* xmsga.h (Message Store General Attributes Package)
*/

#ifndef XMSGA_HEADER
#define XMSGA_HEADER

/* MS General Attributes Package object identifier */

#define OMP_O_MS_GENERAL_ATTRIBUTES_PACKAGE "\x56\x06\x01\x02\x06\x02"

/* MS General Attributes Types */
/*

* Note: Every client program must explicitly import into
* every compilation unit (C source program) the classes or
* Object Identifiers that it uses. Each of these classes or
* Object Identifier names must then be explicitly exported from
* just one compilation unit.
* Importing and exporting can be done using the OM_IMPORT and
* OM_EXPORT macros respectively (see the XOM API Specification).
* For instance, the client program uses
* OM_IMPORT(MS_A_CHILD_SEQUENCE_NUMBERS)
* which in turn will make use of
* OMP_O_MS_A_CHILD_SEQUENCE_NUMBERS
* defined below.
*/

#define OMP_O_MS_A_CHILD_SEQUENCE_NUMBERS "\x56\x04\x03\x00"
#define OMP_O_MS_A_CONTENT "\x56\x04\x03\x01"
#define OMP_O_MS_A_CONTENT_CONFIDENTL_ALGM_ID "\x56\x04\x03\x02"
#define OMP_O_MS_A_CONTENT_CORRELATOR "\x56\x04\x03\x03"
#define OMP_O_MS_A_CONTENT_IDENTIFIER "\x56\x04\x03\x04"
#define OMP_O_MS_A_CONTENT_INTEGRITY_CHECK "\x56\x04\x03\x05"
#define OMP_O_MS_A_CONTENT_LENGTH "\x56\x04\x03\x06"
#define OMP_O_MS_A_CONTENT_RETURNED "\x56\x04\x03\x07"
#define OMP_O_MS_A_CONTENT_TYPE "\x56\x04\x03\x08"
#define OMP_O_MS_A_CONVERSION_LOSS_PROHIBITED "\x56\x04\x03\x09"
#define OMP_O_MS_A_CONVERTED_EITS "\x56\x04\x03\x0A"
#define OMP_O_MS_A_CREATION_TIME "\x56\x04\x03\x0B"
#define OMP_O_MS_A_DELIVERED_EITS "\x56\x04\x03\x0C"
#define OMP_O_MS_A_DELIVERY_FLAGS "\x56\x04\x03\x0D"
#define OMP_O_MS_A_DL_EXPANSION_HISTORY "\x56\x04\x03\x0E"
#define OMP_O_MS_A_ENTRY_STATUS "\x56\x04\x03\x0F"
#define OMP_O_MS_A_ENTRY_TYPE "\x56\x04\x03\x10"
#define OMP_O_MS_A_INTENDED_RECIPIENT_NAME "\x56\x04\x03\x11"
#define OMP_O_MS_A_MESSAGE_DELIVERY_ENVELOPE "\x56\x04\x03\x12"
#define OMP_O_MS_A_MESSAGE_DELIVERY_ID "\x56\x04\x03\x13"

Message Store API (XMS) 159

<xmsga.h> Headers

#define OMP_O_MS_A_MESSAGE_DELIVERY_TIME "\x56\x04\x03\x14"
#define OMP_O_MS_A_MESSAGE_ORIGIN_AUTHEN_CHK "\x56\x04\x03\x15"
#define OMP_O_MS_A_MESSAGE_SECURITY_LABEL "\x56\x04\x03\x16"
#define OMP_O_MS_A_MESSAGE_SUBMISSION_TIME "\x56\x04\x03\x17"
#define OMP_O_MS_A_MESSAGE_TOKEN "\x56\x04\x03\x18"
#define OMP_O_MS_A_ORIGINAL_EITS "\x56\x04\x03\x19"
#define OMP_O_MS_A_ORIGINATOR_CERTIFICATE "\x56\x04\x03\x1A"
#define OMP_O_MS_A_ORIGINATOR_NAME "\x56\x04\x03\x1B"
#define OMP_O_MS_A_OTHER_RECIPIENT_NAMES "\x56\x04\x03\x1C"
#define OMP_O_MS_A_PARENT_SEQUENCE_NUMBER "\x56\x04\x03\x1D"
#define OMP_O_MS_A_PERRECIP_REPORT_DELIV_FLDS "\x56\x04\x03\x1E"
#define OMP_O_MS_A_PRIORITY "\x56\x04\x03\x1F"
#define OMP_O_MS_A_PROOF_OF_DELIVERY_REQUEST "\x56\x04\x03\x20"
#define OMP_O_MS_A_REDIRECTION_HISTORY "\x56\x04\x03\x21"
#define OMP_O_MS_A_REPORT_DELIVERY_ENVELOPE "\x56\x04\x03\x22"
#define OMP_O_MS_A_REPORT_ORIGIN_AUTHEN_CHK "\x56\x04\x03\x23"
#define OMP_O_MS_A_REPORTING_DL_NAME "\x56\x04\x03\x24"
#define OMP_O_MS_A_REPORTING_MTA_CERTIFICATE "\x56\x04\x03\x25"
#define OMP_O_MS_A_SECURITY_CLASSIFICATION "\x56\x04\x03\x26"
#define OMP_O_MS_A_SEQUENCE_NUMBER "\x56\x04\x03\x27"
#define OMP_O_MS_A_SUBJECT_SUBMISSION_ID "\x56\x04\x03\x28"
#define OMP_O_MS_A_THIS_RECIPIENT_NAME "\x56\x04\x03\x29"

160 X/Open CAE Specification (1993)

Headers <xmsga.h>

/* Enumeration Constants */

/* for MS_A_ENTRY_STATUS */

#define MS_ES_NEW ((OM_enumeration) 0)
#define MS_ES_LISTED ((OM_enumeration) 1)
#define MS_ES_PROCESSED ((OM_enumeration) 2)

/* for MS_A_ENTRY_TYPE */

#define MS_ET_DELIVERED_MESSAGE ((OM_enumeration) 0)
#define MS_ET_DELIVERED_REPORT ((OM_enumeration) 1)
#define MS_ET_RETURNED_CONTENT ((OM_enumeration) 2)

/* for MS_A_PRIORITY */

#define MS_PTY_NORMAL ((OM_enumeration) 0)
#define MS_PTY_LOW ((OM_enumeration) 1)
#define MS_PTY_URGENT ((OM_enumeration) 2)

/* for MS_A_SECURITY_CLASSIFICATION */

#define MS_SC_UNMARKED ((OM_enumeration) 0)
#define MS_SC_UNCLASSIFIED ((OM_enumeration) 1)
#define MS_SC_RESTRICTED ((OM_enumeration) 2)
#define MS_SC_CONFIDENTIAL ((OM_enumeration) 3)
#define MS_SC_SECRET ((OM_enumeration) 4)
#define MS_SC_TOP_SECRET ((OM_enumeration) 5)

#endif /* XMSGA_HEADER */

Message Store API (XMS) 161

<xmsima.h> Headers

9.3 <xmsima.h>
The <xmsima.h> header defines MS_IM_ATTRIBUTES_PACKAGE, the constant value
for the MS Interpersonal Messaging Package. It also defines the object identifiers of the
MS Interpersonal Messaging Attribute types supported by this package (see Chapter 8).

All client programs that include this header must first include the Object Management
header <xom.h> (see reference XPOM) and the <xms.h> header.

