
X/Open CAE Specification

ACSE/Presentation Services API (XAP)

X/Open Company Ltd.

 September 1993, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

ACSE/Presentation Services API (XAP)

ISBN: 1-872630-91-X
X/Open Document Number: C303

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification (1993)

ACSE/Presentation Services API (XAP) iii

ii X/Open CAE Specification (1993)

Contents

Chapter 1 Introduction... 1
 1.1 Objectives ... 2
 1.2 Audience... 4
 1.3 Structure of this Specification .. 5
 1.4 Overview of ACSE/Presentation Services .. 6
 1.5 Terminology and Conventions .. 9
 1.6 XAP Compliance... 10
 1.7 Future Directions .. 11

Chapter 2 Overview of XAP.. 13
 2.1 XAP Model ... 14
 2.2 XAP Functions and Mechanisms... 17
 2.2.1 Establishing and Releasing an XAP Instance..................................... 17
 2.2.2 Reuse of an XAP Instance .. 18
 2.2.3 Managing the XAP Environment ... 18
 2.2.4 Sending and Receiving XAP Service Primitives................................ 18
 2.2.5 Sharing an XAP Instance .. 20
 2.2.6 Presentation Context Negotiation.. 21
 2.2.7 Presentation Addresses .. 21
 2.2.8 Memory Management Mechanisms .. 23
 2.2.9 Control Data Structure ... 23
 2.2.10 Error Reporting .. 24
 2.2.11 Execution Mode ... 24
 2.2.12 User Data Mechanisms... 25
 2.3 Using the XAP Interface .. 30
 2.4 Association Listeners ... 32

Chapter 3 Environment.. 33

Chapter 4 XAP Functions.. 55
 4.1 Introduction ... 56
 4.1.1 Functions ... 56
 4.1.2 Errors.. 56
 4.1.3 Structure Definitions ... 59
 4.1.4 Token Assignment ... 60
 ap_bind() .. 61
 ap_close ().. 62
 ap_error() ... 63
 ap_free().. 64
 ap_get_env() .. 66
 ap_init_env () ... 67
 ap_ioctl () .. 69

ACSE/Presentation Services API (XAP) iii

Contents

 ap_look ()... 71
 ap_open().. 75
 ap_poll () ... 78
 ap_rcv() .. 80
 ap_restore() .. 87
 ap_save() .. 90
 ap_set_env() ... 91
 ap_snd().. 93

Chapter 5 XAP Commands.. 101
 ap_osic ... 102

Chapter 6 XAP File Formats.. 105
 6.1 Environment File... 105

Chapter 7 XAP Primitives... 111
 A_ABORT_REQ.. 112
 A_ABORT_IND .. 113
 A_ASSOC_REQ .. 115
 A_ASSOC_IND... 118
 A_ASSOC_RSP ... 121
 A_ASSOC_CNF .. 125
 A_PABORT_REQ ... 130
 A_PABORT_IND .. 133
 A_RELEASE_REQ.. 137
 A_RELEASE_IND .. 139
 A_RELEASE_RSP... 141
 A_RELEASE_CNF .. 143
 P_ACTDISCARD_REQ ... 145
 P_ACTDISCARD_IND .. 147
 P_ACTDISCARD_RSP .. 149
 P_ACTDISCARD_CNF ... 151
 P_ACTEND_REQ ... 152
 P_ACTEND_IND.. 154
 P_ACTEND_RSP.. 155
 P_ACTEND_CNF ... 157
 P_ACTINTR_REQ .. 158
 P_ACTINTR_IND... 160
 P_ACTINTR_RSP ... 162
 P_ACTINTR_CNF .. 164
 P_ACTRESUME_REQ... 165
 P_ACTRESUME_IND ... 168
 P_ACTSTART_REQ ... 170
 P_ACTSTART_IND .. 172
 P_CDATA_REQ .. 173
 P_CDATA_IND ... 174
 P_CDATA_RSP ... 175
 P_CDATA_CNF .. 177

iv X/Open CAE Specification (1993)

Contents

 P_CTRLGIVE_REQ .. 178
 P_CTRLGIVE_IND .. 180
 P_DATA_REQ ... 181
 P_DATA_IND .. 183
 P_RESYNC_REQ.. 184
 P_RESYNC_IND .. 186
 P_RESYNC_RSP... 188
 P_RESYNC_CNF .. 190
 P_SYNCMAJOR_REQ... 191
 P_SYNCMAJOR_IND ... 193
 P_SYNCMAJOR_RSP.. 194
 P_SYNCMAJOR_CNF ... 196
 P_SYNCMINOR_REQ .. 197
 P_SYNCMINOR_IND ... 199
 P_SYNCMINOR_RSP ... 201
 P_SYNCMINOR_CNF... 203
 P_TDATA_REQ .. 204
 P_TDATA_IND ... 206
 P_TOKENGIVE_REQ .. 207
 P_TOKENGIVE_IND... 209
 P_TOKENPLEASE_REQ... 211
 P_TOKENPLEASE_IND ... 213
 P_XDATA_REQ .. 215
 P_XDATA_IND ... 216
 P_PXREPORT_IND ... 217
 P_UXREPORT_REQ.. 218
 P_UXREPORT_IND .. 220

Appendix A XAP Header File.. 221

 Glossary ... 229

 Index... 231

List of Figures

1-1 OSI Service Interfaces ... 2
1-2 OSI Upper Layers... 6
2-1 XAP Model .. 14
2-2 Establishing an Association... 20
2-3 Basic Buffer Structures .. 25
2-4 Advanced Buffer Example ... 25

List of Tables

2-1 XAP Functions .. 17
2-2 XAP Service Primitives... 19
6-1 Attributes that may be Initialised in an Environment File.................... 106

ACSE/Presentation Services API (XAP) v

Contents

vi X/Open CAE Specification (1993)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable system environment, called the Common
Applications Environment (CAE). This environment covers the standards, above the hardware
level, that are needed to support open systems. It provides for portability and interoperability of
applications, and allows users to move between systems with a minimum of retraining.

The components of the Common Applications Environment are defined in X/Open CAE
Specifications. These contain, among other things, an evolving portfolio of practical application
programming interfaces (APIs), which significantly enhance portability of application programs
at the source code level, and definitions of, and references to, protocols and protocol profiles,
which significantly enhance the interoperability of applications.

The X/Open CAE Specifications are supported by an extensive set of conformance tests and a
distinct X/Open trademark - the XPG brand - that is licensed by X/Open and may be carried
only on products that comply with the X/Open CAE Specifications.

The XPG brand, when associated with a vendor’s product, communicates clearly and
unambiguously to a procurer that the software bearing the brand correctly implements the
corresponding X/Open CAE Specifications. Users specifying XPG-conformance in their
procurements are therefore certain that the branded products they buy conform to the CAE
Specifications.

X/Open is primarily concerned with the selection and adoption of standards. The policy is to
use formal approved de jure standards, where they exist, and to adopt widely supported de facto
standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organisations to assist in the creation of formal standards covering the needed
functions, and to make its own work freely available to such organisations. Additionally,
X/Open has a commitment to align its definitions with formal approved standards.

X/Open Specifications

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the long-life specifications that
form the basis for conformant and branded X/Open systems. They are intended to be used
widely within the industry for product development and procurement purposes.

ACSE/Presentation Services API (XAP) vii

Preface

Developers who base their products on a current CAE Specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future XPG brand (if not referenced already), and that a variety of compatible, XPG-branded
systems capable of hosting their products will be available, either immediately or in the near
future.

CAE Specifications are not published to coincide with the launch of a particular XPG brand,
but are published as soon as they are developed. By providing access to its specifications in
this way, X/Open makes it possible for products that conform to the CAE (and hence are
eligible for a future XPG brand) to be developed as soon as practicable, enhancing the value
of the XPG brand as a procurement aid to users.

• Preliminary Specifications

These are specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations, that are
released in a controlled manner for the purpose of validation through practical
implementation or prototyping. A Preliminary Specification is not a ‘‘draft’’ specification.
Indeed, it is as stable as X/Open can make it, and on publication has gone through the same
rigorous X/Open development and review procedures as a CAE Specification.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by formal
standards organisations, and product development teams are intended to develop products
on the basis of them. However, because of the nature of the technology that a Preliminary
Specification is addressing, it is untried in practice and may therefore change before being
published as a CAE Specification. In such a case the CAE Specification will be made as
upwards-compatible as possible with the corresponding Preliminary Specification, but
complete upwards-compatibility in all cases is not guaranteed.

In addition, X/Open periodically publishes:

• Snapshots

Snapshots are ‘‘draft’’ documents, which provide a mechanism for X/Open to disseminate
information on its current direction and thinking to an interested audience, in advance of
formal publication, with a view to soliciting feedback and comment.

A Snapshot represents the interim results of an X/Open technical activity. Although at the
time of publication X/Open intends to progress the activity towards publication of an
X/Open Preliminary or CAE Specification, X/Open is a consensus organisation, and makes
no commitment regarding publication.

Similarly, a Snapshot does not represent any commitment by any X/Open member to make
any specific products available.

X/Open Guides

X/Open Guides provide information that X/Open believes is useful in the evaluation,
procurement, development or management of open systems, particularly those that are
X/Open-compliant.

X/Open Guides are not normative, and should not be referenced for purposes of specifying or
claiming X/Open-conformance.

viii X/Open CAE Specification (1993)

Preface

This Document

This document is a CAE Specification.

XAP is an Application Programming Interface to the connection-oriented services of the
Presentation Layer of the OSI protocol stack, including access to the ACSE application service
element from the Application Layer. X/Open has defined this API as an interface to support
portable implementations of application-specific OSI services and non-OSI applications.

This specification describes the XAP API and defines the functions and data structures which it
provides for use by applications.

Structure

• Chapter 1 is an introduction.

• Chapter 2 lists XAP functions and describes how they may be used to set up associations and
transfer data.

• Chapter 3 describes the XAP environment used for transferring data and control information
between the XAP and the API user.

• Chapter 4 define the functions which make up XAP.

• Chapter 5 presents manual pages for XAP commands. Specifically, it describes the XAP
ap_osic() command.

• Chapter 6 provides information on the format of files used by XAP. Specifically, it describes
the XAP environment file, which is used by the ap_osic() command.

• Chapter 7 presents manual pages for each of the primitives of the underlying OSI services to
which the XAP provides access via the ap_snd() and ap_rcv() functions.

• Appendix A presents a subset of the contents of the <xap.h> header file.

Intended Audience

It is aimed at two groups of readers:

API Implementors
System vendors who are implementing an OSI stack may use this specification to design an
XAP-conformant interface to the stack’s services, facilitating support of applications from
diverse sources.

Applications Implementors
Implementors of OSI and non-OSI applications which are to run over OSI protocol stacks
may use this specification to assist in the design of applications which are portable across
OSI protocol stack implementations from different system vendors. Here the term OSI
applications includes both application

ACSE/Presentation Services API (XAP) ix

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items.

x X/Open CAE Specification (1993)

Trademarks

X/OpenTM and the ‘‘X’’ device are trademarks of X Company Ltd. in the U.K. and other
countries.

ACSE/Presentation Services API (XAP) xi

Referenced Documents

The following documents are referenced in this specification:

The OSI reference model

ISO 7498: 1984
Information Processing Systems - Open Systems Interconnection - Basic Reference Model

ISO/IEC Session, Presentation, ACSE

ISO/IEC pDISP 11188
International Standardized Profiles for ISO/IEC Session, Presentation and ACSE are under
development as "ISO/IEC pDISP 11188 - Common Upper Layer Requirements - Part 3:
Minimal Upper Layer Facilities. This is expected to reach ISP status by Q1/94.

ISO ACSE

ISO 8649: 1988
Information Processing Systems - Open Systems Interconnection - Service Definition for the
Association Control Service Element

ISO 8650: 1988
Information Processing Systems - Open Systems Interconnection - Protocol Specification for
the Association Control Service Element

ISO presentation

ISO 8822: 1988
Information Processing Systems - Open Systems Interconnection - Connection Oriented
Presentation Service Definition

ISO 8823: 1988
Information Processing Systems - Open Systems Interconnection - Connection Oriented
Presentation Protocol Specification

ASN.1 notation

ISO/IEC 8824: 1990
Information Technology - Open Systems Interconnection - Specification of Abstract Syntax
Notation One (ASN.1)

ASN.1 basic encoding rules

ISO/IEC 8825: 1990
Information Technology - Open Systems Interconnection - Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1)

xii X/Open CAE Specification (1993)

Referenced Documents

OSI Session Layer

ISO 8326 : 1987
Information processing systems - Open systems interconnection - Connection oriented
session service definition

ISO 8326/AD 2 : 1988
Information processing systems - Open systems interconnection - Connection oriented
session service definition - Addendum 2: Incorporation of unlimited user data

ISO 8326/AMD 4 : 1992
Information processing systems - Open systems interconnection - Connection oriented
session service definition - Amendment 4: Additional synchronization functionality

ISO 8327 : 1987
Information processing systems - Open systems interconnection - Connection oriented
session protocol specification

ISO 8327/AD 2 : 1988
Information processing systems - Open systems interconnection - Connection oriented
session protocol specification - Addendum 2: Incorporation of unlimited user data

ISO 8327/AMD 3 : 1992
Information processing systems - Open systems interconnection - Connection oriented
session protocol specification - Amendment 3: Additional synchronization functionality.

ACSE/Presentation Services API (XAP) xiii

Referenced Documents

xiv X/Open CAE Specification (1993)

Chapter 1

Introduction

This document is an X/Open CAE Specification (see Preface for a description of the types of
X/Open publication). It defines the X/Open ACSE/Presentation programming interface (XAP),
an interface to the OSI Association Control Service Element in the Application Layer and to the
Presentation Layer of the seven-layer Open Systems Interconnection Reference Model.

ACSE/Presentation Services API (XAP) 1

Objectives Introduction

1.1 Objectives
X/Open has already designed an Application Programming Interface (API) which can be used to
access the OSI protocol stack at the Transport Layer. The X/Open Transport Interface (XTI)
provides an interface to a wide range of underlying protocol stacks (for example OSI, TCP/IP,
proprietary) and is independent of the particular implementation of the underlying protocol
stack. Thus, XTI facilitates portability of applications among different protocol suites and
among operating systems and protocol stack implementations.

There are a number of reasons why X/Open has decided to define a second API, to access the
services provided by the upper layers of the OSI stack:

• Above the Transport Layer, the OSI layer and service elements are divided into those that
provide services common to all applications (for example the Presentation Layer, ACSE, and
so on), and those that are specific to a particular application or group of applications (for
example FTAM, X.500, etc.). In the absence of an open API to the upper layers of the OSI
protocol stack, the application implementor is faced with two choices: either each application
must incorporate an implementation of the upper layers; or applications must be
implemented to access the upper layers via a non-standard (perhaps proprietary) API. The
former approach does have the advantage of allowing the application to tune the upper layer
implementation by closely coupling it to the application’s requirements, however it has the
disadvantage that the user may have to use and manage multiple implementations of the
upper layers. The latter approach risks locking the user into a particular product family. A
standardised interface at the highest point of commonality shared among most Application
Layer services (which is the ACSE/Presentation level) allows the user to avoid this problem
by making possible separation between the application-specific and common elements of the
stack via an open API.

• Further, companies which have implemented or bought OSI stacks may not wish to
implement each new OSI Application Layer service as it emerges. A standard interface
capable of supporting these applications (like FTAM, X.500, etc.) makes it possible for system
vendors and users to purchase Application Layer products from various ISVs and add them
to their existing common stack for lower layers.

• Finally, there is a requirement to implement non-OSI applications directly over an OSI
protocol stack. This requirement arises either because of the lack of an OSI application
service suitable for supporting the particular application, or because the application already
incorporates all the Application Layer services it requires. Many non-OSI applications are
currently implemented using the services of the OSI Transport Layer. However, a number of
characteristics of the transport service (for example, its lack of an orderly release service)
make it inappropriate for the support of certain applications without some enhancement.
Again, a standardised interface to the upper layers of the OSI stack provides a suitable
platform upon which to implement such applications in a portable fashion.

This latter requirement is an important element in strategies for coexistence between OSI and
other protocol suites, and for migration of networks from those protocol suites to OSI, as a
number of the techniques employed rely upon implementing existing applications on top of
an OSI protocol stack.

For these reasons, X/Open has identified an API to the connection-oriented services of the
Presentation Layer and the ACSE application-service-element as the interface to support
portable implementations of application-specific OSI services and non-OSI applications.

Figure 1-1 illustrates possible APIs to OSI services and their relationship to potential
applications.

2 X/Open CAE Specification (1993)

Introduction Objectives

APPLICATION
-SPECIFIC
SERVICES

APPLICATION
-SPECIFIC API

OSI
APPLICATION

NON-OSI
APPLICATION

OSI TRANSPORT
SERVICES

XTI API

ACSE

OSI UPPER
LAYERS

XAP API

Figure 1-1 OSI Service Interfaces

Purpose

The purpose of this Specification is to describe the XAP API and to define the functions and data
structures which it provides for use by applications. The specification defines the state
information which controls the operation of the API and its underlying service-provider, the
states in which the primitives provided by the API are valid, and the effect on the state
information of each of these primitives.

It is not the purpose of this specification to define a particular subset of the ACSE and
Presentation Layer protocols which implementations must support. The compliance
requirements for an implementation of the API and the underlying protocol implementation to
which it provides access are defined in Section 1.6 on page 10.

ACSE/Presentation Services API (XAP) 3

Audience Introduction

1.2 Audience
This specification has two specific groups of implementors as its target audience:

API Implementors
System vendors who are implementing an OSI stack may use this specification to design an
XAP-conformant interface to the stack’s services, facilitating support of applications from
diverse sources.

Applications Implementors
Implementors of OSI and non-OSI applications which are to run over OSI protocol stacks
may use this specification to assist in the design of applications which are portable across
OSI protocol stack implementations from different system vendors. Here the term OSI
applications includes both application utilities and application-specific APIs.

4 X/Open CAE Specification (1993)

Introduction Structure of this Specification

1.3 Structure of this Specification
• The remainder of this chapter consists of the following sections:

— Section 1.4 on page 6 gives a short description of the services to which the API provides
access.

— Section 1.5 on page 9 describes terms used in the rest of the specification and describes the
typographical conventions used in the manual pages.

— Section 1.6 on page 10 defines the requirements placed upon implementations of this API.
These include the minimum set of functions that must be provided by an implementation
of XAP, and the requirements placed upon the underlying ACSE and Presentation Layer
implementations.

— Section 1.7 on page 11 describes areas of development of the OSI standards upon which
this document is based, which may result in changes and/or extensions to the interface in
a possible future version of XAP.

• Chapter 2 lists XAP functions and describes how they may be used to set up associations and
transfer data. This chapter also describes the data structures provided for transferring data
and control information between XAP and the API user and shows how these data structures
are used.

• Chapter 3 describes the XAP environment attributes and the data structures used for
transferring data and control information between the XAP and the API user.

• Chapter 4 presents the manual pages for the XAP API. These define the functions which make
up XAP, providing the detailed specifications of parameters and data structures. There are
also manual pages defining the contents of the XAP environment and the data structures
used for transferring data and control information between XAP and the API user.

The manual pages for ap_snd() and ap_rcv() include tables which define the valid states in
which each primitive can be sent or received, the resulting state, and the effect on the
variables that control the protocol’s operation.

• Chapter 5 presents manual pages for XAP commands. Specifically, it describes the XAP
ap_osic() command.

• Chapter 6 provides information on the format of files used by XAP. Specifically, it describes
the XAP environment file, which is used by the ap_osic() command to compile a file that the
ap_init_env() function can use to initialise the XAP Library environment.

• Chapter 7 presents manual pages for each of the primitives of the underlying OSI services to
which the XAP provides access via the ap_snd() and ap_rcv() functions. Each manual page
provides a short description of an ACSE or Presentation Layer primitive, including the
circumstances under which it may be sent or received, and a detailed description of the
parameters associated with it.

• Appendix A presents a subset of the contents of the <xap.h> header file.

ACSE/Presentation Services API (XAP) 5

Overview of ACSE/Presentation Services Introduction

1.4 Overview of ACSE/Presentation Services
Readers of the subsequent chapters of this specification must be familiar with the services
provided by the underlying OSI protocol stack. This section provides a brief overview of the
services of the upper layers of the OSI protocol stack for the benefit of those readers who require
it. The text includes references to the OSI specifications for the services and protocols under
discussion.

Upper Layer Architecture

Within the OSI Basic Reference Model the Transport Layer and the layers below cooperate to
provide an end-to-end transmission path using the available networks. These layers are
network-dependent; functions such as error detection and correction, flow control and
sequencing, may occur at different layers, depending on the types of network involved. (For
example, these functions may be provided by a connection-oriented Data Link layer, an X.25-
based Network Layer, or by the Transport Layer.)

The layers above the Transport Layer can be regarded as network-independent as the Transport
Layer provides a consistent service regardless of the variations in the layers below. These layers
are known as the Upper Layers and consist of the Session Layer, Presentation Layer, and the
Application Layer (which is organised internally as a set of application-service-elements).
Figure 1-2 gives a simplified picture of how these layers fit together. The layers are discussed
individually below.

SPECIFIC APPLICATION
SERVICES - e.g. FTAM

COMMON APPLICATION
SERVICES - e.g. ACSE

APPLICATION LAYER
SERVICES

DATA REPRESENTATION
PRESENTATION LAYER

SERVICES

SYNCHRONIZATION,
ACTIVITIES, ORDERLY RELEASE,

FULL/HALF DUPLEX
SESSION LAYER

SERVICES

CONNECTION MANAGEMENT
AND RELIABLE DATA TRANSFER TRANSPORT LAYER

SERVICES

Figure 1-2 OSI Upper Layers

6 X/Open CAE Specification (1993)

Introduction Overview of ACSE/Presentation Services

Application Layer

This layer provides the means by which OSI Applications access the services of an OSI protocol
stack. The OSI Basic Reference Model describes communications between application-entities
(defined as the aspects of an application process pertinent to OSI). An application entity consists
of the communications aspects of the application plus a number of application-service-elements
which are part of the Application Layer and provide OSI services to the user. Application-
service-elements may be specific to a particular application (for example, the Common
Management Information Service Element, CMISE, which provides information and command
exchange services for use by management applications), or generally useful to a range of
applications (for example, ACSE, which provides association control services for establishing
and releasing associations between application entities). Each service element uses the services
of the Presentation Layer and possibly other service elements to implement its protocol and
provide its service. For example, a File Transfer, Access and Management (FTAM) initiator relies
upon ACSE to establish an association with a remote FTAM responder. Presentation Layer
primitives are then used to pass FTAM Protocol Data Units (PDUs) to the peer application-
entity. The Common Management Information Protocol (CMIP), on the other hand, uses the
services of the Remote Operation Service (ROSE) to exchange its PDUs.

The ACSE application-service-element (reference ISO 8649 and ISO 8650) defines service
primitives which map directly to the equivalent primitives of the Presentation and Session
Layers with a number of additional parameters, used to identify the application-entities
involved in an association and to agree the application context in which communication is to
occur (that is, the set of application-service-elements and associated information required for a
particular application).

Presentation Layer

The Presentation Layer (reference ISO 8822 and ISO 8823) is responsible for the representation
of data in transit between application entities. The main purpose of this representation is to
preserve the meaning of the data transferred over an association. This allows cooperating
application entities to exchange data without being concerned about differences of
representation of data objects (for example, byte-ordering and size of integers). Future
extensions to the Presentation Layer may include provision of support for data compression and
data encryption.

The service primitives available at this layer map directly to those defined for the Session Layer;
the Presentation Layer transforms the data units passed to it by an application entity from the
local syntax into an agreed transfer syntax and then passes the resulting data unit to the session
layer. The peer Presentation Layer performs the opposite transformation before passing the
resulting data unit to its application entity.

The layer negotiates, on behalf of the application entity, a set of abstract syntaxes that are to be
used during the session. (An abstract syntax is defined by a protocol specification to describe
the structure of the Protocol Data Units which are transferred by the protocol. Abstract syntaxes
are expressed using ASN.1, which is specified in ISO/IEC 8824.) For example, an FTAM
application entity requesting a presentation connection would specify the abstract syntaxes for
ACSE (to represent ACSE’s data units), FTAM (to represent FTAM’s data units) and one or more
syntaxes for the FTAM document types that are to be used during this FTAM session.

Each data value passed to the Presentation Layer specifies the abstract syntax to which it
belongs (the abstract syntax name). This provides the information required by the Presentation
Layer to encode the data value into the transfer syntax. A data value may contain embedded
values which belong to other syntaxes. Again, the abstract syntax name for the embedded value
is sufficient to allow the Presentation Layer to encode it.

ACSE/Presentation Services API (XAP) 7

Overview of ACSE/Presentation Services Introduction

Session Layer

The Session Layer (reference ISO 8326 and ISO 8327) enhances the basic end-to-end service of
the Transport Layer by providing services which allow applications to organise and synchronise
their interactions and data transfers. These services are supported by a set of tokens and service
primitives which control their exchange, the use of which is negotiated during session
connection establishment.

In addition to connection establishment and data transfer services which map closely onto those
of the Transport Layer, the Session Layer provides the following services:

• Orderly Release Service.
This service is used to ensure that session release occurs without loss of data. To
request/refuse a session release an application must control the release token.

• Synchronisation Services.
These services allow data transfer to be controlled for the purposes of recovery. The major
sychronisation point service divides a data exchange into dialogue units, the data in each
dialogue unit being confirmed to have been received correctly before the next unit can be
started. The major and minor synchronisation point services identify points in the data
transfer at which recovery may occur. The resynchronisation service allows the data transfer
to be restarted at an identified synchronisation point (not earlier than the last major
synchronisation point). The right to issue synchronisation point requests is determined by
control of the synchronize-minor token and major/activity token respectively.

• Activity Services.
These services allow a data exchange to be divided into distinct logical pieces of work,
bracketed by Activity Start and Activity End requests. Activities can be divided into
dialogue units by using the Major Synchronize service, and can be interrupted and resumed.
Again, the right to start or end an activity is determined by control of the major/activity
token.

• Half-Duplex Data Transfer Service.
This service allows session service users to take turns at transferring data over a session
connection. Permission to transfer data is controlled by possession of the data token.

8 X/Open CAE Specification (1993)

Introduction Terminology and Conventions

1.5 Terminology and Conventions

Definition of Terms

The terminology used in this specification is that defined in the OSI standards which define the
services to which XAP provides access. For convenience, the Glossary on page 231 provides
brief definitions for these terms. Terms which have specific meaning for the XAP API are
defined in Section 2.1 on page 14.

Use of Naming Prefixes

In order to preserve uniqueness, all functions, typedefs, data items and constants defined by this
specification have names that begin with the prefix ap_ or AP_.

While the AP_ prefix is used on the symbolic constant which identifies a primitive, it is not
applied to the primitive name itself, to avoid making primitive names unecessary unwieldy.

Alignment with ISO C

As part of updating the XAP PS to CAE specification status, the definition of the API has been
modified to align it with the ISO C standard.

• The function definitions use the ISO C function declaration syntax

• The "const" type qualifier has been added to those arguments that are treated as "read-only"
by the API functions.

ACSE/Presentation Services API (XAP) 9

XAP Compliance Introduction

1.6 XAP Compliance
All the XAP functions, as listed in Table 2-1 on page 17, must be provided. However, the
functionality defined for some of these functions is optional. When a function call is made
requesting an optional service which is not available, the implementation must return the error
code [AP_NOT_SUPPORTED].

In particular, a conforming implementation may choose to provide no support for:

• the use of ap_save() and ap_restore() as a method of sharing an XAP instance between
cooperating processes

• the use of ap_look() and ap_restore() with a NULL savef argument as a way of supporting
Association Listening

• the use of ap_look() to examine incoming primitives

• the use of the ap_ioctl() function

• the use of the ap_osic command

• the ap_init_env() function when called with a non-null env_file argument

• Selector and NSAP wildcarding in the Presentation Address.

When a request for such unsupported functionality is made, the implementation must return the
error code [AP_NOT_SUPPORTED].

An implementation which complies with this specification shall also comply with the
Conformance clauses of the ISO/IEC protocol specifications which this specification references.
These Conformance clauses specify:

• requirements on combinations of functional units

• by implication, permitted sequences of primitives.

It should be noted that the ISO/IEC Session Protocol Conformance clause is currently being
revised. When this revision is accepted, the revised Conformance clause will apply.

The choice of underlying profile determines which XAP Service primitives, as listed in Table 2-2
on page 19, are supported. The features of the underlying profile are stated in the appropriate
Protocol Implementation Conformance Statement (PICS). PICS Proforma for the ISO/IEC
Session, Presentation and ACSE Protocol Specifications are currently under ballot. Conformant
completion of these PICS Proforma shall also apply to implementations claiming conformance to
this specification, once these PICs have been approved by ISO/IEC.

International Standardized Profiles (ISP) allow a reduced set of underlying features to be
specified, by placing restrictions on the PICS. These restrictions are in terms of a requirements
list - effectively deltas to the (protocol) PICS status column - and contain additional questions
relevant to the profile. For example, an ISP may define some parameters as out of scope, enabling
the implementation to ignore them. International Standardized Profiles for ISO/IEC Session,
Presentation and ACSE are under development as ISO/IEC pDISP 11188 - for example,
‘‘Common Upper Layer Requirements - Part 3: Minimal Upper Layer Facilities’’. These are
expected to reach ISP status by Q1/94.

The list of relevant ISPs is given in the XAP Component Definition. Support for specific profiles
Shall be declared by the vendor in the XAP Conformance Statement Questionnaire (CSQ).

10 X/Open CAE Specification (1993)

Introduction Future Directions

1.7 Future Directions
This specification is issued at "CAE" status. It will be updated from time to time in order to
maintain alignment with the International Standards which support it or to address support
issues.

Application Context Negotiation During Association Establishment

An Amendment to the ACSE Service and Protocol is currently being prepared. The proposed
change introduces the Application Context Negotiation functional unit and a new parameter to
the A-ASSOCIATE request/indication/response/confirm service. If the proposed change is
accepted by ISO/IEC, it will be visible as:

• an addition to the values permissible in the XAP library environment attribute for
AP_AFU_AVAIL and AP_AFU_SEL, to introduce the new functional unit

• an addition to the ap_a_assoc_env_t structure to introduce the application context name list

• an additional question in the XAP CSQ on support of the functional unit and related
parameters.

ACSE Authentication

Amendment 1 to the ACSE Service Definition (ISO 8649) and to the ACSE Protocol Specification
(ISO 8650) define authentication during association establishment. This facility provides for a
two-way exchange of information that can support authentication methods including password
mechanisms.

X/Open may consider updating this specification to support the new features defined therein.

Presentation Context Management and Restoration

This XAP specification has no provision for the Presentation Context Management functional
unit or the Context Restoration functional unit.

X/Open may consider updating this specification to support these Presentation functional units
at a later date.

ACSE/Presentation Services API (XAP) 11

Introduction

12 X/Open CAE Specification (1993)

Chapter 2

Overview of XAP

This chapter provides an overview of the XAP interface, describing the model upon which it is
based, its functions, and the mechanisms provided for communication with it. A brief example
of how the interface may be used to establish an association and transfer data is also provided.

ACSE/Presentation Services API (XAP) 13

XAP Model Overview of XAP

2.1 XAP Model
Figure 2-1 shows the main features of the model upon which the XAP interface is based.

XAP provides functions for establishing associations and transferring data using ACSE and
Presentation Layer service primitives, and an environment which is used to store information for
use in the current association. Requests and responses from the service user are combined with
information from the XAP environment and passed as ACSE or Presentation Service primitives
to the service provider. Indications and confirmations from the service provider update the XAP
environment and are passed to the service user.

The features and terminology of the XAP Model are discussed below.

XAP USER

XAP
INSTANCE

XAP
ENVIRONMENT

XAP PRIMITIVES
ap_snd()/ap_rcv()

ENVIRONMENT
REQUESTS

APPLICATION
PROCESSES

PROVISION OF ACSE
AND PRESENTATION

LAYER SERVICES

Figure 2-1 XAP Model

14 X/Open CAE Specification (1993)

Overview of XAP XAP Model

Service User

The XAP service user is an application which uses the services of the OSI ACSE and Presentation
Layer services to implement its functions. This service user corresponds to the concept of an
application entity, defined by the OSI reference model, ISO 7498. Depending on the architecture
of the operating system and the requirements of the application, the service user may be a
single-threaded or multi-threaded program or a group of cooperating processes.

Possible service users are OSI and non-OSI applications (for example an FTAM initiator utility or
an application ported from another protocol suite), or a higher-level API (such as an
implementation of X/Open’s X.400 API or the non-OSI Xlib which provides access to the
primitives of the X-Window system).

Service Provider

XAP is a standardised interface to the services of an implementation of the ACSE and
Presentation layers, known as the service provider. An end-system may support one or more
service providers via the XAP interface. A particular service provider is selected by specifying a
service provider identifier when an XAP Instance is created. This specification does not assign any
syntax to this identifier, other than that it must be a character string. Individual
implementations may specify additional syntax and semantics. For example, an implementation
might require that the identifier is a valid UNIX pathname, identifying a special file associated
with the selected XAP service provider.

The XAP specification does not define explicitly the service options that must be supported by
the provider; the requirements placed upon the local implementation are defined in Section 1.6
on page 10.

XAP Instance

An XAP instance is the collection of information and OSI communications capabilities required
to establish and maintain an application association with another application entity invocation.
The instance includes the XAP environment and any internal state information required by the
XAP implementation. A separate XAP instance is created to support each association that a
service user wishes to establish. The user may have several associations in progress at one time.

When the XAP instance is created, an XAP instance identifier is returned which is used to identify
this instance in subsequent calls to XAP functions. (The associated XAP environment must first
be initialised before the instance can be used to send and receive primitives.) This identifier is
meaningful only within the context of the process which created the instance. XAP does not
define how an XAP instance is passed from one process to another.

XAP Environment

The XAP environment is the repository for all of the information necessary to establish and
maintain an association with another application entity. A single piece of information stored in
the environment is referred to as an attribute. A service user can read or modify characteristics of
an association or the OSI protocol stack that supports it by performing operations on these
attributes.

Many of these attributes correspond to parameters associated with the ACSE service primitives.
Thus the environment provides a mechanism for setting information that is to be used when
establishing an association. See Service Primitive Parameters below for more details.

There are two types of attributes: read-write attributes and read-only attributes. Read-only
attributes are those that cannot be set by the service user. They typically store either static
information (for example, available protocol versions) or status information (for example,

ACSE/Presentation Services API (XAP) 15

XAP Model Overview of XAP

current XAP state). All other attributes are both readable and writable by the application.

It should be noted that an attribute’s classification as read-only or read-write does not imply that
those operations may be performed on it at any time. To the contrary, some read-only attributes
are readable only in certain states. Similarly, read-write attributes are not necessarily readable
and writable in every or even the same states. Rather they are distinguished from read-only
attributes by the fact that they are writable in some state. Complete information about the
readability and writability of each attribute is provided in the description for ENVIRONMENT
in Chapter 3.

Service Primitive Parameters

With the exception of the user data parameter (discussed below), the parameters passed to the
service provider by XAP when sending a particular primitive are derived from attributes held in
XAP’s environment and from control data passed to XAP by the service user with each primitive
request. Control data allows the service user to pass parameters specific to each primitive and to
override some of the values held in the environment when establishing an association.

When receiving primitives from the service provider, XAP updates the values of some
environment attributes and passes specified parameters to the service user along with the
primitive itself.

For example, when an A_ASSOC_IND primitive is received, the values of several attributes may
change. One such attribute is AP_PCDL which is set to reflect the presentation context
definition list specified by the application requesting the association. The effect of each XAP
primitive on the environment is discussed in the manual page descriptions for ap_snd() and
ap_rcv().