/*
* xmsima.h (Message Store Interpersonal Messaging Attributes Package)
*/

#ifndef XMSIMA_HEADER
#define XMSIMA_HEADER

/* MS Interpersonal Messaging Attributes Package object identifier */

#define OMP_O_MS_IM_ATTRIBUTES_PACKAGE "\x56\x06\x01\x02\x06\x03"

/* MS Interpersonal Messaging Attributes Types */

/*
* Note: Every client program must explicitly import into
* every compilation unit (C source program) the classes or
* Object Identifiers that it uses. Each of these classes or
* Object Identifier names must then be explicitly exported from
* just one compilation unit.
* Importing and exporting can be done using the OM_IMPORT and
* OM_EXPORT macros respectively (see the XOM API Specification).
* For instance, the client program uses
* OM_IMPORT(MS_IM_ACKNOWLEDGMENT_MODE)
* which in turn will make use of
* OMP_O_MS_IM_ACKNOWLEDGMENT_MODE
* defined below.
*/

#define OMP_O_MS_IM_A_ACKNOWLEDGMENT_MODE "\x56\x01\x09\x09"
#define OMP_O_MS_IM_A_AUTHORIZING_USERS "\x56\x01\x07\x0A"
#define OMP_O_MS_IM_A_AUTO_FORWARD_COMMENT "\x56\x01\x09\x06"
#define OMP_O_MS_IM_A_AUTO_FORWARDED "\x56\x01\x07\x09"
#define OMP_O_MS_IM_A_BILATERAL_DEF_BODY_PARTS "\x56\x01\x08\x0A"
#define OMP_O_MS_IM_A_BLIND_COPY_RECIPIENTS "\x56\x01\x07\x0D"
#define OMP_O_MS_IM_A_BODY "\x56\x01\x08\x00"
#define OMP_O_MS_IM_A_CONVERSION_EITS "\x56\x01\x09\x03"
#define OMP_O_MS_IM_A_COPY_RECIPIENTS "\x56\x01\x07\x0C"
#define OMP_O_MS_IM_A_DISCARD_REASON "\x56\x01\x09\x05"
#define OMP_O_MS_IM_A_EXPIRY_TIME "\x56\x01\x07\x05"
#define OMP_O_MS_IM_A_EXTENDED_BODY_PART_TYPES "\x56\x01\x08\x0C"
#define OMP_O_MS_IM_A_G3_FAX_BODY_PARTS "\x56\x01\x08\x03"
#define OMP_O_MS_IM_A_G3_FAX_DATA "\x56\x01\x08\x16"
#define OMP_O_MS_IM_A_G3_FAX_PARAMETERS "\x56\x01\x08\x0F"
#define OMP_O_MS_IM_A_G4_CLASS1_BODY_PARTS "\x56\x01\x08\x04"
#define OMP_O_MS_IM_A_HEADING "\x56\x01\x07\x00"
#define OMP_O_MS_IM_A_IA5_TEXT_BODY_PARTS "\x56\x01\x08\x01"
#define OMP_O_MS_IM_A_IA5_TEXT_DATA "\x56\x01\x08\x14"

162 X/Open CAE Specification (1993)

Headers <xmsima.h>

#define OMP_O_MS_IM_A_IA5_TEXT_PARAMETERS "\x56\x01\x08\x0D"
#define OMP_O_MS_IM_A_IMPORTANCE "\x56\x01\x07\x07"
#define OMP_O_MS_IM_A_INCOMPLETE_COPY "\x56\x01\x07\x11"
#define OMP_O_MS_IM_A_IPM_ENTRY_TYPE "\x56\x01\x06\x00"
#define OMP_O_MS_IM_A_IPM_PREFERRED_RECIPIENT "\x56\x01\x09\x02"
#define OMP_O_MS_IM_A_IPM_SYNOPSIS "\x56\x01\x06\x01"
#define OMP_O_MS_IM_A_IPN_ORIGINATOR "\x56\x01\x09\x01"
#define OMP_O_MS_IM_A_LANGUAGES "\x56\x01\x07\x12"
#define OMP_O_MS_IM_A_MESSAGE_BODY_PARTS "\x56\x01\x08\x08"
#define OMP_O_MS_IM_A_MESSAGE_DATA "\x56\x01\x08\x1A"
#define OMP_O_MS_IM_A_MESSAGE_PARAMETERS "\x56\x01\x08\x13"
#define OMP_O_MS_IM_A_MIXED_MODE_BODY_PARTS "\x56\x01\x08\x09"
#define OMP_O_MS_IM_A_NATIONAL_DEF_BODY_PARTS "\x56\x01\x08\x0B"
#define OMP_O_MS_IM_A_NON_RECEIPT_REASON "\x56\x01\x09\x04"
#define OMP_O_MS_IM_A_NRN_REQUESTORS "\x56\x01\x07\x14"
#define OMP_O_MS_IM_A_OBSOLETED_IPMS "\x56\x01\x07\x0E"
#define OMP_O_MS_IM_A_ORIGINATOR "\x56\x01\x07\x02"
#define OMP_O_MS_IM_A_PRIMARY_RECIPIENTS "\x56\x01\x07\x0B"
#define OMP_O_MS_IM_A_RECEIPT_TIME "\x56\x01\x09\x08"
#define OMP_O_MS_IM_A_RELATED_IPMS "\x56\x01\x07\x0F"
#define OMP_O_MS_IM_A_REPLIED_TO_IPM "\x56\x01\x07\x03"
#define OMP_O_MS_IM_A_REPLY_RECIPIENTS "\x56\x01\x07\x10"
#define OMP_O_MS_IM_A_REPLY_REQUESTORS "\x56\x01\x07\x15"
#define OMP_O_MS_IM_A_REPLY_TIME "\x56\x01\x07\x06"
#define OMP_O_MS_IM_A_RETURNED_IPM "\x56\x01\x09\x07"
#define OMP_O_MS_IM_A_RN_REQUESTORS "\x56\x01\x07\x13"
#define OMP_O_MS_IM_A_SENSITIVITY "\x56\x01\x07\x08"
#define OMP_O_MS_IM_A_SUBJECT "\x56\x01\x07\x04"
#define OMP_O_MS_IM_A_SUBJECT_IPM "\x56\x01\x09\x00"
#define OMP_O_MS_IM_A_SUPPL_RECEIPT_INFO "\x56\x01\x09\x0A"
#define OMP_O_MS_IM_A_TELETEX_BODY_PARTS "\x56\x01\x08\x05"
#define OMP_O_MS_IM_A_TELETEX_DATA "\x56\x01\x08\x17"
#define OMP_O_MS_IM_A_TELETEX_PARAMETERS "\x56\x01\x08\x10"
#define OMP_O_MS_IM_A_THIS_IPM "\x56\x01\x07\x01"
#define OMP_O_MS_IM_A_VIDEOTEX_BODY_PARTS "\x56\x01\x08\x06"
#define OMP_O_MS_IM_A_VIDEOTEX_DATA "\x56\x01\x08\x18"
#define OMP_O_MS_IM_A_VIDEOTEX_PARAMETERS "\x56\x01\x08\x11"

Message Store API (XMS) 163

<xmsima.h> Headers

/* Classes in the MS IM Attributes Package */

#define OMP_O_MS_IM_C_BODY "\x56\x06\x01\x02\x06\x03\x01"
#define OMP_O_MS_IM_C_G3_FAX_DATA "\x56\x06\x01\x02\x06\x03\x02"
#define OMP_O_MS_IM_C_BODYPART_SYNOPSIS "\x56\x06\x01\x02\x06\x03\x03"
#define OMP_O_MS_IM_C_HEADING "\x56\x06\x01\x02\x06\x03\x04"
#define OMP_O_MS_IM_C_IPM_SYNOPSIS "\x56\x06\x01\x02\x06\x03\x05"
#define OMP_O_MS_IM_C_MSG_BODYPART_SYNOPSIS "\x56\x06\x01\x02\x06\x03\x06"
#define OMP_O_MS_IM_C_NON_MSG_BODYPART_SYNOPSIS "\x56\x06\x01\x02\x06\x03\x07"
#define OMP_O_MS_IM_C_TELETEX_DATA "\x56\x06\x01\x02\x06\x03\x08"
#define OMP_O_MS_IM_C_TELETEX_PARAMETERS "\x56\x06\x01\x02\x06\x03\x09"

/* OM Attribute Names in the MS IM Attributes Package */

#define MS_IM_AUTHORIZING_USERS ((OM_type) 1401)
#define MS_IM_AUTO_FORWARDED ((OM_type) 1402)
#define MS_IM_BLIND_COPY_RECIPIENTS ((OM_type) 1403)
#define MS_IM_BODY_PART ((OM_type) 1404)
#define MS_IM_BODY_PART_SYNOPSIS ((OM_type) 1405)
#define MS_IM_COPY_RECIPIENTS ((OM_type) 1406)
#define MS_IM_EXPIRY_TIME ((OM_type) 1407)
#define MS_IM_EXTENSIONS ((OM_type) 1408)
#define MS_IM_IMAGES ((OM_type) 1409)
#define MS_IM_IMPORTANCE ((OM_type) 1410)
#define MS_IM_MESSAGE_BODY_PART_SYNOPSIS ((OM_type) 1411)
#define MS_IM_NON_MESSAGE_BODY_PART_SYNOPSIS ((OM_type) 1412)
#define MS_IM_NUMBER_OF_PAGES ((OM_type) 1413)
#define MS_IM_OBSOLETED_IPMS ((OM_type) 1414)
#define MS_IM_ORIGINATOR ((OM_type) 1415)
#define MS_IM_PARAMETERS ((OM_type) 1416)
#define MS_IM_PRIMARY_RECIPIENTS ((OM_type) 1417)
#define MS_IM_PROCESSED ((OM_type) 1418)
#define MS_IM_RELATED_IPMS ((OM_type) 1419)
#define MS_IM_REPLIED_TO_IPM ((OM_type) 1420)
#define MS_IM_REPLY_RECIPIENTS ((OM_type) 1421)
#define MS_IM_REPLY_TIME ((OM_type) 1422)
#define MS_IM_SENSITIVITY ((OM_type) 1423)
#define MS_IM_SEQUENCE_NUMBER ((OM_type) 1424)
#define MS_IM_SIZE ((OM_type) 1425)
#define MS_IM_SUBJECT ((OM_type) 1426)
#define MS_IM_SYNOPSIS ((OM_type) 1427)
#define MS_IM_TELETEX_DOCUMENT ((OM_type) 1428)
#define MS_IM_THIS_IPM ((OM_type) 1429)
#define MS_IM_TYPE ((OM_type) 1430)

164 X/Open CAE Specification (1993)

Headers <xmsima.h>

/* Enumeration Constants */

/* for MS_IM_ACKNOWLEDGEMENT_MODE */
#define MS_AM_AUTOMATIC ((OM_enumeration) 0)
#define MS_AM_MANUAL ((OM_enumeration) 1)

/* for MS_IM_DISCARD_REASON */
#define MS_DR_NO_DISCARD ((OM_enumeration) -1)
#define MS_DR_IPM_EXPIRED ((OM_enumeration) 0)
#define MS_DR_IPM_OBSOLETED ((OM_enumeration) 1)
#define MS_DR_USER_TERMINATED ((OM_enumeration) 2)

/* MS_IM_IA5_REPERTOIRE */
#define MS_IR_IA5 ((OM_enumeration) 2)
#define MS_IR_ITA2 ((OM_enumeration) 5)

/* MS_IM_IMPORTANCE */
#define MS_IM_LOW ((OM_enumeration) 0)
#define MS_IM_ROUTINE ((OM_enumeration) 1)
#define MS_IM_HIGH ((OM_enumeration) 2)

/* MS_IM_IPM_ENTRY_TYPE */
#define MS_IE_IPM ((OM_enumeration) 0)
#define MS_IE_RN ((OM_enumeration) 1)
#define MS_IE_NRN ((OM_enumeration) 2)

/* MS_IM_NR_REASON */
#define MS_NR_IPM_AUTO_FORWARDED ((OM_enumeration) 0)
#define MS_NR_IPM_DISCARDED ((OM_enumeration) 1)

/* MS_IM_SENSITIVITY */
#define MS_SE_NOT_SENSITIVE ((OM_enumeration) 0)
#define MS_SE_PERSONAL ((OM_enumeration) 1)
#define MS_SE_PRIVATE ((OM_enumeration) 2)
#define MS_SE_COMPANY_CONFIDENTIAL ((OM_enumeration) 3)

/* MS_IM_VIDEOTEX_SYNTAX */
#define MS_VS_UNSPECIFIED ((OM_enumeration) -1)
#define MS_VS_IDS ((OM_enumeration) 0)
#define MS_VS_DATA_SYNTAX_1 ((OM_enumeration) 1)
#define MS_VS_DATA_SYNTAX_2 ((OM_enumeration) 2)
#define MS_VS_DATA_SYNTAX_3 ((OM_enumeration) 3)

#endif /* XMSIMA_HEADER */

Message Store API (XMS) 165

Headers

166 X/Open CAE Specification (1993)

Chapter 10

A Programming Example

This chapter provides an example of a client program, written in C, that uses this
interface to the Message Store. It uses the synchronous mode. Note that this sample
program is presented for illustrative purposes only and is not complete.

Message Store API (XMS) 167

A Programming Example

/*
* ---
*
* Sample client program that uses the X.400 MS interface
* for listing ‘‘new’’ entries from a Message Store
* in the synchronous mode.
*
* The main objective of this program is to show how to
* - retrieve selected attributes of ‘‘new’’ messages.
*
* Warning: This sample program is purely illustrative and
* is not complete.
*
* ---
*/

/*
* Include the relevant header files.
*/

#include <xom.h> /* Object Management header */
#include <xms.h> /* MS Package header */
#include <xmsga.h> /* MS General Attributes Package header */
#include <xds.h> /* for building OR-Name for ‘‘initiator’ ’

in Bind-Argument */
/*

* Assume the availability of macros, e.g., CHECK_MS_CALL,
* CHECK_OM_CALL in a header file, example.h, which will
* define simple Error Handling Modules that is similar
* to that for the programming example in the XDS API Specification.
*
* These macros check if the function returns with an error,
* in which case an error message is logged and the program exits.
*/

#include "example.h"

/*
* Define the necessary Object Identifier constants that identify
* the OM classes used in this example. (See the XOM API
* Specification.)
*/

OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORGANIZATION_NAME)
OM_EXPORT(DS_A_ORGANIZATIONAL_UNIT_NAME)
OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(MS_C_BIND_ARGUMENT)
OM_EXPORT(MS_C_FILTER_ITEMS)
OM_EXPORT(MS_C_FILTER)
OM_EXPORT(MS_C_SELECTOR)
OM_EXPORT(MS_C_ATTRIBUTE_SELECTION)
OM_EXPORT(MS_C_MS_ENTRY_INFO_SELECTION)

168 X/Open CAE Specification (1993)

A Programming Example

OM_EXPORT(MS_C_LIST_ARGUMENT)
OM_EXPORT(MS_A_ENTRY_STATUS)
OM_EXPORT(MS_A_CONTENT_LENGTH)
OM_EXPORT(MS_A_ORIGINATOR_NAME)

int main(void)
{
/*

* Declarations
*/

OM_return_code return_code, /* for OM functions */
error; /* for MS functions */

/*
* ---
* For ms_initialize():
* Note: the service implicitly provides the mandatory features
* (i.e., MS_PACKAGE, MS_GENERAL_ATTRIBUTES_PACKAGE, MS_FU)
* and for this example, no additional features are being
* requested.
*/

static MS_feature feature_list[] = {
{ {0, NULL}, OM_TRUE },

};
OM_sint max_sessions;
OM_sint max_outstanding_operations;
OM_workspace workspace;