User Data

Almost all primitives to which XAP provides access, accept a user data parameter. For OSI
protocols, the content of user data is generally a protocol data unit (PDU) for a higher layer
protocol (for example, the FTAM protocol includes an F-INITIALIZE PDU in an A-ASSOCIATE
request by passing it to ACSE as the user information parameter). For non-OSI protocols, the
content of user data is not constrained. Unlike other parameters, user data must be encoded and
decoded by the service user. The descriptions of the individual primitives, given in Chapter 7,
indicate how data should be encoded in each case.

16 X/Open CAE Specification (1993)

Overview of XAP XAP Functions and Mechanisms

2.2 XAP Functions and Mechanisms
The XAP functions can be divided into the following categories:

• functions used to establish and release an XAP instance - ap_open(), ap_close()

• functions used to manage the XAP environment - ap_init_env(), ap_set_env(), ap_get_env(),
ap_free()

• a function used to bind a Presentation Address with an XAP instance - ap_bind()

• functions used to send/receive XAP primitives - ap_snd(), ap_rcv(), ap_look(), ap_poll()

• a function used to enable or disable software interrupts for an XAP instance - ap_ioctl()

• functions used to facilitate sharing an XAP instance - ap_save(), ap_restore()

• functions to retrieve error messages for aperrno error codes - ap_error()

Table 2-1 lists these functions. The functions and the interface mechanisms that support them
are discussed in more detail in the sections that follow.

Functions Parameters
ap_open (provider, oflags, ap_user_alloc, ap_user_dealloc, aperrno_p)

ap_close (fd, aperrno_p)

ap_bind (fd, aperrno_p)

ap_snd (fd, sptype, cdata, ubuf, flags, aperrno_p)

ap_rcv (fd, sptype, cdata, ubuf, flags, aperrno_p)

ap_save (fd, savefd, aperrno_p)

ap_restore (fd, savefd, oflags, ap_user_alloc, ap_user_dealloc, aperrno_p)

ap_get_env (fd, attr, val, aperrno_p)

ap_set_env (fd, attr, val, aperrno_p)

ap_init_env (fd, env_file, flags, aperrno_p)

ap_ioctl (fd, request, argument, aperrno_p)

ap_error (aperrno)

ap_free (fd, kind, val, aperrno_p)

ap_look (fd, sptype, cdata, ubuf, flags, aperrno_p)

ap_poll (fds, nfds, timeout, aperrno_p)

Table 2-1 XAP Functions

2.2.1 Establishing and Releasing an XAP Instance

In order to use XAP, the service user must first create an XAP instance. This is accomplished by
using the ap_open() function. It is possible that an instance may also be obtained through some
other mechanism as well. However, such mechanisms depend upon the details of a specific
implementation and are thus outside the scope of this interface specification. As part of the
ap_open() call, the service user identifies the particular service provider that is to support this
XAP instance. XAP defines the provider identifier as an uninterpreted string. Individual
implementations may assign additional semantics to this string according to local conventions.
For example, a CAE-conformant operating system may require this string to be a pathname
identifying a special file that is associated with the service provider. The function returns an
integer that is used to identify this instance in subsequent interactions with the XAP Library.

ACSE/Presentation Services API (XAP) 17

XAP Functions and Mechanisms Overview of XAP

The ap_close() function is used to indicate that the indicated instance is no longer needed and
that the resources required to support it can be returned to the system.

2.2.2 Reuse of an XAP Instance

After an association is terminated (normally or abnormally) the state of the XAP instance is set
to AP_IDLE. The instance can either be closed or used to establish another association. Prior to
establishing another association, the service user may reset any of the environment variables
(see Section 2.2.3).

2.2.3 Managing the XAP Environment

Three functions are provided to perform operations on the XAP environment.

1. ap_init_env() - allocates space for the XAP environment, if required, and initialises the
attributes

2. ap_set_env() - sets a particular (writable) attribute to a specified value

3. ap_get_env() - retrieves the value of a particular (readable) attribute.

In some cases, the ap_set_env() and ap_get_env() XAP environment functions pass or return
multi-level structures (for example, the ap_cdl_t structure, used to pass the value of the
context-definition-list environment variable). To assist service users in handling such structures,
XAP provides the ap_free() function which will free the memory allocated to dependent
structures and character strings. The ap_free() is passed the attribute type as specified in the
environment call that allocated the structures.

2.2.4 Sending and Receiving XAP Service Primitives

The services offered by the ACSE Presentation Layer service provider are made available to the
service user through a collection of XAP service primitives that are sent and received using the
ap_snd() and ap_rcv() functions. The ACSE and Presentation Layer services available through
this version of the XAP Interface are shown in Table 2-2 on page 19, together with the related
XAP service primitives.

18 X/Open CAE Specification (1993)

Overview of XAP XAP Functions and Mechanisms

Services Service Primitives
Send Receive

A-ASSOCIATE A_ASSOC_REQ A_ASSOC_RSP A_ASSOC_IND A_ASSOC_CNF

A-RELEASE A_RELEASE_REQ A_RELEASE_RSP A_RELEASE_IND A_RELEASE_CNF

A-ABORT A_ABORT_REQ A_ABORT_IND

A-P-ABORT A_PABORT_REQ2 A_PABORT_IND

P-DATA P_DATA_REQ P_DATA_IND

P-CAPABILITY-DATA P_CDATA_REQ P_CDATA_RSP P_CDATA_IND P_CDATA_CNF

P-TYPED-DATA P_TDATA_REQ P_TDATA_IND

P-EXPEDITED-DATA P_XDATA_REQ P_XDATA_IND

P-TOKEN-GIVE P_TOKENGIVE_REQ P_TOKENGIVE_IND

P-TOKEN-PLEASE P_TOKENPLEASE_REQ P_TOKENPLEASE_IND

P-CONTROL-GIVE P_CTRLGIVE_REQ P_CTRLGIVE_IND

P-SYNC-MINOR P_SYNCMINOR_REQ P_SYNCMINOR_RSP P_SYNCMINOR_IND P_SYNCMINOR_CNF

P-SYNC-MAJOR P_SYNCMAJOR_REQ P_SYNCMAJOR_RSP P_SYNCMAJOR_IND P_SYNCMAJOR_CNF

P-RESYNCHRONIZE P_RESYNC_REQ P_RESYNC_RSP P_RESYNC_IND P_RESYNC_CNF

P-U-EXCEPTION-REPORT P_UXREPORT_REQ P_UXREPORT_IND

P-P-EXCEPTION-REPORT P_PXREPORT_IND

P-ACTIVITY-START P_ACTSTART_REQ P_ACTSTART_IND

P-ACTIVITY-RESUME P_ACTRESUME_REQ P_ACTRESUME_IND

P-ACTIVITY-END P_ACTEND_REQ P_ACTEND_RSP P_ACTEND_IND P_ACTEND_CNF

P-ACTIVITY-INTERRUPT P_ACTINTR_REQ P_ACTINTR_RSP P_ACTINTR_IND P_ACTINTR_CNF

P-ACTIVITY-DISCARD P_ACTDISCARD_REQ P_ACTDISCARD_RSP P_ACTDISCARD_IND P_ACTDISCARD_CNF

Table 2-2 XAP Service Primitives

Complete information about the effects on the XAP interface of sending and receiving the
various services primitives is provided in the manual page descriptions for ap_snd() and
ap_rcv() in Chapter 4, and in the manual page descriptions for the individual primitives in
Chapter 7.

Services that can be initiated by the service user may be associated with either two or four
service primitives, depending on whether or not the service is confirmed. Figure 2-2 illustrates

2. While there is no P-P-ABORT request service defined in ISO 8822, the A_PABORT_REQ primitive is included in XAP to allow
the service user to make it appear as though the Presentation Layer aborted the association in the case where a decoding error is
detected. (As discussed later, the XAP service user is responsible for encoding and decoding certain data values.)

ACSE/Presentation Services API (XAP) 19

XAP Functions and Mechanisms Overview of XAP

how an initiator and a responder may use the ap_snd() and ap_rcv() functions, together with the
A-ASSOCIATE service primitives, to establish an association.

ap_snd (A_ASSOC_RSP)

ap_rcv (A_ASSOC_CNF)

ap_rcv (A_ASSOC_IND)

Provider

INITIATOR RESPONDER

ap_snd (A_ASSOC_REQ)

Figure 2-2 Establishing an Association

2.2.5 Sharing an XAP Instance

The ap_save() and ap_restore() functions are provided to facilitate sharing an XAP instance
among cooperating processes. In some implementations, the memory allocated for storing XAP
environment and state information is located in the data space of the process which created the
instance. Should this process wish to pass the instance to another process, data from the address
space of the first process must be copied to the address space of the second. The ap_save() and
ap_restore() functions work together to accomplish this.

A common use of ap_save() and ap_restore() is to support passing of an XAP instance from a
process to another, such as from a process to one of its children. Another possible use is to save
default settings for a group of applications or a particular network environment, the resulting
file can be used to initialise the XAP environment prior to setting attributes specific to the
association being created.

The ap_save() function writes a ‘‘snapshot’’ of the storage associated with an XAP instance to a
file that was opened by the XAP user. The file permission and file and record locking
capabilities of the operating system can be used to control access to this file.

The ap_restore() function reloads the contents of an XAP snapshot into an XAP instance. This
recreates for the referenced instance, the XAP environment and state as it was when the
snapshot was created by the call to ap_save(). The XAP instance into which the snapshot is
restored may have been created directly by the calling user or may have been transferred from
another process (the mechanism by which this transfer is achieved is outside the scope of XAP).
Once the restore has been performed the XAP user can resume operations using the XAP
Instance from the point where the ‘‘saving’’ process left off.

If ap_restore() is called for a transferred instance, the instance must be in the same state as it was
when the snapshot was saved. No events may be sent or received in the intervening period. It
should be noted that this means that ap_save() and ap_restore() cannot be used to ‘‘roll back’’ the
state of the ACSE and Presentation protocol machines. Events that were processed after an XAP
instance was saved cannot be replayed by restoring the XAP instance to its former state.

On the other hand, if ap_save() and ap_restore() are used to initialise XAP instances, the instance
must be in either the AP_IDLE or AP_UNBOUND state both when the snapshot is saved and
when it is restored.

20 X/Open CAE Specification (1993)

Overview of XAP XAP Functions and Mechanisms

2.2.6 Presentation Context Negotiation

An important aspect of association establishment is negotiation of the presentation contexts to
be used during the association. When an association is to be initiated, the service user must set
the AP_PCDL and AP_DPCN attributes to propose any presentation contexts that are to be used
for exchanging user data (the XAP Library ensures that the presentation context used for
exchange of ACSE protocol information between peer entities is available; however, the user
may include it if required).

Similarly, in responding to an association request, the service user must indicate which
proposed presentation contexts are acceptable by setting the AP_PCDRL and AP_DPCR
attribute before issuing an A_ASSOC_RSP primitive.

It should be noted that for XAP, where all encoding and decoding of user data is performed by
the XAP user, the receiving presentation service does not accept or reject any requested context.
It is up to the API user to do so.

2.2.7 Presentation Addresses

As specified in the OSI Basic Reference Model (reference ISO 7498), an Application Entity must
be addressable via a single, globally unique, Presentation Address. Thus, each XAP user has a
unique Presentation Address. Multiple XAP instances created by the same XAP user may share
the same Presentation Address.

An XAP user declares its Presentation Address by setting the AP_BIND_PADDR attribute and
calling the ap_bind() function. This attribute must be set before any service primitives can be
sent or received by the XAP user. If the XAP user is the association-initiator, it must also specify
the Presentation Address of the association-responder - by setting the AP_REM_PADDR
attribute - prior to issuing an A_ASSOC_REQ primitive.

An XAP library capable of simultaneously supporting more than one XAP user is capable of
routing an incoming A_ASSOC_IND primitive to the particular XAP instance bound to the
called Presentation Address.

XAP supports applications that are capable of receiving A_ASSOC_IND primitives addressed to
any XAP user within a range of Presentation Addresses by means of wildcard Presentation
Addresses. Two classes of wildcard addresses are recognised by an XAP implementation, NSAP
wildcard addresses and Selector wildcard addresses. The two classes are discussed separately below;
however XAP supports the use of both Selector wildcards and NSAP wildcards within a single
presentation address. Aspects of wildcard addresses relevant to both classes are discussed in
General Comments on page 22, while Chapter 4 includes description of how Presentation
Addresses are specified.

Selector Wildcard Addresses

Different XAP users within a single computer system will likely share the same Network
Address(es). Consequently, an XAP library is capable of differentiating between two unique
Presentation Addresses based upon their distinct T-selector, S-selector or P-selector values, or
any combination of the three. This specification does not impose any constraints on the strategy
followed by an XAP implementation to achieve unambiguous Presentation Addresses.

A Selector wildcard Presentation Address is defined as a Presentation Address where one or more
of the T-selector, S-selector and P-selector components have not been specified. The unspecified
component(s) are thus allowed to match any corresponding selector value(s) specified on the
called Presentation Address field of an A_ASSOC_IND primitive. It should be noted that an
unspecified selector value is distinct from a null selector value.

ACSE/Presentation Services API (XAP) 21

XAP Functions and Mechanisms Overview of XAP

The unspecified components of a Selector wildcard Presentation Address must follow a bottom-
to-top structure. Thus, if the T-selector component is not specified, both the S-selector and the
P-selector cannot be specified. Likewise, if the S-selector is not specified, the P-selector cannot be
specified.

The use of Selector wildcard Presentation Addresses is restricted to applications which only
support a responder role. They can only be used as values for the AP_BIND_PADDR attribute
and can only be set when the XAP library is in the states AP_UNBOUND or AP_IDLE.

This specification does not impose any other constraints on the strategy followed by an XAP
implementation to provide Selector wildcard Presentation Addresses. Some implementations
may provide Selector wildcarding capabilities at multiple layers, while others may not provide
them at any layer.

An XAP user bound to a Selector wildcard Presentation Address is effectively bound to the
lowest level SAP(s) for which an address has been specified. For example, an XAP user bound to
a wildcard address for which a T-selector value has been specified and the S- and P-selectors
have been omitted is in fact bound to the Transport Layer SAP(s) identified by the specified
Transport Address (consisting of the T-selector value and Network Address(es)).

The semantics of this Selector wildcard Presentation Address are that any incoming
A_ASSOC_IND primitive which specifies that Transport Address will be sent to the XAP user
bound to the wildcard address irrespective of the called S- and P-selector values. The XAP user
is then responsible for validating the called S- and P-selector values and determining whether or
not to accept the application association.

Note that multiple Selector wildcard addresses can freely coexist with each other and with fully
specified addresses. XAP will always pass an incoming A_ASSOC_IND to the XAP user bound
to the more specific Presentation Address that matches the called Presentation Address.

NSAP Wildcard Addresses

Where a single computer system supports multiple network addresses, XAP allows an
application to listen for connection indications on one or more of these addresses by specifying a
list of NSAPs as part of the Presentation Address assigned to AP_BIND_PADDR. Some
implementations of XAP may allow an application to specify an empty list to accept connections
on any of the local NSAPs; this is termed an NSAP wildcard address.

NSAP wildcard addresses may be used by XAP instances supporting an initiator role, a responder
role, or both. In the case where an XAP instance which is bound to an NSAP wildcard address
issues an A_ASSOC_REQ primitive, the service provider determines which local NSAP to use to
connect to the presentation address specified in AP_REM_PADDR.

General Comments

When an indication is received by an XAP Instance which is bound to a wildcard address, the
environment variable AP_LCL_PADDR is set to the specific presentation address to which the
association is directed (the called presentation address from the A_ASSOC_REQ primitive). The
address in AP_LCL_PADDR is always used as the responding presentation address when
sending an A_ASSOC_RSP primitive. The XAP user may respond to an incoming
A_ASSOC_IND on an address other that the called presentation address by supplying a fully
specified address in AP_BIND_PADDR and calling the ap_bind() function, which in turn sets the
value of AP_LCL_PADDR. It should be noted that new values may be specified for the P-
selector and S-selector only. An attempt to specify values for the T-selector or NSAP that differ
from those received in AP_LCL_PADDR results in the primitive being rejected by XAP with an
error code of AP_ACCESS.

22 X/Open CAE Specification (1993)

Overview of XAP XAP Functions and Mechanisms

2.2.8 Memory Management Mechanisms

The service user may elect to handle all allocation and deallocation of memory for use by XAP
(this includes memory for XAP environment attributes returned from ap_get_env(), and buffers
for receiving incoming data). This mechanism enables the service user to control the amount of
buffer space used by XAP for receiving incoming data.

To do this, the service user specifies the entry points for allocation and deallocation routines
when ap_open() is called. The service user provides two functions, ap_user_alloc() and
ap_user_dealloc(). The XAP implementation will call the user supplied allocation routine in the
following circumstances:

• If the user has not set the AP_BUFFERS_ONLY flag on ap_open() then, when data structures
are to be returned to the user by ap_get_env() or ap_rcv(), when cdata→env is returned or
cdata→old_conn_id is returned, the allocation function will be called with the type argument
set to AP_MEMORY.

• When user data is to be returned from ap_rcv() and the user has not provided sufficient
buffers and the AP_ALLOC flag was set on the call, then the allocation function will be called
with the type argument set to AP_BUFFERS.

The XAP library will call the user supplied deallocation function from the ap_free() function
when the user passes any structures which were allocated in the above circumstances.

XAP is responsible for freeing memory that it allocated when it is no longer required.
Exceptions to this are:

• memory allocations passed to the service user as part of the cdata structure are described in
Section 2.2.9

• buffers passed to the user containing received data

• memory allocations passed to the user on return from ap_get_env().

2.2.9 Control Data Structure

The control data structure, cdata, is used to pass the parameters associated with individual
primitives between XAP and the service user in the ap_snd() and ap_rcv() functions. XAP
maintains the parameters associated with the A_ASSOCIATE service primitives in the XAP
environment. cdata allows the environment values to be overridden when ap_snd() is used to
send an A_ASSOCIATE primitive. For ap_rcv(), the structure can be used to return some
environment values directly, rather than requesting them using the ap_get_env() function.

The cdata structure is a collation of all possible parameters to all the primitives supported by
XAP. The use of cdata depends upon the parameters defined for the specific service primitive
being sent or received. Consequently, a description of how the cdata parameter is used for each
of the service primitives is included in Chapter 7.

When a cdata structure is returned by ap_rcv(), XAP may have allocated data for sub-structures
that are present. Once the service user has processed the data in the structure, the sub-structures
may be freed by passing the cdata structure to ap_free().

ACSE/Presentation Services API (XAP) 23

XAP Functions and Mechanisms Overview of XAP

2.2.10 Error Reporting

XAP functions return a result code as the function value. This code is zero if the function was
completely successful, and −1 if any sort of error or warning condition occurred. In addition,
each XAP function includes a pointer to an error code return location, aperrno_p, as its final
argument. The service user must pass a pointer to a location into which an error code is
returned if the result of the function is −1. The value in this location is unchanged if the function
result is zero (that is ‘‘SUCCESS’’).

Through aperrno_p, XAP reports internal error conditions caused, for example, by an invalid
argument or a primitive issued out of state. System errors which occur outside the scope of the
XAP interface result in the location pointed to by aperrno_p being set to the value of the system
error. In addition, several error classes have been identified to allow errors reported by an
underlying service provider to be passed to the service user. To facilitate application portability,
all implementations of XAP should adhere to this scheme for reporting errors. However, only
the errors belonging to the XAP class must be supported. Specific errors belonging to the other
error classes are dependent upon the underlying service providers utilised in a specific
implementation. A detailed list of errors reported through aperrno_p is included in the
introduction to the XAP interface functions, in Section 4.1 on page 56.

An ap_error() function (see ap_error() on page 63) is provided in XAP which returns a pointer to
the location of a message that describes the error code passed to it.

2.2.11 Execution Mode

The XAP ap_snd() and ap_rcv() functions may be used in either blocking or non-blocking execution
mode.

In blocking mode, ap_snd() blocks until resources are available to send the specified primitive in
its entirety. Thus, if ap_snd() is invoked when the communication path is flow controlled, the
call blocks until the entire message has been sent. Similarly, in blocking mode, ap_rcv() blocks
until either an entire primitive is received, or XAP fills the buffer supplied as the ubuf argument.
In the latter case, the AP_MORE bit of the flags argument is set when ap_rcv() returns. In order
to receive the remainder of the primitive, the service user must continue calling ap_rcv() until
the function returns with the AP_MORE bit reset.

When XAP is used in non-blocking mode, ap_snd() and ap_rcv() never block. Hence, if ap_snd()
is called when insufficient resources are available to send the specified primitive in its entirety,
XAP sends as much of the primitive as possible before returning with the [AP_AGAIN] error.
To complete sending the primitive, the service user calls ap_snd() again with the same set of
buffers as arguments until it returns successfully. A function, ap_poll(), is provided which can be
used to wait until resources are available to send data on a particular XAP Instance.

In the non-blocking mode, ap_rcv() reads data from the instance until an entire primitive is
received, or the buffer supplied as the ubuf argument is full, or no more data is available to be
read. Once one of these three events occurs, ap_rcv() returns. If the call returns because no more
data is available, the [AP_AGAIN] error is signalled. When this error is indicated, the service
user may examine the flags argument to determine whether a primitive was partially received. If
the AP_MORE bit of the flags argument is set, a primitive has been partially received. The
ap_poll() function can be used to wait until more data is available to be read from the instance.

The service user can request either blocking or non-blocking execution through the oflags
argument to the ap_open() function, or by setting or resetting the AP_NDELAY bit of the
AP_FLAGS environment attribute.

24 X/Open CAE Specification (1993)

Overview of XAP XAP Functions and Mechanisms

2.2.12 User Data Mechanisms

User Data Buffering

Most of the primitives supported by XAP include a user data parameter. The amount of data
associated with a primitive varies from a few octets for P-EXPEDITED-DATA, to unlimited for a
P-DATA primitive. In order to provide a consistent interface, a single mechanism has been
designed to cater for both extremes. The mechanism separates the functions of buffer allocation
and use by defining two structures: ap_osi_dbuf_t is a structure that controls an allocation of
buffer space, containing a pointer to the start and end of the buffer (db_base and db_limit) and a
reference count (db_ref); ap_osi_vbuf_t is a structure that controls the use of space, containing a
pointer to the ap_osi_dbuf_t structure that controls a buffer (b_datap), and read and write
pointers (b_rptr and b_wptr) which indicate the portion of that buffer reserved by this structure.
It also contains a b_cont element, which can be used to chain a series of ap_osi_vbuf_t structures
together.

This mechanism allows data to be passed between XAP and the service user in one or more
discrete buffers, using start and end pointers to identify the portion(s) of each buffer which
contains valid data. As discussed above in Section 2.2.8 on page 23, the service user may elect to
provide allocation functions for the buffers which XAP uses to receive data.

Figure 2-3 shows the ap_osi_vbuf_t and ap_osi_dbuf_t structures.

b_cont

b_rptr

b_wptr

b_datap

db_base

db_ref

db_limit

ap_osi_vbuf_t

ap_osi_dbuf_t

NULL

1

user data

Figure 2-3 Basic Buffer Structures

Figure 2-4 shows a more sophisticated example of the use of the ap_osi_vbuf_t and
ap_osi_dbuf_t structures - two separate segments of data passed in a single buffer.

For data being sent, the service user is responsible for freeing buffers once the ap_snd() function
has completed. For data received, XAP will allocate the necessary buffers using the allocation
functions described in Section 2.2.8 on page 23 if XAP is configured to do so and the user
requests it. Again, the service user must free these buffers once the data contained in them has
been processed.

ACSE/Presentation Services API (XAP) 25

XAP Functions and Mechanisms Overview of XAP

db_base

db_ref

db_limit

ap_osi_dbuf_t

2

b_cont

b_rptr

b_wptr

b_datap

ap_osi_vbuf_t

NULL

b_cont

b_rptr

b_wptr

b_datap

ap_osi_vbuf_t

NULL

user data 1 user data 2

Figure 2-4 Advanced Buffer Example

Data Encoding

All user data passed between XAP and the XAP user is in encoded form, using an appropriate
transfer syntax (see Section 2.2.6 on page 21). Thus the service user is responsible for all user
data encoding and decoding.

In addition, the XAP user is responsible for generating the encoding which the ACSE and
Presentation protocols require for including the user data in their PDUs. (Conceptually, this is
the task of the service provider; however, XAP requires the service user to do it for the sake of
efficiency.) The manual pages for the ap_snd() and ap_rcv() functions in Chapter 4, along with
the manual pages for individual primitives in Chapter 7, describe how the user data is to be
encoded for inclusion in a particular primitive’s protocol data unit (PDU).

The application is required to encode/decode all ACSE and Presentation PDU’s whenever it
directly uses ACSE/Presentation primitives. When the application uses a primitive provided by
a service element which maps the primitive onto ACSE/Presentation primitives, that service
element shall encode/decode ACSE and Presentation PDU’s. Refer to the appropriate service
element API for specific information.

26 X/Open CAE Specification (1993)

Overview of XAP XAP Functions and Mechanisms

Two examples are given here of how information to be passed to the API must be encoded. The
examples make some assumptions about how the transfer syntax for the encoding is identified
and about the choices which must be made when information is passed to the ASCE and
Presentation layers. The user is referred to the referenced specifications for the ACSE (ISO 8649
and ISO 8650) and Presentation (ISO 8822 and ISO 8823) protocols and for ASN.1 (ISO/IEC 8824
and ISO/IEC 8825) for precise information on this subject.

The examples use the value syntax defined by the ASN.1 specification with the addition (for the
purposes of this discussion only) of explicit tag information included within square brackets (for
example: [INTEGER] - a universal tag, [0] - a context-specific tag, and so on).

Example 1:

An FTAM initiator implementation wishes to use the ACSE protocol to set up an application
association and transfer the F-CONNECT request primitive. It must encode the following data
and tags into an ap_osi_vbuf_t structure and pass it to ap_snd() for inclusion in an A-ASSOCIATE
request primitive.

user-information [30] {
[EXTERNAL] { -- Association-information

direct-reference [OBJECT IDENTIFIER] { ... ftam-pci(1) }
-- object id for the FTAM PDU abstract syntax

single-ASN1-type [0] {
f-initialise-request [0] {

protocol-version [0] { version-1 } ,
implementation-info [1] "ACME FTAM Initiator" ,

.

.

.
} } } }

ACSE/Presentation Services API (XAP) 27

XAP Functions and Mechanisms Overview of XAP

Example 2:

The FTAM initiator subsequently wishes to transfer a series of strings from an unstructured text
file. It must encode the following data and tags into an ap_osi_vbuf_t structure and pass it to
ap_snd() for inclusion in a P-DATA request primitive.

[APPLICATION 1] { -- fully encoded user data
[SEQUENCE] { -- first PDV-List

[INTEGER] <n> , -- Identifies the abstract syntax
-- "FTAM unstructured text"
-- in the defined context set

single-ASN1-type [0] {
[GraphicString] "To begin at the beginning:"

-- first string from file
} } ,
[SEQUENCE] { -- second PDV-List

[INTEGER] <n> , -- Identifies the abstract syntax
-- "FTAM unstructured text"
-- in the defined context set

single-ASN1-type [0] {
[GraphicString] "It is spring, moonless night in the

small town, starless and Bible-black. .."
-- second string from file

} } ,
.
.

}

Example 3:

The following encoding is an alternative to that shown in example 2.

[APPLICATION 1] { -- fully encoded user data
[SEQUENCE] { -- first PDV-List

[INTEGER] <n> , -- Identifies the abstract syntax
-- "FTAM unstructured text"
-- in the defined context set

octet-aligned [1] {
[GraphicString] "To begin at the beginning:"

-- first string from file
[GraphicString] "It is spring, moonless night in the

small town, starless and bible-black. .."
-- second string from file

.

.
} } }

28 X/Open CAE Specification (1993)

Overview of XAP XAP Functions and Mechanisms

More Data Flag

The service user may choose not to send all of the encoded data associated with a particular
primitive in a single ap_snd() call. If that is the case, the XAP Library must be informed that the
primitive will be issued as a series of ap_snd() calls. This is accomplished by setting the
AP_MORE bit in the flags parameter of the ap_snd() function. The user may continue sending
data associated with the current primitive by repeatedly calling ap_snd() with the AP_MORE bit
set. The sptype argument must remain the same for each of these calls. When the last buffer of
data associated with the primitive is sent, ap_snd() must be invoked with the AP_MORE bit
reset.

The cdata argument also should not change when a sequence of ap_snd() invocations is used to
issue a single XAP primitive. However, since this argument is only examined on the first
ap_snd() call in such a sequence, no error is reported if its value is subsequently modified.

Primitives that are not associated with either an ACSE or Presentation Layer PDU (for example,
P_DATA_REQ, P_SYNCMINOR_REQ, P_SYNCMINOR_RSP, P_TOKENGIVE_REQ,
P_TOKENPLEASE_REQ, etc.) cannot be terminated by a final ap_snd() invocation that does not
carry any user data. Thus the final ap_snd() invocation always carries 1 or more octets of user
data for these primitives.

If all data associated with the primitive is present on the ap_snd() call, the function must be
issued with the AP_MORE bit not set.

In a similar fashion, if XAP elects to return data associated with a service primitive via multiple
ap_rcv() invocations, it sets the AP_MORE bit of the flags argument when ap_rcv() returns. The
ap_rcv() function returns with the AP_MORE bit reset when the received primitive is complete.
Note that it is possible that XAP may receive a zero-length final fragment.

It should be noted that the value of the sptype argument must be checked after each ap_rcv() call.
This is because another primitive (for example, A_PABORT_IND) could arrive before all data
associated with the first primitive is processed.

ACSE/Presentation Services API (XAP) 29

Using the XAP Interface Overview of XAP

2.3 Using the XAP Interface
Below is a summary of the steps required to establish an association with a remote application
entity using XAP. The procedure presented is intended solely as a general description of how
the interface might be used. It should not be construed as an attempt to provide a template for
constructing any particular application. Moreover, it is assumed that the service user is familiar
with the ACSE and Presentation Layer protocols and understands the role of the ACSE-service-
user in establishing, using and terminating an association between two application entities.

Obtain an XAP Instance.

First, a XAP Instance is created. This is accomplished either by using ap_open(), or by acquiring
an already established instance through some other implementation-specific mechanism.

Initialise the XAP Environment.

Next, the XAP Environment is initialised (or restored) using the ap_init_env() (ap_restore())
function.

After the environment is initialised, the user may examine or alter the environment attributes,
subject to the readability and writability restrictions discussed in Chapter 3.

Bind the XAP Instance to a Presentation Address.

Before any service primitives can be sent or received, the XAP instance must be bound to a
presentation address. This is accomplished by setting the AP_BIND_PADDR attribute to a value
which the service user is authorised to use. The AP_BIND_PADDR attribute can be set using
either the ap_set_env() function or the ap_init_env() function. Then the service provider is
signalled to activate the XAP instance by using the ap_bind() function.

Set Other Environment Attributes.

In addition to AP_BIND_PADDR, other environment variables must be set before an association
is established - particularly if the service user is the association-initiator. For example, before
issuing an A_ASSOC_REQ primitive, the service user must specify the address of the remote
entity by setting the AP_REM_PADDR attribute and set the AP_PCDL attribute to propose a list
of presentation contexts that are to be used for transferring user data.

Refer to the manual pages in Chapter 4, and primitives descriptions in Chapter 7, for further
information about the XAP environment attributes and how they relate to sending and receiving
individual primitives.

Send or Receive A_ASSOC Service Primitives.

Once the XAP environment has been properly initialised, the service user may attempt to
establish an association with a remote application entity by using the A_ASSOC service
primitives in conjunction with the ap_snd() and ap_rcv() functions. Each of the A_ASSOC
primitives is described in detail in Chapter 7.

30 X/Open CAE Specification (1993)

Overview of XAP Using the XAP Interface

Transfer Data.

Once the association is established, information may be exchanged with the remote application
entity by sending and receiving the appropriate XAP primitives (using ap_snd() and ap_rcv()).

Releasing the Association.

An association may be released either normally (using the A_RELEASE primitives), or
abnormally (by using either the A-ABORT or the A-PABORT primitives).

ACSE/Presentation Services API (XAP) 31

Association Listeners Overview of XAP

2.4 Association Listeners
An Association Listener is an application which examines incoming A_ASSOC_IND primitives
and passes the XAP instance to a receiving application which is to handle the incoming
association.

The support for association listeners is optional; depending on the application requirements and
the optional XAP functions available, the association listeners may be implemented in various
ways. Implementations which support association listening are encouraged to support it in one
of the following ways.

• A simple listener mechanism using no XAP optional functions:

A listener application creates an XAP instance using ap_open(), binds to an address and waits
for an incoming A_ASSOC_IND. After receiving A_ASSOC_IND, the listener brings out an
appropriate responding application to proceed with the association establishment. The
responding application may be made available by spawning a child process or, on those
systems where this is not possible, by selecting one of a pool of established reponding
processes. The responding application receives the fd and inherits the listener’s XAP
environment and A_ASSOC_IND primitive and possibly data in a system dependent
manner. The listener can then close the XAP instance by calling ap_close() to release local
resources.

• A listener mechanism making use of the optional XAP functions ap_look and ap_restore:

A listening application creates an XAP instance using ap_open(), binds to an address and
waits for an incoming A_ASSOC_IND. It calls ap_look() to obtain the A_ASSOC_IND details
which it uses to select a receiving application. The listener passes the fd in a system
dependent manner, with the pending A_ASSOC_IND primitive, to the receiving application,
and closes the XAP instance by calling ap_close() to release local resources.

A receiving application calls ap_restore(), with a NULL file argument to:

• create an XAP environment

• retrieve the local Presentation address to which the A_ASSOC_IND primitive was addressed

• set the XAP instance state to AP_IDLE.

The receiving application is now in a state where it can invoke ap_rcv() to receive the pending
A_ASSOC_IND primitive.

32 X/Open CAE Specification (1993)

Chapter 3

Environment

This chapter presents the XAP environment. It describes the XAP environment attributes and
the data structures used for transferring data and control information between the XAP and the
API user.

The XAP environment is made up of a set of attributes that are used by XAP to keep state
information and to hold the various pieces of data required to establish and maintain an
association with another application entity.

Below is a description of the attributes in the XAP environment.

AP_ACSE_AVAIL

The AP_ACSE_AVAIL attribute indicates which versions of the ACSE protocol are
currently available.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_ACSE_SEL

The AP_ACSE_SEL attribute indicates which version of the ACSE protocol has been
selected for use with the current association.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_AFU_AVAIL

The AP_AFU_AVAIL attribute indicates which optional ACSE functional units are
currently available.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the AP_MODE_SEL attribute.

AP_AFU_SEL

The AP_AFU_SEL attribute indicates which optional ACSE functional units have been
requested for use over the current association.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the AP_MODE_SEL attribute.

AP_BIND_PADDR

The AP_BIND_PADDR attribute is used to indicate the address to which this instance of
XAP will be bound when ap_bind() is called.

Setting this attribute will result in the attribute AP_LCL_PADDR being set to the same
value. Nevertheless, the attributes AP_BIND_PADDR and AP_LCL_PADDR do not
always have the same value. For example, a listener application might set the
AP_BIND_PADDR to a wildcard address and use the called address (conveyed by the
AP_LCL_PADDR attribute) specified in each indication primitive to dispatch associations.

AP_CLD_AEID

The AP_CLD_AEID is the called AE invocation identifier parameter of the AARQ APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

ACSE/Presentation Services API (XAP) 33

Environment

AP_CLD_AEQ

The AP_CLD_AEQ is the called AE-qualifier parameter of the AARQ APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_CLD_APID

The AP_CLD_APID is the called AP invocation identifier parameter of the AARQ APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_CLD_APT

The AP_CLD_APT is the called AP-title parameter of the AARQ APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_CLD_CONN_ID

The AP_CLD_CONN_ID attribute conveys the value of the session connection identifier
that was proposed by the association-responder.