/*
* ---
* For ms_bind():
*
* Build the Bind-Argument with attributes:
* initiator, initiator_credentials,
* ms_configuration_request
*/

/*
* Build OR-Name for the ‘‘initiator’ ’.
*/

static OM_descriptor country[] {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("us")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor organization[] {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORGANIZATION_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("ABC Inc")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor organization_unit[] {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORGANIZATIONAL_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,

OM_STRING("Music")},
OM_NULL_DESCRIPTOR

};

Message Store API (XMS) 169

A Programming Example

static OM_descriptor common_name[] {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("Ian Doe")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn1[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, country} },
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn2[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, organization} },
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn3[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, organizational_unit} },
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn4[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, common_name} },
OM_NULL_DESCRIPTOR

};

OM_descriptor initiator[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{DS_RDNS, OM_S_OBJECT, {0, rdn1} },
{DS_RDNS, OM_S_OBJECT, {0, rdn2} },
{DS_RDNS, OM_S_OBJECT, {0, rdn3} },
{DS_RDNS, OM_S_OBJECT, {0, rdn4} },
OM_NULL_DESCRIPTOR

};

/*
* In a similar manner, insert code to build
* the ‘‘initiator_credentials’ ’ OM attribute for ‘‘bind_argument’ ’.
*
* Then, combine all OM attributes to build ‘‘bind_argument’ ’.
*/

OM_descriptor bind_argument[] = {
OM_OID_DESC(OM_CLASS, MS_C_BIND_ARGUMENT),
{MS_INITIATOR, OM_S_OBJECT, {0, initiator} },
{MS_INITIATOR_CREDENTIALS, OM_S_OBJECT,

{0, initiator_credentials} },
{MS_MS_CONFIGURATION_REQUEST, OM_S_BOOLEAN,

{OM_FALSE, NULL} },
OM_NULL_DESCRIPTOR

};
OM_private_object bind_result;
OM_private_object session;

/*
* ---
* For ms_list():

170 X/Open CAE Specification (1993)

A Programming Example

* List-Argument:
* selector,
* requested-attributes
*/

/*
* List-Argument: selector:
* Build ‘‘selector’ ’ such that there is a filter for matching
* MS attribute, Entry-Status, with value ‘‘new’’.
*/

static OM_descriptor filter_items[] = {
OM_OID_DESC(OM_CLASS, MS_C_FILTER_ITEMS),
{DS_ATTRIBUTE_TYPE, OM_S_OBJECT_IDENTIFIER_STRING,

OM_OID_DESC(OM_CLASS, MS_A_ENTRY_STATUS) },
{DS_ATTRIBUTE_VALUES, OM_S_ENUMERATION, {MS_ES_NEW, NULL}},

{DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, {DS_EQUALITY, NULL}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor filter[] = {

OM_OID_DESC(OM_CLASS, MS_C_FILTER),
{DS_FILTER_ITEMS, OM_S_OBJECT, {0, filter_items} },
{DS_FILTER_TYPE, OM_S_ENUMERATION, {DS_AND, NULL}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor selector[] = {

OM_OID_DESC(OM_CLASS, MS_C_SELECTOR),
{MS_CHILD_ENTRIES, OM_S_BOOLEAN, {OM_FALSE, NULL} },
{MS_FILTER, OM_S_OBJECT, {0, filter} },
OM_NULL_DESCRIPTOR

};

/*
* List-Argument: requested-attributes:
* Build ‘‘requested-attributes’ ’ so as to request that
* the result returned by the ms_list() give
* the MS attributes:
* - Content-Length and Originator-Name.
*/

static OM_descriptor selection1[] = {
OM_OID_DESC(OM_CLASS, MS_C_ATTRIBUTE_SELECTION),
{MS_ATTRIBUTE_TYPE, OM_S_OBJECT_IDENTIFIER_STRING,

OM_OID_DESC(OM_CLASS, MS_A_CONTENT_LENGTH) },
OM_NULL_DESCRIPTOR

};
static OM_descriptor selection2[] = {

OM_OID_DESC(OM_CLASS, MS_C_ATTRIBUTE_SELECTION),
{MS_ATTRIBUTE_TYPE, OM_S_OBJECT_IDENTIFIER_STRING,

OM_OID_DESC(OM_CLASS, MS_A_ORIGINATOR_NAME) },
OM_NULL_DESCRIPTOR

};
static OM_descriptor requested_attr[] = {

OM_OID_DESC(OM_CLASS, MS_C_MS_ENTRY_INFO_SELECTION),
{MS_SELECTION, OM_S_OBJECT, {0, selection1} },
{MS_SELECTION, OM_S_OBJECT, {0, selection2} },
OM_NULL_DESCRIPTOR

};

Message Store API (XMS) 171

A Programming Example

/*
* Then, combine all OM attributes to build ‘‘list_argument’ ’.
*/

OM_descriptor list_argument[] = {
OM_OID_DESC(OM_CLASS, MS_C_LIST_ARGUMENT),
{MS_SELECTOR, OM_S_OBJECT, {0, selector} },
{MS_REQUESTED_ATTRIBUTES, OM_S_OBJECT,

{0, requested_attr} },
OM_NULL_DESCRIPTOR

};

OM_private_object list_result;
MS_invoke_id invoke_id;

/*
* Variables required for extracting the MS attributes
* that were requested in the ms_list().
*/

OM_type entry_types[] = {MS_REQUESTED, 0};
OM_descriptor *entries;
OM_type entryInfo_types[] =

{MS_SEQUENCE_NUMBERS, MS_ATTRIBUTES, 0};
OM_descriptor *entryInfos;
OM_type reqAttributes_types[] = {MS_ATTRIBUTE_VALUES, 0};
OM_descriptor *reqAttributes;
OM_value_position total_requested;
OM_value_position total_number;
int i;

/*
* ===
* Start up the MS API and obtain a workspace.
*/

max_sessions = 1;
max_outstanding_operations = 0; /* synchronous mode */
CHECK_MS_CALL(ms_initialize (feature_list,

&max_sessions,
&max_outstanding_operations,
&workspace));

/*
* Establish a session with the MS.
*/

CHECK_MS_CALL(ms_bind(bind_argument,
&bind_result,
&session));

/*
* Use ms_list() to
* search for MS entries whose Entry Status is ‘‘new’’ and
* return the Sequence-Number and Originator-Name MS attributes
* of these entries.
*/

CHECK_MS_CALL(ms_list(session, list_argument,
&list_result,
&invoke_id));

172 X/Open CAE Specification (1993)

A Programming Example

/*
* Extract the list of entries returned.
*/

CHECK_OM_CALL(om_get(list_result,
OM_EXCLUDE_ALL_BUT_CERTAIN_TYPES +
OM_EXCLUDE_SUBOBJECTS,
entry_types, OM_FALSE,
0, 20,
&entries, &total_requested));

/*
* For each of entry information requested returned by
* ms_list(), retrieve the MS attributes requested and
* perform whatever processing needed.
*/

for (i=0, ientry=entries; i < total_requested; i++, ientry++)
{

CHECK_OM_CALL(om_get(ientry->value.object.object,
OM_EXCLUDE_ALL_BUT_CERTAIN_TYPES +
OM_EXCLUDE_SUBOBJECTS,
entryInfo_types, OM_FALSE, 0, 0,
&entryInfos, &total_number));

CHECK_OM_CALL(om_get(entryInfos->value.object.object,
OM_EXCLUDE_ALL_BUT_CERTAIN_TYPES +
OM_EXCLUDE_SUBOBJECTS,
reqAttributes_types, OM_FALSE, 0, 0,
&reqAttributes, &total_number));

/*
* Perform processing of entry information here...
*/

display_SequenceNumber(entryInfos);
display_ReqAttributes(reqAttributes);

} /* end for */

/*
* Terminate the session with MS
*/

CHECK_MS_CALL(ms_unbind(session));

/*
* Clean up
*/

CHECK_OM_CALL(om_delete(bind_result));
CHECK_OM_CALL(om_delete(list_result));
CHECK_OM_CALL(om_delete(entries));
CHECK_OM_CALL(om_delete(entryInfos));
CHECK_OM_CALL(om_delete(reqAttributes));

/*
* Terminate MS API, releasing storage for the workspace
*/

ms_shutdown();

} /* end main */

Message Store API (XMS) 173

A Programming Example

174 X/Open CAE Specification (1993)

Appendix A

Runtime Binding

This appendix is not an integral part of the document. It describes how, in the context of
selected operating systems, the C implementation of a client may be bound at runtime to
the C implementation of the service.