AP_CLG_AEID

The AP_CLG_AEID is the calling AE invocation identifier parameter of the AARQ APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_CLG_AEQ

The AP_CLG_AEQ is the calling AE-qualifier parameter of the AARQ APDU.

See the description of the ap_aeq_t data type for information about how its absence is
indicated.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_CLG_APID

The AP_CLG_APID is the calling AP invocation identifier parameter of the AARQ APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_CLG_APT

The AP_CLG_APT is the calling AP-title parameter of the AARQ APDU.

See the description of the ap_apt_t data type for information about how its absence is
indicated. This attribute is not used in the ‘‘X.410-1984’’ mode.

AP_CLG_CONN_ID

The AP_CLG_CONN_ID attribute conveys the value of the session connection identifier
that was proposed by the association-initiator.

AP_CNTX_NAME

The AP_CNTX_NAME attribute is the application-context-name parameter of the AARQ
and AARE APDUs.

34 X/Open CAE Specification (1993)

Environment

See the discussion of the ap_objid_t data type for information about how the absence of
this parameter is indicated.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_COPYENV

The AP_COPYENV attribute is used to indicate whether certain environment attributes
that correspond to parameters on the A-ASSOCIATE indication and confirmation services
should be returned to the user in the cdata argument of the ap_rcv() function. When the
value of this attribute is TRUE, these attributes are returned via the cdata argument.

AP_DCS

The AP_DCS attribute is the defined context set. The defined context set contains the
abstract syntax/transfer syntax pairs that were negotiated when the association was
established, together with the presentation context identifier that identifies the pair.

The value of AP_DCS shall be empty (size field of 0) in the states AP_IDLE and
AP_WASSOCcnf_ASSOCreq, it shall contain the ACSE context negotiated by XAP in the
state AP_WASSOCrsp_ASSOCind, and it shall contain the fully negotiated defined context
set in all other states.

Note that the defined context set contains both the presentation contexts that were
negotiated by the user (using AP_PCDL and AP_PCDRL) and any additional presentation
contexts that were negotiated by XAP or provider. For example, the ACSE context (i.e.,
{joint-iso-ccitt 2 1 0 1}) will be negotiated automatically and will appear in the defined
context set after negotiation is complete.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_DIAGNOSTIC

The AP_DIAGNOSTIC attribute is used to pass diagnostic details on error conditions
reported by ACSE, Presentation, Session and Transport providers, in addition to that
conveyed with the A_PABORT_IND primitive. This mechanism is used to provide
descriptive text for all errors reported by XAP, and may be used to provide additional
diagnostic information (for example, errors in incoming APDUs reported by the local
ACPM, or the reason for a transport layer disconnect).

It should be noted that the information provided by this attribute is implementation-
dependent - that is, an implementation may not report all of the source/reason/event
combinations defined for this attribute. However, if an implementation does use the
attribute to report diagnostic information, it must use the classifications defined in this
specification.

AP_DPCN

The AP_DPCN attribute is the default-context-name parameter of the CP PPDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_DPCR

The AP_DPCR attribute is the default-context-result parameter of the CPR PPDU. Since
the user is responsible for encoding and decoding of user-data, it is the user’s responsibility
to accept or reject any proposed default-presentation-context.

ACSE/Presentation Services API (XAP) 35

Environment

The value, AP_DPCR_NOVAL, indicates that it is not present.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_FLAGS

The AP_FLAGS attribute is used to control the characteristics of this instance of XAP. The
currently defined flags are described below.

If the AP_NDELAY bit is set, XAP will be set to operate in non-blocking execution mode
(that is, when the XAP instance is opened with the AP_NDELAY flag set, the AP_FLAG
attribute is set to AP_NDELAY.)

AP_INIT_SYNC_PT

The AP_INIT_SYNC_PT attribute conveys the desired initial session synchronisation point
serial number.

AP_INIT_TOKENS

The AP_INIT_TOKENS attribute conveys the specified initial assignment of tokens. The
values which may be set by the initialising user, and by the responding user, are specified
in Section 4.1.4 on page 60.

AP_LCL_PADDR

The AP_LCL_PADDR attribute holds the value used as the presentation address of the
local entity. If the local entity is the initiator of an association, this value will be used as the
calling presentation address. If the local entity is the association-responder, this value will
be used as the called presentation address when the A_ASSOC_IND primitive is received
and as the responding presentation address when the A_ASSOC_RSP primitive is issued.

This attribute is not directly settable by the user. However, setting the AP_BIND_PADDR
attribute will result in the AP_LCL_PADDR attribute being set to the same value.
Nevertheless, the attributes AP_BIND_PADDR and AP_LCL_PADDR do not always have
the same value. For example, a listener application might set the AP_BIND_PADDR to a
wildcard address and use the called address (conveyed by the AP_LCL_PADDR attribute)
specified in each indication primitive to dispatch associations.

AP_LIB_AVAIL

The AP_LIB_AVAIL attribute indicates which versions of XAP are available to the user.

AP_LIB_SEL

The AP_LIB_SEL attribute is used to indicate which version of XAP is used. This attribute
must be set before any other attributes are set or any primitives are issued.

AP_MODE_AVAIL

The AP_MODE_AVAIL attribute indicates the available modes of operation for XAP and
Provider. The modes that may be supported are normal (AP_NORMAL_MODE) and
X.410-1984 (AP_X410_MODE).

36 X/Open CAE Specification (1993)

Environment

AP_MODE_SEL

The AP_MODE_SEL attribute indicates the mode (‘‘normal’’ or ‘‘X.410-1984’’) in which
XAP and Provider are to be used. This value is used as the mode parameter of the CP
PPDU.

When this attribute is set to AP_X410_MODE (indicating the ‘‘X.410-1984’’ mode is in
effect), certain other attributes are not used. The readability and writability of these
attributes is not affected; but their values will not be used or updated by XAP. A list of the
attributes that are not used in the ‘‘X.410-1984’’ mode is provided below.

Attributes Not Used in X.410-1984 Mode
AP_ACSE_AVAIL AP_CLD_APT AP_DPCN AP_PRES_SEL
AP_ACSE_SEL AP_CLG_AEID AP_DPCR AP_RSP_AEID
AP_AFU_AVAIL AP_CLG_AEQ AP_PCDL AP_RSP_AEQ
AP_AFU_SEL AP_CLG_APID AP_PCDRL AP_RSP_APID
AP_CLD_AEID AP_CLG_APT AP_PFU_AVAIL AP_RSP_APT
AP_CLD_AEQ AP_CNTX_NAME AP_PFU_SEL
AP_CLD_APID AP_DCS AP_PRES_AVAIL

AP_MSTATE

If the XAP instance is awaiting additional data from the user (the last ap_snd() call had the
AP_MORE bit set), the AP_SNDMORE bit in AP_MSTATE is set. If there is more user data
for the current service (the last call to ap_rcv() returned with the AP_MORE bit set) then
AP_RCVMORE bit is set. (Note that it is possible for both bits to be set.)

AP_OLD_CONN_ID

The AP_OLD_CONN_ID attribute conveys the values of the session connection identifiers
from a previous session.

AP_OPT_AVAIL

The AP_OPT_AVAIL attribute is used to indicate what optional functionality is supported
in the underlying protocol implementation.

AP_XXXX_WILD indicates whether address wildcarding is supported at the specified
level. (XXXX can be NSAP, TSEL, SSEL or PSEL.)

AP_PCDL

The AP_PCDL attribute is used to propose the list of presentation contexts to be used on
the connection. The association-initiator sets this list to indicate the contexts it wishes to
use for encoding user data on the association. Since the user is responsible for all encoding
and decoding of user data, the proposed transfer syntaxes for each proposed abstract
syntax must be included in the list proposed by the association-initiator user. For the
association-responder, the list indicates which presentation contexts are being requested
by the association-initiator for use on the association.

The association-initiator may specify the ACSE context in AP_PCDL, although it is not
required to do so. If the association-initiator does not supply the ACSE context in
AP_PCDL, XAP supplies it automatically for the association. Regardless of whether or not
the association-initiator supplies the ACSE context, it is not provided to the association-
responder in AP_PCDL (the responding user may obtain it from AP_DCS if required).

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

ACSE/Presentation Services API (XAP) 37

Environment

AP_PCDRL

The AP_PCDRL attribute is used to indicate whether the presentation contexts proposed in
the presentation context definition list have been accepted or rejected. The association-
responder uses this attribute to indicate which of the proposed presentation contexts are
acceptable before issuing the A_ASSOC_RSP primitive. For the association-initiator, this
attribute indicates the remote user’s response to the proposed presentation contexts,
received in the A_ASSOC_CNF primitive.

Each entry in AP_PCDRL corresponds one-to-one with an entry in AP_PCDL which, in the
case of the responder, never contains the proposed ACSE context. The association-
responder has an opportunity to accept or reject each of the proposed contexts that are
indicated in AP_PCDL. The ACSE context is automatically accepted by XAP, and appears
in the value of AP_DCS.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_PFU_AVAIL

The AP_PFU_AVAIL attribute indicates which optional Presentation functional units are
currently available.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_PFU_SEL

The AP_PFU_SEL attribute indicates which optional Presentation Layer functional units
have been requested for use over the current association.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_PRES_AVAIL

The AP_PRES_AVAIL attribute indicates which versions of the Presentation Layer protocol
are currently available. This attribute is not used in the ‘‘X.410-1984’’ mode.

AP_PRES_SEL

The AP_PRES_SEL attribute indicates which version of the Presentation Layer protocol has
been selected for use with the current association.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_QLEN

The AP_QLEN attribute is used to indicate the number of connection indications that will
be held by the provider when all of the connection endpoints bound for listening at
AP_BIND_PADDR are in use. The user can set this attribute to request a specific queue
size. The provider may change the value if it cannot support the requested queue size or if
another process bound to the same address has already requested a larger queue. The user
can determine the current queue size by examining the value of AP_QLEN using
ap_get_env().

38 X/Open CAE Specification (1993)

Environment

AP_QOS

The AP_QOS attribute is used to specify the quality of service requirements for the
association. It holds the ranges of QOS values that the XAP user is willing to accept.

AP_REM_PADDR

The AP_REM_PADDR attribute holds the value used as the presentation address of the
remote entity. If the local entity is the initiator of an association, this value is the called
presentation address. If the local entity is the association-responder, this value is the
calling presentation address.

AP_ROLE_ALLOWED

The AP_ROLE_ALLOWED parameter is used to specify how an instance of XAP may be
used. Specifically, the value of this attribute indicates whether the XAP instance may be
used to send an A_ASSOC_REQ primitive, receive an A_ASSOC_IND primitive, or both.
Note that this attribute only affects the roles that an instance of XAP may play with respect
to association establishment. Changing the value of this attribute will not affect the way in
which XAP participates in an association that has already been established.

It should be noted that an A_ASSOC_IND primitive may be received even after this
attribute has been set to prohibit receipt of association indications if
AP_ROLE_ALLOWED is set to AP_INITIATOR while the XAP instance is in the AP_IDLE
state. This situation occurs when the A_ASSOC_IND primitive has been queued prior to
setting AP_ROLE_ALLOWED to AP_INITIATOR. To avoid this situation, the
AP_ROLE_ALLOWED attribute should be set before the XAP instance is bound to a
presentation address if it will only be used to initiate associations.

AP_ROLE_CURRENT

The AP_ROLE_CURRENT attribute indicates the role of the local user in the current
association. The attribute is set to AP_INITIATOR as soon as an A_ASSOC_REQ primitive
is sent and remains unchanged until the association is rejected or subsequently terminated.
Similarly, the attribute is set to AP_RESPONDER upon receipt of an A_ASSOC_IND and
left unchanged until the association is terminated.

AP_RSP_AEID

The AP_RSP_AEID is the responding AE invocation identifier parameter of the AARE
APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_RSP_AEQ

The AP_RSP_AEQ is the responding AE-qualifier parameter of the AARE APDU.

See the description of the ap_aeq_t data type for information about how its absence is
indicated.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

ACSE/Presentation Services API (XAP) 39

Environment

AP_RSP_APID

The AP_RSP_APID is the responding AP invocation identifier parameter of the AARE
APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_RSP_APT

The AP_RSP_APT is the responding AP-title parameter of the AARE APDU.

This attribute is not used in the ‘‘X.410-1984’’ mode. Refer to the description of the
AP_MODE_SEL attribute.

AP_SESS_AVAIL

The AP_SESS_AVAIL attribute indicates which versions of the Session Layer protocol are
currently available.

AP_SESS_SEL

The AP_SESS_SEL attribute indicates which version of the Session Layer protocol has been
selected for use with the current association.

AP_SESS_OPT_AVAIL

The AP_SESS_OPT_AVAIL attribute is used to indicate which optional session capabilities
are available through the XAP interface.

If the AP_UCBC flag is set, the underlying provider supports user control of basic
concatenation. If the AP_UCEC flag is set, the underlying provider supports user control
of extended concatenation. For further information, refer to ap_snd() and the Session Layer
protocol specification.

AP_SFU_AVAIL

The AP_SFU_AVAIL attribute indicates which Session Layer functional units are currently
available.

The value of this attribute may affect the value of AP_TOKENS_AVAIL.

AP_SFU_SEL

The AP_SFU_SEL attribute indicates which Session Layer functional units have been
requested for use over the current association.

AP_STATE

The AP_STATE attribute is used to convey state information about the XAP interface. It is
used to determine which primitives are legal, which attributes can be read/written, etc.

AP_TOKENS_AVAIL

A token is an attribute of an association which is dynamically assigned to one user at a
time. The user that possesses a token has exclusive rights to initiate the service which that
token represents. The AP_TOKENS_AVAIL attribute indicates which tokens are available
for assignment on this association.

The value of this attribute is dependent on AP_SFU_SEL.

40 X/Open CAE Specification (1993)

Environment

AP_TOKENS_OWNED

The AP_TOKENS_OWNED attribute indicates which available tokens (see
AP_TOKENS_AVAIL) are currently assigned to the user. The user has exclusive rights to
initiate the service represented by each of the tokens owned.

The value of this attribute is affected by AP_INIT_TOKENS.

The attribute descriptions above indicate when setting one attribute’s value may affect the value
of another attribute. These dependencies are summarised in the table below:

Attribute Name Affects Is Affected By
AP_BIND_PADDR AP_LCL_PADDR

AP_LCL_PADDR AP_BIND_PADDR

AP_LIB_SEL potentially all

AP_SFU_SEL AP_TOKENS_AVAIL

AP_TOKENS_AVAIL AP_SFU_SEL

The following table provides additional information about the XAP environment attributes.
This information includes:

Attribute The symbolic constant defined in <xap.h > which is used to identify the attribute.

Type The data type of the values which are legal for the attribute.

Default The default value supplied for the attribute (if any).

Values If applicable, the set of values which are legal for the attribute. If no default value
is supplied, the default value is given as ‘‘none’’ or ‘‘not present’’. ‘‘None’’ implies
that a value must be specified by the user prior to issuance of a primitive, whereas
‘‘not present’’ implies that a value need not be specified, as the attribute represents
an optional field of a particular primitive. They are otherwise identical.

Readable The states in which the attribute may be read using ap_get_env() (states are given
as values of the AP_STATE attribute)

Writable The states during which the attribute may be assigned a value using either
ap_set_env() or ap_init_env() (states are given as values of the AP_STATE attribute).

ACSE/Presentation Services API (XAP) 41

Environment

Attribute Type/Values Readable Writable
unsigned long

bit values:
AP_ACSEVER1

AP_ACSE_AVAIL always never

unsigned long

bit values:
AP_ACSEVER1

default:
AP_ACSEVER1

only in states:
AP_UNBOUND
AP_IDLE

AP_ACSE_SEL always

unsigned long

bit values:
NULL

AP_AFU_AVAIL always never

unsigned long

bit values:
NULL

default:
NULL

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_AFU_SEL always

ap_paddr_t

default:
none

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_BIND_PADDR always

ap_aei_api_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLD_AEID always

ap_aeq_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLD_AEQ always

ap_aei_api_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLD_APID always

ap_apt_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLD_APT always

ap_conn_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_CLD_CONN_ID always

ap_aei_api_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLG_AEID always

ap_aeq_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLG_AEQ always

ap_aei_api_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLG_APID always

42 X/Open CAE Specification (1993)

Environment

Attribute Type/Values Readable Writable
ap_apt_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLG_APT always

ap_conn_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_CLG_CONN_ID always

long
one of:
TRUE
FALSE

default:
FALSE

AP_COPYENV always always

ap_objid_t

default:
none

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_CNTX_NAME always

in any states but:
AP_UNBOUND

AP_DCS ap_dcs_t never

AP_DIAGNOSTIC ap_diag_t always never

ap_dcn_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_DPCN always

long
one of:
AP_DPCR_NOVAL
AP_ACCEPT
AP_USER_REJ
AP_PROV_REJ

default:
AP_DPCR_NOVAL

only in state:
AP_WASSOCrsp_ASSOCind

only in state(s):
AP_WASSOCrsp_ASSOCind

AP_DPCR

unsigned long

bit values: AP_NDELAY

AP_FLAGS always always

unsigned long
range from
AP_MIN_SYNCP(0)
to
AP_MAX_SYNCP(999999)

default:
AP_MIN_SYNCP

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_INIT_SYNC_PT always

ACSE/Presentation Services API (XAP) 43

Environment

Attribute Type/Values Readable Writable
unsigned long
bit values
(one per token):

AP_DATA_TOK_REQ
AP_DATA_TOK_ACPT
AP_DATA_TOK_CHOICE

AP_SYNCMINOR_TOK_REQ
AP_SYNCMINOR_TOK_ACPT
AP_SYNCMINOR_TOK_CHOICE

AP_MAJACT_TOK_REQ
AP_MAJACT_TOK_ACPT
AP_MAJACT_TOK_CHOICE

AP_RELEASE_TOK_REQ
AP_RELEASE_TOK_ACPT
AP_RELEASE_TOK_CHOICE

default:
AP_DATA_TOK_REQ |
AP_SYNCMINOR_TOK_REQ |
AP_MAJACT_TOK_REQ |
AP_RELEASE_TOK_REQ

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCcnf_ASSOCreq
AP_WASSOCrsp_ASSOCind

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_INIT_TOKENS

AP_LCL_PADDR ap_paddr_t always never

unsigned long

bit values: AP_LIBVER1

AP_LIB_AVAIL always never

unsigned long

bit values:
AP_LIBVER1

default: none

only in state:
AP_UNBOUND

AP_LIB_SEL always

unsigned long

bit values:
AP_NORMAL_MODE
AP_X410_MODE

AP_MODE_AVAIL always never

unsigned long

bit values:
AP_NORMAL_MODE
AP_X410_MODE

default:
AP_NORMAL_MODE

only in states:
AP_UNBOUND
AP_IDLE

AP_MODE_SEL always

unsigned long

bit values:
AP_SNDMORE
AP_RCVMORE

AP_MSTATE always never

ap_old_conn_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE

AP_OLD_CONN_ID always

44 X/Open CAE Specification (1993)

Environment

Attribute Type/Values Readable Writable
unsigned long

bit values:
AP_NSAP_WILD
AP_TSEL_WILD
AP_SSEL_WILD
AP_PSEL_WILD

AP_OPT_AVAIL always never

ap_cdl_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

only in states:
AP_UNBOUND
AP_IDLE

AP_PCDL

ap_cdrl_t

default:
not present

only in states:
AP_WASSOCrsp_ASSOCind
AP_DATA_XFER

only in states:
AP_WASSOCrsp_ASSOCind

AP_PCDRL

unsigned long

bit values:
NULL

AP_PFU_AVAIL always never

unsigned long

bit values:
NULL

default:
NULL

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_PFU_SEL always

unsigned long

bit values:
AP_PRESVER1

AP_PRES_AVAIL always never

unsigned long

bit values:
AP_PRESVER1

default:
AP_PRESVER1

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_PRES_SEL always

long
default: 0

only in state:
AP_UNBOUND

AP_QLEN always

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_QOS ap_qos_t always

ap_paddr_t

default: none

only in states:
AP_UNBOUND
AP_IDLE

AP_REM_PADDR always

unsigned long

bit values:
AP_INITIATOR
AP_RESPONDER

default:
AP_INITIATOR |
AP_RESPONDER

AP_ROLE_ALLOWED always always

ACSE/Presentation Services API (XAP) 45

Environment

Attribute Type/Values Readable Writable
unsigned long

bit values:
AP_INITIATOR
AP_RESPONDER

in any states but:
AP_UNBOUND
AP_IDLE

AP_ROLE_CURRENT never

ap_aei_api_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_RSP_AEID always

ap_aeq_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_RSP_AEQ always

ap_aei_api_id_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_RSP_APID always

ap_apt_t

default:
not present

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_RSP_APT always

unsigned long

bit values:
AP_SESSVER1
AP_SESSVER2

AP_SESS_AVAIL always never

unsigned long

bit values:
AP_SESSVER1
AP_SESSVER2

default:
AP_SESSVER2

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_SESS_SEL always

unsigned long

bit values:
AP_UCBC
AP_UCEC

AP_SESS_OPT_AVAIL always never

unsigned long

or’d bits begin
with LSB:
AP_SESS_HALFDUPLEX
AP_SESS_DUPLEX
AP_SESS_XDATA
AP_SESS_MINORSYNC
AP_SESS_MAJORSYNC
AP_SESS_RESYNC
AP_SESS_ACTMGMT
AP_SESS_NEGREL
AP_SESS_CDATA
AP_SESS_EXCEPT
AP_SESS_TDATA
AP_SESS_DATASEP

AP_SFU_AVAIL always never

46 X/Open CAE Specification (1993)

Environment

Attribute Type/Values Readable Writable
unsigned long

or’d bits begin
with LSB:
AP_SESS_HALFDUPLEX
AP_SESS_DUPLEX
AP_SESS_XDATA
AP_SESS_MINORSYNC
AP_SESS_MAJORSYNC
AP_SESS_RESYNC
AP_SESS_ACTMGMT
AP_SESS_NEGREL
AP_SESS_CDATA
AP_SESS_EXCEPT
AP_SESS_TDATA
AP_SESS_DATASEP

default:
AP_SESS_DUPLEX

only in states:
AP_UNBOUND
AP_IDLE
AP_WASSOCrsp_ASSOCind

AP_SFU_SEL always

unsigned long
one of:
AP_UNBOUND
AP_IDLE
AP_DATA_XFER
AP_WASSOCrsp_ASSOCind
AP_WASSOCcnf_ASSOCreq
AP_WRELrsp_RELind
AP_WRELcnf_RELreq
AP_WRESYNrsp_RESYNind
AP_WRESYNcnf_RESYNreq
AP_WRELrsp_RELind_init
AP_WRELcnf_RELreq_rsp
AP_WACTDrsp_ACTDind
AP_WACTDcnf_ACTDreq
AP_WACTErsp_ACTEind
AP_WACTEcnf_ACTEreq
AP_WACTIrsp_ACTIind
AP_WACTIcnf_ACTIreq
AP_WSYNCMArsp_SYNCMAind
AP_WSYNCMAcnf_SYNCMAreq
AP_WCDATArsp_CDATAind
AP_WCDATAcnf_CDATAreq
AP_WRECOVERYind
AP_WRECOVERYreq

AP_STATE always never

unsigned long

bit values:
AP_DATA_TOK
AP_SYNCMINOR_TOK
AP_MAJACT_TOK
AP_RELEASE_TOK

in any states but:
AP_UNBOUND
AP_IDLE
AP_WASSOCcnf_ASSOCreq
AP_WASSOCrsp_ASSOCind

AP_TOKENS_AVAIL never

unsigned long

bit values:
AP_DATA_TOK
AP_SYNCMINOR_TOK
AP_MAJACT_TOK
AP_RELEASE_TOK

in any states but:
AP_UNBOUND
AP_IDLE
AP_WASSOCcnf_ASSOCreq
AP_WASSOCrsp_ASSOCind

AP_TOKENS_OWNED never

ACSE/Presentation Services API (XAP) 47

Environment

The following C types appear in the table above and are defined in <xap.h >:

ap_aeq_t is used to convey objects specified as ASN.1 type AE-qualifier and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded AE-qualifier */

} ap_aeq_t;

udata is a pointer to a buffer of user encoded AE-qualifier; size is the length of that buffer in
octets.

ap_apt_t is used to convey objects specified as ASN.1 type AP-title and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded AP-title */

} ap_apt_t;

udata is a pointer to a buffer of user encoded AP-title; size is the length of that buffer in octets.

For optional PDU parameters of type, AE-qualifier or AP-title, setting size to −1 indicates that the
parameter is not present. In addition, an optional parameter that corresponds to an environment
attribute may be specified to be absent by invoking ap_set_env() with a NULL pointer as the val
argument.

ap_aei_api_id_t is used to convey application entity/process identifier and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded AE-identifier */

/* or AP-identifier */
} ap_aei_api_id_t;

The ap_aei_api_id_t structure is used to convey application entity/process identifier values.
Application entity/process identifier values are stored in their encoded form including tag and
length . The absence of an application entity/process identifier parameter is indicated by setting
the size field to −1.

ap_cdl_t is used to convey context definition lists and is defined as:

typedef struct {
long pci; /* Presentation Context ID */
ap_objid_t *a_sytx; /* Abstract Syntax Object ID */
int size_t_sytx; /* Number of transfer syntaxes */
ap_objid_t **m_t_sytx; /* Array of ptrs to transfer syntaxes */

} ap_cdl_elt_t;

typedef struct {
int size; /* Number of elements */
ap_cdl_elt_t *m_ap_cdl; /* Array */

} ap_cdl_t;

The context definition list comprises a series of elements in the array, m_ap_cdl. The number of
elements in this array is given as size.

The presentation context identifier is represented by m_ap_cdl[i].pci. m_ap_cdl[i].a_sytx is a
pointer to an ap_objid_t and is used to convey the abstract syntax name associated with the
presentation context identifier. m_ap_cdl[i].m_t_sytx is a pointer to an array of type ap_objid_t *
which includes the transfer syntaxes that the association-initiator is capable of supporting for
the named abstract syntax. m_ap_cdl[i].size_t_sytx is the number of elements in the
m_ap_cdl[i].m_t_sytx array.

48 X/Open CAE Specification (1993)

Environment

The context definition list is an optional parameter of the CP PPDU. Setting size to −1 indicates
that this parameter is not present. The presentation context definition list may also be specified
to be absent by invoking ap_set_env() with AP_PCDL as the attr argument and a NULL pointer
as the val argument.

ap_cdrl_t is used to convey context definition result lists and is defined as:

typedef struct {
long res; /* Result of negotiation */
ap_objid_t *t_sytx; /* Negotiated transfer syntax */
long prov_rsn; /* Reason for rejection */

} ap_cdrl_elt_t;

typedef struct {
int size ; /* Number of elements */
ap_cdrl_elt_t *m_ap_cdl; /* Array */

} ap_cdrl_t;

The context definition result list comprises a series of elements in the array, m_ap_cdrl. The
number of elements in this array is given as size.

There is a one-to-one correspondence between the elements of a context definition list and those
in the related context definition result list. For each entry in the presentation context definition
list, the m_ap_cdrl[i].res field of the corresponding element in the context definition result list
must be set by the association-responder to one of AP_ACCEPT, AP_USER_REJ or
AP_PROV_REJ. If m_ap_cdrl[i].res is set to AP_ACCEPT, then m_ap_cdrl[i].t_sytx indicates the
transfer syntax selected by the association-responder. If m_ap_cdrl[i].res is set to either
AP_USER_REJ or AP_PROV_REJ, m_ap_cdrl[i].prov_rsn is set to the reason for the rejection of the
abstract syntax.

The possible values for m_ap_cdrl[i].prov_rsn are AP_RSN_NSPEC (reason not specified),
AP_A_SYTX_NSUP (abstract syntax not supported), AP_PROP_T_SYTX_NSUP (proposed
transfer syntaxes not supported), and AP_LCL_LMT_DCS_EXCEEDED (local limit on DCS
exceeded).

The context definition result list is an optional parameter of the CPA and CPR PPDUs. Setting
the value of size to −1 indicates that this parameter is not present. The presentation context
definition result list may also be specified to be absent by invoking ap_set_env() with AP_PCDRL
as the attr argument and a NULL pointer as the val argument.

ap_dcn_t is used to convey default context names and is defined as:

typedef struct {
ap_objid_t *a_sytx; /* Abstract Syntax Name */
ap_objid_t *t_sytx; /* Transfer Syntax Name */

} ap_dcn_t;

Both a_sytx and t_sytx are pointers to objects of type ap_objid_t: a_sytx points to the abstract
syntax for the default presentation context, while t_sytx points to the transfer syntax for the
default presentation context.

The default context name is an optional parameter of the CP PPDU. Setting both a_sytx and
t_sytx to NULL indicates that this parameter is not present. The default context name may also
be specified to be absent by invoking ap_set_env() with AP_DPCN as the attr argument and a
NULL pointer as the val argument.

ACSE/Presentation Services API (XAP) 49

Environment

ap_dcs_t is used to convey the defined context set and is defined as:

typedef struct {
long pci; /* Presentation Context ID */
ap_objid_t *a_sytx; /* Abstract syntax */
ap_objid_t *t_sytx; /* Transfer syntax */

} ap_dcs_elt_t;

typedef struct {
int size ; /* Number of elements */
ap_dcs_elt_t *dcs; /* Array */

} ap_dcs_t;

The size field of the ap_dcs_t structure indicates the number of elements in the defined context
set. Each element consists of a presentation context identifier (dcs[i].pci), an abstract syntax
name (dcs[i].a_sytx), and a transfer syntax name (dcs[i].t_sytx).

ap_diag_t is used to convey additional diagnostic information which may be available from a
particular implementation. It is defined as:

typedef struct {
long rsn; /* reason for the abort */
long evt; /* event that caused abort */
long src; /* source of abort */
char *error; /* textual message */

} ap_diag_t;

The src field will be set to indicate the source of an abort. Possible values for the src field are
those defined for the cdata->src parameter to the A_PABORT_IND primitive, plus
AP_ACSE_SERV_PROV (ACSE service provider).

The rsn field will be set to indicate the reason for the abort. The values for the rsn field depend
on the value of the src field. If the src field is set to AP_ACSE_SERV_PROV then the rsn field will
be set to one of the following:

AP_NSPEC The reason for the abort is not specified.

AP_UNREC_APDU Abort due to an unrecognised ACSE protocol data unit.

AP_UNEXPT_APDU Abort due to an unexpected ACSE protocol data unit.

AP_UNREC_APDU_PARM Abort due to an unrecognised ACSE protocol data unit
parameter.

AP_UNEXPT_APDU_PARM Abort due to an unexpected ACSE protocol data unit parameter.

AP_INVAL_APDU_PARM Abort due to an invalid ACSE protocol data unit parameter.

If the src field is set to AP_PRES_SERV_PROV, the rsn field will be set to one of the
corresponding reasons defined for the XAP primitive A_PABORT_IND.

If the src field is set to AP_SESS_SERV_PROV, the rsn field will be set to one of the
corresponding reasons defined for the XAP primitive A_PABORT_IND.

If the src field is set to AP_TRAN_SERV_PROV, the rsn field will be set either to one of the
corresponding reasons defined for the XAP primitive A_PABORT_IND, or to
AP_TRAN_DISCONNECT (abort due to transport disconnect received).

50 X/Open CAE Specification (1993)

Environment

The evt field is used to indicate the incoming event which caused the abort. If the src field is set
to AP_ACSE_SERV_PROV, the APDU which triggered the abort will be indicated as follows:

AP_AEI_AARQ Associate request APDU.

AP_AEI_AARE Associate response APDU.

AP_AEI_RLRQ Associate release request APDU.

AP_AEI_RLRE Associate release response APDU.

AP_AEI_ABRT Associate abort APDU.

If the src field is set to AP_PRES_SERV_PROV, the evt field will be set to one of the
corresponding values defined for the XAP primitive A_PABORT_IND.

If the src field is set to AP_TRAN_SERV_PROV and the rsn field is set to
AP_TRAN_DISCONNECT, the evt field will be set to an implementation-defined diagnostic
value such as that returned by the XTI t_rcvdis() call.

The error field will be set up to point to a text string which describes the error condition, or will
be set to NULL if no such text string is available under the currently defined LOCALE. The text
string is in the natural language of the currently defined LOCALE.

ap_paddr_t is used to convey presentation addresses and is defined as:

typedef struct {
long length; /* Number of octets */
unsigned char *data; /* Octets */

} ap_octet_string_t;

typedef struct {
ap_octet_string_t nsap; /* NSAPAddress */
int nsap_type; /* AP_UNKNOWN, AP_CLNS, AP_CONS, */

/* AP_RFC1006, other = system dependent */
} ap_nsap_t;

typedef struct {
ap_octet_string_t *p_selector; /* Presentation selector */
ap_octet_string_t *s_selector; /* Session selector */
ap_octet_string_t *t_selector; /* Transport selector */
int n_nsaps; /* Number of network addrs */
ap_nsap_t *nsaps; /* Array of network addresses */

/* and types */
} ap_paddr_t;

P_selector, S_selector and T_selector are pointers to octet strings corresponding to the presentation,
session and transport selectors respectively. These octet strings are represented by the
ap_octet_string_t structure. The length field of this structure indicates how many octets are in
the octet string pointed by data. To specify a null selector value, the length field of the
ap_octet_string_t structure is set to 0. For selector wildcard presentation addresses, non-specified
selector values are indicated by setting the corresponding pointer(s) in the ap_paddr_t structure
to NULL.

The n_nsaps element is used to specify how many network address components are in the array,
nsaps. Each element of the nsaps array is an ap_octet_string_t structure with an associated
nsap_type which identifies the type of network (or system dependent values) to which the NSAP
refers. An nsap_type of AP_UNKNOWN indicates that the network type is not known.

When multiple network address components are included in a presentation address, the specific
network address(es) chosen by the provider and the manner by which it is selected for initiating

ACSE/Presentation Services API (XAP) 51

Environment

or listening to connections is not specified by XAP and is a local implementation issue. When
used to represent a wildcard address, the value of n_nsaps may be zero. In this case, all locally
defined network addresses are implied. In all other cases, n_nsaps must be a positive value.

Presentation addresses are restricted as follows:

• Session selectors cannot exceed 16 octets.

• Transport selectors cannot exceed 32 octets.

• Remote addresses may not have more than 8 Network addresses.

• Individual Network addresses cannot exceed 20 octets.

Note that implementations may impose further restrictions on local addresses.

ap_conn_id_t is used to convey session connection identifiers and is defined as:

typedef struct {
ap_octet_string_t *user_ref; /* SS-user Ref. */
ap_octet_string_t *comm_ref; /* Common Ref. */
ap_octet_string_t *addtl_ref; /* Additional Ref. */

} ap_conn_id_t;

Each of the members of the ap_conn_id_t structure are of type ap_octet_string_t (see above).
The user_ref member must be ≤ 64 octets. The comm_ref member must be ≤ 64 octets. The
addtl_ref member must be ≤ 4 octets. The absence of a particular member of a connection
identifier may be indicated either by setting the corresponding field to NULL, or by specifying a
0 length ap_octet_string_t.

typedef struct {
ap_octet_string_t *clg_user_ref; /* calling SS-user reference */
ap_octet_string_t *cld_user_ref; /* called SS-user reference */
ap_octet_string_t *comm_ref; /* common reference */
ap_octet_string_t *addtl_ref; /* Additional Reference */

} ap_old_conn_id_t ;

Each of the members of the ap_old_conn_id structure is of type ap_octet_string_t. The
clg_user_ref, cld_user_ref and comm_ref members must be <= 64 octets in length. The addtl_ref
member must be <= 4 octets. The absence of a particular member of an old connection identifier
may be indicated either by setting the corresponding field to NULL, or by specifying a 0 length
ap_octet_string_t.

ap_objid_t is used to convey objects of ASN.1 type OBJECT IDENTIFIER and is defined as
follows:

#define AP_MAXOBJBUF 12
#define AP_CK_OBJ_NULL(O) ((O)->length ? 0 : 1)
#define AP_SET_OBJ_NULL(O) ((O)->length = 0)

typedef struct {
long length; /* Number of value octets in object ID encoding */
union {

unsigned char short_buf[AP_MAXOBJBUF];
unsigned char *long_buf;

} b;
} ap_objid_t;

The ap_objid_t structure is used to convey OBJECT IDENTIFIER values. OBJECT IDENTIFIER
values are stored as the contents octets of their encoded form (without the tag or length octets).
If the number of contents octets is greater than MAXOBJBUF, the contents octets are stored
beginning at the memory location pointed to by long_buf. Otherwise, the contents octets are

52 X/Open CAE Specification (1993)

Environment

stored in the short_buf array. In both cases, length gives the number of contents octets in the
OBJECT IDENTIFIER encoding. The absence of an OBJECT IDENTIFIER parameter is indicated
by setting the length field to 0.