A.1 OS/2
Binding of client applications to a service implementation at runtime under OS/2 is
accomplished through the use of Dynamic Link Libraries (DLLs). Each interface of a
service implementation should be presented to the client as a separate DLL. The service
API functions for each library are specified as IMPORTS in the client application’s
definition (.DEF) file and declared as externals in the client code. This allows the client
application to be compiled and linked in the absence of the actual service libraries. The
OS/2 kernel recognises these unresolved external references in the client application
when it is executed and loads the appropriate service DLL.

A.1.1 Service Provider Requirements

Each service interface should be implemented as a separate DLL. Furthermore, different
vendor’s service implementations must adhere to a consistent DLL naming convention
so that client applications may include the service DLL name in their definition files.

Specifically, Message Store interface library is named:

msxapia.dll

Other related interfaces not specifically described by this document should use the same
convention, e.g., the Directory Service interface library should be named:

dsxapia.dll

All API functions exposed to the client should use Pascal calling conventions (function
parameters are pushed left to right and the called routine clears the stack). This is
achieved by declaring each API function within an interface DLL to be far pascal. Other
functions, which are used only within a particular library and not exposed to a client
application, may use any calling convention.

Service providers are free to specify any parameters in the definition files associated with
the interface libraries as they see fit subject to these restrictions, e.g., a service provider
may decide to specify an initialisation routine to be executed when a service library is
first loaded (the LIBRARY INITINSTANCE directive).

Message Store API (XMS) 175

OS/2 Runtime Binding

A.1.2 Client Application Requirements

The client application writer must specify a definition file for the client application
program and enumerate the API function routines used by the application in the
IMPORTS section of the file. The client application will also need to declare each
imported API function as using Pascal calling conventions by declaring them as external
far Pascal. An example of a definition file (client.def) used by a client application using
the MS and OM APIs is given below.

NAME CLIENT
IMPORTS

MSXAPIA.MS_BIND
MSXAPIA.MS_CANCEL_SUBMISSION
MSXAPIA.MS_CHECK_ALERT
MSXAPIA.MS_DELETE
MSXAPIA.MS_FETCH
MSXAPIA.MS_INITIALIZE
MSXAPIA.MS_LIST
MSXAPIA.MS_RECEIVE_RESULT
MSXAPIA.MS_REGISTER
MSXAPIA.MS_REGISTER_MS
MSXAPIA.MS_SHUTDOWN
MSXAPIA.MS_SUBMIT
MSXAPIA.MS_SUMMARIZE
MSXAPIA.MS_UNBIND
MSXAPIA.MS_WAIT

Each service DLL used by a client application must be placed in a directory specified in
the LIBPATH directive in the OS/2 config.sys file.

A.2 UNIX System V Release 4.0
Runtime binding in UNIX System V Release 4.0 is accomplished through the use of
dynamic shared libraries. Each API must be implemented as a dynamic shared library in
the:

/usr/lib/XAPI

directory. Specifically, the MS interface functions will be placed in the:

/usr/lib/XAPI/libMS.so

library.

Each dynamic shared library must be implemented to comply with the UNIX System V
Release 4.0 System V Application Binary Interface (ABI) Specification. There are no
additional constraints on the implementation of these libraries. The libraries should,
however, be well designed in order to avoid potential performance degradation that can
be caused by the use of shared libraries. The UNIX System V Release 4.0 Programmer’s
Guide: ANSI C and Programming Support Tools provides information on how to
design shared libraries.

All client applications must be compiled to use the functions in these dynamic libraries.
Details on how to link dynamic shared libraries can be found in the UNIX System V
Release 4.0 Programmer’s Guide: ANSI C and Programming Support Tools. In
particular, the client application that uses the APIs may be compiled using absolute path
names for the API shared libraries or using the -L/usr/lib/XAPI option of the cc
command.

176 X/Open CAE Specification (1993)

Runtime Binding UNIX System V Release 4.0

Both service and client must be compiled with header files that include consistent binary
bindings for all values passed between the client and the service. Consistent definitions
of the library interface as specified in the main body of this document.

Message Store API (XMS) 177

Runtime Binding

178 X/Open CAE Specification (1993)

Glossary

This section is a glossary of terms used in this document. Certain terms are used to
describe both the Message Store and Object Management - for example, attribute. In
these cases, the terms are distinguished by (M) and (O):

(M) reference adapted from the Message Store Standards.

(O) reference adapted from the OSI-Abstract-Data Manipulation API (XOM)
Specification.

Words in the explanation that are set in italics denote cross-references to other terms
listed in the glossary.

Abstract Class (O)
An OM class of OM object of which instances are forbidden. An abstract class typically
serves to document the similarities between instances of two or more concrete classes.

Abstract Syntax Notation One (ASN.1)
A notation which both enables complicated types to be defined and also enables values
of these types to be specified. See reference X.409 listed in Referenced Documents.

Alert Operation (M)
An MS abstract operation which allows the MS to signal, based on selection criteria, to
the User Agent that messages or reports are waiting in the MS. This operation can only
be issued on an existing session (or association) with the MS.

Argument
Information which is passed to a function and which specifies the details of the
processing to be performed.

ASN.1
See Abstract Syntax Notation One.

Asynchronous operation
An operation that does not of itself cause the process requesting the operation to be
blocked from further use of the CPU. This implies that the process and the operation are
running concurrently.

Attribute (M)
The information of a particular type concerning an entry in an information base of the
Message Store.

Attribute (Object) (O)
See OM attribute.

Attribute Syntax (O)
A definition of the set of values which an attribute may assume. It includes the data
type, in ASN.1, and, usually, one or more matching rules by which values may be
compared.

Attribute Type (M)
The component of an attribute which indicates the class of information given by that
attribute. It is an Object Identifier and so is unique.

Message Store API (XMS) 179

Glossary

Attribute Type (Object) (O)
Any of various categories into which the client dynamically groups values on the basis of
their semantics. It is an integer, unique only within the package.

Attribute Value Assertion (AVA) (M)
A proposition, which may be true, false or undefined, concerning the values of attributes
in an entry.

Attribute Value Syntax (O)
See Syntax(Object).

Attribute Value (M)
A particular instance of that class of information indicated by an attribute type.

Attribute Value (Object) (O)
An atomic information object.

Auto Action Type (M)
An auto action type is used to indicate the type of auto action, e.g., Alert.

Auto Action (M)
Actions that can be performed automatically by the MS, based on previously registered
information from the MS-owner via the User Agent.

Auto Alert (M)
An auto action, within the MS, triggered by delivery of a message and which, based on
the registered criteria, may cause an alert to be generated.

Auto Forward (M)
The auto action, within the MS, which triggers a message to be auto-forwarded to
another recipient (or other recipients) by the MS. The message may optionally be
deleted.

Basic Encoding Rules
A set of rules used to encode ASN.1 values as strings of octets.

BER
See Basic Encoding Rules.

Child Entry (M)
An entry, other than the main-entry in an information base. The parent-entry for a
child-entry can be either the main-entry or another child-entry depending on the number
of levels in each case.

Class (Object)
See OM Class.

Concrete Class (O)
An OM class of which instances are permitted.