Routines to create and operate on objects of this type may be provided as part of an
Encode/Decode Library but such routines are not part of the XAP specification.

The ap_qos_t structure is used to convey quality of service requirements and is defined as
follows:

#define AP_NO 0
#define AP_YES 1

typedef struct {
ap_thrpt_t throughput; /* throughput */
ap_transdel_t transdel; /* transit delay */
ap_rate_t reserrorrate; /* residual error rate */
ap_rate_t transffailprob; /* transfer failure probability */
ap_rate_t estfailprob; /* connection establ failure */

/* probability */
ap_rate_t relfailprob; /* connection release failure */

/* probability */
ap_rate_t estdelay; /* connection establishment delay */
ap_rate_t reldelay; /* connection release delay */
ap_rate_t connresil; /* connection resilience */
unsigned int protection; /* protection */
int priority; /* priority: AP_PRITOP, */

/* AP_PRIHIGH, AP_PRIMID, */
/* AP_PRILOW, or AP_PRIDFLT */

char optimizedtrans; /* optimized dialogue transfer */
/* value: AP_YES or AP_NO */

char extcntl; /* extended control: AP_YES or */
/* AP_NO */

} ap_qos_t;

The fields of the ap_qos_t structure specify the ranges of acceptable values for the quality of
service requirements of an association. The supporting structures are as follows:

typedef struct {
ap_reqvalue_t maxthrpt; /* maximum throughput */
ap_reqvalue_t avgthrpt; /* average throughput */

} ap_thrpt_t;

typedef struct {
ap_reqvalue_t maxdel; /* maximum transit delay */
ap_reqvalue_t avgdel; /* average transit delay */

} ap_transdel_t;

typedef struct {
long targetvalue; /* target value */
long minacceptvalue; /* limiting acceptable value */

} ap_rate_t;

typedef struct {
ap_rate_t called; /* called rate */
ap_rate_t calling; /* calling rate */

} ap_reqvalue_t;

Values are assigned to attributes either through ap_init_env(), ap_restore(), ap_set_env() or during
ap_rcv() and ap_snd() event processing. The environment attributes are initialized to their

ACSE/Presentation Services API (XAP) 53

Environment

default values when an ap_init_env() call is made. The attributes can be changed by the user
using the ap_set_env() call. Also, the attributes can be changed by the library when needed due
to ap_rcv() and ap_snd() calls. The ap_restore() call will only set the attributes to the values that
they were when they were saved using the ap_save() call. When ap_get_env() is issued for an
attribute that has no value assigned, the location pointed at by aperrno_p will be set to the
[AP_BADENV] error code.

54 X/Open CAE Specification (1993)

Chapter 4

XAP Functions

This chapter presents the manual pages for the XAP API. These define the functions which make
up XAP, providing the detailed specifications of parameters and data structures.

The manual pages for ap_snd() and ap_rcv() include tables which define the valid states in which
each primitive can be sent or received, the resulting state, and the effect on the variables that
control the protocol’s operation.

ACSE/Presentation Services API (XAP) 55

Introduction XAP Functions

4.1 Introduction

4.1.1 Functions

This section describes the functions in XAP. A complete list of these functions is provided
below.

ap_bind() Associate a Presentation Address with an instance of XAP.

ap_close() Close an instance of XAP.

ap_error() Return an error message.

ap_free() Free memory for XAP data structures.

ap_get_env() Get the value of an XAP environment attribute.

ap_init_env() Initialise an instance of XAP.

ap_ioctl() Control the generation of software interrupts.

ap_look() Examine the next ACSE/Presentation primitive from the
association/connection.

ap_open() Create an instance of XAP.

ap_poll() Input/output multiplexing.

ap_save() Save an instance of XAP.

ap_set_env() Set the value of an XAP environment attribute.

ap_snd() Send an ACSE/Presentation primitive over the association/connection.

ap_rcv() Receive an ACSE/Presentation primitive from the association/connection.

ap_restore() Restore an instance of XAP environment.

4.1.2 Errors

Most of these functions have one or more possible error returns. The Return Value section of
each XAP manual page indicates how the occurrence of an error is signalled to the user. For
most functions, an error condition is indicated by a returned value of −1, and the location
pointed at by aperrno_p parameter is set to the error code indicating the error condition.

Each function description includes a list of error conditions that are reported by XAP. In
addition, errors reported by underlying service providers (i.e., ACSE, Presentation, Session,
Transport, ASN.1, or the operating system) may be passed through to the user. The class of a
particular error can be determined by examining the two least significant octets of the error code
after shifting right 16 bits. The following numbers identify the defined error classes:

/*
* These ID numbers for each protocol are used to distinguish
* #defines of various kinds for each layer, such as primitive
* names, environment attribute names, error codes, etc.
*/

#define AP_ASN1_ID (11)
#define AP_ID (8)
#define AP_ACSE_ID (7)
#define AP_PRES_ID (6)
#define AP_SESS_ID (5)

56 X/Open CAE Specification (1993)

XAP Functions Introduction

#define AP_TRAN_ID (4)
#define AP_OS_ID (0)

Below is a complete list of errors that are reported by XAP. Error codes associated with errors
reported from underlying service providers are dependent on the particular provider in
question. Refer to the interface specifications for those providers for further information.

A/P-LIBRARY ERRORS

[AP_ACCES] Request to bind to specified address denied.

[AP_AGAIN] Request not completed.

[AP_AGAIN_DATA_PENDING] XAP was unable to complete the requested action. Try
again. There is an event available for the user to receive.

[AP_BADATTRVAL] Bad value for environment attribute.

[AP_BADALLOC] The ap_user_alloc/ap_user_dealloc argument combination
was invalid.

[AP_BADASLSYN] The transfer syntaxes proposed for the ACSE syntax are not
supported.

[AP_BADCD_ACT_ID] Cdata field value invalid: act_id.

[AP_BADCD_DIAG] Cdata field value invalid: diag.

[AP_BADCD_EVT] Cdata field value invalid: event.

[AP_BADCD_OLD_ACT_ID] Cdata field value invalid: old_act_id.

[AP_BADCD_OLD_CONN_ID] Cdata field value invalid: old_conn_id.

[AP_BADCD_RES] Cdata field value invalid: res.

[AP_BADCD_RESYNC_TYPE] Cdata field value invalid: resync_type.

[AP_BADCD_RSN] Cdata field value invalid: rsn.

[AP_BADCD_SYNC_P_SN] Cdata field value invalid: sync_p_sn.

[AP_BADCD_SYNC_TYPE] Cdata field value invalid: sync_type.

[AP_BADCD_TOKENS] Cdata field value invalid: tokens.

[AP_BADDATA] User data not allowed on this service.

[AP_BADENV] A mandatory attribute is not set.

[AP_BADF] Not a presentation service endpoint.

[AP_BADFLAGS] The specified combination of flags is invalid.

[AP_BADFREE] Could not free structure members.

[AP_BADKIND] Unknown structure type.

[AP_BADLSTATE] Instance in bad state for that command.

[AP_BADNSAP] The format of the NSAP portion of the Presentation
Address is not supported.

[AP_BADPARSE] Attribute parse failed.

ACSE/Presentation Services API (XAP) 57

Introduction XAP Functions

[AP_BADPRIM] Unrecognised primitive from user.

[AP_BADRESTR] Attributes not restored due to more bit on.

[AP_BADROLE] Request invalid due to value of AP_ROLE.

[AP_BADSAVE] Attributes not saved due to more bit on.

[AP_BADSAVEF] Invalid FILE pointer.

[AP_BADUBUF] Bad length for user data.

[AP_DATA_OVERFLOW] User data and presentation service pci exceeds 512 bytes on
session V1 or the length of user data exceeds a locally
defined limit, as stated in the CSQ.

[AP_HANGUP] Association closed or aborted.

[AP_LOOK] A pending event requires attention.

[AP_NOATTR] No such attribute.

[AP_NOBUF] Could not allocate enough buffers.

[AP_NODATA] An attempt was made to send a primitive with no user data.

[AP_NOENV] No environment for that fd.

[AP_NOMEM] Could not allocate enough memory.

[AP_NOREAD] Attribute is not readable.

[AP_NOWRITE] Attribute is not writable.

[AP_NO_PRECEDENCE] The resynchronisation requested by the local user does not
have precedence over the one requested by the remote user.

[AP_NOT_SUPPORTED] The action requested is not supported by this
implementation of XAP.

[AP_PDUREJ] Invalid PDU rejected.

[AP_SUCCESS_DATA_PENDING] The requested action was completed successfully. There is
an event available for the user to receive.

58 X/Open CAE Specification (1993)

XAP Functions Introduction

4.1.3 Structure Definitions

The following are definitions for the ap_cdata_t and ap_a_assoc_env_t structures. These
definitions shown here are referenced in subsequent manual pages.

typedef struct {
long udata_length; /* length of user-data field */
long rsn; /* reason for activity/abort/release prim */
long evt; /* event that caused abort */
long sync_p_sn; /* synchronization point serial number */
long sync_type; /* synchronization type */
long resync_type; /* resynchronization type */
long src; /* source of abort */
long res; /* result of association/release request */
long res_src; /* source of result */
long diag; /* reason for association rejection */
unsigned long tokens; /* tokens identifier: 0=>"tokens absent" */
ap_a_assoc_env_t *env; /* environment attribute values */
ap_octet_string_t act_id; /* activity identifier */
ap_octet_string_t old_act_id; /* old activity identifier */
ap_old_conn_id_t *old_conn_id; /* old session connection identifier */

} ap_cdata_t;

typedef struct {
unsigned long mask; /* bit mask */
unsigned long mode_sel; /* AP_MODE_SEL */
ap_objid_t cntx_name; /* AP_CNTX_NAME */
ap_aei_api_id_t clg_aeid; /* AP_CLG_AEID */
ap_aeq_t clg_aeq; /* AP_CLG_AEQ */
ap_aei_api_id_t clg_apid; /* AP_CLG_APID */
ap_apt_t clg_apt; /* AP_CLG_APT */
ap_aei_api_id_t cld_aeid; /* AP_CLD_AEID */
ap_aeq_t cld_aeq; /* AP_CLD_AEQ */
ap_aei_api_id_t cld_apid; /* AP_CLD_APID */
ap_apt_t cld_apt; /* AP_CLD_APT */
ap_paddr_t rem_paddr; /* AP_REM_PADDR */
ap_cdl_t pcdl; /* AP_PCDL */
ap_dcn_t dpcn; /* AP_DPCN */
ap_qos_t qos; /* AP_QOS */
unsigned long a_version_sel; /* AP_ACSE_SEL */
unsigned long p_version_sel; /* AP_PRES_SEL */
unsigned long s_version_sel; /* AP_SESS_SEL */
unsigned long afu_sel; /* AP_AFU_SEL */
unsigned long pfu_sel; /* AP_PFU_SEL */
unsigned long sfu_sel; /* AP_SFU_SEL */
ap_conn_id_t *clg_conn_id; /* AP_CLG_CONN_ID */
ap_conn_id_t *cld_conn_id; /* AP_CLD_CONN_ID */
unsigned long init_sync_pt; /* AP_INIT_SYNC_PT */
unsigned long init_tokens; /* AP_INIT_TOKENS */
ap_aei_api_id_t rsp_aeid; /* AP_RSP_AEID */
ap_aeq_t rsp_aeq; /* AP_RSP_AEQ */
ap_aei_api_id_t rsp_apid; /* AP_RSP_APID */
ap_apt_t rsp_apt; /* AP_RSP_APT */
ap_cdrl_t pcdrl; /* AP_PCDRL */
long dpcr; /* AP_DPCR */

} ap_a_assoc_env_t;

ACSE/Presentation Services API (XAP) 59

Introduction XAP Functions

4.1.4 Token Assignment

This section defines the values which are used to specify the assignment of tokens during
association establishment and during resynchronisation. Values are formed by OR’ing together
bits corresponding to the requested position for each token.

The requesting user may set the following values:

Token Allowed Values
one of:
AP_DATA_TOK_REQ
AP_DATA_TOK_ACPT
AP_DATA_TOK_CHOICE

Data

one of:
AP_SYNCMINOR_TOK_REQ
AP_SYNCMINOR_TOK_ACPT
AP_SYNCMINOR_TOK_CHOICE

Synchronize-minor

one of:
AP_MAJACT_TOK_REQ
AP_MAJACT_TOK_ACPT
AP_MAJACT_TOK_CHOICE

Major/Activity

one of:
AP_RELEASE_TOK_REQ
AP_RELEASE_TOK_ACPT
AP_RELEASE_TOK_CHOICE

Release

Assignments for tokens that are unavailable are ignored. If no assignment is given for an
available token, AP_XXXXX_TOK_REQ is specified by the service.

The accepting user may set the following values:

Token Allowed Values
one of:
AP_DATA_TOK_REQ
AP_DATA_TOK_ACPT

Data

one of:
AP_SYNCMINOR_TOK_REQ
AP_SYNCMINOR_TOK_ACPT

Synchronize-minor

one of:
AP_MAJACT_TOK_REQ
AP_MAJACT_TOK_ACPT

Major/Activity

one of:
AP_RELEASE_TOK_REQ
AP_RELEASE_TOK_ACPT

Release

Assignments for tokens that are unavailable or that were assigned to one side or the other by the
requestor are ignored. If no assignment is given for an acceptor’s choice token,
AP_XXXXX_TOK_REQ is specified by the service.

60 X/Open CAE Specification (1993)

XAP Functions ap_bind()

NAME
ap_bind - bind a Presentation Address to an XAP instance

SYNOPSIS
#include <xap.h>

int ap_bind (
int fd,
unsigned long *aperrno_p)

DESCRIPTION
This function associates the Presentation Address stored in the AP_BIND_PADDR environment
variable with the XAP Instance specified by fd. Upon successful completion the service
provider may begin enqueuing incoming associations or sending outbound association requests.
All necessary environment variables (e.g., AP_BIND_PADDR, AP_ROLE_ALLOWED) should be
set prior to calling ap_bind().

When this function is called, an attempt may be made to bind to the specified address. As a part
of the bind procedure, an authorisation check may be performed to verify that all of the
processes that share this XAP instance are authorised to use the new address. If all are
authorised to do so, the bind request will succeed and the XAP instance may be used to send
(receive) primitives from (addressed to) the new address. Successfully calling this function
causes the state of XAP to move from AP_UNBOUND to AP_IDLE.

Some implementations may perform no authorisation checking. In this case the [AP_ACCES]
error response will not be generated. Other implementations may defer binding and
authorisation until an A_ASSOC_REQ or A_ASSOC_RSP primitive is issued. In this case, if the
authorisation check fails, the AP_ACCES error will be returned by ap_snd(). The local address
can then be changed to an acceptable value and the primitive reissued, or the connection can be
closed.

An instance can be bound to a presentation address only if all of the processes that share it are
authorised to use the requested address. Consequently, when an attempt is made to bind an
address, the effective UIDs of all of the processes that share this instance of XAP may be checked
against the list of users allowed to use the requested address. If all are authorised to use the
address, ap_bind() succeeds and the instance is bound to the specified presentation address. On
the other hand, if any of the processes is not authorised to use the requested address, ap_bind()
fails and the instance remains unbound.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed to by aperrno_p is set to indicate the error.

ERRORS

[AP_ACCES] Request to bind to specified address denied.

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_BADNSAP] The format of the NSAP portion of the Presentation Address is not
supported.

[AP_NOENV] There is no XAP environment associated with fd.

ACSE/Presentation Services API (XAP) 61

ap_close() XAP Functions

NAME
ap_close - close an XAP instance

SYNOPSIS
#include <xap.h>

int
ap_close (

int fd,
unsigned long *aperrno_p)

DESCRIPTION
This function frees the resources allocated to support the instance of XAP identified by fd.

If the last close of the XAP instance occurs while an association is still active, the association
(and any primitive that is being sent or received in multiple parts using the AP_MORE bit) is
aborted before the resources are released.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed to by aperrno_p is set to indicate the error.

ERRORS

[AP_BADF] The fd parameter does not identify an XAP instance.

In addition, operating system class errors are reported.

62 X/Open CAE Specification (1993)

XAP Functions ap_error()

NAME
ap_error - return an error message

SYNOPSIS
#include <xap.h>

char *ap_error (
unsigned long aperrno)

DESCRIPTION
This function returns a pointer to a message that describes the error indicated by aperrno. The
message is in the natural language of the currently defined LOCALE. The pointer will point to
NULL if no such message is available under the currently defined LOCALE. For English
language locales, the message must be one of the messages listed in the XAP Functions
introduction (see Section 4.1 on page 56). The message pointer points to an internal buffer area.
If the caller wishes to retain the message text, before calling ap_error() again, then the text should
be copied to some private storage.

All error codes that are not XAP errors and thus do not map to error strings will return a generic
error string.

RETURN VALUE
Upon completion, a pointer to the appropriate error message is returned.

ERRORS

No error conditions are reported by this function.

ACSE/Presentation Services API (XAP) 63

ap_free() XAP Functions

NAME
ap_free - free user memory associated with XAP data structures

SYNOPSIS
#include <xap.h>

int ap_free (
int fd,
unsigned long kind,
void *val,
unsigned long *aperrno_p)

DESCRIPTION
This function frees memory for values of XAP environment attributes and data structures
allocated on the XAP instance identified by fd. Common uses of this function would be to free
memory allocated for the value of an environment attribute by XAP following an ap_get_env()
invocation, and to free an ap_a_assoc_env_t structure returned with an A_ASSOC_IND by an
ap_rcv invocation when the AP_COPYENV environment attribute is set. The argument kind
identifies the kind of structure that is to be freed. Legal values for this argument are:

• #define identifiers associated with environment attributes whose type is not a long. These
are the names listed in the "Attribute" column of the environment attribute summary table
given in Chapter 3 (for example, AP_INIT_TOKENS).

• #define identifiers associated with data structures that are used to represent the values of
environment attributes. These data structures are those listed in the Type/Value column of
the environment attribute summary table given in Chapter 3. The identifier for a data
structure is derived from the typedef name by converting it to upper case.

• #define identifiers associated with certain important C data structures not associated with
environment attributes. These are as follows:

C Data Structure Identifier
ap_cdata_t AP_CDATA_T
ap_a_assoc_env_t AP_A_ASSOC_ENV_T
ap_osi_vbuf_t AP_OSI_VBUF_T

• The #define identifier AP_BUFFERS for a chain of user data buffers.

The argument val must be a pointer to a structure of the type indicated by kind.

The behaviour of ap_free() differs when releasing buffers and when releasing memory.

The user can release buffers by calling ap_free() with kind set to AP_BUFFERS or
AP_OSI_VBUF_T. An ap_free() call with kind set to AP_BUFFERS releases ALL buffers in the
supplied chain (including the first osi_vbuf/osi_dbuf/data buffer in the chain) by passing the
entire chain to the user dealloc function. An ap_free() call with kind set to AP_OSI_VBUF_T
releases all buffers in the chain EXCEPT the first osi_vbuf/osi_dbuf/data buffer, and sets bcont in
the first osi_vbuf to NULL. Note that because all freeing of buffers is performed by the user
dealloc function, osi_dbufs and buffers cannot be freed in isolation.

When releasing memory, the ap_free() function follows and frees all internal pointers. The top
level structure (the structure pointed to by val) is not freed. If the user has supplied a
deallocation function on the ap_open() call then:

• the ap_user_dealloc() function is called to free any buffers, and buffer chains, passed to
ap_free()

64 X/Open CAE Specification (1993)

XAP Functions ap_free()

• if the AP_BUFFERS_ONLY flag was not set on the ap_open call, then the ap_user_dealloc()
function will be called to free the memory comprising data structures pointed at by members
of the data structure passed to ap_free().

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_BADFREE] The function could not free the structure.

[AP_BADKIND] The kind argument does not identify a known structure type.

ACSE/Presentation Services API (XAP) 65

ap_get_env() XAP Functions

NAME
ap_get_env - get the value of an XAP environment attribute

SYNOPSIS
#include <xap.h>

int ap_get_env (
int fd,
unsigned long attr,
void *val,
unsigned long *aperrno_p)

DESCRIPTION
This function retrieves the value of an environment attribute for an XAP instance identified by
fd. Attr is used to pass the ‘‘name’’ of the attribute to be retrieved, defined by the associated
#define in the <xap.h> header file.

The value supplied as the val argument to this function depends upon which attribute is to be
examined. In all cases, val must point to an object of the same type as the specified attribute. For
example, if the type of the attribute is long, val must point to a long. Similarly, if the type of the
attribute is ap_dcs_t, val must point to an ap_dcs_t structure. If the object pointed to by val is
either a pointer or a structure that includes pointers (e.g., ap_dcs_t), XAP allocates additional
memory by calling the user supplied or built-in allocation routine, and assigns proper values to
the pointer elements as required. Memory allocated by ap_get_env() can be freed with the
ap_free() function.

Refer to ap_env() for information about attribute types.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_BADENV] There is no value assigned to the requested environment attribute.

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_NOATTR] The attr argument does not specify a valid attribute type.

[AP_NOENV] There is no XAP environment associated with fd.

[AP_NOMEM] XAP could not allocate sufficient memory to copy the value of the
specified attribute.

[AP_NOREAD] The specified attribute is not readable.

In addition, operating system class errors are reported.

66 X/Open CAE Specification (1993)

XAP Functions ap_init_env()

NAME
ap_init_env - establish an instance of XAP and initialise the XAP environment

SYNOPSIS
#include <xap.h>

int ap_init_env (
int fd,
const char *env_file,
int flags,
unsigned long *aperrno_p)

DESCRIPTION

This function initialises an otherwise uninitialised XAP instance identified by fd. In addition,
ap_init_env() may be used to set the values of several writable environment attributes with a
single function call rather than using ap_set_env() to set each attribute individually.

If no environment exists when ap_init_env() is called, memory will be allocated for the
environment attributes in the calling process’s data space and the attributes will be set to their
default values (see the environment description in Chapter 3). If the user wishes to override the
defaults for certain writable attributes, values for those attributes may be specified in an
initialisation file as described below.

If an environment already exists when ap_init_env() is called, attributes will be assigned values.
In this case, attributes will not automatically be set to their default values.

To set the environment attributes from values stored in a file, env_file must point to a null-
terminated string that is the initialisation file’s pathname. An environment initialisation file is
generated by processing an ap_env_file file using the ap_osic command. Setting env_file to
NULL indicates that no values are to be taken from an environment initialisation file. No error is
reported if the file identified by env_file is zero length.

The environment initialisation file may contain assignments for any or all of the attributes that
are writable in the current state. The ap_init_env() call will fail if env_file contains an assignment
for an attribute that is not writable in the current state. Attributes that are not included in the
file will not be modified. The following specific points about initialisation of the environment
from a file should be noted:

• The values of read-only attributes are not affected by ap_init_env(). The one exception to this
is AP_LCL_PADDR. Since AP_LCL_PADDR is set as a side effect of setting
AP_BIND_PADDR, its value may change as an indirect result of invoking ap_init_env() if the
value of AP_BIND_PADDR is modified.

• If the environment file assigns a value to the AP_BIND_PADDR attribute, it should be noted
that the Presentation address set will not be used until the ap_bind() function is called.
Calling ap_bind() after ap_init_env() will cause the Presentation address to be validated and if
the authorisation check succeeds, then the endpoint will be moved to the AP_IDLE state. If
the ap_init_env() function is called after a successful ap_bind(), then if a new Presentation
address is assigned to AP_BIND_PADDR, the endpoint will not be re-bound until ap_bind()
is called again.

The flags argument to this function is currently unused.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

ACSE/Presentation Services API (XAP) 67

ap_init_env() XAP Functions

CAVEAT
The output from the ap_osic command of one XAP implementation is not necessarily readable by
the ap_init_env() function of another XAP implementation, as the format of the intermediate file
is not defined. Environment initialisation files are therefore only guaranteed to be portable in
the ap_env_file form.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, if the call fails because of an
attempt to either set an attribute to an illegal value or set an attribute in an illegal state,
ap_init_env will return the value of the symbolic constant that identifies that attribute. If the call
fails for some other reason, a value of −1 is returned. Either type of failure will result in the
location pointed at by aperrno_p being set to indicate the error.

ERRORS

[AP_BADATTRVAL] An invalid value assignment was found in the initialisation file.

[AP_BADF] The fd argument does not identify an XAP instance.

[AP_NOATTR] An invalid attribute type appears in the initialisation file.

[AP_NOMEM] XAP could not allocate sufficient memory to create an environment.

[AP_NOT_SUPPORTED] The use of a non-NULL value for env_file is not supported by this
implementation of XAP.

[AP_NOWRITE] An assignment for an attribute that is not writable in the current state
appears in the initialisation file.

In addition, operating system class errors are reported.

68 X/Open CAE Specification (1993)

XAP Functions ap_ioctl()

NAME
ap_ioctl - control the generation of software interrupts

SYNOPSIS
#include <xap.h>

int ap_ioctl (
int fd,
int request,
ap_val_t argument,
unsigned long *aperrno_p)

DESCRIPTION
This function controls the generation of software interrupts for the XAP instance identified by fd.

Software interrupt is an asynchronous mechanism that can be used to inform an application of
pending events or state changes for a service that it is using. An XAP implementation may use
such a mechanism to inform the XAP user about incoming events such as a primitive available
to be received, or outgoing events such as a flow control restriction being lifted. This
mechanism is complementary to the ap_poll() function which provides synchronous notification
of such events.

Support for software interrupt and the mechanism by which such an interrupt is signalled to the
XAP user is a feature of the operating system platform on which the XAP implementation runs.
XAP does not define a software interrupt interface mechanism itself. Further, support for the
function provided by ap_ioctl() is not a mandatory part of XAP and if not available, ap_ioctl()
returns [AP_NOT_SUPPORTED]. Therefore a portable application should not rely on provision
of this mechanism.

If the user requires software interrupts to be generated when a data event occurs, then ap_ioctl()
should be called with a request parameter of AP_SETPOLL. The l member of the ap_val_t
argument parameter is a bitmask used to indicate which events should generate a software
interrupt. All XAP Library implementations recognise the following events:

AP_POLLRDNORM Data (for example, an XAP Library primitive or user data associated
with an XAP Library primitive) has arrived on the normal data flow
and is available to be read.

AP_POLLRDBAND Data has arrived outside the normal data flow and is available to be
read. In implementations that do not support multiple data bands,
this event will result in the same action as the AP_POLLRDNORM
event.

AP_POLLIN Data has arrived (on either band) and is available to be read.

AP_POLLOUT Data can be sent on the normal priority band.

AP_POLLWRNORM The same as AP_POLLOUT.

AP_POLLWRBAND Out-of-band data can be sent. This event will be treated as
AP_POLLOUT in implementations that do not support multiple data
bands.

Support for events other than those listed above is optional. Users interested in developing
applications that are portable across different XAP Library implementations should keep this
caveat in mind.

If the user requires software interrupts to be disabled then ap_ioctl() should be called with a
request parameter of AP_SETPOLL and the l member of the ap_val_t argument value as 0.

ACSE/Presentation Services API (XAP) 69

ap_ioctl() XAP Functions

If the user wishes to obtain the current settings of the software interrupts bitmask then ap_ioctl()
should be called with a request parameter of AP_GETPOLL. The v member of the ap_val_t
argument must point to a location where the current setting of the bitmask is to be written by
ap_ioctl().

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value 0 is returned. Otherwise, a value of -1 is returned and the
location pointed to by aperrno_p is set to indicate the error.

ERRORS

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_NOT_SUPPORTED] ap_ioctl() operation is not supported by this implementation of
XAP.

In addition, operating system class errors are reported.

70 X/Open CAE Specification (1993)

XAP Functions ap_look()

NAME
ap_look - examine next ACSE/Presentation primitive from the association/connection

SYNOPSIS
#include <xap.h>

int ap_look (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
This function is used to examine an indication or confirmation primitive without affecting the
state of XAP.

fd identifies the XAP instance for which the user wishes to examine primitives.

When ap_look is called, sptype must point to an unsigned long, and cdata must point to an
ap_cdata_t structure.

Upon return, the value of the unsigned long pointed to by sptype will indicate the type of
primitive that is currently ready to be received.

Protocol information associated with a primitive will be conveyed by the ap_cdata_t structure
pointed to by cdata. The value returned in sptype serves as the discriminant for what members of
the cdata are affected. A complete discussion of the use of the cdata parameter is provided for
each XAP primitive in Chapter 7.

A successful call to ap_look() always returns all the protocol information of a primitive (i.e. those
fields in cdata) and may return some or all of the user data associated with that primitive.

Repeated calls will return the same protocol information, the same user data and may return
further user data if the primitive was incomplete (AP_MORE flag was returned by the previous
call) until such time as some or all of the pending primitive is removed. It is a local matter
whether an implementation returns further user data on the subsequent call.

User-data received with a primitive will be returned to the user in the ubuf parameter. The XAP
interface supports a vectored buffering scheme for handling user data. All data buffers are
passed to XAP by the user in a chain of one or more ap_osi_vbuf_t/ap_osi_dbuf_t pairs. If there are
not sufficient buffers, and ap_look() was called with the AP_ALLOC flag set, XAP will use the
user-supplied buffer allocation routines. If however, the XAP-user failed to supply these routines
in the ap_open() call, ap_look() returns −1, with the location pointed at by aperrno_p set to
[AP_BADFLAGS]. If the AP_ALLOC flag is not set, and the (user) data buffer(s) are filled before
completion of processing by XAP, ap_look() returns with the AP_MORE flag set. ubuf must point
to a location holding a pointer to an ap_osi_vbuf_t structure, defined as follows:

ACSE/Presentation Services API (XAP) 71

ap_look() XAP Functions

typedef struct {
unsigned char *db_base; /* beginning of buffer */
unsigned char *db_lim; /* last octet+1 of buffer */
unsigned char db_ref; /* reference count */

} ap_osi_dbuf_t ;

typedef struct ap_osi_vbuf ap_osi_vbuf_t;
struct ap_osi_vbuf {

ap_osi_vbuf_t *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st octet of data */
unsigned char *b_wptr; /* 1st free location */
ap_osi_dbuf_t *b_datap; /* data block */

} ;

User-data associated with XAP primitives is returned in a linked list of message blocks. Each
message block is represented by an ap_osi_vbuf_t structure and is associated with a data block.
Data blocks, which are represented by ap_osi_dbuf-t structures, may be associated with more
than one message block. The db_ref field of the ap_osi_dbuf_t structure indicates the number of
ap_osi_vbuf_t structures that reference a particular data block. The db_base and db_lim fields of
the ap_osi_dbuf_t structure point to the beginning and end of the data block respectively. The
b_rptr and b_wptr fields of the referencing ap_osi_vbuf_t structures point to the first octets to be
read and written within the data block respectively. The b_cont field of the ap_osi_vbuf_t points
to the next message block in the chain or is NULL if this is the end of the list.

The user allocation routine is responsible for setting up all fields of the ap_osi_vbuf_t and
ap_osi_dbuf_t structures when allocating buffers. If buffers are allocated by another mechanism,
the user must ensure that the fields of each ap_osi_vbuf_t and ap_osi_dbuf_t pair in the chain are
set up prior to calling ap_look().

ap_look() places data into any buffer where write space is available (b_wptr < db_lim) and
updates b_wptr - no other fields in the ap_osi_vbuf_t/ap_osi_dbuf-t structures are updated (with
the exception of b_cont, which is updated when adding further ap_osi_vbuf_t/ap_osi_dbuf_t pairs
to the chain).

The user may pass full, partially full and empty receive buffers to ap_look(). The user is
responsible for ensuring that it is valid for the XAP library to fill any of the supplied buffers from
b_wptr to db_lim.

If the user wishes all the buffers for ap_look() to be allocated using the user allocation routine,
then the ubuf pointer will point to a NULL ap_osi_vbuf_t pointer.

The XAP user is responsible for decoding the user data received in the ubuf parameter. The
general rules for decoding user data are stated here, please see individual manual pages in
Chapter 4 for specific exceptions to these rules.

• If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the contents of ubuf buffer(s) are mapped directly from the SS-user
data parameter of the equivalent session service primitive. Refer to the ISO Presentation
Layer Protocol Specification (see reference ISO 8823) for further information concerning the
encoding of these values. (The primary exception to this rule is the A-ASSOC primitives).

• If the ‘‘X.410-1984’’ mode of operation is not in effect and the primitive received is an ACSE
primitive, the data received in the ubuf buffer(s) must be decoded according to the definition
specified in the ACSE Protocol Specification (reference ISO 8650):

[30] IMPLICIT SEQUENCE OF EXTERNAL

72 X/Open CAE Specification (1993)

XAP Functions ap_look()

• If the ‘‘X.410-1984’’ mode of operation is not in effect and the primitive received is a
Presentation primitive, the data received in the ubuf buffer(s) must be decoded according to
the User-data definition specified in the Presentation Protocol Specification (reference ISO
8823):

CHOICE {
[APPLICATION 0] IMPLICIT OCTET STRING,
[APPLICATION 1] IMPLICIT SEQUENCE OF PDV-list

}

The flags argument is a bit mask used to control certain aspects of XAP processing. Values for
this field are formed by OR’ing together zero or more of the following flags:

Flag Description
If AP_ALLOC is set and the user did not specify an allocation routine on ap_open()
(or ap_restore()) then −1 is returned and the location pointed to by aperrno_p is set to
the [AP_BADFLAGS] error code.

If no space is available in the supplied buffer chain (or the location pointed to by ubuf
contains NULL) and either AP_ALLOC is not set or AP_ALLOC is set but the user
allocation routine refuses to supply any buffers, then the call to ap_look() fails, −1 is
returned and the location pointed to by aperrno_p is set to the [AP_NOBUF] error
code.

Regardless of the setting of AP_ALLOC, the user must have set the location pointed
to by ubuf either to NULL or to point to a chain of one or more buffers. The
AP_ALLOC flag setting only takes effect when any supplied buffers have been filled
and more data remains to be returned to the user:

• If the AP_ALLOC flag is set and space was available in the supplied buffer chain,
the user allocation routine is called to supply further buffers as they are needed.
If the user allocation routine refuses to supply further buffers then the AP_MORE
flag is set and the call to ap_look() completes; 0 is returned. The user must free any
buffers allocated by the user allocation routine either by calling the ap_free()
function or by calling the ap_user_dealloc() function directly.

• If AP_ALLOC is not set and space was available in the supplied buffers, then the
AP_MORE flag is set and 0 is returned.

AP_ALLOC

This flag is ignored by XAP when ap_look() is called. Upon return, if all data
associated with a primitive has not been received, the AP_MORE bit of the flags
argument will be set. This indicates to the user that subsequent calls to ap_look() will
return the same protocol information and user data as this call, and may as a local
matter return additional user data. If the AP_MORE bit is not set, all data associated
with the primitive has been received.

It should be noted that the sptype argument must be checked after each invocation of
ap_look() since an unsequenced primitive (e.g., A_PABORT_IND) may arrive and
replace the original primitive. In some cases, the original primitive may be lost.