Content Length (M)
An attribute which gives the length of the content of a delivered message (or returned
content).

Content Returned (M)
An attribute which signals that a delivered report (or a delivered message) contained a
returned content.

Converted EITs (M)
An attribute identifying the encoded information types of the message content after

180 X/Open CAE Specification (1993)

Glossary

conversion.

Creation Time (M)
An attribute which gives the creation time (by the MS) of an entry.

Delete Operation (M)
An MS abstract operation used to delete one or more entries from an information base.

Delivered EITs (M)
A multi-valued attribute that gives information about EITs in a delivered message.

Delivered Message Entry (M)
An entry in the stored messages information base resulting from a delivered message.

Delivered Report Entry (M)
An entry in the stored messages information base resulting from a delivered report.

Descriptor (O)
A defined data structure which is used to represent an OM attribute type and a single
value.

Descriptor List (O)
An ordered sequence of descriptors which is used to represent several OM attribute
types and values.

Directory
A collection of open systems which cooperate to hold a logical database of information
about a set of objects in the real world.

Entry (M)
An information set in an information base. See main-entry, parent-entry and child-entry
for further classification of entries.

Entry Information (M)
A parameter, used in MS abstract operations, which conveys selected information from
an entry.

Entry Information Selection (M)
A parameter, used in MS abstract operations, which indicates which attributes from an
entry is being requested.

Entry Status (M)
An attribute giving information about the processing status of that entry. Possible
values are new, listed or processed.

Entry Type (M)
An attribute which signals if an entry is associated with a delivered message or a
delivered report.

Fetch Operation (M)
An MS abstract operation which allows one entry or parts of an entry to be fetched from
the stored messages information base.

Fetch Restrictions (M)
Restrictions, imposed by the User Agent, on what kind of messages it is prepared to
receive as a result of a fetch operation. The possible restrictions are on message length,
content types and EITs.

Filter (M)
A parameter, used in abstract operations, to test a particular entry in an information base

Message Store API (XMS) 181

Glossary

and is either satisfied or not by that entry.

Filter Item (M)
An assertion about the presence or value(s) of an attribute of a particular type in an entry
under test. Each such assertion is either true or false.

Forwarding Request (M)
A parameter that may be present in a Message Submission operation, invoked by the
User Agent, to request that a message be forwarded from the MS.

Function
A programming language construct modelled after the mathematical concept of
function. A function encapsulates some behaviour. It is given some arguments as input,
performs some processing and returns some results. Also known as procedure,
subprogram or subroutine. See operation.

General Attribute (M)
A set of MS attributes which are valid for all types of message and reports independent
of content type.

Implementation-Defined
A feature that is not consistent across all implementations; each implementation will
provide documentation of behaviour of such a feature.

Indirect Submission (M)
An MS abstract service that offers the same services of the Message Submission service
(from the MTS abstract service) with the added functionality of forwarding messages
residing in the MS.

Information Base (M)
Objects within the MS which store information relevant to the MS abstract service, e.g.,
the stored messages information base, which stores the messages and reports that have
been delivered into the MS.

Information Base Type (M)
The type of information base; e.g., stored messages, inlog, outlog.

Invoke ID
An integer used to distinguish one (MS) operation from all other outstanding ones.

List Operation (M)
An MS abstract operation which allows a selection of entries from an information base
and requested attribute information to be returned for those entries.

Locally Administered
The configuration is not consistent across all systems and the administrator of each
system will provide documentation of its behaviour.

Main Entry (M)
For each successful MS abstract operation which creates information base entries, there is
always one main-entry; further or more detailed information resulting from the same MS
abstract operation can be stored in child-entries.

Matching (M)
The process of comparing the value supplied in an attribute value assertion with the
value of the indicated attribute type stored in the MS or deciding whether the indicated
attribute type is present.

182 X/Open CAE Specification (1993)

Glossary

Message Store (M)
The X.400 standard means by which messages can be delivered by the Message Transfer
service into a remote mailbox that is always available and from which a user can retrieve
messages at its convenience; in fact, the MS also provides retrieval, indirect submission,
and administration services to its user.

MS (M)
Abbreviated form of Message Store.

Multi-valued Attribute (M)
An attribute which can have several values associated with it.

Object (Object) (O)
A composite information entity comprising zero or more OM attributes of different
types.

Object Identifier
A value, distinguishable from all other such values, which is associated with an
information object.

OM Attribute (O)
An OM attribute comprises one or more values of a particular type (and therefore
syntax).

OM Class (O)
A static grouping of OM objects, within a specification, based on both their semantics
and their form.

Operation
Processing performed within the MS to provide a service, such as a fetch operation. It is
given some arguments as input, performs some processing and returns some results. An
application process invokes an operation by calling an interface function.

Original EITs (M)
An attribute identifying the original encoded information types of the message content.

Outstanding Operation
An operation, invoked asynchronously, which has not yet been the subject of a call to
Receive-Result().

Override (M)
A component of the selector parameter indicating that the previously registered
restrictions for this abstract operation should not apply for this instance of this abstract
operation.

Package (O)
A specified group of related OM classes denoted by an Object Identifier.

Parent Entry (M)
A parent-entry has one or more child-entries which were created as a result of the same
abstract operation. If a parent-entry is not a child-entry of another parent-entry, it is a
main-entry.

Partial Attribute Request (M)
A component of the Entry Information Selection which enables the return of only selected
values of a multi-valued attributes.

Private Object (O)
An OM object created in a workspace using the Object Management functions. See public

Message Store API (XMS) 183

Glossary

object.

Process
An address space, a single thread of control that executes within that address space and
its required system resources. As opposed to a ‘‘system process’’, or the OSI usage of the
term ‘‘application process’’. On a system that implements threads, a process is redefined
to consist of an address space with one or more threads executing within that address
space and their required system resources.

Public Object (O)
A descriptor list which contains all the OM attributes of an OM object. See private object.

Register-MS Operation (M)
An MS operation that allows the User Agent to register certain information, that is
relevant to interworking between the User Agent and the MS, within the MS.

Registration (M)
Information registered in the MS and stored (until changed by the Register-MS Operation)
between sessions (or associations).

Result
Information returned from a function or operation and which constitutes the outcome of
the processing which was performed.

Returned Content Entry (M)
An Entry Type in the stored messages information base which contains the returned
content from a previously submitted message.

Selector (M)
A parameter used in functions to select entries from an information base.

Sequence Number (M)
An MS attribute which uniquely identifies an entry within the MS; sequence numbers are
allocated in ascending order.

Session
A binding or an abstract association between a particular client and the service over
which a series of interface functions are requested.

Single-valued Attribute (M)
An MS attribute that can have only one value associated with it.

Stored Messages (M)
The type of information base used to store entries containing messages and reports
delivered by the Message Transfer System to the MS.

Summarize Operation (M)
An MS operation that allows a quick overview of the kind and number of entries which
are currently stored in an information base.

Syntax (O)
An OM syntax is any of various categories into which the Object Management
Specification statically groups values on the basis of their form. These categories are
additional to the OM type of the value.

Thread
A single sequential flow of control within a process.

184 X/Open CAE Specification (1993)

Glossary

Undefined
A feature is undefined if this document imposes no portability requirements on
applications for erroneous program construct or erroneous data. Implementations may
specify the result of using the feature; but such specifications are not guaranteed to be
consistent across all implementations. That is, it is always permissible to use the feature
but the result is not known unless specified by the particular implementation. See
unspecified.

Unspecified
A feature is unspecified if this document imposes no portability requirements on
applications for correct program construct or erroneous data. Implementations may
specify the result of using the feature; but such specifications are not guaranteed to be
consistent across all implementations. That is, it is always permissible to use the feature
but the result is not known unless specified by the particular implementation. See
undefined.

Value (O)
See Attribute Value.

Workspace (O)
A space in which OM objects of certain OM classes can be created, together with an
implementation of the Object Management functions which supports those OM classes.

Message Store API (XMS) 185

Glossary

186 X/Open CAE Specification (1993)

Index

Absent ...99
abstract class..10
Abstract Class (O) ..179
Abstract Syntax Notation One (ASN.1).............179
Acknowledgment-Mode.......................................147
action-type-not-subscribed106, 109
Activated ..45
Address...66
Administration..4
Administration FU ...35
Alert Operation (M) ...179
Alert-Address..66, 69
Alert-Indication...75
Alert-Qualifier ...66
Alert-Registration-Identifier...................................76
Alternate Recipient Allowed..................................70
Alternate-Recipient ..85
any syntax ..8
API ...2
Argument...179
arguments ..25
ASN.1 ..2, 179
asynchronous mode...28
Asynchronous operation179
asynchronous operations..................................28, 46
asynchrony-not-supported106, 116
Attribute ...25, 66
Attribute (M) ...179
Attribute (Object) (O) ..179
Attribute Syntax (O) ..179
attribute type ...4
Attribute Type (M) ...179
Attribute Type (Object) (O)180
attribute value ...4
Attribute Value (M)..180
Attribute Value (Object) (O).................................180
attribute value assertion..26
Attribute Value Assertion (AVA) (M).................180
Attribute Value Syntax (O)180
Attribute-Defaults ..66
Attribute-Error ..107
Attribute-Problem ..108
Attribute-Problems ..107
Attribute-Selection ...67
Attribute-Type.......................................25, 66-67, 108
attribute-type-not-subscribed......................106, 108

Attribute-Value ...108
Attribute-Values..25
attributes..9, 88, 126, 134
authentication-error.......................................106, 110
Authorizing-Users..142
Auto Action (M)..180
Auto Action Type (M)..180
Auto Alert (M)...180
Auto Forward (M) ..180
Auto-Action ...68
Auto-Action-Deregistration68
Auto-Action-Deregistrations53, 93
Auto-Action-Registration69
Auto-Action-Registrations53, 93
Auto-Action-Request-Error..................................109
Auto-Action-Request-Problem............................109
Auto-Action-Request-Problems109
Auto-Alert-Registration-Parameter......................69
Auto-Forward-Arguments70, 73
Auto-Forward-Registration-Parameter73
Auto-Forwarded...142
AVA...2, 26, 67, 99
Available-Attribute-Types......................................75
Available-Auto-Actions ..75
bad-argument..106, 116
bad-class...106, 116
bad-session ..106, 116
Basic Encoding Rules...180
BER ..2, 180
Bind ...22, 37
Bind() ..37
Bind-Argument...37, 74
Bind-Error...110
Bind-Result ..37, 75
Bind-Token...97
Blind-Copy-Recipients ..142
Body...140
Body-Part-Synopsis..140
Bound-Session...38
busy...106, 121
C language ...15
C language binding..15
C Naming Conventions ..16
cancel submission...4
Cancel-Submission...22, 39
Cancel-Submission() ...39

Message Store API (XMS) 187

Index

Cancel-Submission-Error......................................110
CCITT..2
Certificate ...97
change credentials ..4
Change-Credentials53, 76, 93
Check-Alert..22, 40
Check-Alert() ..40
Check-Alert-Result...76
Child Entry (M)...180
Child-Entries..95
child-entry-specified......................................106, 112
Class (Object)...180
Classes...7
client ..5
Common-Controls ...77
Communications-Error103, 111
communications-problem106, 111
Communique...56
completed-operation..49
Completion-Flag ...49
concrete class ...10
Concrete Class (O)..180
Confidentiality Algorithm......................................70
constraints ..10
Content Correlator ...70
Content Identifier ...71
Content Length (M)..180
Content Return Requested71
Content Returned (M) ...180
Content-Length...114
content-length-problem................................106, 114
Content-Type...81, 114
Content-Type-Int..81, 114
content-type-problem106, 114
Content-Types-Supported75
Conversion Loss Prohibited71
Conversion Prohibited...71
Converted EITs (M)..180
Copy-Recipients ...142
Count...67, 99-100
Creation Time (M)..181
Creation-Time-Range ..78, 90
Credentials ...78
data types ...31
Default-Delivery-Controls......................................79
Deferred Delivery Time...71
deferred-delivery-cancellation-rejected106, 110
delete ...3
Delete ..22, 41
Delete Operation (M)...181
Delete() ...41

Delete-After-Auto-Forward73
Delete-Argument..41, 80
Delete-Error ...111
Delete-Problem ...112
Delete-Problems..111
delete-restriction-problem............................106, 112
Deliverable-Content-Types81
Delivered EITs (M) ...181
Delivered Message Entry (M)181
Delivered Report Entry (M)..................................181
descriptor ...11
Descriptor (O)..181
descriptor list...9, 11
Descriptor List (O)..181
Directory...181
Discard-Reason ...147
Disclosure Allowed..71
EIT..114
eit-problem ..106, 114
EITs ..81
element-of-service-not-subscribed106, 112
Element-Of-Service-Not-Subscribed-Error.......112
entries..4
entry...4
Entry (M) ..181
Entry Information (M) ...181
Entry Information Selection (M)181
Entry Status (M)..181
Entry Type (M) ..181
Entry-Information ..83
Entry-Status ...130
Entry-Type ...130
Error...106
errors ...103
Expansion Prohibited...71
Expiry-Time...142
Extensions ..142
Feature...31-32
Feature() ...32
Feature-List ..5, 45
feature-not-negotiated106, 116
feature-not-requested ..35
feature-unavailable ..106, 116
features..5
Features...7
features ...45
fetch ...3
Fetch ..22, 43
Fetch Operation (M)...181
Fetch Restrictions (M)..181
Fetch-Argument..43, 82

188 X/Open CAE Specification (1993)

Index

Fetch-Attribute-Defaults.............................53, 82, 93
Fetch-Restriction-Error..113
Fetch-Restriction-Problem....................................114
Fetch-Restriction-Problems113
Fetch-Restrictions ...74
Fetch-Result ...83
File-Descriptor...96
Filter..69, 73, 83, 95
Filter (M)...181
Filter Item (M) ...182
Filter-Item...84
Forwarding Request (M).......................................182
From ..67, 78
From-Int..96
FU...2, 5, 35
Function..182
Function Arguments ..25
functional unit...5, 35
functional units ...5, 31
Functions ..7
G3-Fax-Data...141
General Attribute (M)..182
General Attributes ..4
General-Attributes ...125
Heading ..142
IA5..2
IA5-Repertoire...147
IA5-String...89
ID..2
identifiers..16
IM...2
Implementation-Defined182
Importance...142, 147
inappropriate-for-operation.........................106, 108
inappropriate-matching................................106, 108
inconsistent-request.......................................106, 115
Inconsistent-Request-Error...................................115
Indirect Submission..4
Indirect Submission (M)..182
Information Base (M)...182
Information Base Type (M)...................................182
information bases ...4
Information-Base-Type41, 43, 47, 58

...80, 82, 87, 98
Initialize..22, 45
Initialize() ..5, 37, 45
Initiator ...74, 96
Initiator-Credentials...74
inlog4, 41, 43, 47, 58, 80, 82, 87, 98
input parameters ..25
Interfaces ..7

Interval..61
invalid-attribute-value106, 108
invalid-feature...106
invalid-parameters...106, 115
Invalid-Parameters-Error......................................115
Invoke ID..182
Invoke-ID.........................27-28, 31, 33, 39, 41, 44, 48