Note it is possible for ap_look() to return with the AP_MORE flag set even when the
AP_ALLOC flag is set, if non-blocking execution mode is being used or an expedited
data primitive arrives at the XAP instance (see below).

AP_MORE

If XAP is being used in blocking execution mode (AP_NDELAY bit of the AP_FLAGS
environment attribute is not set), ap_look() blocks until the protocol information of a primitive
(i.e. those fields in cdata) is available. Some or all of the user data associated with the primitive
may also be returned to the user.

If XAP is being used in non-blocking execution mode (AP_NDELAY bit of the AP_FLAGS
enviromnent attribute is set), ap_look() will return a value of −1 and the location pointed to by

ACSE/Presentation Services API (XAP) 73

ap_look() XAP Functions

aperrno_p is set to the [AP_AGAIN] error code until the protocol information of a primitive is
available. Some or all of the user data associated with the primitive may also be returned to the
user.

If an expedited data primitive arrives while an earlier primitive is being processed (that is, an
earlier indication or confirm primitive has been examined with ap_look() or has been partly
received with ap_rcv()), ap_look() returns the expedited data primitive. Processing of the earlier
primitive is suspended. The user should use the ap_rcv() function to retrieve the expedited data
primitive. Once the expedited data primitive has been successfully received, XAP re-presents the
original primitive. Note that it is possible for the original primitive to be deferred by an
expedited data primitive more than once.

If an abort primitive arrives while an earlier primitive is being processed (that is, an earlier
indication or confirm primitive has been examined with ap_look() or has been partly received
with ap_rcv()), ap_look() will return the abort primitive. The original primitive is discarded. The
user should use the ap_rcv() function to retrieve the abort primitive.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_AGAIN] XAP was unable to complete the requested action. Try again.

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_BADFLAGS] AP_ALLOC was set but a user-supplied buffer allocation routine was
not specified on ap_open() or ap_restore().

[AP_BADLSTATE] XAP is in a state where ap_look() is not allowed (i.e.,
AP_UNBOUND).

[AP_BADUBUF] The buffers pointed to by ubuf are invalid.

[AP_NOBUF] The supplied user data buffers contained no unused buffer space and,
if AP_ALLOC was set, then no more buffers could be obtained.

[AP_NOENV] There is no XAP environment associated with fd.

[AP_NOMEM] Out of memory.

[AP_NOT_SUPPORTED] ap_look() operation is not supported by this implementation of XAP.

[AP_PDUREJ] XAP rejected the received PDU.

In addition, operating system and asn.1 class errors are reported.

74 X/Open CAE Specification (1993)

XAP Functions ap_open()

NAME
ap_open - create an XAP instance

SYNOPSIS
#include <xap.h>

int ap_open (
const char *provider,
int oflags,
int (*ap_user_alloc) (int, ap_osi_vbuf_t **,void **,

int,int,unsigned long *),
int (*ap_user_dealloc) (int, ap_osi_vbuf_t *,void *,

int,unsigned long *),
unsigned long *aperrno_p)

DESCRIPTION
This function creates an instance of XAP using the communications provider identified by
provider. XAP does not assign any specific interpretation to the format of this string parameter.
However, individual implementations may assign additional semantics to the string in order to
implement conventions applicable to a particular operating system environment.

The oflags argument is a bit mask used to control certain aspects of how the ap_open() invocation
is handled by XAP. Legal values for the oflags argument are formed by OR’ing together zero or
more of the flags described below.

Flag Description
This flag indicates the XAP
instance opened is to operate in the
non-blocking execution mode:
AP_NDELAY will be set in the
AP_FLAGS environment attribute.
If this flag is not present, the
opened XAP instance will operate
in blocking execution mode.

AP_NDELAY

This flag indicates that the user-
supplied memory allocation and
deallocation functions are to be
used only to allocate and
deallocate buffers. XAPs internal
memory allocation and
deallocation routines will be used
to allocate and deallocate
environment attributes.

AP_BUFFERS_ONLY

If AP_BUFFERS_ONLY is present in oflags and both ap_user_alloc and ap_user_dealloc are absent,
a value of -1 is returned and the location pointed at by aperrno_p is set to [AP_BADFLAGS].

ACSE/Presentation Services API (XAP) 75

ap_open() XAP Functions

The ap_user_alloc parameter is a pointer to a user-supplied memory allocation function. The
synopsis for a user-supplied memory allocation function is:

int ap_user_alloc(
int fd,
ap_osi_vbuf_t **buf,
void **mem,
int size,
int type,
unsigned long *aperrno_p)

This function is used by the XAP instance identified by fd to allocate either memory or buffer
space. The type field takes the values AP_BUFFERS or AP_MEMORY. When AP_BUFFERS is
specified, a linked set of ap_osi_vbuf_t structures are returned in buf, and size indicates the
number of octets of space requested. Notice that mem is not used in this case, and that a user
allocation routine may return less or more bufferspace than requested. When AP_MEMORY is
specified, a block of memory is returned in mem, and size indicates the number of octets of space
requested. Notice that buf is not used in this case. Upon successful completion, a value of 0 is
returned. Otherwise, a value of −1 is returned and the location pointed to by aperrno_p is set to
indicate the error.

The ap_user_dealloc parameter is a pointer to a user-supplied memory deallocation function. The
synopsis for a user-supplied memory deallocation function is:

int ap_user_dealloc (
int fd,
ap_osi_vbuf_t *buf,
void *mem,
int type,
unsigned long *aperrno_p)

This function is used by the XAP instance identified by fd to deallocate either the memory or
buffers that it allocated. The type field takes the values AP_BUFFERS or AP_MEMORY. When
AP_BUFFERS is specified, all buffers in the chain pointed to by buf are freed. Notice that mem is
not used in this case. When AP_MEMORY is specified, the memory pointed to by mem is freed.
Notice that buf is not used in this case. Upon successful completion, a value of 0 is returned.
Otherwise, a value of −1 is returned and the location pointed to by aperrno_p is set to indicate the
error.

The user allocation and deallocation routine parameters (ap_user_alloc() and ap_user_dealloc())
must either both be present or absent. If absent, they are represented by null values. If they are
absent, XAP will use built-in functions to allocate and deallocate memory from the user memory
space. The user supplied or built-in allocation routines are called by XAP to obtain or return
memory for environment attributes.

Note: XAP users are advised that allowing ap_user_alloc to default to the XAP-supplied
memory allocation mechanism means that the service will not perform dynamic
allocation of user data buffers in order to receive incoming primitives. In this case the
user must either pass sufficient buffers in the call to ap_rcv() to store the user data for
the incoming primitive, or the user must call ap_rcv() multiple times to receive all the
user data associated with the incoming primitive (see the discussion of the AP_MORE
flag in the ap_rcv() manual page).

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

76 X/Open CAE Specification (1993)

XAP Functions ap_open()

RETURN VALUE
On success, ap_open() returns an XAP instance identifier, an integer (≥ 0), that is used to identify
the XAP instance in subsequent calls to XAP functions. Otherwise, a value of −1 is returned and
the location pointed to by aperrno_p is set to indicate the error. (The XAP environment must be
initialised using a call to ap_init_env() or ap_restore() before it can be used to send or receive
primitives.)

ERRORS

[AP_BADALLOC] The ap_user_alloc/ap_user_dealloc argument combination was invalid.

[AP_BADFLAGS] The specified combination of flags is invalid.

In addition, operating system class errors are reported.

ACSE/Presentation Services API (XAP) 77

ap_poll() XAP Functions

NAME
ap_poll - input/output multiplexing

SYNOPSIS
#include <xap.h>

int
ap_poll (

ap_pollfd_t fds[],
int nfds,
int timeout,
unsigned long *aperrno_p)

DESCRIPTION

This function provides users with a consistent interface for detecting when certain events have
occurred on an XAP instance.

The fds argument is an array of nfds ap_pollfd_t structures. The ap_pollfd_t structure includes
the following members:

int fd; /* XAP instance identifier */
short events; /* requested events */
short revents; /* returned events */

A UNIX file descriptor is used for the purposes of clarification, although fd may be replaced with
a comparable entity on a non-UNIX system.

The events field is a bitmask used to indicate which events should be reported for the instance.
The revents field will be set by XAP to indicate which of the requested events have occurred. All
XAP Library implementations recognise the following events:

AP_POLLRDNORM Data (e.g., an XAP Library primitive or user data associated with an
XAP Library primitive) has arrived on the normal data flow and is
available to be read.

AP_POLLRDBAND Data has arrived outside the normal data flow and is available to be
read. This event may occur if the implementation supports out-of-
band-data and a P_XDATA_IND primitive arrives. In
implementations that do not support multiple data bands, expedited
data will arrive on the normal data flow and this event will never
occur.

AP_POLLIN Data has arrived (on either band) and is available to be read.

AP_POLLOUT Data can be sent on the normal priority band.

AP_POLLWRNORM The same as AP_POLLOUT.

AP_POLLWRBAND Out-of-band data can be sent. This event will never be true in
implementations that do not support multiple data bands.

AP_POLLNVAL Specified file descriptor is an invalid XAP instance identifier. This bit
is only valid for revents.

Support for events other than those listed above is optional. Users interested in developing
applications that are portable across different XAP Library implementations should keep this
caveat in mind.

If none of the defined events have occurred on the selected instances, ap_poll() waits timeout
milliseconds for an event to occur on one of the selected instances before returning. On

78 X/Open CAE Specification (1993)

XAP Functions ap_poll()

implementations where millisecond timing is not available, timeout is rounded up to the nearest
legal value on the system. If the value of timeout is 0, ap_poll() returns immediately. If the value
of timeout is AP_INFTIM, ap_poll() waits until a requested event occurs or until the call is
interrupted. The ap_poll() call is not affected by whether the specified instances are operating in
blocking or non-blocking execution mode.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a non-negative value is returned. A positive value indicates the
number of instances for which revents is non-zero. A return value of 0 indicates that the call
timed out and no instances were selected. Upon failure, a value of −1 (FAIL) is returned and the
location pointed at by aperrno_p is set to indicate the error.

ERRORS
Only operating system class errors are reported.

ACSE/Presentation Services API (XAP) 79

ap_rcv() XAP Functions

NAME
ap_rcv - receive an ACSE/Presentation primitive from the association/connection

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
This function is used to receive an indication or confirm primitive. fd identifies the XAP instance
for which the user wishes to receive primitives.

When ap_rcv() is called, sptype must point to an unsigned long, and cdata must point to an
ap_cdata_t structure.

Upon return, the value of the unsigned long pointed to by the sptype parameter will contain the
symbolic constant defined in <xap.h> that identifies the received primitive. The symbolic
constants are derived from the primitive names by prefixing the name with AP_. The table
below lists the primitives that can be received using ap_rcv(). The following information is
provided in the table:

primitive The name of the primitive.

valid in states The states during which this primitive may be received (states are given as
values of the AP_STATE attribute).

must be set A list of XAP environment attributes that must be set in order to be able to
receive this primitive (attributes marked with † have defaults).

Note that some attributes that had to be set in order to enter a state where this
primitive is legal may not be listed.

may change A list of the attributes that may change as a result of receiving this primitive.

next state The state that will be entered upon receipt of this primitive (states are given as
the value of the AP_STATE attribute).

80 X/Open CAE Specification (1993)

XAP Functions ap_rcv()

Primitive/Attribute & Primitive/State Relationships
primitive valid in states must be set may change next state

all except:
AP_UNBOUND
AP_IDLE

A_ABORT_IND none AP_STATE AP_IDLE

AP_BIND_PADDR
AP_LIB_SEL

AP_ACSE_SEL
AP_CLD_AEID
AP_CLD_AEQ
AP_CLD_APID
AP_CLD_APT
AP_CLG_AEID
AP_CLG_AEQ
AP_CLG_APID
AP_CLG_APT
AP_CNTX_NAME
AP_DCS
AP_DPCN
AP_INIT_SYNC_PT
AP_INIT_TOKENS
AP_LCL_PADDR
AP_MODE_SEL
AP_PCDL
AP_PFU_SEL
AP_PRES_SEL
AP_QOS
AP_REM_PADDR
AP_ROLE_CURRENT
AP_SESS_SEL
AP_SFU_SEL
AP_STATE
AP_TOKENS_AVAIL
AP_TOKENS_OWNED

A_ASSOC_IND AP_IDLE AP_WASSOCrsp_ASSOCind

AP_ACSE_SEL
AP_AFU_SEL
AP_CNTX_NAME
AP_DCS
AP_INIT_SYNC_PT
AP_INIT_TOKENS
AP_PFU_SEL
AP_PCDRL
AP_PRES_SEL
AP_QOS
AP_REM_PADDR
AP_SESS_SEL
AP_SFU_SEL
AP_STATE
AP_TOKENS_AVAIL
AP_TOKENS_OWNED

(AP_IDLE,
AP_DATA_XFER)

A_ASSOC_CNF AP_WASSOCcnf_ASSOCreq none

all except:
AP_UNBOUND
AP_IDLE

A_PABORT_IND none AP_STATE AP_IDLE

AP_DATA_XFER
AP_WRELcnf_RELreq

AP_WRELrsp_RELind
(AP_WRELrsp_RELind_init or
AP_WRELcnf_RELreq_rsp)

A_RELEASE_IND none AP_STATE

ACSE/Presentation Services API (XAP) 81

ap_rcv() XAP Functions

Primitive/Attribute & Primitive/State Relationships
must
be set

primitive valid in states may change next state

AP_WRELcnf_RELreq

AP_WRELcnf_RELreq_rsp

(AP_IDLE or
AP_DATA_XFER)
AP_WRELrsp_RELind

A_RELEASE_CNF none AP_STATE

P_ACTEND_IND AP_DATA_XFER none AP_STATE AP_WACTErsp_ACTEind

P_ACTEND_CNF AP_WACTEcnf_ACTEreq none AP_STATE AP_DATA_XFER

AP_WRESYNcnf_RESYNreq
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_WRECOVERYind
AP_WRECOVERYreq
AP_DATA_XFER

P_ACTDISCARD_IND none AP_STATE AP_WACTDrsp_ACTDind

AP_STATE
AP_TOKENS_OWNED

P_ACTDISCARD_CNF AP_WACTDcnf_ACTDreq none AP_DATA_XFER

AP_WRESYNcnf_RESYNreq
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_WRECOVERYind
AP_WRECOVERYreq
AP_DATA_XFER

P_ACTINTR_IND none AP_STATE AP_WACTIrsp_ACTIind

AP_STATE
AP_TOKENS_OWNED

P_ACTINTR_CNF AP_WACTIcnf_ACTIreq none AP_DATA_XFER

P_ACTRESUME_IND AP_DATA_XFER none none no state change

P_ACTSTART_IND AP_DATA_XFER none none no state change

AP_DATA_XFERP_CDATA_IND none none AP_WCDATArsp_CDATAind

P_CDATA_CNF AP_WCDATAcnf_CDATAreq none none AP_DATA_XFER

P_CTRLGIVE_IND AP_DATA_XFER none AP_TOKENS_OWNED no state change

AP_DATA_XFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

P_DATA_IND none none no state change

AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq

AP_WACTEcnf_ACTEreq

AP_WRECOVERYind
AP_WCDATAcnf_CDATAreq
AP_DATA_XFER

AP_WRECOVERYreq
(AP_WRECOVERYreq or
AP_DATA_XFER)
(AP_WRECOVERYreq or
AP_DATA_XFER)
no state change
AP_WRECOVERYreq
(AP_WRECOVERYreq or
AP_DATA_XFER)

P_PXREPORT_IND none AP_STATE

AP_DATA_XFER
AP_WRESYNcnf_RESYNreq
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WSYNCMArsp_SYNCMAind
AP_WACTEcnf_ACTEreq
AP_WRECOVERYind
AP_WRECOVERYreq

P_RESYNC_IND none AP_STATE AP_WRESYNrsp_RESYNind

82 X/Open CAE Specification (1993)

XAP Functions ap_rcv()

Primitive/Attribute & Primitive/State Relationships
must
be set

primitive valid in states may change next state

AP_STATE
AP_TOKENS_OWNED

P_RESYNC_CNF AP_WRESYNcnf_RESYNreq none AP_DATA_XFER

P_SYNCMAJOR_IND AP_DATA_XFER none AP_STATE AP_WSYNCMArsp_SYNCMAind

P_SYNCMAJOR_CNF AP_WSYNCMAcnf_SYNCMAreq none AP_STATE AP_DATA_XFER

AP_DATA_XFERP_SYNCMINOR_IND none none no state change

AP_DATA_XFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

P_SYNCMINOR_CNF none none no state change

AP_DATA_XFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

P_TDATA_IND none none no state change

AP_DATA_XFER
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_WRECOVERYind

AP_WRECOVERYreq

AP_WCDATAcnf_CDATAreq

AP_STATE
AP_TOKENS_OWNED

no state change
no state change
no state change
no state change
no state change
(no state change or
AP_DATA_XFER)
(no state change or
AP_DATA_XFER)
no state change

P_TOKENGIVE_IND none

AP_DATA_XFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq
AP_WCDATAcnf_CDATAreq

P_TOKENPLEASE_IND none none no state change

AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq

AP_WACTEcnf_ACTEreq

AP_WRECOVERYind
AP_DATA_XFER

AP_WRECOVERYreq
(AP_WRECOVERYreq or
AP_DATA_XFER)
(AP_WRECOVERYreq or
AP_DATA_XFER)
no state change
(AP_WRECOVERYreq or
AP_DATA_XFER)

P_UXREPORT_IND none AP_STATE

AP_DATA_XFER
AP_WRELcnf_RELreq
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq

P_XDATA_IND none none no state change

Protocol information received with a primitive will be conveyed by the ap_cdata_t structure
pointed to by cdata. The value returned in sptype serves as the discriminant for what members
of the cdata are affected. A complete discussion of the use of the cdata parameter is provided for
each XAP primitive in Chapter 7.

User-data received with a primitive will be returned to the user via the ubuf parameter. The
XAP interface supports a vectored buffering scheme for handling user data. All data buffers are
passed to XAP by the user in a chain of one or more ap_osi_vbuf_t/ap_osi_dbuf_t pairs. ubuf must
point to a location holding a pointer to an ap_osi_vbuf_t structure, defined as follows:

ACSE/Presentation Services API (XAP) 83

ap_rcv() XAP Functions

typedef struct {
unsigned char *db_base; /* beginning of buffer */
unsigned char *db_lim; /* last octet+1 of buffer */
unsigned char db_ref; /* reference count */

} ap_osi_dbuf_t ;

typedef struct ap_osi_vbuf ap_osi_vbuf_t;
struct ap_osi_vbuf {

ap_osi_vbuf_t *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st octet of data */
unsigned char *b_wptr; /* 1st free location */
ap_osi_dbuf_t *b_datap; /* data block */

} ;

User-data associated with XAP primitives is returned in a linked list of message blocks. Each
message block is represented by an ap_osi_vbuf_t structure and is associated with a data block.
Data blocks, which are represented by ap_osi_dbuf_t structures, may be associated with more
than one message block. The db_ref field of the ap_osi_dbuf_t structure indicates the number of
ap_osi_vbuf_t structures that reference a particular data block. The db_base and db_lim fields of
the ap_osi_dbuf_t structure point to the beginning and end of the data block respectively. The
b_rptr and b_wptr fields of the referencing ap_osi_vbuf_t structures point to the first octets to be
read and written within the data block respectively. The b_cont field of the ap_osi_vbuf_t points
to the next message block in the chain or is NULL if this is the end of the list.

The user allocation routine is responsible for setting up all fields of the ap_osi_vbuf_t and
ap_osi_dbuf_t structures when allocating buffers. If buffers are allocated by another mechanism,
the user must ensure that the fields of each ap_osi_vbuf_t and ap_osi_dbuf_t pair in the chain are
set up prior to calling ap_rcv().

ap_rcv() places data into any buffer where write space is available (b_wptr < db_lim) and updates
b_wptr - no other fields in the ap_osi_vbuf_t/ap_osi_dbuf_t structures are updated (with the
exception of b_cont which is updated when adding further ap_osi_vbuf_t/ap_osi_dbuf_t pairs to
the chain).

The user may pass full, partially full and empty receive buffers to ap_rcv(). The user is
responsible for ensuring that it is valid for the XAP library to fill any of the supplied buffers
from b_wptr to db_lim.

If the user wishes all the buffers for ap_rcv() to be allocated using the user allocation routine,
then the ubuf pointer will point to a NULL ap_osi_vbuf_t pointer.

The XAP user is responsible for decoding the user data received in the ubuf parameter. The
general rules for decoding user data are stated here, please see individual manual pages in
Chapter 4 for specific exceptions to these rules.

• If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the contents of ubuf buffer(s) are mapped directly from the SS-user
data parameter of the equivalent session service primitive. Refer to the ISO Presentation
Layer Protocol Specification (see reference ISO 8823) for further information concerning the
encoding of these values. (The primary exception to this rule is the A-ASSOC primitives).

• If the ‘‘X.410-1984’’ mode of operation is not in effect and the primitive received is an ACSE
primitive, the data received in the ubuf buffer(s) must be decoded according to the definition
specified in the ACSE Protocol Specification (reference ISO 8650):

[30] IMPLICIT SEQUENCE OF EXTERNAL

• If the ‘‘X.410-1984’’ mode of operation is not in effect and the primitive received is a
Presentation primitive, the data received in the ubuf buffer(s) must be decoded according to

84 X/Open CAE Specification (1993)

XAP Functions ap_rcv()

the User-data definition specified in the Presentation Protocol Specification (reference ISO
8823):

CHOICE {
[APPLICATION 0] IMPLICIT OCTET STRING,
[APPLICATION 1] IMPLICIT SEQUENCE OF PDV-list

}

The flags argument is a bit mask used to control certain aspects of XAP processing. Values for
this field are formed by OR’ing together zero or more of the following flags:

Flag Description
If AP_ALLOC is set and the user did not specify an allocation routine on ap_open()
(or ap_restore()) then −1 is returned and the location pointed to by aperrno_p is set to
the [AP_BADFLAGS] error code.

If no space is available in the supplied buffer chain (or the location pointed to by ubuf
contains NULL) and either AP_ALLOC is not set or AP_ALLOC is set but the user
allocation routine refuses to supply any buffers, then the call to ap_rcv() fails, −1 is
returned and the location pointed to by aperrno_p is set to the [AP_NOBUF] error
code.

Regardless of the setting of AP_ALLOC, the user must have set the location pointed
to by ubuf either to NULL or to point to a chain of one or more buffers. The
AP_ALLOC flag setting only takes effect when any supplied buffers have been filled
and more data remains to be returned to the user:

• If the AP_ALLOC flag is set and space was available in the supplied buffer chain,
the user allocation routine is called to supply further buffers as they are needed.
If the user allocation routine refuses to supply further buffers then the AP_MORE
flag is set and the call to ap_rcv() completes; 0 is returned. The user must free any
buffers allocated by the user allocation routine either by calling the ap_free()
function or by calling the ap_user_dealloc() function directly.

• If AP_ALLOC is not set and space was available in the supplied buffers, then the
AP_MORE flag is set and 0 is returned.

AP_ALLOC

This flag is ignored by XAP when ap_rcv() is called. Upon return, if all data
associated with a primitive has not been received, the AP_MORE bit of the flags
argument will be set, and the error code [AP_AGAIN] or [AP_NOBUF] is returned.
This indicates to the user that further ap_rcv() calls are required to receive the
remainder of the data. If the AP_MORE bit is not set, all data associated with the
primitive has been received.

A primitive that is received in multiple parts may be interrupted by an incoming
unsequenced primitive (P_XDATA_IND, A_ABORT_IND or A_PABORT_IND). See
the discussion below for information on how this is indicated by the service and how
the reception of the current primitive is resumed if appropriate.

Note it is possible for ap_rcv() to return with the AP_MORE flag set even when the
AP_ALLOC flag is set, if non-blocking execution mode is being used or an expedited
data primitive arrives at the XAP instance (see below).

AP_MORE

If XAP is being used in blocking execution mode (AP_NDELAY bit of the AP_FLAGS
environment attribute is not set), ap_rcv() blocks until either an entire primitive is received, or
XAP fills the buffer(s) pointed to by ubuf.

If XAP is being used in non-blocking execution mode (AP_NDELAY bit is set) and it runs out of
data before receiving an entire primitive and it has not filled the ubuf buffer(s), ap_rcv() returns a
value of −1 and the location pointed to by aperrno_p is set to the [AP_AGAIN] error code.

ACSE/Presentation Services API (XAP) 85

ap_rcv() XAP Functions

If an unsequenced primitive (such as expedited data or an abort primitive) arrives while another
primitive is being processed, ap_rcv() returns −1 and sets the location pointed to by aperrno_p to
the [AP_LOOK] error code. The AP_MORE bit of the flags argument is set. This indicates to the
user that XAP has suspended processing of the current primitive. The user must use the ap_rcv()
function to retrieve the unsequenced primitive.

For P_XDATA_IND, XAP resumes receiving data associated with the suspended primitive once
the expedited data has been successfully received. If an abort primitive is received, the rest of the
in-progress primitive is lost and is not returned by the service in subsequent ap_rcv calls.

Note that it is possible for the processing of a single primitive to be interrupted more than once
due to the arrival of unsequenced indications.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_AGAIN] XAP was unable to complete the requested action. Try again.

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_BADFLAGS] AP_ALLOC was set but a user-supplied buffer allocation routine was
not specified on ap_open() or ap_restore().

[AP_BADLSTATE] XAP is in a state where ap_rcv() is not allowed (i.e., AP_UNBOUND).

[AP_BADUBUF] Either the buffers pointed to by ubuf are invalid, or the pointer is
NULL and yet AP_ALLOC is not set.

[AP_LOOK] An event is pending.

[AP_NOBUF] The supplied user data buffers contained no unused buffer space and,
if AP_ALLOC was set, then no more buffers could be obtained.

[AP_NOENV] There is no XAP environment associated with fd.

[AP_NOMEM] Out of memory.

[AP_PDUREJ] XAP rejected the received PDU.

In addition, operating system and asn.1 class errors are reported.

86 X/Open CAE Specification (1993)

XAP Functions ap_restore()

NAME
ap_restore - restore an XAP instance

SYNOPSIS
#include <stdio.h>
#include <xap.h>

int ap_restore (
int fd,
FILE *savef,
int oflags,
int (*ap_user_alloc) (int, ap_osi_vbuf_t **,void **,

int,int,unsigned long *),
int (*ap_user_dealloc) (int, ap_osi_vbuf_t *,void *,

int,unsigned long *),
unsigned long *aperrno_p)

DESCRIPTION

Used in conjunction with ap_save(), this function provides a way for cooperating processes to
share a single instance of XAP. The ap_restore() function recreates the XAP instance that was
saved to the file associated with savef in the calling process’s address space.

Used with a NULL savef argument, this function provides a means for applications which are
invoked by an Association Listener (see Section 2.4 on page 32 for a description of Association
Listening) to:

• establish an XAP environment

• restore the XAP instance state to AP_IDLE

• set the local local presentation address from information held within the communications
provider.

The restored XAP instance will be supported by the communication endpoint identified by fd.
This must be the same communication endpoint that supported this instance of XAP when it
was saved or transferred by an association listener. As the service cannot detect whether or not
a restore has been performed to the same communication endpoint, the behaviour of the service
in this case is not specified.

fd will be used to identify the restored instance of XAP in subsequent invocations of XAP
functions. If the communication endpoint identified by fd currently supports an XAP instance,
the instance is released prior to being recreated using the snapshot saved in file savef along with
user allocation and deallocation routines passed in the ap_user_alloc() and ap_user_dealloc()
arguments.

savef must have been opened for reading. The ap_restore() function begins reading from the
current position in the file and does not close savef when it finishes.

oflags may be used to control aspects of buffer allocation. The user may choose to supply
allocation and deallocation routines for receive buffers while allowing XAP to handle allocation
for memory for values of environment attributes. This is indicated by setting the
AP_BUFFERS_ONLY flag of the oflags parameter.

ACSE/Presentation Services API (XAP) 87

ap_restore() XAP Functions

The ap_user_alloc parameter is a pointer to a user-supplied memory allocation function. The
synopsis for a user-supplied memory allocation function is:

int ap_user_alloc (
int fd,
ap_osi_vbuf_t **buf,
void **mem,
int size,
int type,
unsigned long *aperrno_p)

This function is used by the XAP instance identified by fd to allocate either memory or buffer
space. The type field takes the values AP_BUFFERS or AP_MEMORY. When AP_BUFFERS is
specified, a linked set of ap_osi_vbuf_t structures are returned in buf, and size indicates the
number of octets of space requested. Notice that mem is not used in this case, and that a user
allocation routine may return less or more space than requested. When AP_MEMORY is
specified, a block of memory is returned in mem, and size indicates the number of octets of space
requested. Notice that buf is not used in this case. Upon successful completion, a value of 0 is
returned. Otherwise, a value of −1 is returned and the location pointed to by aperrno_p is set to
indicate the error.

The ap_user_dealloc parameter is a pointer to a user-supplied memory deallocation function. The
synopsis for a user-supplied memory deallocation function is:

int ap_user_dealloc (
int fd,
ap_osi_vbuf_t *buf,
void *mem,
int type,
unsigned long *aperrno_p)

This function is used by the XAP instance identified by fd to deallocate either the memory or
buffers that it allocated. The type field takes the values AP_BUFFERS or AP_MEMORY. When
AP_BUFFERS is specified, all buffers in the chain pointed to by buf are freed. Notice that mem is
not used in this case. When AP_MEMORY is specified, the memory pointed to by mem is freed.
Notice that buf is not used in this case. Upon successful completion, a value of 0 is returned.
Otherwise, a value of −1 is returned and the location pointed to by aperrno_p is set to indicate the
error.

Note: If the ap_user_alloc/ap_user_dealloc argument combination is invalid, −1 is returned
and the location pointed to by aperrno_p is set to the [AP_BADALLOC] error code; any
existing XAP instance remains unchanged.

The user allocation and deallocation routine parameters (ap_user_alloc() and ap_user_dealloc())
must either both be present or absent. If absent, they are represented by null values. If they are
absent, XAP will use built-in functions to allocate and deallocate memory from the user memory
space. The user supplied or built-in allocation routines are called by XAP to obtain or return
memory for environment attributes.

Note: XAP users are advised that allowing ap_user_alloc to default to the XAP-supplied
memory allocation mechanism means that the application is unable to apply flow
control. In this case, special attention must be paid to the handling of unlimited user
data on inbound events.

Coordination between several cooperating processes sharing the same XAP instance can be
achieved by using the file permission and file and record locking capabilities of the operating
system to control access to the save file.

88 X/Open CAE Specification (1993)

XAP Functions ap_restore()

It should be noted that the ap_restore() function does not provide a way to ‘‘roll-back’’ the state
of the service provider. Events that were processed after an XAP instance was saved cannot be
recovered by restoring the instance to its state before the messages were consumed.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_BADALLOC] The ap_user_alloc/ap_user_dealloc argument combination was invalid.

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_BADPARSE] XAP was unable to read the contents of the environment from savef.

[AP_BADRESTR] The environment cannot be restored because the current
environment is being used to send/receive data (i.e., utilising the
AP_MORE bit).

[AP_BADSAVEF] savef is NULL or was opened improperly.

[AP_NOT_SUPPORTED] The ap_restore() operation is not supported by this implementation of
XAP.

In addition, operating system class errors are reported.

CAVEAT

The behaviour of an XAP instance which has been restored in an improper manner is undefined.
This includes all cases in which there has been any intervening operation on the supporting
communication endpoint between the time the instance was saved and the time it was restored.

ACSE/Presentation Services API (XAP) 89

ap_save() XAP Functions

NAME
ap_save - save an XAP instance

SYNOPSIS
#include <stdio.h>
#include <xap.h>

int ap_save (
int fd,
FILE *savef,
unsigned long *aperrno_p)

DESCRIPTION

Used in conjunction with ap_restore(), this function provides a way for cooperating processes to
share an instance of XAP. The ap_save() function writes a ‘‘snapshot’’ of XAP instance identified
by fd, to the file identified by savef. Included in the saved information are the values of all XAP
environment attributes and any internal state information needed to recreate this XAP instance
(see ap_restore() on page 87).

savef must have been opened for writing. The ap_save() function begins writing from the current
position in the file and does not close savef when it finishes.

The ap_save() function does not directly support any form of process coordination. However,
the user can, for example, use the file permission and file and record locking capabilities of the
operating system with the save file to facilitate coordination of cooperating processes sharing a
single XAP instance.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_BADSAVE] The environment cannot be saved because the current environment
is being used to send/receive data (i.e., utilising the AP_MORE bit).

[AP_BADSAVEF] Savef is NULL or was opened improperly.

[AP_NOENV] There is no XAP environment associated with fd.

[AP_NOT_SUPPORTED] The ap_save() operation is not supported by this implementation of
XAP.

In addition, operating system class errors are reported.

90 X/Open CAE Specification (1993)

XAP Functions ap_set_env()

NAME
ap_set_env - set XAP environment attribute

SYNOPSIS
#include <xap.h>

int ap_set_env (
int fd,
unsigned long attr,
ap_val_t val,
unsigned long *aperrno_p)

DESCRIPTION
This function changes the value of an environment attribute for the XAP instance identified by
fd. attr is used to pass the symbolic constant identifying the attribute to be set as defined in the
<xap.h> header file.

The val argument is a union that is used to pass the value that is to be assigned to the specified
attribute. If the value of the attribute that is to be modified is an integer or bit mask, the l
member of the ap_val_t union must contain a long or unsigned long. Otherwise, the v member
of the ap_val_t union must contain a pointer to a structure of the same type as the specified
attribute. Refer to the ap_env manual page for complete information about attribute types.

When setting the AP_BIND_PADDR attribute it should be noted that the Presentation address
set will not be used until the ap_bind() function is called. Calling ap_bind() after ap_set_env() has
been used to set AP_BIND_PADDR will cause the Presentation address to be validated and if the
authorisation check succeeds, then the endpoint moved to the AP_IDLE state. If the ap_set_env()
function is called to change AP_BIND_PADDR to a new Presentation address after a successful
ap_bind(), then the endpoint will not be re-bound until ap_bind() is called again.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_AGAIN] XAP was unable to set the specified attribute at this time (e.g., because of
temporary resource constraints). Try again.

[AP_BADASLSYN] The transfer syntaxes proposed for the ACSE syntax are not supported.

[AP_BADATTRVAL] val is an invalid value assignment for attr.

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_HANGUP] XAP state may be incorrect. Use ap_rcv() to retrieve the pending event
before proceeding.

[AP_NOATTR] attr is an invalid attribute type.

[AP_NOENV] There is no XAP environment associated with fd.

[AP_NOMEM] XAP could not allocate sufficient memory to store the value of the
specified attribute.

[AP_NOWRITE] The attr argument refers to an environment attribute that is not writable
in the current state.

ACSE/Presentation Services API (XAP) 91

ap_set_env() XAP Functions

In addition, operating system class errors may be reported.

92 X/Open CAE Specification (1993)

XAP Functions ap_snd()

NAME
ap_snd - send an ACSE/Presentation primitive over the association/connection

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
This function is used to send a request or response primitive. fd identifies the XAP instance for
which the primitive is to be sent. The sptype parameter contains the symbolic constant defined
in <xap.h> that identifies the primitive to be sent. The symbolic constants are derived from the
primitive names by prefixing the name with AP_. The table below lists the primitives that can be
sent using ap_snd(), and the associated states. The following information is provided in the table:

primitive The name of the primitive.

valid in states The states during which this primitive may be sent (states are given as values
of the AP_STATE attribute).

next state The state that will be entered upon successfully issuing this primitive (states
are given as the value of the AP_STATE attribute).

Primitive/State Relationships
primitive valid in states next state

all except:
AP_UNBOUND
AP_IDLE

A_ABORT_REQ AP_IDLE

AP_IDLEA_ASSOC_REQ AP_WASSOCcnf_ASSOCreq

AP_WASSOCrsp_ASSOCind (AP_IDLE,
AP_DATA_XFER)

A_ASSOC_RSP

all except:
AP_UNBOUND
AP_IDLE

A_PABORT_REQ AP_IDLE

AP_DATA_XFER
AP_WRELrsp_RELind

A_RELEASE_REQ AP_WRELcnf_RELreq

AP_WRELrsp_RELind

AP_WRELrsp_RELind_init

(AP_IDLE or
AP_DATA_XFER)
AP_WRELcnf_RELreq

A_RELEASE_RSP

AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq
AP_WRESYNrsp_RESYNind
AP_WRECOVERYreq
AP_DATA_XFER

P_ACTDISCARD_REQ AP_WACTDcnf_ACTDreq

ACSE/Presentation Services API (XAP) 93

ap_snd() XAP Functions

Primitive/State Relationships
primitive valid in states next state

P_ACTDISCARD_RSP AP_WACTDrsp_ACTDind AP_DATA_XFER

P_ACTEND_REQ AP_DATA_XFER AP_WACTEcnf_ACTEreq

P_ACTEND_RSP AP_WACTErsp_ACTEind AP_DATA_XFER

AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq
AP_WRESYNrsp_RESYNind
AP_WRECOVERYreq
AP_DATA_XFER
AP_WCDATAcnf_CDATAreq
(if and only if no QOS
extended control parameter
has been selected for the
association)

P_ACTINTR_REQ AP_WACTIcnf_ACTIreq

P_ACTINTR_RSP AP_WACTIrsp_ACTIind AP_DATA_XFER

P_ACTRESUME_REQ AP_DATA_XFER no state change

P_ACTSTART_REQ AP_DATA_XFER no state change

P_CDATA_REQ AP_DATA_XFER AP_WCDATAcnf_CDATAreq

P_CDATA_RSP AP_WCDATArsp_CDATAind AP_DATA_XFER

P_CTRLGIVE_REQ AP_DATA_XFER no state change

AP_DATA_XFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind

P_DATA_REQ no state change

AP_DATA_XFER
AP_WSYNCMAcnf_SYNCMAreq
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_WRESYNrsp_RESYNind
AP_WRECOVERYreq

P_RESYNC_REQ AP_WRESYNcnf_RESYNreq

P_RESYNC_RSP AP_WRESYNrsp_RESYNind AP_DATA_XFER

P_SYNCMAJOR_REQ AP_DATA_XFER AP_SYNCMAcnf_SYNCMAreq

P_SYNCMAJOR_RSP AP_SYNCMArsp_SYNCMAind AP_DATA_XFER

P_SYNCMINOR_REQ AP_DATA_XFER no state change

AP_DATA_XFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind

P_SYNCMINOR_RSP no state change

AP_DATA_XFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind

P_TDATA_REQ no state change

AP_DATA_XFER
AP_WSYNCMAcnf_SYNCMAreq
AP_WACTEcnf_ACTEreq
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind

no state change
no state change
no state change
no state change
no state change

P_TOKENGIVE_REQ

94 X/Open CAE Specification (1993)

XAP Functions ap_snd()

Primitive/State Relationships
primitive valid in states next state

(no state change or
AP_DATA_XFER)

AP_WRECOVERYreq

AP_DATA_XFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_WCDATArsp_CDATAind

P_TOKENPLEASE_REQ no state change

AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind
AP_DATA_XFER

P_UXREPORT_REQ AP_WRECOVERYind

AP_DATA_XFER
AP_WRELrsp_RELind
AP_WSYNCMArsp_SYNCMAind
AP_WACTErsp_ACTEind

P_XDATA_REQ no state change

The following table lists the environment attributes associated with each primitive. The
following information is provided in the table:

primitive The name of the primitive.

must be set A list of XAP environment attributes that must be set prior to issuing this
primitive.

Note that some attributes that had to be set in order to enter a state where this
primitive is legal may not be listed. Attributes other than those listed may be
required by the remote application entity.

may be used A list of XAP environment attributes may be set prior to sending this
primitive and the values of which will have an affect of the primitive.

may change A list of the attributes that may change as a result of sending this primitive.

ACSE/Presentation Services API (XAP) 95

ap_snd() XAP Functions

Primitive/Attribute Relationships
primitive must be set may be used may change

A_ABORT_REQ none none AP_STATE

AP_BIND_PADDR
AP_CNTX_NAME
AP_LCL_PADDR
AP_REM_PADDR
AP_LIB_SEL

AP_ACSE_SEL
AP_CLD_AEID
AP_CLD_AEQ
AP_CLD_APID
AP_CLD_APT
AP_CLG_AEID
AP_CLG_AEQ
AP_CLG_APID
AP_CLG_APT
AP_CLG_CONN_ID
AP_DPCN
AP_INIT_SYNC_PT
AP_INIT_TOKENS
AP_MODE_SEL
AP_PCDL
AP_PFU_SEL
AP_PRES_SEL
AP_QOS
AP_ROLE_ALLOWED
AP_SESS_SEL
AP_SFU_SEL

AP_ROLE_CURRENT
AP_STATE

A_ASSOC_REQ

AP_BIND_PADDR
AP_CLD_CONN_ID
AP_CNTX_NAME
AP_DPCR
AP_INIT_SYNC_PT
AP_INIT_TOKENS
AP_PCDRL
AP_PRES_SEL
AP_QOS
AP_RSP_AEID
AP_RSP_AEQ
AP_RSP_APID
AP_RSP_APT
AP_SFU_SEL

AP_DCS
AP_STATE
AP_TOKENS_OWNED

A_ASSOC_RSP none

A_PABORT_REQ none none AP_STATE

A_RELEASE_REQ none none AP_STATE

A_RELEASE_RSP none none AP_STATE

P_ACTDISCARD_REQ none none AP_STATE

AP_STATE
AP_TOKENS_OWNED

P_ACTDISCARD_RSP none none

AP_STATE
AP_TOKENS_OWNED

P_ACTEND_REQ none none

P_ACTEND_RSP none none AP_STATE

P_ACTINTR_REQ none none AP_STATE

AP_STATE
AP_TOKENS_OWNED

P_ACTINTR_RSP none none

96 X/Open CAE Specification (1993)

XAP Functions ap_snd()

Primitive/Attribute Relationships
primitive must be set may be used may change

P_ACTRESUME_REQ none none none

P_ACTSTART_REQ none none AP_TOKENS_OWNED

P_CDATA_REQ none none none

P_CDATA_RSP none none none

P_CTRLGIVE_REQ none none AP_TOKENS_OWNED

P_DATA_REQ none none AP_TOKENS_OWNED

P_RESYNC_REQ none none AP_STATE

AP_STATE
AP_TOKENS_OWNED

P_RESYNC_RSP none none

AP_STATE
AP_TOKENS_OWNED

P_SYNCMAJOR_REQ none none

P_SYNCMAJOR_RSP none none AP_STATE

P_SYNCMINOR_REQ none none AP_TOKENS_OWNED

P_SYNCMINOR_RSP none none none

P_TDATA_REQ none none none

AP_STATE
AP_TOKENS_OWNED

P_TOKENGIVE_REQ none none

P_TOKENPLEASE_REQ none none none

P_UXREPORT_REQ none none AP_STATE

P_XDATA_REQ none none none

ap_snd() returns [AP_BADLSTATE] when sptype indicates a primitive which is not valid in the
current state of the XAP instance. This error indicates a program logic error. Thus the XAP-user
must keep track of the state of the instance.

ap_snd() returns [AP_LOOK] when:

1. The primitive specified by sptype is made invalid by an incoming event which has been
processed by the underlying service provider but which has not yet been received by the
XAP-user,

or

2. expedited data is available for the XAP-user to receive.

The [AP_LOOK] return code does not indicate a program logic error. It only indicates that the
XAP-user should issue ap_rcv() calls to process one or more outstanding incoming events and
then take action appropriate to the current state of the instance. For example, since receiving
expedited data does not result in a state change, the ap_snd() which returned [AP_LOOK] could
be reissued. This includes an ap_snd() that is part of an in-progress send discussed below.

As another example, suppose XAP receives a P-RESYNC indication primitive in state
AP_DATA_XFER. The XAP state is inconsistent with that of the presentation service provider.
If the XAP-user issues ap_snd() to send a P_DATA_REQ primitive, XAP returns [AP_LOOK]
forcing the user to call ap_rcv() to receive the P_RESYNC_IND primitive. This causes the XAP
instance’s state to become AP_WRESYNrsp_RESYNind. The XAP-user should send a
P_RESYNC_RSP primitive to return to state AP_DATA_XFER.

ACSE/Presentation Services API (XAP) 97

ap_snd() XAP Functions

A P_RESYNC_IND primitive has the effect of terminating any send in progress at that point. An
XAP-user, after getting [AP_LOOK] and receiving P_RESYNC_IND, should assume any in-
progress send was terminated by XAP.

Note: [AP_LOOK] implies that the XAP implementation includes some mechanism which
permits a delay between a primitive being processed by the service provider and that
primitive being passed to the API user. Thus, some implementations of XAP may not
be capable of generating this return code.

If the primitive being sent is to be accompanied by protocol information, that information must
be contained in an ap_cdata_t structure pointed to by cdata. The man-pages in Chapter 7 describe
the use of the cdata argument with each XAP primitive. If no additional protocol information is
to be sent with an XAP primitive, cdata may be NULL.

User-data can be sent with many XAP primitives. If no user-data is to be sent with a primitive,
ubuf may be set to NULL. To send data, ubuf→buf must point to a linked list of ap_osi_vbuf_t
structures. These structures allow data stored in several different buffers to be sent with a single
ap_snd() invocation. The ap_osi_vbuf_t structure is defined as shown below.

typedef struct {
unsigned char *db_base; /* beginning of buffer */
unsigned char *db_lim; /* last octet+1 of buffer */
unsigned char db_ref; /* reference count */

} ap_osi_dbuf_t ;

typedef struct ap_osi_vbuf ap_osi_vbuf_t;
struct ap_osi_vbuf {

ap_osi_vbuf_t *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st octet of data */
unsigned char *b_wptr; /* 1st free location */
ap_osi_dbuf_t *b_datap; /* data block */

} ;

The b_cont field of the ap_osi_vbuf_t structure points to the next buffer in the chain or is NULL if
this is the end of the list. The b_datap element points to a data block that contains encoded user
data. The b_rptr element points to the beginning of the user-data within the data block while
b_wptr references the location following the last octet of data in the buffer.

Each data block is represented by an ap_osi_dbuf_t structure. The db_ref element of the
ap_osi_dbuf_t structure indicates the number of ap_osi_vbuf_t structures that reference this data
block. The db_base element points to the beginning of a buffer and db_lim indicates the end of
that buffer (buffer size == db_lim-db_base).

The XAP user is responsible for encoding the user data passed to XAP in the ubuf parameter.
The general rules for encoding user data are stated here; please see individual manual pages in
Chapter 7, for specific exceptions to these rules.

• If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the contents of ubuf buffer(s) are mapped directly to the SS-user data
parameter of the equivalent session service primitive. Refer to the ISO Presentation Layer
Protocol Specification (reference ISO 8823) for further information concerning the encoding
of these values. (The primary exception to this rule is the A_ASSOC_REQ and
A_ASSOC_RSP primitives).

• If the ‘‘X.410-1984’’ mode of operation is not in effect and the primitive to be sent is an ACSE
primitive, the data in the ubuf buffer(s) must be encoded according to the definition specified
in the ACSE Protocol Specification (reference ISO 8650):

98 X/Open CAE Specification (1993)

XAP Functions ap_snd()

[30] IMPLICIT SEQUENCE OF EXTERNAL

• If the ‘‘X.410-1984’’ mode of operation is not in effect and the primitive to be sent is a
Presentation primitive, the data in the ubuf buffer(s) must be encoded according to the User-
data definition specified in the Presentation Protocol Specification (reference ISO 8823):

CHOICE {
[APPLICATION 0] IMPLICIT OCTET STRING,
[APPLICATION 1] IMPLICIT SEQUENCE OF PDV-list

}

The flags argument is a bit mask that can be used to control certain aspects of how the ap_snd()
invocation is handled by XAP. Legal values for the flags argument are formed by OR’ing
together zero or more of the flags described below.

Flag Description
This flag indicates that data associated with the
specified primitive will be sent with multiple
ap_snd() calls. Each ap_snd() call with the AP_MORE
bit set indicates that another ap_snd() will follow
with additional data associated with the specified
primitive. The value of the sptype argument must be
the same for all ap_snd() calls used to send a single
primitive. Calling ap_snd() with the AP_MORE bit
reset signals that the primitive is complete.

AP_MORE

This flag indicates to XAP that a check shall be made
for the availability of incoming data on the
connection and that if data is available this shall be
indicated by returning a result of −1 and setting
aperrno_p as indicated below.

AP_QUERY_DATA_PENDING

If XAP is being used in blocking execution mode (i.e., the AP_NDELAY bit of the AP_FLAGS
attribute is not set), ap_snd() blocks until sufficient resources are available to permit all of the
data in the ubuf buffer(s) to be sent. If XAP is being used in non-blocking execution mode (i.e.,
the AP_NDELAY bit of the AP_FLAGS attribute is set), ap_snd() may return after having sent
only a portion of the data to the A/P-Provider. If all data is not sent, ap_snd() will return a value
of −1 and the location pointed to by aperror_p is set to the [AP_AGAIN] error code. The user
must continue to call ap_snd() with exactly the same arguments until the function completes
successfully (i.e., returns a value of 0).

If AP_MORE is set by the user or if [AP_AGAIN] is returned by XAP, sending a primitive
requires multiple invocations of ap_snd(). In general, ap_snd() is issued repeatedly with the
same primitive until:

1. The user resets the AP_MORE flag

and

2. XAP returns success, i.e., does not return the [AP_AGAIN] error code

or

3. XAP returns the [AP_LOOK] or [AP_HANGUP] error codes.

An association can be aborted by the user even if a send is ‘‘in progress’’, i.e., conditions 1 and 2
have not been met. An ap_snd() specifying A_ABORT_REQ or A_PABORT_REQ will cause the
in-progress send and the association to be aborted. An ap_close() will also have this effect.

ACSE/Presentation Services API (XAP) 99

ap_snd() XAP Functions

It is not permissible to issue ap_snd() specifying any primitive other than A_ABORT_REQ or
A_PABORT_REQ while there is a send in progress. If this is attempted, XAP returns the
[AP_BADLSTATE] error code.

The XAP user must not prematurely terminate an in-progress send by resetting AP_MORE as
this will result in a partial APDU being sent to the remote system which, in turn, may cause the
remote system to abort the application association.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_ACCES] The user is not authorised to use the address specified for
AP_BIND_PADDR.

[AP_AGAIN] XAP was unable to complete the requested action. Try again.

[AP_AGAIN_DATA_PENDING]
XAP was unable to complete the requested action. Try again. There is an
event available for the user to receive.

[AP_BADDATA] User data not allowed on this service.

[AP_BADENV] A mandatory environment attribute is not set.

[AP_BADF] The fd parameter does not identify an XAP instance.

[AP_BADFLAGS] The specified combination of flags is invalid.

[AP_BADLSTATE] The specified primitive cannot be issued in current state.

[AP_BADPRIM] The specified primitive is not valid (i.e., unknown type, or known type
but corresponds to an unavailable service).

[AP_BADUBUF] The length given for user data does not match what was sent; or the
AP_MORE bit was reset but no data was given for a primitive that is not
associated with either an ACSE or Presentation PDU.

[AP_DATA_OVERFLOW]
User data and presentation service pci exceeds 512 bytes on session V1 or
the length of the user data exceeds a locally defined limit, as stated in the
CSQ.

[AP_HANGUP] The association has been aborted. Use ap_rcv() to read the abort
indication.

[AP_LOOK] A pending event requires attention.

[AP_NOENV] There is no XAP environment associated with fd.

[AP_SUCCESS_DATA_PENDING]
The requested action was completed successfully. There is an event
available for the user to receive.

In addition, operating system, asn.1, acse, presentation, session and transport class errors are
reported.

100 X/Open CAE Specification (1993)

Chapter 5

XAP Commands

This chapter describes the XAP commands, of which there is only one - ap_osic.

The command, including its usage, is described in manual page format.

Support for ap_osic is optional.

ACSE/Presentation Services API (XAP) 101

ap_osic XAP Commands

NAME
ap_osic - XAP Library OSI information compiler

SYNOPSIS
ap_osic [options] files

DESCRIPTION

The ap_osic command processes ap_env_file files to generate an environment initialisation file
that can be used by the ap_init_env() function to initialise the XAP Library environment. The
ap_osic command is optional; implementations required to be portable cannot rely on it being
available on all platforms.

The format of the ap_env_file input files is defined in Section 6.1 on page 105.

One or more ap_env_file files can be named on the command line. The ap_osic command parses
these files, checks them for errors, and writes the combined initialisation information to a file
named ap_osi.env. The following options are interpreted by ap_osic:

-o outfile
Write output to outfile instead of ap_osi.env.

-v By default, the attributes named in each ap_env_file file are assigned values in a specific
order regardless of the order that they appear in that file. This is to prevent the case where
attribute A is assigned a value before attribute B when the value of B may affect the
allowable values for A. The user may override this default ordering by specifying the -v
option. If this option is used, environment attributes will be assigned values in the same
order that they appear in the ap_env_file file or files.

The default attribute assignment order used in the absence of the -v option is:

AP_LIB_SEL, AP_ACSE_SEL, AP_ROLE_ALLOWED, AP_CNTX_NAME,
AP_SESS_SEL, AP_BIND_PADDR,
AP_CLD_AEID, AP_CLD_AEQ, AP_CLD_APID, AP_CLD_APT,
AP_CLG_AEID, AP_CLG_AEQ, AP_CLG_APID, AP_CLG_APT,
AP_DPCN, AP_MODE_SEL, AP_PCDL, AP_PFU_SEL,
AP_PRES_SEL, AP_REM_PADDR,
AP_RSP_AEID, AP_RSP_AEQ, AP_RSP_APID, AP_RSP_APT,
AP_INIT_SYNC_PT, AP_SFU_SEL, AP_INIT_TOKENS, AP_FLAGS,
AP_CLG_CONN_ID, AP_CLD_CONN_ID, AP_OLD_CONN_ID,
AP_AFU_SEL, AP_COPYENV, AP_DPCR, AP_QLEN, AP_QOS.

FILES

ap_osi.env default output file

CAVEAT
The output from the ap_osic command of one XAP implementation is not necessarily readable by
the ap_init_env() function of another XAP implementation, as the format of the intermediate file
is not defined. Environment initialisation files are therefore only guaranteed to be portable in
the ap_env_file form.

DIAGNOSTICS
Most diagnostic messages produced by ap_osic begin with the line number and name of the file
in which the error was detected. If one of these conditions is detected, no output is written to the
output file. The following error messages may occur:

Cannot open file One of the specified input files cannot be opened for reading.

Syntax error There is a syntax error in the ap_env_file file. Refer to the
ap_env_file manual page for a description of the proper syntax.

102 X/Open CAE Specification (1993)

XAP Commands ap_osic

Illegal attribute An illegal attribute name was specified in the ap_env_file file.

Illegal value An illegal value was assigned to an attribute in the ap_env_file
file. In addition to these errors, the ap_osic command produces a
warning (below) if multiple assignments to a single attribute are
encountered. In this case, only the first assignment is used and a
warning is written to stderr for each additional initialisation
value encountered for that attribute. If no errors are detected,
output will be written to the output file.

Duplicate attribute ignored More than one assignment was encountered for a single
attribute. The first value is used.

ACSE/Presentation Services API (XAP) 103

XAP Commands

104 X/Open CAE Specification (1993)

Chapter 6

XAP File Formats

This chapter defines the format of files used by XAP.

6.1 Environment File
This defines the format of an ACSE/Presentation Library initialisation file.

An ap_env_file is an ASCII file containing a list of XAP environment variable assignments. It is
used as input to the ap_osic command, which generates a compiled version of the assignments
for use as an environment initialisation file by the ap_init_env() function. Support of the ap_osic
command and intialisation of the XAP environment from an input file is optional, so this
mechanism may not be available in all implementations of XAP.

Each ap_env_file file consists of entries of the following types:

• Assignment pairs of the form:

<attribute name> = <value>

where <attribute name> is the name of an XAP library environment attribute (see
Chapter 3) and <value> is a legal value for the attribute.

• C-style comments (/*....*/) with the syntax and semantics defined by ISO C.

• #include lines with the syntax and semantics defined by the ISO C preprocessor.

• #define lines with the syntax and semantics defined by the ISO C preprocessor for the
’’#define identifier token-sequence’’ form.

An entry may be split across multiple lines by terminating intermediate lines with a backslash
character (\). Otherwise each entry must occupy a single line.

An ap_env_file file may contain assignments for any of the settable XAP Library environment
attributes. The assignment pairs may appear in any order provided each pair begins on a new
line.

ACSE/Presentation Services API (XAP) 105

Environment File XAP File Formats

Since not all attributes are of the same type, the format of <value> depends upon the
particular attribute being initialised. Table 6-1 lists all of the attributes that may be initialised in
an ap_env_file file and the format each requires for the <value> component of its initialisation
pair.

attribute name type value format
AP_ACSE_SEL unsigned long bitmask
AP_AFU_SEL unsigned long bitmask
AP_BIND_PADDR ap_paddr_t address
AP_CLD_AEID ap_aei_api_id_t encoded string
AP_CLD_AEQ ap_aeq_t encoded string
AP_CLD_APID ap_aei_api_id_t encoded string
AP_CLD_APT ap_apt_t encoded string
AP_CLD_CONN_ID ap_conn_id_t connection identifier
AP_CLG_AEID ap_aei_api_id_t encoded string
AP_CLG_AEQ ap_aeq_t encoded string
AP_CLG_APID ap_aei_api_id_t encoded string
AP_CLG_APT ap_apt_t encoded string
AP_CLG_CONN_ID ap_conn_id_t connection identifier
AP_CNTX_NAME ap_objid_t object identifier
AP_COPYENV long integer constant
AP_DPCN ap_dcn_t default context name
AP_FLAGS unsigned long bitmask
AP_INIT_SYNC_PT unsigned long integer constant
AP_INIT_TOKENS unsigned long bitmask
AP_LIB_SEL unsigned long bitmask
AP_MODE_SEL long integer constant
AP_PCDL ap_cdl_t context definition list
AP_PFU_SEL unsigned long bitmask
AP_PRES_SEL unsigned long bitmask
AP_QLEN long integer constant
AP_QOS ap_qos_t quality of service
AP_REM_PADDR ap_paddr_t address
AP_ROLE_ALLOWED unsigned long bitmask
AP_RSP_AEID ap_aei_api_id_t encoded string
AP_RSP_AEQ ap_aeq_t encoded string
AP_RSP_APID ap_aei_api_id_t encoded string
AP_RSP_APT ap_apt_t encoded string
AP_SESS_SEL unsigned long bitmask
AP_SFU_SEL unsigned long bitmask

Table 6-1 Attributes that may be Initialised in an Environment File

106 X/Open CAE Specification (1993)

XAP File Formats Environment File

Below is a description of the <value> formats specified in the preceding table. Note that blanks,
newlines, horizontal and vertical tabs and form feeds in the ap_env_file file are considered white
space and are ignored except as token separators.

Address

Values in this format must be given as

{[p_selector], [s_selector], [t_selector], {{n_address} [,{n_address}]*} }

where p_selector, s_selector, t_selector, and n_address are defined as follows:

p_selector: A value in the octet string format of any length.

s_selector: A value in the octet string format whose length cannot exceed 16 octets.

t_selector: A value in the octet string format whose length cannot exceed 32 octets.

n_address: One or more network addresses may be specified here in a comma separated
list. Each network address is represented by a value in the octet string format
whose length is less than or equal to 20, followed by an integer constant
declaring the associated network type. When multiple network address
components are included in a presentation address, the specific network
address(es) chosen by the provider and the manner by which it is selected for
initiating or listening to connections is not specified by XAP and is a local
implementation issue.

Examples:

AP_BIND_PADDR = {, {01}, {0F}, {{{4901},AP_CLNS} }}
AP_REM_PADDR = {{01}, , , {{{4901},AP_CLNS}, \

{{4902},AP_UNKNOWN} }}

Bitmask

Values in this format must be given as one or more items in the integer constant format OR’ed
together.

Examples:

AP_ACSE_SEL = 0x1
AP_SESS_SEL = 01 | 02
AP_SFU_SEL = AP_SESS_DUPLEX | AP_SESS_RESYNC

Connection Identifier

Values in this format must be given as a sequence of 3 values in the octet string format enclosed
in braces and separated by commas. The 3 elements of this sequence correspond, in order, to the
Calling (or Called) SS-user reference, Common reference, and Additional reference information
components of the session connection identifier parameter.

Example:

AP_CLG_CONN_ID = { \
{"MyCallingSS-userReference"}, \
{"CommonRef"}, \
{} }

Context Definition List

Values in this format must be given as a sequence of comma-separated 3-tuples enclosed in
braces. Each 3- tuple comprises the following comma-separated elements:

ACSE/Presentation Services API (XAP) 107

Environment File XAP File Formats

1. a presentation context identifier in integer constant format

2. an abstract syntax name in object identifier format

3. a braced, comma separated sequence of transfer syntax names where each transfer syntax
name is in object identifier format.

Example:

AP_PCDL = {\
{1,\

{joint_iso_ccitt 2 2 0 1},\
{{joint_iso_ccitt asn1 basic_encoding} }\

},\
{3,\

{iso 3 9999 100 2 1 1},\
{{joint_iso_ccitt asn1 basic_encoding},\

{iso 3 9999 100 6 1 1}}\
}\

}

Note that the above identifiers of OBJECT IDENTIFIER component values use
an ’’_’’ (underscore) character as a separator instead of a ’’-’’ (hyphen). For
example, joint-iso-ccitt is defined as joint_iso_ccitt. Since the environment file
format is ’’C’’ structure based, using a ’’-’’ as a separator would constitute an
expression and not a definition.

Default Context Name

Values in this format must be given as a 2-tuple enclosed in braces. The first element of the 2-
tuple is an abstract syntax name; the second is a transfer syntax name. Both elements must be in
the object identifier format and the two elements are separated by a comma.

Example:

AP_DPCN = {{2 2 1 0 1}, {2 1 1}}

Integer Constant

Values in this format must be given as one of the following:

• a decimal integer

• an octal integer (prefixed by 0)

• a hexadecimal integer (prefixed by 0x or 0X)

• a symbolic constant that is either defined by the user in the ap_env_file file (using #define), or
defined in a file included in the ap_env_file file (using #include).

Note that the constants in the <xap.h> header file are included automatically. Users are
cautioned against redefining any of the constants in that file.

Examples:

AP_ROLE_ALLOWED = AP_RESPONDER
AP_CLD_AEID = 0xA2

Object Identifier

Values in this format must be given as a sequence of values in the integer constant format that
are separated by blanks and enclosed in braces.

108 X/Open CAE Specification (1993)

XAP File Formats Environment File

The following identifiers of OBJECT IDENTIFIER component values have been assigned by ISO
and CCITT and are recognised by ap_osic:

iso, standard, registration_authority, member_body,
identified_organisation, ccitt, recommendation,
question, administration, network_operator,
joint_iso_ccitt, asn1, basic_encoding.

Note that the above identifiers use an ’’_’’ (underscore) character as a separator instead of a ’’-’’
(hyphen). For example, joint-iso-ccitt is defined as joint_iso_ccitt. Since the environment file
format is ’’C’’ structure based, using a ’’-’’ as a separator would constitute an expression and not
a definition.

In addition, the user may define other identifier values by using the #define preprocessor
construct.

Examples:

AP_CNTX_NAME = {iso standard 8571 1}
AP_CNTX_NAME = {1 0 8571 1}

Octet String

Values in this format must be given as either an even number of hexadecimal digits or a legal C
language string constant enclosed in braces. Characters in string constants will be treated as 8-bit
values where bit 8 (MSB) is 0 and the low order 7 bits correspond to the character’s ASCII
encoding.

Examples:

octetstring = {000ff0ff}
octetstring = {"my string"}

Encoded String

Values in this format must be given as a single value in the octet string format. This octet string
must correspond to a valid encoding of an ASN.1 type value.

Examples:

AP_CLD_APT = {06062B80CE0F0107}

Quality of Service

Values in this format must be given as

{ {throughput}, {transdel}, {reserrorrate},
{transfailprob}, {estfailprob}, {relfailprob},
{estdelay}, {reldelay}, {connresil},
protection, priority, optimisedtrans, extcntl

}

where throughput and transdel must each be given as a pair {maximum} , {average} ;
maximum and average must each be given as a pair {called} , {calling} ; called and
calling must each be given as a pair of numeric values: target , minimumacceptable
(see examples below).

reserrorrate, transffailprob, estfailprob, relfailprob, estdelay, reldelay and connresil each consisting of a
pair of numeric values, the first being the target value and the second being the minimum
acceptable value.

protection, priority, optimisedtrans and extcntl are integer constants.

ACSE/Presentation Services API (XAP) 109

Environment File XAP File Formats

Example: AP_QOS = {\
/* throughput */\
{\

/* maxthrpt */\
{\

/* called */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* calling */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 }\

},\
/* avgthrpt */\
{\

/* called */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* calling */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 }\

}\
},\
/* transdel */\
{\

/* maxdel */\
{\

/* called */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* calling */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 }\

},\
/* avgdel */\
{\

/* called */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* calling */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 }\

}\
},\
/* reserrorrate */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* transffailprob */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* estfailprob */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* relfailprob */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* estdelay */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* reldelay */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* connresil */\
{ /* targetvalue */ -1, /* minacceptvalue */ -1 },\
/* protection */\
0,\
/* priority */\
AP_PRIDFLT,\
/* optimisedtrans */\
AP_NO,\
/* extcntl */\
AP_YES\
}

110 X/Open CAE Specification (1993)

Chapter 7

XAP Primitives

This chapter presents manual pages for each of the primitives of the underlying OSI services to
which the XAP provides access via the ap_snd() and ap_rcv() functions.

Each man-page provides a short description of an ACSE or Presentation Layer primitive,
including the circumstances under which it may be sent or received, followed by a detailed
description of the parameters associated with it.

ACSE/Presentation Services API (XAP) 111

A_ABORT_REQ XAP Primitives

NAME
A_ABORT_REQ - used to abort an association

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_ABORT_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to request the abnormal release of an association.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the A_ABORT_REQ primitive and restrictions on its use.

To send an A_ABORT_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_A_ABORT_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-information */
/* field of APDU */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

112 X/Open CAE Specification (1993)

XAP Primitives A_ABORT_IND

NAME
A_ABORT_IND - used to indicate an abort request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_ABORT_IND is used in conjunction with ap_rcv() and the XAP Library environment to
indicate the abnormal release of an association, or the abnormal termination of either the
A_ASSOC or the A-RELEASE service.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the A_ABORT_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

sptype The unsigned long pointed to by this argument will be set to AP_A_ABORT_IND.

cdata The following members of cdata are used for this primitive:

long src; /* source of abort */

cdata→src will be set to indicate the source of the abort request. The possible
values for cdata→src when the ‘‘normal’’ mode of operation is in effect are given
below.

AP_ACSE_USER abort requested by ACSE user.

AP_ACSE_PROV abort requested by ACSE provider.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→src argument will be set to AP_SRC_NOVAL by
the library.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

ACSE/Presentation Services API (XAP) 113

A_ABORT_IND XAP Primitives

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

114 X/Open CAE Specification (1993)

XAP Primitives A_ASSOC_REQ

NAME
A_ASSOC_REQ - used to initiate an association

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_ASSOC_REQ primitive is used in conjunction with ap_snd() and the XAP Library to
initiate the establishment of an association between two application entities. After sending an
A_ASSOC_REQ primitive, no other primitives can be issued, except A_ABORT_REQ or
A_PABORT_REQ, until A_ASSOC_CNF primitive is received.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the A_ASSOC_REQ primitive and restrictions on its use.

To send an A_ASSOC_REQ primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_A_ASSOC_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-information */
/* field */

ap_a_assoc_env_t *env; /* environment attribute values */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

The cdata→env argument can be used to override XAP environment attribute
values used as parameters to the A-ASSOCIATE request service. If no attribute
values are to be overridden, cdata→env may be set to NULL. Otherwise, cdata→env
must point to an ap_a_assoc_env_t structure, and the following elements are used
for this primitive:

ACSE/Presentation Services API (XAP) 115

A_ASSOC_REQ XAP Primitives

unsigned long mask; /* bit mask */
unsigned long mode_sel; /* AP_MODE_SEL */
ap_objid_t cntx_name; /* AP_CNTX_NAME */
ap_aei_api_id_t clg_aeid; /* AP_CLG_AEID */
ap_aeq_t clg_aeq; /* AP_CLG_AEQ */
ap_aei_api_id_t clg_apid; /* AP_CLG_APID */
ap_apt_t clg_apt; /* AP_CLG_APT */
ap_aei_api_id_t cld_aeid; /* AP_CLD_AEID */
ap_aeq_t cld_aeq; /* AP_CLD_AEQ */
ap_aei_api_id_t cld_apid; /* AP_CLD_APID */
ap_apt_t cld_apt; /* AP_CLD_APT */
ap_paddr_t rem_paddr; /* AP_REM_PADDR */
ap_cdl_t pcdl; /* AP_PCDL */
ap_dcn_t dpcn; /* AP_DPCN */
ap_qos_t qos; /* AP_QOS */
unsigned long a_version_sel; /* AP_ACSE_SEL */
unsigned long p_version_sel; /* AP_PRES_SEL */
unsigned long s_version_sel; /* AP_SESS_SEL */
unsigned long afu_sel; /* AP_AFU_SEL */
unsigned long pfu_sel; /* AP_PFU_SEL */
unsigned long sfu_sel; /* AP_SFU_SEL */
ap_conn_id_t *clg_conn_id; /* AP_CLG_CONN_ID */
unsigned long init_sync_pt; /* AP_INIT_SYNC_PT */
unsigned long init_tokens; /* AP_INIT_TOKENS */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by OR’ing together zero or more of the flags listed in the table below.
When a bit is set, the value of the associated parameter will be taken from the cdata
argument rather than from the XAP environment. Specifying a value for a
particular parameter in the cdata argument has the same effect on the value of the
corresponding attribute in the XAP environment as calling ap_set_env(). See the
description of the related environment attributes for information on how the fields
of this argument are used.

flag parameter field
AP_A_VERSION_SEL_BIT ACSE Version Selector a_version_sel

AP_AFU_SEL_BIT ACSE Requirements afu_sel

AP_CLD_AEID_BIT Called AE Invocation-identifier cld_aeid

AP_CLD_AEQ_BIT Called AE Qualifier cld_aeq

AP_CLD_APID_BIT Called AP Invocation-identifier cld_apid

AP_CLD_APT_BIT Called AP Title cld_apt

AP_CLG_AEID_BIT Calling AE Invocation-identifier clg_aeid

AP_CLG_AEQ_BIT Calling AE Qualifier clg_aeq

AP_CLG_APID_BIT Calling AP Invocation-identifier clg_apid

AP_CLG_APT_BIT Calling AP Title clg_apt

AP_CLG_CONN_ID_BIT Session-connection Identifier clg_conn_id

AP_CNTX_NAME_BIT Application Context Name cntx_name

AP_DPCN_BIT Default Presentation Context Name dpcn

116 X/Open CAE Specification (1993)

XAP Primitives A_ASSOC_REQ

flag parameter field
AP_INIT_SYNC_PT_BIT Initial Synchronization Serial Point Number init_sync_pt

AP_INIT_TOKENS_BIT Initial Token Assignment init_tokens

AP_MODE_SEL_BIT Mode mode_sel

AP_P_VERSION_SEL_BIT Presentation Version Selector p_version_sel

AP_PCDL_BIT Presentation Context Definition List pcdl

AP_PFU_SEL_BIT Presentation Requirements pfu_sel

AP_QOS_BIT Quality of Service qos

AP_REM_PADDR_BIT Called Presentation Address rem_paddr

AP_S_VERSION_SEL_BIT Session Version Selector s_version_sel

AP_SFU_SEL_BIT Session Requirements sfu_sel

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

If the X.410-1984 mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the contents of ubuf buffer(s) is assumed to be a value of
type SET encoded according to the Basic Encoding Rules for ASN.1. The SET
value should have an implicit context-specific tag with a value of 1 (i.e., [1]
IMPLICIT). However, the XAP Library will not examine this value to verify that it
is valid. Refer to the ISO Presentation Layer protocol definition (reference ISO
8823) for further information concerning the encoding of these values.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADROLE] The AP_INITIATOR bit of the AP_ROLE_ALLOWED attribute is not set.