..50, 52-53, 56, 59, 61
Invoke-ID() ..33
IPM...2
IPM-Entry-Type ..148
IPM-Synopsis ..144
IPN...2
ISO ...2
Item ...43, 82, 84
Item-To-Forward ..56, 84
Items..41, 80, 85
Label-And-Redirection85-86
Labels-And-Redirections ..86
Latest Delivery Time..71
Library-Error...29, 103, 116
Limit ..95
list...3
List ...22, 47, 83
List Operation (M)..182
List()..47
List-Argument...47, 87
List-Attribute-Defaults................................53, 87, 93
List-Result ..88
listed ..130
Locally Administered..182
Main Entry (M)..182
Matching (M)...182
max-outstanding-operations..................................28
Max-Outstanding-Opns-Requested28, 45
Maximum-Outstanding-Operations-In-Effect....46
Maximum-Sessions-In-Effect46
Maximum-Sessions-Requested45
Message Handling Package....................................35
Message Store..3
Message Store (M) ..183
Message Store Application Program Interface.....1
Message Store General Attributes Package ..5, 125
Message Store Package..5
Message Transfer System..3
Message-Body-Part-Synopsis144
message-submission-identifier-invalid106, 110
miscellaneous..106, 116
mixed-synchronous..29
MS...2-3
MS (M) ..183

Message Store API (XMS) 189

Index

MS Administration FU ..5
MS Alert FU ...5
MS API ..1
MS attribute...4, 25, 126
MS attributes ...4, 126, 134
MS entry...126, 134
MS FU..5
MS General Attributes Package.........................5, 35
MS IM attribute...134
MS IM Attributes Package................................5, 133
MS Package ..5
MS Submission FU ...5
MS-Bind ..4
MS-Configuration-Request.....................................74
MS-Entry-Information...88
MS-Entry-Information-Selection...........................89
MS-Package..63
MS-Unbind...4
MS_feature ...46
MS_status ...18
MS_SUCCESS ...18, 103
MTS..3
MTS-Identifier...39, 89
Multi-valued Attribute (M)183
new ..130
New-Credentials...76
New-Entry..76
Next ...83, 100
no-outstanding-operation.......................................49
no-such-class ...6, 106, 116
no-such-entry ..106, 121
Non-Message-Body-Part-Synopsis.....................145
Non-Receipt-Reason ..148
Number-Of-Pages ..146
Object (Object) (O) ...183
Object Identifier..................................10, 63, 134, 183
Obsoleted-IPMs ..142
Octet-String..89
Old-Credentials...76
OM ...2
OM attribute ..9
OM Attribute (O)..183
OM attribute type ...9
OM attributes..9, 126, 134
OM class ...10
OM Class (O) ...183
OM class hierarchy...10
OM object ...9
OM-Decode() ..6
OM-Encode()...6
Operation ...183

Operation-Status ..49, 103
Optional Functionality ..96
Options ...8
OR-Name ...89
Origin Check..71
Original EITs..71
Original EITs (M) ..183
Originator...142
Originator Certificate...71
Originator Name...71
Originator Return Address.....................................71
originator-invalid...106, 117
Originator-Invalid-Error.......................................117
OSI ...2
Other-Parameters ...73
out-of-memory..106, 116
outlog...........................4, 41, 43, 47, 58, 80, 82, 87, 98
Outstanding Operation ...183
outstanding-operation...49
Override..95
Override (M)..183
P3 protocol ...3
P7 protocol ...3, 5
package ...11
Package (O) ..183
Package-Closure ...11
packages ...5
Parent Entry (M) ...183
Partial Attribute Request (M)...............................183
Password ..89
Permissible-Content-Types79
Permissible-Content-Types-Int..............................79
Permissible-EITs..79
Permissible-Lowest-Priority...................................77
Permissible-Maximum-Content-Length..............77
Permissible-Operations ...77
Precise..84-85
Present...99
Primary-Recipients...142
Priority..72, 130
private object ...11
Private Object (O) ...183
Problem...106
Process ..184
processed..130
Proof of Submission Requested.............................72
Protocols ...7
public object...11
Public Object (O)...184
Range ..90, 95
Range-Error..118

190 X/Open CAE Specification (1993)

Index

Reassignment Prohibited..72
Receive-Result...22, 49
Receive-Result()...................................28, 49, 60, 103
Recipient Descriptors...72
recipient-improperly-specified............................118
register ..4
Register ...22, 51
Register()..51
Register-Argument ..51, 91
register-MS...3
Register-MS ...22, 53
Register-MS Operation (M)184
Register-MS() ..53
Register-MS-Argument.....................................53, 93
register-rejected ..106, 119
Register-Rejected-Error ...119
Registration (M)..184
Registration-ID..68
Registration-Parameter ...69
Related-IPMs ...142
Remote Operations Service Element....................27
remote-bind-error...106, 110
Remote-Bind-Error...119
remote-bind-error...119
Replied-To-IPM...142
Reply-Recipients...142
Reply-Time ..142
Requested...100
Requested-Attributes43, 47, 69, 82, 87
Responder-Credentials..75
Restrict ..77
Restrictions ..94
Result40, 43, 47, 50, 56, 58, 61, 184
Retrieval..3
Returned Content Entry (M)184
reversed..106, 118
ROSE ...27
security ...29, 106, 120
Security Label ..72
Security-Classification...131
Security-Context ...74
Security-Error..120
Security-Label ...85, 94
Security-Problem ..120
Selection..89
Selector47, 58, 84-85, 87, 95, 98
Selector (M)..184
Sensitivity ..142, 148
Sequence Number (M)...184
Sequence-Number4, 84, 88, 112, 121
Sequence-Number-Error.......................................120

Sequence-Number-Problem.................................121
Sequence-Number-Problems120
Sequence-Number-Range.................................90, 96
Service-Error..121
session24, 31, 39-41, 43, 47, 49

...51, 53, 56, 58, 60-61, 96
Session ..184
Shutdown...22, 55
Shutdown()..55
Simple ...78
Single-valued Attribute (M)184
Span...100
Status18, 31, 34, 36-37, 39-41, 43, 45

..47, 49, 52-53, 56, 58, 60-61
Status() ...34
stored messages ..4
Stored Messages (M)..184
stored-messages41, 43, 47, 58, 80, 82, 87, 98
Strong..78
Strong-Credentials ...97
subclasses ...10
Subject ...142
Submission FU ..35
submission-control-violated106, 122
Submission-Control-Violated-Error122
Submission-Results ..97
Submit...22, 56
submit message...4
submit probe..4
Submit() ...56
Submitted-Communique ..97
Submitted-Message..97
Submitted-Probe ...98
success...18
Summaries ...100
summarise ..3
Summarize...22, 58
Summarize Operation (M)....................................184
Summarize()..58
Summarize-Argument58, 98
Summary ..99
Summary-Present ...99
Summary-Requests....................................58, 98, 100
Summary-Result ...100
superclass ...10
synchronous mode ...28
syntax ..9
Syntax (O) ..184
syntax any ..8
System-Error ...103, 122
Teletex-Data ...146

Message Store API (XMS) 191

Index

Teletex-Document ..146
Teletex-Parameters ...146
This-IPM...142
Thread...184
To..78
To-Int ...96
too-many-operations...............................29, 106, 116
too-many-sessions..106
Type...68, 109
UA..3
unable-to-establish-association106, 110
unacceptable-security-context106, 110
unavailable ..106, 121
unavailable-action-type106, 109
unavailable-attribute-type106, 108
Unbind..22, 60
Unbind()...29, 60
Undefined...185
Unspecified ..185
unsupported-critical-function106, 123
Unsupported-Critical-Function-Error................123
unwilling-to-perform106, 121
User Agent ...3
User-Security-Labels..53, 93
value ..9
Value (O)...185
Videotex-Syntax..148
Wait ...22, 61
Wait() ..61
Wait-New-Available ..101
Wait-Result ..101
workspace ..11, 46
Workspace (O)...185
X.400 APIA...2
XOM API ..9

192 X/Open CAE Specification (1993)