ACSE/Presentation Services API (XAP) 117

A_ASSOC_IND XAP Primitives

NAME
A_ASSOC_IND - used to indicate a request to establish an association

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_ASSOC_IND primitive is used in conjunction with ap_rcv() and the XAP Library to
indicate a request to establish an association between two application entities.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the A_ASSOC_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to AP_A_ASSOC_IND.

cdata The following members of cdata are used for this primitive:

ap_a_assoc_env_t *env; /*environment attribute values*/

The cdata→env argument can be used to retrieve the values of the XAP
environment attributes that correspond to parameters of the A-ASSOCIATE
indication service. If the AP_COPYENV attribute in the XAP environment is false ,
these values will not be returned in the cdata argument and cdata→env will be set
to null when ap_rcv() returns. If AP_COPYENV is true, the XAP library will
allocate an ap_a_assoc_env_t structure and any necessary substructures and
return a pointer to it in cdata→env. The caller can release the storage allocated for
the ap_a_assoc_env_t structure and its substructures by passing a pointer to cdata
to ap_free(). The following elements of the ap_a_assoc_env_t structure are used for
this primitive:

118 X/Open CAE Specification (1993)

XAP Primitives A_ASSOC_IND

unsigned long mask; /* bit mask */
unsigned long mode_sel; /* AP_MODE_SEL */
ap_objid_t cntx_name; /* AP_CNTX_NAME */
ap_aei_api_id_t clg_aeid; /* AP_CLG_AEID */
ap_aeq_t clg_aeq; /* AP_CLG_AEQ */
ap_aei_api_id_t clg_apid; /* AP_CLG_APID */
ap_apt_t clg_apt; /* AP_CLG_APT */
ap_aei_api_id_t cld_aeid; /* AP_CLD_AEID */
ap_aeq_t cld_aeq; /* AP_CLD_AEQ */
ap_aei_api_id_t cld_apid; /* AP_CLD_APID */
ap_apt_t cld_apt; /* AP_CLD_APT */
ap_paddr_t rem_paddr; /* AP_REM_PADDR */
ap_cdl_t pcdl; /* AP_PCDL */
ap_cdrl_t pcdrl; /* AP_PCDRL */
ap_dcn_t dpcn; /* AP_DPCN */
ap_qos_t qos; /* AP_QOS */
unsigned long a_version_sel; /* AP_ACSE_SEL */
unsigned long p_version_sel; /* AP_PRES_SEL */
unsigned long s_version_sel; /* AP_SESS_SEL */
unsigned long afu_sel; /* AP_AFU_SEL */
unsigned long pfu_sel; /* AP_PFU_SEL */
unsigned long sfu_sel; /* AP_SFU_SEL */
ap_conn_id_t *clg_conn_id; /* AP_CLG_CONN_ID */
unsigned long init_sync_pt; /* AP_INIT_SYNC_PT */
unsigned long init_tokens; /* AP_INIT_TOKENS */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
OR’ing together zero or more of the flags listed in the table below. When a bit is
set, the specified parameter was received. Otherwise, the parameter was not
received and the corresponding field in the ap_a_assoc_env_t structure is not set.

flag parameter field
AP_MODE_SEL_BIT Mode mode_sel

AP_CNTX_NAME_BIT Application Context Name cntx_name

AP_CLG_AEID_BIT Calling AE Invocation-identifier clg_aeid

AP_CLG_AEQ_BIT Calling AE Qualifier clg_aeq

AP_CLG_APID_BIT Calling AP Invocation-identifier clg_apid

AP_CLG_APT_BIT Calling AP Title clg_apt

AP_CLD_AEID_BIT Called AE Invocation-identifier cld_aeid

AP_CLD_AEQ_BIT Called AE Qualifier cld_aeq

AP_CLD_APID_BIT Called AP Invocation-identifier cld_apid

AP_CLD_APT_BIT Called AP Title cld_apt

AP_REM_PADDR_BIT Calling Presentation Address rem_paddr

AP_PCDL_BIT Presentation Context Definition List pcdl

AP_PCDRL_BIT Presentation Context Definition Result List pcdrl

AP_DPCN_BIT Default Presentation Context Name dpcn

AP_QOS_BIT Quality of Service qos

AP_ACSE_SEL_BIT ACSE Version Selector a_version_sel

ACSE/Presentation Services API (XAP) 119

A_ASSOC_IND XAP Primitives

flag parameter field
AP_PRES_SEL_BIT Presentation Version Selector p_version_sel

AP_SESS_SEL_BIT Session Version Selector s_version_sel

AP_AFU_SEL_BIT ACSE Requirements afu_sel

AP_PFU_SEL_BIT Presentation Requirements pfu_sel

AP_SFU_SEL_BIT Session Requirements sfu_sel

AP_CLG_CONN_ID_BIT Session-connection Identifier clg_conn_id

AP_INIT_SYNC_PT_BIT Initial Synchronization Serial Point Number init_sync_pt

AP_INIT_TOKENS Initial Token Assignment init_tokens

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the contents of ubuf buffer(s) is assumed to be a value of
type SET encoded according to the Basic Encoding Rules for ASN.1. The SET
value will have an implicit context-specific tag with a value of 1 (i.e., [1]
IMPLICIT). Refer to the ISO Presentation Layer protocol definition (reference ISO
8823) for further information concerning the encoding of these values.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

120 X/Open CAE Specification (1993)

XAP Primitives A_ASSOC_RSP

NAME
A_ASSOC_RSP - used to respond to an association request indication

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_ASSOC_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond to an association establishment request.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the A_ASSOC_RSP primitive and restrictions on its use.

To send an A_ASSOC_RSP primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_A_ASSOC_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-information */
/* field */

long res; /* result of request */
long diag; /* reason (if rejected) */
ap_a_assoc_env_t *env; /* environment attribute values */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

The argument, cdata→res must be one of the following:

AP_ACCEPT Accept the association.

AP_REJ_PERM Association permanently rejected.

AP_REJ_TRAN Association temporarily rejected.

The argument cdata→diag is used to indicate the reason for the result specified by
cdata→res. If the result was AP_ACCEPT, this argument can be ignored. If the
result was not AP_ACCEPT, the possible values for this argument are as follows:

AP_CLD_AEID_NREC Called AE invocation identifier not recognised.

ACSE/Presentation Services API (XAP) 121

A_ASSOC_RSP XAP Primitives

AP_CLD_AEQ_NREC Called AE qualifier not recognised.

AP_CLD_APID_NREC Called AP invocation identifier not recognised.

AP_CLD_APT_NREC Called AP Title not recognised.

AP_CLD_PADDR_UNK Called presentation address unknown.

AP_CLG_AEID_NREC Calling AE invocation identifier not recognised.

AP_CLG_AEQ_NREC Calling AE qualifier not recognised.

AP_CLG_APID_NREC Calling AP invocation identifier not recognised.

AP_CLG_APT_NREC Calling AP Title not recognised.

AP_CNTX_NAME_NSUP Calling application context name not supported.

AP_DFCN_NSUP Default context not supported.

AP_LCL_LIM_EXCEEDED Local limit exceeded.

AP_NRSN No reason given.

AP_NULL Null.

AP_TEMP_CONGESTION Temporary congestion.

AP_UDATA_NREAD User data not readable.

If cdata→diag is set to AP_CLD_PADDR_UNK, AP_DFCN_NSUP,
AP_LCL_LIM_EXCEEDED, AP_TEMP_CONGESTION, or AP_UDATA_NREAD,
the confirmation received by the remote user will indicate that the source of the
association rejection was the Presentation service provider (see A_ASSOC_CNF).
In this case, any Association-information passed with the A_ASSOC_RSP
primitive is ignored.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→diag argument is not used and any value
specified by the user will be ignored.

The cdata→env argument can be used to override XAP environment attributes
values used as parameters to the A-ASSOCIATE response service. If no attribute
values are to be overidden, cdata→env may be set to null . Otherwise, cdata→env
must point to an ap_a_assoc_env_t structure, and the following elements are used
for this primitive:

122 X/Open CAE Specification (1993)

XAP Primitives A_ASSOC_RSP

unsigned long mask; /* bit mask */
ap_objid_t cntx_name; /* AP_CNTX_NAME */
ap_aei_api_id_t rsp_aeid; /* AP_RSP_AEID */
ap_aeq_t rsp_aeq; /* AP_RSP_AEQ */
ap_aei_api_id_t rsp_apid; /* AP_RSP_APID */
ap_apt_t rsp_apt; /* AP_RSP_APT */
ap_paddr_t rem_paddr; /* AP_REM_PADDR */
ap_cdrl_t pcdrl; /* AP_PCDRL */
long dpcr; /* AP_DPCR */
ap_qos_t qos; /* AP_QOS */
unsigned long afu_sel; /* AP_AFU_SEL */
unsigned long pfu_sel; /* AP_PFU_SEL */
unsigned long sfu_sel; /* AP_SFU_SEL */
ap_conn_id_t *cld_conn_id; /* AP_CLD_CONN_ID */
unsigned long init_sync_pt; /* AP_INIT_SYNC_PT */
unsigned long init_tokens; /* AP_INIT_TOKENS */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by OR’ing together zero or more of the flags listed in the table below.
When a bit is set, the value of the associated parameter will be taken from the cdata
argument rather than from the XAP environment. Otherwise, the value for the
parameter contained in the XAP environment will be used. Specifying a value for
a particular parameter in the cdata argument has the same effect on the value of the
corresponding attribute in the XAP environment as calling ap_set_env(). See the
description of the related environment attributes for information on how the fields
of this argument are used.

flag parameter field
AP_CNTX_NAME_BIT Application Context Name cntx_name

AP_RSP_AEID_BIT Responding AE Invocation-identifier rsp_aeid

AP_RSP_AEQ_BIT Responding AE Qualifier rsp_aeq

AP_RSP_APID_BIT Responding AP Invocation-identifier rsp_apid

AP_RSP_APT_BIT Responding AE Title rsp_apt

AP_REM_PADDR_BIT Responding Presentation Address rem_paddr

AP_PCDRL_BIT Presentation Context Definition Result List pcdrl

AP_DPCR_BIT Default Presentation Context Result dpcr

AP_QOS_BIT Quality of Service qos

AP_AFU_SEL_BIT ACSE Requirements afu_sel

AP_PFU_SEL_BIT Presentation Requirements pfu_sel

AP_SFU_SEL_BIT Session Requirements sfu_sel

AP_CLD_CONN_ID_BIT Session-connection Identifier cld_conn_id

AP_INIT_SYNC_PT_BIT Initial Synchronization Serial Point Number init_sync_pt

AP_INIT_TOKENS_BIT Initial Token Assignment init_tokens

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

If the X.410-1984 mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the contents of ubuf buffer(s) will be a value of type SET
encoded according to the Basic Encoding Rules for ASN.1. If the association is
being accepted, the SET value should have an implicit context-specific tag with a
value of 1 (i.e. [1] IMPLICIT). If the association is being rejected, the SET value

ACSE/Presentation Services API (XAP) 123

A_ASSOC_RSP XAP Primitives

should have been encoded with the universal SET tag (i.e. [UNIVERSAL 17]).
Refer to the ISO Presentation Layer protocol definition (reference ISO 8823) for
further information concerning the encoding of these values.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE

Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_DIAG] The value of cdata→diag is not valid.

[AP_BADCD_RES] The value of cdata→res is not valid.

124 X/Open CAE Specification (1993)

XAP Primitives A_ASSOC_CNF

NAME
A_ASSOC_CNF - used to confirm an association request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_ASSOC_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm the establishment of an association between two application entities.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the A_ASSOC_CNF primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to AP_A_ASSOC_CNF.

cdata The following members of cdata are used for this primitive:

long res; /* result of request */
long res_src; /* source of result */
long diag; /* reason (if rejected) */
ap_a_assoc_env_t *env; /* environment attributes */

cdata→res will be set to indicate the result of the association request. The possible
values for cdata→res are as follows:

AP_ACCEPT Accept the association.

AP_REJ_PERM Association permanently rejected.

AP_REJ_TRAN Association temporarily rejected.

The argument cdata→res_src indicates the source of the result and will be one of
the following:

AP_ACSE_SERV_USER ACSE service user.

AP_ACSE_SERV_PROV ACSE service provider.

AP_PRES_SERV_PROV Presentation service provider.

AP_SESS_SERV_PROV Session service provider.

AP_TRAN_SERV_PROV Transport service provider.

The argument cdata→diag is not meaningful when the value of cdata→res is
AP_ACCEPT. When the value of cdata→res is either AP_REJ_PERM or
AP_REJ_TRAN, the possible values for this argument depend upon the source of
the result. If source of the result is AP_ACSE_SERV_USER, cdata→diag will be one
of the following:

ACSE/Presentation Services API (XAP) 125

A_ASSOC_CNF XAP Primitives

AP_CLD_AEID_NREC Called AE invocation identifier not recognised.

AP_CLD_AEQ_NREC Called QE qualifier not recognised.

AP_CLD_APID_NREC Called AP invocation identifier not recognised.

AP_CLD_APT_NREC Called AP Title not recognised.

AP_CLG_AEID_NREC Calling AE invocation identifier not recognised.

AP_CLG_AEQ_NREC Calling AE invocation identifier not recognised.

AP_CLG_APID_NREC Calling AP invocation identifier not recognised.

AP_CLG_APT_NREC Calling AP Title not recognised.

AP_CNTX_NAME_NSUP Calling application context name not supported.

AP_NRSN No reason given.

AP_NULL Null.

If the source of the result is AP_ACSE_SERV_PROV, cdata→diag will be one of:

AP_NCMN_ACSE_VER No common version of the ACSE protocol supported.

AP_NRSN No reason given.

AP_NULL Null.

If the source of the result is AP_PRES_SERV_PROV, cdata→diag will be one of:

AP_CLD_PADDR_UNK Called presentation address unknown.

AP_DFCN_NSUP Default context not supported.

AP_DIAG_NOVAL No value was specified for this optional parameter.

AP_LCL_LIM_EXCEEDED Local limit exceeded.

AP_NO_PSAP_AVAIL No PSAP avail.

AP_NRSN Reason not specified.

AP_NULL Null.

AP_PRES_VER_NSUP Protocol version not supported.

AP_SESS_PROV Could not establish session connection.

AP_TEMP_CONGESTION temporary congestion.

AP_UDATA_NREAD User data not readable.

If the source of the result is AP_SESS_SERV_PROV, cdata→diag will be one of:

AP_CLD_SADDR_UNK Called session address unknown.

AP_NRSN Reason not specified.

AP_NULL Null.

AP_SESS_PICS_ERROR Implementation restriction stated in the PICS.

AP_SESS_VER_NSUP Proposed protocol versions not supported.

AP_SPM_CONGESTION SPM congestion at connect time.

126 X/Open CAE Specification (1993)

XAP Primitives A_ASSOC_CNF

AP_SSUSER_NATT SS-user not attached to SSAP.

AP_TRAN_PROV Could not establish transport connection.

Finally, if the source of the result is AP_TRAN_SERV_PROV, cdata→diag will be
one of:

AP_CLD_TADDR_UNK Address unknown.

AP_DUPSRCREF Duplicate source reference for the same pair of
NSAPs.

AP_HPLENINV Header or parameter length invalid.

AP_MISMATCHREF Mismatched references.

AP_NORMDISCON Normal disconnect initiated by the TS-user.

AP_NRSN Reason not specified.

AP_REFONNETCON Connection refused on this network connection.

AP_REFOVERFLOW reference overflow.

AP_TE_CONGESTION Remote transport entity congestion at connect request
time.

AP_TRAN_NEGFAIL Connection negotiation failed (e.g., proposed classes
not supported).

AP_TRAN_PERROR Transport protocol error.

AP_TSAP_CONGESTION Congestion at TSAP.

AP_TSUSER_NATT Session entity not attached to TSAP.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→diag argument will be set to AP_DIAG_NOVAL
by the library.

Two conformant XAP Library implementations may return different
source/diagnostic combinations under the same conditions. For example, an
implementation might return either AP_PRES_SERV_PROV and AP_SESS_PROV,
or AP_TRAN_SERV_PROV and AP_NRSN, if an association could not be
established because of an unspecified problem that occurred while trying to set up
the supporting transport connection. Moreover, because the use of reason codes is
not well standardised, an application may receive different source/diagnostic
combinations under the same conditions when attempting to establish an
association to different OSI implementations through a single XAP Library
implementation. Consequently, users are cautioned against placing dependencies
on specific source/diagnostic combinations in their applications.

The cdata→env argument can be used to retrieve the values of the XAP
environment attributes that correspond to parameters of A-ASSOCIATE
confirmation service. returned in the cdata argument. If the AP_COPYENV
attribute in the XAP environment is false , these values will not be returned in the
cdata argument and cdata→env will be set to NULL when ap_rcv() returns. If
AP_COPYENV is true, the XAP library will allocate an ap_a_assoc_env_t structure
and any necessary substructures and return a pointer to it in cdata→env. The caller
can release the storage allocated for the ap_a_assoc_env_t structure and its
substructures by passing a pointer to cdata to ap_free(). The following elements of

ACSE/Presentation Services API (XAP) 127

A_ASSOC_CNF XAP Primitives

the ap_a_assoc_env_t structure are used for this primitive:

unsigned long mask; /* bit mask */
ap_objid_t cntx_name; /* AP_CNTX_NAME */
ap_aei_api_id_t rsp_aeid; /* AP_RSP_AEID */
ap_aeq_t rsp_aeq; /* AP_RSP_AEQ */
ap_aei_api_id_t rsp_apid; /* AP_RSP_APID */
ap_apt_t rsp_apt; /* AP_RSP_APT */
ap_paddr_t rem_paddr; /* AP_REM_PADDR */
ap_cdrl_t pcdrl; /* AP_PCDRL */
long dpcr; /* AP_DPCR */
ap_qos_t qos; /* AP_QOS */
unsigned long a_version_sel; /* AP_ACSE_SEL */
unsigned long p_version_sel; /* AP_PRES_SEL */
unsigned long s_version_sel; /* AP_SESS_SEL */
unsigned long afu_sel; /* AP_AFU_SEL */
unsigned long pfu_sel; /* AP_PFU_SEL */
unsigned long sfu_sel; /* AP_SFU_SEL */
ap_conn_id_t *cld_conn_id; /* AP_CLD_CONN_ID */
unsigned long init_sync_pt; /* AP_INIT_SYNC_PT */
unsigned long init_tokens; /* AP_INIT_TOKENS */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
OR’ing together zero or more of the flags listed in the table below. When a bit is
set, the specified parameter was received. Otherwise, the parameter was not
received and the corresponding field in the ap_a_assoc_env_t structure is not set.

flag parameter field
AP_CNTX_NAME_BIT Application Context Name cntx_name

AP_RSP_AEID_BIT Responding AE Invocation-identifier rsp_aeid

AP_RSP_AEQ_BIT Responding AE Qualifier rsp_aeq

AP_RSP_APID_BIT Responding AP Invocation-identifier rsp_apid

AP_RSP_APT_BIT Responding AE Title rsp_apt

AP_REM_PADDR_BIT Responding Presentation Address rem_paddr

AP_PCDRL_BIT Presentation Context Definition Result List pcdrl

AP_DPCR_BIT Default Presentation Context Result dpcr

AP_QOS_BIT Quality of Service qos

AP_A_VERSION_SEL_BIT ACSE Version Selector a_version_sel

AP_P_VERSION_SEL_BIT Presentation Version Selector p_version_sel

AP_S_VERSION_SEL_BIT Session Version Selector s_version_sel

AP_AFU_SEL_BIT ACSE Requirements afu_sel

AP_PFU_SEL_BIT Presentation Requirements pfu_sel

AP_SFU_SEL_BIT Session Requirements sfu_sel

AP_CLD_CONN_ID_BIT Session-connection Identifier cld_conn_id

AP_INIT_SYNC_PT_BIT Initial Synchronization Serial Point Number init_sync_pt

AP_INIT_TOKENS_BIT Initial Token Assignment init_tokens

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the contents of ubuf buffer(s) is assumed to be a value of

128 X/Open CAE Specification (1993)

XAP Primitives A_ASSOC_CNF

type SET encoded according to the Basic Encoding Rules for ASN.1. If the
association was accepted, the SET value will have an implicit context-specific tag
with a value of 1 (i.e., [1] IMPLICIT). If the association was rejected, the SET value
is assumed to have been encoded with the universal SET tag (i.e., [UNIVERSAL
17]). Refer to the ISO Presentation Layer protocol definition (reference ISO 8823)
for further information concerning the encoding of these values.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 129

A_PABORT_REQ XAP Primitives

NAME
A_PABORT_REQ - used to initiate a Presentation provider abort

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_PABORT_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to initiate a Presentation layer provider abort. This facility gives the user the
option of aborting an association from the Presentation provider when an invalid PDU encoding
is encountered.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the A_PABORT_REQ primitive and restrictions on its use.

To send an A_PABORT_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_A_PABORT_REQ.

cdata The following members of cdata are used for this primitive:

long rsn; /* reason for abort */
long evt; /* event that caused abort */

Cdata→rsn must be set to indicate the reason for the abort. The possible values for
cdata→rsn are as follows:

AP_INVAL_PPDU_PARM Abort due to an invalid presentation protocol data
unit parameter.

AP_NSPEC The reason for the abort is not specified.

AP_RSN_NOVAL No value was supplied for this optional
parameter.

AP_UNEXPT_PPDU Abort due to an unexpected presentation protocol
data unit.

AP_UNEXPT_PPDU_PARM Abort due to an unexpected presentation protocol
data unit parameter.

AP_UNEXPT_SSPRIM Abort due to an unexpected session service
primitive.

AP_UNREC_PPDU Abort due to an unrecognised presentation
protocol data unit.

AP_UNREC_PPDU_PARM Abort due to an unrecognised presentation
protocol data unit parameter.

130 X/Open CAE Specification (1993)

XAP Primitives A_PABORT_REQ

The cdata→evt field indicates which PPDU or Session primitive which triggered the
abort. The possible values for cdata→evt are as follows:

AP_EVT_NOVAL No value was supplied for this optional
parameter.

AP_PEI_AC Alter context PPDU.

AP_PEI_ACA Alter context acknowledge PPDU.

AP_PEI_ARP Abnormal release provider PPDU.

AP_PEI_ARU Abnormal release user PPDU.

AP_PEI_CP Connect presentation PPDU.

AP_PEI_CPA Connect presentation accept PPDU.

AP_PEI_CPR Connect presentation reject PPDU.

AP_PEI_RS Resynchronize PPDU.

AP_PEI_RSA Resynchronize acknowledge PPDU.

AP_PEI_S_ACT_START_IND Session activity start indication.

AP_PEI_S_ACT_RESUME_IND
Session activity resume indication.

AP_PEI_S_ACT_INT_IND Session activity interrupt indication.

AP_PEI_S_ACT_INT_CNF Session activity interrupt confirmation.

AP_PEI_S_ACT_DISC_IND Session activity discard indication.

AP_PEI_S_ACT_DISC_CNF Session activity discard confirmation.

AP_PEI_S_ACT_END_IND Session activity end indication.

AP_PEI_S_ACT_END_CNF Session activity end confirmation.

AP_PEI_S_CTRLGIVE_IND Session control give indication.

AP_PEI_S_P_EXCEPT_REP_IND
Session provider exception report indication.

AP_PEI_S_U_EXCEPT_REP_IND
Session user exception report indication.

AP_PEI_S_RELEASE_IND Session release indication.

AP_PEI_S_RELEASE_CNF Session release confirmation.

AP_PEI_S_SYNCMAJOR_IND
Session synchronize-major indication.

AP_PEI_S_SYNCMAJOR_CNF
Session synchronize-major confirmation.

AP_PEI_S_SYNCMINOR_IND
Session synchronize-minor indication.

AP_PEI_S_SYNCMINOR_CNF
Session synchronize-minor confirmation.

ACSE/Presentation Services API (XAP) 131

A_PABORT_REQ XAP Primitives

AP_PEI_S_TOKENGIVE_IND
Session token give indication.

AP_PEI_S_TOKENPLEASE_IND
Session token please indication.

AP_PEI_TC Capability data PPDU.

AP_PEI_TCC Capability data acknowledge PPDU.

AP_PEI_TD Presentation data PPDU.

AP_PEI_TE Expedited data PPDU.

AP_PEI_TTD Presentation typed data PPDU.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→evt argument is not used and any value
specified by the user will be ignored.

ubuf Since no data is sent on an A_PABORT_REQ, this value must be null .

flags Not used.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_EVT] The value of cdata→evt is not valid.

[AP_BADCD_RSN] The value of cdata→rsn is not valid.

132 X/Open CAE Specification (1993)

XAP Primitives A_PABORT_IND

NAME
A_PABORT_IND - used to indicate a provider abort

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_PABORT_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that an association has been abnormally released due to problems in
services below the Application layer.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the A_PABORT_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_A_PABORT_IND.

cdata The following members of cdata are used for this primitive:

long rsn; /* reason for abort */
long evt; /* event that caused abort */
long src; /* source of abort */

cdata→src indicates the source of the abort. Possible values for this field are as
follows:

AP_PRES_SERV_PROV Presentation service provider.

AP_SESS_SERV_PROV Session service provider.

AP_TRAN_SERV_PROV Transport service provider.

cdata→rsn will be set to indicate the reason for the abort. The possible values for
cdata→rsn depend on the value of cdata→src. If cdata→src is set to
AP_PRES_SERV_PROV, cdata→rsn will be set to one of the following:

AP_INVAL_PPDU_PARM Abort due to an invalid presentation protocol data
unit parameter.

AP_NSPEC The reason for the abort is not specified.

AP_RSN_NOVAL no value was supplied for this optional parameter.

AP_UNEXPT_PPDU Abort due to an unexpected presentation protocol
data unit.

AP_UNEXPT_PPDU_PARM Abort due to an unexpected presentation protocol
data unit parameter.

ACSE/Presentation Services API (XAP) 133

A_PABORT_IND XAP Primitives

AP_UNEXPT_SSPRIM Abort due to an unexpected session service
primitive.

AP_UNREC_PPDU Abort due to an unrecognised presentation
protocol data unit.

AP_UNREC_PPDU_PARM Abort due to an unrecognised presentation
protocol data unit parameter.

If cdata→src is set to AP_SESS_SERV_PROV, cdata→rsn will be set to one of the
following:

AP_SESS_PERROR Abort due to session protocol error.

AP_SESS_PICS_ABORT Abort due to a session implementation restriction
stated in the PICS.

AP_SESS_TDISCON Abort due to transport disconnect.

AP_SESS_UNDEFINED Abort due to undefined session error.

If cdata→src is set to AP_TRAN_SERV_PROV, cdata→rsn will be set to one of the
following:

AP_CLD_TADDR_UNK Address unknown.

AP_DUPSRCREF Duplicate source reference for the same pair of
NSAPs.

AP_HPLENINV Header or parameter length invalid.

AP_MISMATCHREF Mismatched references.

AP_NORMDISCON Normal disconnect initiated by the TS-user.

AP_NRSN Reason not specified.

AP_REFONNETCON Connection refused on this network connection.

AP_REFOVERFLOW Reference overflow.

AP_TE_CONGESTION Remote transport entity congestion at connect
request time.

AP_TRAN_NEGFAIL Connection negotiation failed (e.g., proposed
classes not supported).

AP_TRAN_PERROR Transport protocol error.

AP_TSAP_CONGESTION Congestion at TSAP.

AP_TSUSER_NATT Session entity not attached to TSAP.

If cdata→src is set to AP_PRES_SERV_PROV, the PPDU or Session primitive which
triggered the abort will be indicated by cdata→evt. The possible values for
cdata→evt are as follows:

AP_EVT_NOVAL No value was supplied for this optional
parameter.

AP_PEI_AC Alter context PPDU.

AP_PEI_ACA Alter context acknowledge PPDU.

134 X/Open CAE Specification (1993)

XAP Primitives A_PABORT_IND

AP_PEI_ARP Abnormal release provider PPDU.

AP_PEI_ARU Abnormal release user PPDU.

AP_PEI_CP Connect presentation PPDU.

AP_PEI_CPA Connect presentation accept PPDU.

AP_PEI_CPR Connect presentation reject PPDU.

AP_PEI_RS Resynchronize PPDU.

AP_PEI_RSA Resynchronize acknowledge PPDU.

AP_PEI_S_ACT_START_IND
Session activity start indication.

AP_PEI_S_ACT_RESUME_IND
Session activity resume indication.

AP_PEI_S_ACT_INT_IND Session activity interrupt indication.

AP_PEI_S_ACT_INT_CNF Session activity interrupt confirmation.

AP_PEI_S_ACT_DISC_IND Session activity discard indication.

AP_PEI_S_ACT_DISC_CNF Session activity discard confirmation.

AP_PEI_S_ACT_END_IND Session activity end indication.

AP_PEI_S_ACT_END_CNF Session activity end confirmation.

AP_PEI_S_CTRLGIVE_IND
Session control give indication.

AP_PEI_S_RELEASE_IND Session release indication.

AP_PEI_S_RELEASE_CNF Session release confirmation.

AP_PEI_S_P_EXCEPT_REP_IND
Session provider exception report indication.

AP_PEI_S_U_EXCEPT_REP_IND
Session user exception report indication.

AP_PEI_S_SYNCMAJOR_IND
Session synchronize-major indication.

AP_PEI_S_SYNCMAJOR_CNF
Session synchronize-major confirmation.

AP_PEI_S_SYNCMINOR_IND
Session synchronize-minor indication.

AP_PEI_S_SYNCMINOR_CNF
Session synchronize-minor confirmation.

AP_PEI_S_TOKENGIVE_IND
Session token give indication.

AP_PEI_S_TOKENPLEASE_IND
Session token please indication.

AP_PEI_TC Capability data PPDU.

ACSE/Presentation Services API (XAP) 135

A_PABORT_IND XAP Primitives

AP_PEI_TCC Capability data acknowledge PPDU.

AP_PEI_TD Presentation data PPDU.

AP_PEI_TE Expedited data PPDU.

AP_PEI_TTD Presentation typed data PPDU.

If cdata→src is not set to AP_PRES_SERV_PROV, the cdata→evt field is not
meaningful.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→evt argument will be set to AP_EVT_NOVAL by
the library.

ubuf No user data is associated with this primitive. The user data buffers pointed to by
this argument are not updated.

flags Since no data is received with an A_PABORT_IND primitive, the AP_MORE bit of
the int pointed to by flags will not be set when ap_rcv() returns.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

136 X/Open CAE Specification (1993)

XAP Primitives A_RELEASE_REQ

NAME
A_RELEASE_REQ - used to request the release an association

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_RELEASE_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to request the normal release of an association.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the A_RELEASE_REQ primitive and restrictions on its use.

To send an A_RELEASE_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_A_RELEASE_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-information field */
/* of APDU */

long rsn; /* reason for release */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→rsn, conveys the reason for the release request. The following values are
allowed:

AP_REL_NORMAL Normal release request.

AP_REL_URGENT Urgent release request.

AP_REL_USER_DEF A user defined release request.

AP_RSN_NOVAL No value was specified for this optional parameter.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→rsn argument is not used and any value
specified by the user will be ignored.

ACSE/Presentation Services API (XAP) 137

A_RELEASE_REQ XAP Primitives

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_RSN] The value of cdata→rsn is not valid.

138 X/Open CAE Specification (1993)

XAP Primitives A_RELEASE_IND

NAME
A_RELEASE_IND - used to indicate an association release request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_RELEASE_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the remote service user wishes to release the association.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the A_RELEASE_IND primitive and restrictions on its use.

When issuing ap_rcv() the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_A_RELEASE_IND.

cdata The following members of cdata are used for this primitive:

long rsn; /* reason for release */

In addition to those listed in the manual page for ap_snd() on page 93, the following
error codes can be reported for this primitive:

Cdata→rsn, will indicate the reason for the release request. The possible values for
cdata→rsn are given below.

AP_REL_NORMAL Normal release request.

AP_REL_URGENT Urgent release request.

AP_REL_USER_DEF A user defined release request.

AP_RSN_NOVAL No value was specified for this optional parameter.

Providing a reason for the release request is optional, if the release request did not
contain a reason then cdata→rsn will be set to AP_RSN_NOVAL.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→rsn argument will be set to AP_RSN_NOVAL by
the library.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

ACSE/Presentation Services API (XAP) 139

A_RELEASE_IND XAP Primitives

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

140 X/Open CAE Specification (1993)

XAP Primitives A_RELEASE_RSP

NAME
A_RELEASE_RSP - used to respond to an association release request

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_RELEASE_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond to an association release request.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the A_RELEASE_RSP primitive and restrictions on its use.

To send the A_RELEASE_RSP primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_A_RELEASE_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-information */
/* field of APDU */

long res; /* result */
long rsn; /* reason for the result */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

The argument, cdata→res is used to indicate whether the release request is accepted
or rejected. Legal values for cdata→res are as follows:

AP_REL_AFFIRM Indicates acceptance of the release.

AP_REL_NEGATIVE Indicates rejection of the release.
Note that this value can only be used if the Session
negotiated release functional unit has been negotiated.

The argument cdata→rsn must be one of the following:

AP_REL_NORMAL Indicates a normal release.

ACSE/Presentation Services API (XAP) 141

A_RELEASE_RSP XAP Primitives

AP_REL_NOTFINISHED Indicates the user is not finished with the association.

AP_REL_USER_DEF Indicates a user defined reason.

AP_RSN_NOVAL No value was supplied for this optional parameter.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→rsn argument is not used and any value
specified by the user will be ignored.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_RES] The value of cdata→res is not valid.

[AP_BADCD_RSN] The value of cdata→rsn is not valid.

142 X/Open CAE Specification (1993)

XAP Primitives A_RELEASE_CNF

NAME
A_RELEASE_CNF - used to confirm a release request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The A_RELEASE_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm the acceptance or rejection of a previously sent release request.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the A_RELEASE_CNF primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_A_RELEASE_CNF.

cdata The following members of cdata are used for this primitive:

long res; /* result of the release request */
long rsn; /* reason for the result */

In addition to those listed in the manual page for ap_snd() on page 93, the following
error codes can be reported for this primitive:

cdata→res will be set to indicate the result of the release request. The possible
values for cdata→res are as follows:

AP_REL_AFFIRM Indicates acceptance of the release request.

AP_REL_NEGATIVE Indicates rejection of the release request.

Note that this value will only be set if the Session
negotiated release functional unit is selected.

The reason associated with the result will be indicated by cdata→rsn. The possible
values for cdata→rsn are as follows:

AP_REL_NORMAL Indicates a normal release.

AP_REL_NOTFINISHED Indicates the remote user was not finished.

AP_REL_USER_DEF Indicates a user defined reason.

AP_RSN_NOVAL No value was supplied for this optional parameter.

ACSE/Presentation Services API (XAP) 143

A_RELEASE_CNF XAP Primitives

Providing a reason for the response to the release request is optional. If the remote
user chose not to supply a reason, cdata→rsn will be set to AP_RSN_NOVAL.

If the ‘‘X.410-1984’’ mode of operation is in effect (i.e., the AP_X410_MODE bit of
AP_MODE_SEL is set), the cdata→rsn argument will be set to AP_RSN_NOVAL by
the library.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

144 X/Open CAE Specification (1993)

XAP Primitives P_ACTDISCARD_REQ

NAME
P_ACTDISCARD_REQ - request an activity be terminated with implication that activity’s
content is cancelled

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTDISCARD_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-ACTIVITY-DISCARD session service. The
S-ACTIVITY-DISCARD session service allows the user to request the abnormal termination of
the current activity. There is an implication that the work achieved before the activity was
terminated is canceled; however this is not enforced by the Session provider.

Sending this primitive may result in the loss of undelivered data.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_ACTDISCARD_REQ primitive and restrictions on its use.

To send a P_ACTDISCARD_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd: This argument identifies the XAP Library instance being used.

sptype: This argument must be set to AP_P_ACTDISCARD_REQ.

cdata: The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
long rsn; /* reason */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

The argument, cdata→rsn, is used to specify the reason for the activity discard. The
following values are legal for this field:

AP_RCV_ABILITY_JEOP SS-user receiving ability jeopardised (i.e., data
received may not be handled properly).

AP_LCL_USER_ERR Local SS-user error.

ACSE/Presentation Services API (XAP) 145

P_ACTDISCARD_REQ XAP Primitives

AP_SEQ_ERR Sequence error.

AP_DEMAND_DT_TOK Demand data token.

AP_UNRCVR_PROC_ERR Unrecoverable procedure error.

AP_NSPEC_ERR Non-specific error.

ubuf: Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

Note that when Session version 1 is in effect, no user-data may be sent with this
primitive.

flags: The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_ACTDISCARD_REQ primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_RSN] The value of rsn is not valid.

146 X/Open CAE Specification (1993)

XAP Primitives P_ACTDISCARD_IND

NAME
P_ACTDISCARD_IND - indicate an activity was terminated with implication that activity’s
content is canceled

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTDISCARD_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the current activity was abnormally terminated. There is an
implication that the work achieved before the activity was terminated is canceled; however this
is not enforced by the Session provider.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_ACTDISCARD_IND primitive and restrictions on its
use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd: This argument identifies the XAP Library instance being used.

sptype: The unsigned long pointed to by this argument will be set to
AP_P_ACTDISCARD_IND.

cdata: The following members of cdata are used for this primitive:

long rsn; /* reason */

The argument, cdata→rsn, indicates the reason for the activity discard. The
following values are legal for this field:

AP_RCV_ABILITY_JEOP SS-user receiving ability jeopardised (i.e., data
received may not be handled properly).

AP_LCL_USER_ERR Local SS-user error.

AP_SEQ_ERR Sequence error.

AP_DEMAND_DT_TOK Demand data token.

AP_UNRCVR_PROC_ERR Unrecoverable procedure error.

P_NSPEC_ERR Non-specific error.

ubuf: Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags: The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

ACSE/Presentation Services API (XAP) 147

P_ACTDISCARD_IND XAP Primitives

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

148 X/Open CAE Specification (1993)

XAP Primitives P_ACTDISCARD_RSP

NAME
P_ACTDISCARD_RSP - used to respond to an activity discard indication

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTDISCARD_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond an activity discard request.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_ACTDISCARD_RSP primitive and restrictions on its use.

To send a P_ACTDISCARD_RSP primitive, the arguments to ap_snd() must be set as described
below.

fd: This argument identifies the XAP Library instance being used.

sptype: This argument must be set to AP_P_ACTDISCARD_RSP.

cdata: The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf: Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

Note that when Session version 1 is in effect, no user-data may be sent with this
primitive.

ACSE/Presentation Services API (XAP) 149

P_ACTDISCARD_RSP XAP Primitives

flags: The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_ACTDISCARD_RSP primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

150 X/Open CAE Specification (1993)

XAP Primitives P_ACTDISCARD_CNF

NAME
P_ACTDISCARD_CNF - confirms an activity discard request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTDISCARD_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm an activity discard request. Upon receipt of this primitive, all available
tokens will be assigned to the user that initiated activity-discard service.
AP_TOKENS_OWNED will be updated accordingly.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_ACTDISCARD_CNF primitive and restrictions on its
use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd: This argument identifies the XAP Library instance being used.

sptype: The unsigned long pointed to by this argument will be set to
AP_P_ACTDISCARD_CNF.

cdata: The following members of cdata are used for this primitive:

None

ubuf: Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags: The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 151

P_ACTEND_REQ XAP Primitives

NAME
P_ACTEND_REQ - used to indicate the end of an activity

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTEND_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-ACTIVITY-END session service. The S-
ACTIVITY-END session service allows the user to indicate the end of an activity.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_ACTEND_REQ primitive and restrictions on its use.

To send a P_ACTEND_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_ACTEND_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
long sync_p_sn; /* serial number */

/* (set by provider) */
unsigned long tokens; /* surrendered tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→sync_p_sn is the serial number assigned to this synchronization point. This
field is set by the provider. When the XAP Library is being used asynchronously,
ap_snd() may return before the value of the synchronization point serial number is
received from the underlying session provider. In this case, the service returns the
[AP_AGAIN] error code. The user must call ap_snd() repeatedly, with the same
arguments, until the result SUCCESS is returned, at which point the
cdata→sync_p_sn argument indicates the value assigned to the synchronization
point by the session service provider.

152 X/Open CAE Specification (1993)

XAP Primitives P_ACTEND_REQ

cdata→tokens identifies the token(s) surrendered. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_ACTEND_REQ primitive via multiple ap_snd() calls (using
the AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

ACSE/Presentation Services API (XAP) 153

P_ACTEND_IND XAP Primitives

NAME
P_ACTEND_IND - indicates the end of an activity

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTEND_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the end of an activity.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_ACTEND_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_ACTEND_IND.

cdata The following members of cdata are used for this primitive:

long sync_p_sn; /* synchronization point */
/* serial number */

The argument, cdata→sync_p_sn, is an integer between 0 and 999,998. The value of
this argument is the serial number of the major synchronization point set as a
result of ending the activity.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

154 X/Open CAE Specification (1993)

XAP Primitives P_ACTEND_RSP

NAME
P_ACTEND_RSP - used to respond to a request to end an activity

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTEND_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond to a request to end an activity.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_ACTEND_RSP primitive and restrictions on its use.

To send a P_ACTEND_RSP primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_ACTEND_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

ACSE/Presentation Services API (XAP) 155

P_ACTEND_RSP XAP Primitives

When issuing the P_ACTEND_RSP primitive via multiple ap_snd() calls (using the
AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

156 X/Open CAE Specification (1993)

XAP Primitives P_ACTEND_CNF

NAME
P_ACTEND_CNF - confirms a request to end an activity

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTEND_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm the end of an activity.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_ACTEND_CNF primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_ACTEND_CNF.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 157

P_ACTINTR_REQ XAP Primitives

NAME
P_ACTINTR_REQ - request an activity be terminated so that work can be resumed later

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTINTR_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-ACTIVITY-INTERRUPT session service.
The S-ACTIVITY-INTERRUPT session service allows the user to request the abnormal
termination of the current activity so that work achieved before the interruption is not cancelled
and may be resumed later.

Sending this primitive may result in the loss of undelivered data.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_ACTINTR_REQ primitive and restrictions on its use.

To send a P_ACTINTR_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_ACTINTR_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
long rsn; /* reason */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

The argument cdata→rsn is used to specify the reason for the activity interrupt. The
following values are legal for this field:

AP_RCV_ABILITY_JEOP SS-user receiving ability jeopardised (i.e., data
received may not be handled properly).

AP_LCL_USER_ERR Local SS-user error.

AP_SEQ_ERR Sequence error.

158 X/Open CAE Specification (1993)

XAP Primitives P_ACTINTR_REQ

AP_DEMAND_DT_TOK Demand data token.

AP_UNRCVR_PROC_ERR Unrecoverable procedure error.

AP_NSPEC_ERR Non-specific error.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

Note that when Session version 1 is in effect, no user-data may be sent with this
primitive.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_ACTINTR_REQ primitive via multiple ap_snd() calls (using
the AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_RSN] The value of rsn is not valid.

ACSE/Presentation Services API (XAP) 159

P_ACTINTR_IND XAP Primitives

NAME
P_ACTINTR_IND - indicate an activity was terminated so work can be resumed later

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTINTR_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the current activity was abnormally terminated, but that work
achieved before the interruption was not canceled and may be resumed later.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_ACTINTR_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_ACTINTR_IND.

cdata The following members of cdata are used for this primitive:

long rsn; /* reason */

The argument, cdata→rsn, indicates the reason for the activity interrupt. The
following values are legal for this field:

AP_RCV_ABILITY_JEOP SS-user receiving ability jeopardised (i.e. data
received may not be handled properly).

AP_LCL_USER_ERR Local SS-user error.

AP_SEQ_ERR Sequence error.

AP_DEMAND_DT_TOK Demand data token.

AP_UNRCVR_PROC_ERR Unrecoverable procedure error.

AP_NSPEC_ERR Non-specific error.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

160 X/Open CAE Specification (1993)

XAP Primitives P_ACTINTR_IND

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 161

P_ACTINTR_RSP XAP Primitives

NAME
P_ACTINTR_RSP - used to respond to an activity interrupt indication

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTINTR_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond an activity interrupt request.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_ACTINTR_RSP primitive and restrictions on its use.

To send an P_ACTINTR_RSP primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_ACTINTR_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

Note that when Session version 1 is in effect, no user-data may be sent with this
primitive.

162 X/Open CAE Specification (1993)

XAP Primitives P_ACTINTR_RSP

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_ACTINTR_RSP primitive via multiple ap_snd() calls (using
the AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

ACSE/Presentation Services API (XAP) 163

P_ACTINTR_CNF XAP Primitives

NAME
P_ACTINTR_CNF - confirms an activity interrupt request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTINTR_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm an activity interrupt request. Upon receipt of this primitive, all
available tokens will be assigned to the user who initiated the activity-interrupt service.
AP_TOKENS_OWNED will be updated accordingly.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_ACTINTR_CNF primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_ACTINTR_CNF.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

164 X/Open CAE Specification (1993)

XAP Primitives P_ACTRESUME_REQ

NAME
P_ACTRESUME_REQ - used to issue a request to resume an activity

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTRESUME_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-ACTIVITY-RESUME session service. The
S-ACTIVITY-RESUME session service allows the user to indicate that a previously interrupted
activity is resumed.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_ACTRESUME_REQ primitive and restrictions on its use.

To send an P_ACTRESUME_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_ACTRESUME_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
ap_octet_string_t act_id; /* activity identifier */
ap_octet_string_t old_act_id; /* old activity identifier */
long sync_p_sn; /* synchronization point */

/* serial number */
ap_old_conn_id_t *old_conn_id; /* old session connection */

/* identifier */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→act_id, is a ap_octet_string_t structure (defined in the manual page for
Chapter 3 on page 33). cdata→act_id.data points to a buffer that contains up to 6
octets of information used as the new identifier for this activity.
cdata→act_id.length specifies the length of the octet string (must be ≤ 6).

ACSE/Presentation Services API (XAP) 165

P_ACTRESUME_REQ XAP Primitives

cdata→old_act_id is also an ap_octet_string_t structure and is subject to the same
restrictions described above. This argument is the original identifier for the
activity that is being resumed.

cdata→sync_p_sn must be an integer between 0 - 999,998.

Cdata→old_conn_id is a pointer to an ap_old_conn_id_t structure which is defined
as

typedef struct {
ap_octet_string_t *clg_user_ref; /* Calling SS-user */

/* Reference */
ap_octet_string_t *cld_user_ref; /* Called SS-user */

/* Reference */
ap_octet_string_t *comm_ref; /* Common Reference */
ap_octet_string_t *addtl_ref; /* Additional Reference */

} ap_old_conn_id_t;

This argument is used to identify the session connection in which the activity
being resumed was originally started. The four members of this structure
correspond to the calling SS-user reference, called SS-user reference, common
reference and additional reference components of the old session connection
identifier parameter of the S-ACTIVITY-RESUME request primitive. If no session
connection identifier is to be sent, cdata→old_conn_id must be set to null.

Each of the members of the ap_old_conn_id_t structure are of type
ap_octet_string_t (see above). The clg_user_ref and the cld_user_ref members must
be ≤ 64 octets. The comm_ref member must be ≤ 64 octets. The addtl_ref member
must be ≤ 4 octets. The absence of a particular member of a connection identifier
may be indicated either by setting the corresponding field to null, or by specifying
a zero-length ap_octet_string_t.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_ACTRESUME_REQ primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

166 X/Open CAE Specification (1993)

XAP Primitives P_ACTRESUME_REQ

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_ACT_ID] The value of act_id is not valid.

[AP_BADCD_OLD_ACT_ID] The value of old_act_id is not valid.

[AP_BADCD_OLD_CONN_ID] The value of old_conn_id is not valid.

[AP_BADCD_SYNC_P_SN] The value of sync_p_sn is not valid.

ACSE/Presentation Services API (XAP) 167

P_ACTRESUME_IND XAP Primitives

NAME
P_ACTRESUME_IND - used to indicate a request to resume an activity

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTRESUME_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate a request to resume an activity.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_ACTRESUME_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_ACTRESUME_IND.

cdata The following members of cdata are used for this primitive:

ap_octet_string_t act_id; /* activity identifier */
ap_octet_string_t old_act_id; /* old activity identifier */
long sync_p_sn; /* synchronization point */

/* serial number */
ap_old_conn_id_t *old_conn_id; /* old session connection */

/* identifier */

The argument, cdata→act_id, is a ap_octet_string_t structure (defined in the manual
page for Chapter 3 on page 33). cdata→act_id.data points to a buffer that contains
up to 6 octets of information used as the new identifier for this activity.
cdata→act_id.length specifies the length of the octet string.

cdata→old_act_id is also an ap_octet_string_t. This argument is the original
identifier for the activity that is being resumed.

cdata→sync_p_sn will be an integer between 0 - 999,998.

cdata→old_conn_id is pointer to an ap_old_conn_id_t structure (described in the
manual page for P_ACTRESUME_REQ on page 166). This argument is used to
identify the session connection in which the activity being resumed was originally
started. If no value was received for this optional parameter, cdata→old_conn_id
will be set to null.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

168 X/Open CAE Specification (1993)

XAP Primitives P_ACTRESUME_IND

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 169

P_ACTSTART_REQ XAP Primitives

NAME
P_ACTSTART_REQ - used to issue a request to start a new activity

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTSTART_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-ACTIVITY-START session service. The S-
ACTIVITY-START session service allows the user to indicate that a new activity is entered.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_ACTSTART_REQ primitive and restrictions on its use.

To send an P_ACTSTART_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_ACTSTART_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
ap_octet_string_t act_id; /* activity identifier */
unsigned long tokens; /* surrendered tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

The argument, cdata→act_id, is a ap_octet_string_t structure (defined in the manual
page for Chapter 3 on page 33). cdata→act_id.data points to a buffer that contains
up to 6 octets of information used to identify this activity. cdata→act_id.length
specifies the length of the octet string (must be ≤ 6).

cdata→tokens identifies the token(s) surrendered. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

170 X/Open CAE Specification (1993)

XAP Primitives P_ACTSTART_REQ

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_ACTSTART_REQ primitive via multiple ap_snd() calls (using
the AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_ACT_ID] The value of act_id is not valid.

ACSE/Presentation Services API (XAP) 171

P_ACTSTART_IND XAP Primitives

NAME
P_ACTSTART_IND - used to indicate a resynchronization request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_ACTSTART_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the beginning of a new activity.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_ACTSTART_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_ACTSTART_IND.

cdata The following members of cdata are used for this primitive:

ap_octet_string_t act_id; /* activity identifier */

The argument, cdata→act_id, is a ap_octet_string_t structure (defined in the manual
page for Chapter 3 on page 33). Upon return, cdata→act_id.data points to a buffer
that contains up to 6 octets of information used to identify this activity.
Cdata→act_id.length specifies the length of the octet string.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

172 X/Open CAE Specification (1993)

XAP Primitives P_CDATA_REQ

NAME
P_CDATA_REQ - used to send capability data

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_CDATA_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to send capability data over an established association. The capability data
transfer service enables data to be sent outside of an activity.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_CDATA_REQ primitive and restrictions on its use.

To send an P_CDATA_REQ primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_CDATA_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance. Where the underlying session connection has negotiated an
unlimited TSDU size for the outgoing direction, the user need not set the
udata_length field, as XAP can begin to format and send the appropriate session
PDU without knowing how much user information is to follow.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_CDATA_REQ primitive via multiple ap_snd() calls (using the
AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

ACSE/Presentation Services API (XAP) 173

P_CDATA_IND XAP Primitives

NAME
P_CDATA_IND - used to indicate receipt of capability data

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_CDATA_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the receipt of capability data.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_CDATA_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to AP_P_CDATA_IND.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

174 X/Open CAE Specification (1993)

XAP Primitives P_CDATA_RSP

NAME
P_CDATA_RSP - used to send response to capability data

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_CDATA_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond to a previously received capability data indication. The capability data
transfer service enables data to be sent outside of an activity.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_CDATA_RSP primitive and restrictions on its use.

To send an P_CDATA_RSP primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_CDATA_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance. Where the underlying session connection has negotiated an
unlimited TSDU size for the outgoing direction, the user need not set the
udata_length field, as XAP can begin to format and send the appropriate session
PDU without knowing how much user information is to follow.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

ACSE/Presentation Services API (XAP) 175

P_CDATA_RSP XAP Primitives

When issuing the P_CDATA_RSP primitive via multiple ap_snd() calls (using the
AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

176 X/Open CAE Specification (1993)

XAP Primitives P_CDATA_CNF

NAME
P_CDATA_CNF - used to confirm receipt of capability data

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_CDATA_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm receipt of capability data.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_CDATA_CNF primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to AP_P_CDATA_CNF.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 177

P_CTRLGIVE_REQ XAP Primitives

NAME
P_CTRLGIVE_REQ - used to surrender the entire set of available tokens

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_CTRLGIVE_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-CONTROL-GIVE session service. The S-
CONTROL-GIVE session service allows the user to surrender the entire set of available tokens.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_CTRLGIVE_REQ primitive and restrictions on its use.

To send an P_CTRLGIVE_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_CTRLGIVE_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

After issuing this primitive, AP_TOKENS_OWNED will reflect the fact that all
available tokens were surrendered to the remote user.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

Note that when Session version 1 is in effect, no user-data may be sent with this
primitive.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_CTRLGIVE_REQ primitive via multiple ap_snd() calls (using
the AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

178 X/Open CAE Specification (1993)

XAP Primitives P_CTRLGIVE_REQ

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

ACSE/Presentation Services API (XAP) 179

P_CTRLGIVE_IND XAP Primitives

NAME
P_CTRLGIVE_IND - indicates that the remote SS-user has surrendered all available tokens

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_CTRLGIVE_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the remote SS-user has surrendered all available tokens.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_CTRLGIVE_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_CTRLGIVE_IND.

cdata The following members of cdata are used for this primitive:

None

Upon receipt of this primitive, AP_TOKENS_OWNED will be updated.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

180 X/Open CAE Specification (1993)

XAP Primitives P_DATA_REQ

NAME
P_DATA_REQ - used to send normal data

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_DATA_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to send user data over an established association.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_DATA_REQ primitive and restrictions on its use.

To send an P_DATA_REQ primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_DATA_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of the user-information */
/* field */

unsigned long tokens; /* surrendered tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance. Where the underlying session connection has negotiated an
unlimited TSDU size for the outgoing direction, the user need not set the
udata_length field, as XAP can begin to format and send the appropriate session
PDU without knowing how much user information is to follow.

cdata→tokens identifies the token(s) surrendered. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

Note that the P_DATA_REQ primitive may not be issued without one or more
octets of user-data.

ACSE/Presentation Services API (XAP) 181

P_DATA_REQ XAP Primitives

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_TOKENS] The value of cdata→tokens is not valid.

[AP_NODATA] An attempt was made to send this primitive with no user-data.

182 X/Open CAE Specification (1993)

XAP Primitives P_DATA_IND

NAME
P_DATA_IND - used to indicate receipt of normal data

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_DATA_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the receipt of user data.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_DATA_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to AP_P_DATA_IND.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 183

P_RESYNC_REQ XAP Primitives

NAME
P_RESYNC_REQ - used to issue a resynchronise request

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_RESYNC_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to request that the association be set to an agreed defined state.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_RESYNC_REQ primitive and restrictions on its use.

To send an P_RESYNC_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_RESYNC_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data */
/* field */

long resync_type; /* resynchronization type */
long sync_p_sn; /* synchronization point */

/* serial number */
unsigned long token_assignment; /* token assignment */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

The argument cdata→resync_type indicates the type of resynchronization
requested. The possible values for this argument are:

AP_ABANDON Resynchronization Type is abandon.

AP_RESTART Resynchronization Type is restart.

AP_SET Resynchronization Type is set.

The argument cdata→sync_p_sn depends upon the value of cdata→resync_type. If
cdata→resync_type is set to AP_ABANDON, cdata→sync_p_sn is ignored. If
cdata→resync_type is set to AP_RESTART, cdata→sync_p_sn must be set to a

184 X/Open CAE Specification (1993)

XAP Primitives P_RESYNC_REQ

synchronisation serial point number which is greater than or equal to the serial
number of the last major synchronisation point and less than or equal to the value
of the next synchronisation point number to be used. If cdata→resync_type is set to
AP_SET, cdata→sync_p_sn may be any valid value from 0 - 999,999.

cdata→token_assignment is used to specify the desired token assignment after the
resynchronisation. See Section 4.1.4 on page 60 for a discussion of how this
parameter may be set. An invalid assignment for an available token causes
ap_snd() to return an error.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_RESYNC_REQ primitive via multiple ap_snd() calls (using the
AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_RESYNC_TYPE] The value of cdata→resync_type is not valid.

[AP_BADCD_SYNC_P_SN] The value of cdata→sync_p_sn is not valid.

[AP_BADCD_TOKENS] The value of cdata→tokens is not valid.

[AP_NO_PRECEDENCE] The resynchronisation requested by the local user does not
have precedence over the one requested by the remote user.

ACSE/Presentation Services API (XAP) 185

P_RESYNC_IND XAP Primitives

NAME
P_RESYNC_IND - used to indicate a resynchronization request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p

DESCRIPTION
The P_RESYNC_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate a request to set the association to an agreed defined state.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_RESYNC_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_RESYNC_IND.

cdata The following members of cdata are used for this primitive:

long resync_type; /* resynchronization type */
long sync_p_sn; /* synchronization point */

/* serial number */
unsigned long token_assignment; /* token assignment */

cdata→resync_type will be set to indicate the type of resynchronization which is
requested. The possible values for cdata→resync_type are as follows:

AP_ABANDON Resynchronization Type abandon.

AP_RESTART Resynchronization Type restart.

AP_SET Resynchronization Type set.

The argument cdata→sync_p_sn conveys the serial number of the synchronization
point to which resynchronization is requested.

The argument cdata→token_assignment conveys the proposed token assignment
following resynchronisation (see the manual page for P_RESYNC_REQ).

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

186 X/Open CAE Specification (1993)

XAP Primitives P_RESYNC_IND

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 187

P_RESYNC_RSP XAP Primitives

NAME
P_RESYNC_RSP - used to respond to a resynchronize request

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_RESYNC_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond to a request that the association be set to an agreed defined state.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_RESYNC_RSP primitive and restrictions on its use.

To send a P_RESYNC_RSP primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_RESYNC_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data */
/* field */

long sync_p_sn; /* synchronization point */
/* serial number */

unsigned long tokens; /* tokens requested */
unsigned long token_assignment; /* token assignment */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→sync_p_sn must be a valid synchronization point serial number in the range
0 - 999,999.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token

AP_SYNCMINOR_TOK Synchronize-minor token

AP_MAJACT_TOK Synchronize-major/activity token

188 X/Open CAE Specification (1993)

XAP Primitives P_RESYNC_RSP

AP_RELEASE_TOK Release token.

cdata→token_assignment is used to specify the assignment of tokens which were
identified as acceptor’s choice on the P_RESYNC_IND primitive. See Section 4.1.4 on
page 60 for a discussion of how this parameter may be set. An invalid assignment
for an available acceptor’s choice token causes ap_snd() to return an error.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_RESYNC_RSP primitive via multiple ap_snd() calls (using the
AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_SYNC_P_SN] The value of cdata→sync_p_sn is not valid.

[AP_BADCD_TOKENS] The value of cdata→tokens is not valid.

ACSE/Presentation Services API (XAP) 189

P_RESYNC_CNF XAP Primitives

NAME
P_RESYNC_CNF - used to confirm a resynchronization request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_RESYNC_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm a request to set the association to a defined state.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_RESYNC_CNF primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_RESYNC_CNF.

cdata The following members of cdata are used for this primitive:

long sync_p_sn; /* synchronization point */
/* serial number */

unsigned long token_assignment; /* token assignment */

cdata→sync_p_sn will be a valid synchronization point serial number in the range 0
- 999,999.

cdata→token_assignment indicates the assignment of those tokens which were
identified as acceptor’s choice when the P_RESYNC_REQ primitive was sent (see the
manual page for P_RESYNC_RSP).

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

190 X/Open CAE Specification (1993)

XAP Primitives P_SYNCMAJOR_REQ

NAME
P_SYNCMAJOR_REQ - used to request the setting of a major sync point

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_SYNCMAJOR_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to request that a major synchronization point be set. Major synchronization points
are used to structure the exchange of information as a series of dialogue units. A dialogue unit is
a segment of communication which is logically separated from all communication before and
after it. A major synchronization point indicates the end of one dialogue unit and the beginning
of the next.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_SYNCMAJOR_REQ primitive and restrictions on its use.

To send an P_SYNCMAJOR_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_SYNCMAJOR_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
long sync_p_sn; /* serial number (set by provider) */
unsigned long tokens; /* surrendered tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→sync_p_sn is the serial number assigned to this synchronization point. This
field is set by the provider. When the XAP Library is being used asynchronously,
ap_snd() may return before the value of the synchronization point serial number is
received from the underlying session provider. In this case, the service returns the
[AP_AGAIN] error code. The user must call ap_snd() repeatedly, with the same
arguments, until the result SUCCESS is returned, at which point the
cdata→sync_p_sn argument indicates the value assigned to the synchronization
point by the session service provider.

ACSE/Presentation Services API (XAP) 191

P_SYNCMAJOR_REQ XAP Primitives

cdata→tokens identifies the token(s) surrendered. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_SYNCMAJOR_REQ primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

192 X/Open CAE Specification (1993)

XAP Primitives P_SYNCMAJOR_IND

NAME
P_SYNCMAJOR_IND - used to indicate a request to set a major sync point

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_SYNCMAJOR_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the remote service user has requested that a major synchronization
point be set. Major synchronization points are used to structure the exchange of information as
a series of dialogue units. A dialogue unit is a segment of communication which is logically
separated from all communication before and after it. A major synchronization point indicates
the end of one dialogue unit and the beginning of the next.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_SYNCMAJOR_IND primitive and restrictions on its
use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_SYNCMAJOR_IND.

cdata The following members of cdata are used for this primitive:

long sync_p_sn; /* indicated sync. pt. serial no. */

cdata→sync_p_sn is the serial number of this synchronization point.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 193

P_SYNCMAJOR_RSP XAP Primitives

NAME
P_SYNCMAJOR_RSP - used to respond to a major sync point request

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_SYNCMAJOR_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond to a request to set a major synchronization point. Major
synchronization points are used to structure the exchange of information as a series of dialogue
units. A dialogue unit is a segment of communication which is logically separated from all
communication before and after it. A major synchronization point indicates the end of one
dialogue unit and the beginning of the next.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_SYNCMAJOR_RSP primitive and restrictions on its use.

To send an P_SYNCMAJOR_RSP primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_SYNCMAJOR_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

194 X/Open CAE Specification (1993)

XAP Primitives P_SYNCMAJOR_RSP

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_SYNCMAJOR_RSP primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

ACSE/Presentation Services API (XAP) 195

P_SYNCMAJOR_CNF XAP Primitives

NAME
P_SYNCMAJOR_CNF - used to confirm a sync major request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_SYNCMAJOR_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm a request to set a major synchronization point. Major synchronization
points are used to structure the exchange of information as a series of dialogue units. A
dialogue unit is a segment of communication which is logically separated from all
communication before and after it. A major synchronization point indicates the end of one
dialogue unit and the beginning of the next.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_SYNCMAJOR_CNF primitive and restrictions on its
use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_SYNCMAJOR_CNF.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

196 X/Open CAE Specification (1993)

XAP Primitives P_SYNCMINOR_REQ

NAME
P_SYNCMINOR_REQ - used to request the setting of a minor sync point

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_SYNCMINOR_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to request that a minor synchronization point be set. Minor synchronization points
are used to structure the exchange of information within a dialogue unit. A dialogue unit is a
segment of communication which is logically separated from all communication before and after
it.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_SYNCMINOR_REQ primitive and restrictions on its use.

To send an P_SYNCMINOR_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_SYNCMINOR_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
long sync_type; /* type of request */
long sync_p_sn; /* serial number */

/* (set by provider) */
unsigned long tokens; /* surrendered tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→sync_type is a bit mask which determines whether confirmation is optional
and whether data separation is required on this minor synchronisation point.
Values for this field are formed by OR’ing together zero or more of the following
flags:

AP_NO_CONFIRMATION No explicit confirmation is required.

ACSE/Presentation Services API (XAP) 197

P_SYNCMINOR_REQ XAP Primitives

AP_DATA_SEPARATION Data Separation is requested. Data separation may only
be requested when the data separation functional unit
has been selected.

cdata→sync_p_sn is the serial number assigned to this synchronization point. This
field is set by the provider. When the XAP Library is being used asynchronously,
ap_snd may return before the value of the synchronization point serial number is
received from the underlying session provider. In this case the service returns the
[AP_AGAIN] error code. The user must call ap_snd() repeatedly, with the same
arguments, until the result SUCCESS is returned, at which point the
cdata→sync_p_sn argument indicates the value assigned to the synchronization
point by the session service provider.

cdata→tokens identifies the token(s) surrendered. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_SYNCMINOR_REQ primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_SYNC_TYPE] The value of cdata→sync_type is not valid.

198 X/Open CAE Specification (1993)

XAP Primitives P_SYNCMINOR_IND

NAME
P_SYNCMINOR_IND - used to indicate a request to set a minor sync point

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_SYNCMINOR_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the remote service user has requested that a minor synchronization
point be set. Minor synchronization points are used to structure the exchange of information
within a dialogue unit. A dialogue unit is a segment of communication which is logically
separated from all communication before and after it.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_SYNCMINOR_IND primitive and restrictions on its
use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_SYNCMINOR_IND.

cdata The following members of cdata are used for this primitive:

long sync_type; /* type of request */
long sync_p_sn; /* indicated sync. pt. serial no. */

cdata→sync_type is a bit mask which indicates whether confirmation is optional
and whether data separation is required on this minor sync point. Values for this
field are formed by OR’ing together zero or more of the flags below. When a bit is
set, the specified indication was received:

AP_NO_CONFIRMATION Explicit confirmation is not required.

AP_DATA_SEPARATION Data Separation is in operation.

Note: These are bit fields so none, one or both could be active; the absence of
AP_NO_CONFIRMATION means that explicit confirmation is required.

Cdata→sync_p_sn is the serial number of this synchronization point.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

ACSE/Presentation Services API (XAP) 199

P_SYNCMINOR_IND XAP Primitives

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

200 X/Open CAE Specification (1993)

XAP Primitives P_SYNCMINOR_RSP

NAME
P_SYNCMINOR_RSP - used to respond to a minor sync point request

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_SYNCMINOR_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond to a request to set a minor synchronization point. Minor
synchronization points are used to structure the exchange of information within a dialogue unit.
A dialogue unit is a segment of communication which is logically separated from all
communication before and after it.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_SYNCMINOR_RSP primitive and restrictions on its use.

To send a P_SYNCMINOR_RSP primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_SYNCMINOR_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
long sync_p_sn; /* confirmed sync. pt. */

/* serial no. */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→sync_p_sn must be set to the synchronization point serial number being
confirmed. This number must be greater than or equal to the lowest unconfirmed
synchronization point, and less than the next available synchronization point.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

ACSE/Presentation Services API (XAP) 201

P_SYNCMINOR_RSP XAP Primitives

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_SYNCMINOR_RSP primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_SYNC_P_SN] The value of sync_p_sn is not valid.

202 X/Open CAE Specification (1993)

XAP Primitives P_SYNCMINOR_CNF

NAME
P_SYNCMINOR_CNF - used to confirm a sync minor request

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_SYNCMINOR_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm a request to set a minor synchronization point. Minor synchronization
points are used to structure the exchange of information within a dialogue unit. A dialogue unit
is a segment of communication which is logically separated from all communication before and
after it.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_SYNCMINOR_CNF primitive and restrictions on its
use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_SYNCMINOR_CNF.

cdata The following members of cdata are used for this primitive:

long sync_p_sn; /* confirmed sync. pt. serial no. */

cdata→sync_p_sn will indicate the confirmed synchronization point serial number.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 203

P_TDATA_REQ XAP Primitives

NAME
P_TDATA_REQ - used to send typed data

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_TDATA_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to send typed data over an established association. Typed data transfers are
subject to the same service restrictions as normal data transfers except they are not subject to
token restrictions.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_TDATA_REQ primitive and restrictions on its use.

To send an P_TDATA_REQ primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_TDATA_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of the user-information */
/* field */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance. Where the underlying connection session has negotiated an
unlimited TSDU size for the outgoing direction, the user need not set the
udata_length field, as XAP can begin to format and send the appropriate session
PDU without knowing how much user information is to follow.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

Note that the P_TDATA_REQ primitive may not be issued without one or more
octets of user-data.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

204 X/Open CAE Specification (1993)

XAP Primitives P_TDATA_REQ

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_NODATA] An attempt was made to send this primitive with no user-data.

ACSE/Presentation Services API (XAP) 205

P_TDATA_IND XAP Primitives

NAME
P_TDATA_IND - used to indicate receipt of typed data

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_TDATA_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the receipt of typed data. Typed data transfers are subject to the same
service restrictions as normal data transfers except they are not subject to token restrictions.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_TDATA_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to AP_P_TDATA_IND.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

206 X/Open CAE Specification (1993)

XAP Primitives P_TOKENGIVE_REQ

NAME
P_TOKENGIVE_REQ - used to give a Session token

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_TOKENGIVE_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-TOKEN-GIVE service of the Session Layer.
The S-TOKEN-GIVE session service allows one session service user to surrender one or more
tokens to the other session service user. A token is an attribute of an association which is
dynamically assigned to one user at a time. The user that currently possesses a token has the
exclusive use of the service it controls.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_TOKENGIVE_REQ primitive and restrictions on its use.

To send an P_TOKENGIVE_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_TOKENGIVE_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
unsigned long tokens; /* tokens surrendered */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→tokens identifies the token(s) surrendered. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ACSE/Presentation Services API (XAP) 207

P_TOKENGIVE_REQ XAP Primitives

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

Note that when Session version 1 is in effect, no user-data may be sent with this
primitive.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_TOKENGIVE_REQ primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

CAVEAT
User data may not be sent on the P_TOKENGIVE_REQ primitive when Session version 1 is in
effect.

ERRORS
Refer to the manual page for ap_snd() on page 93.

208 X/Open CAE Specification (1993)

XAP Primitives P_TOKENGIVE_IND

NAME
P_TOKENGIVE_IND - used to indicate receipt of newly acquired tokens

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_TOKENGIVE_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the receipt of newly acquired tokens. A token is an attribute of an
association which is dynamically assigned to one user at a time. The user that currently
possesses a token has the exclusive use of the service it controls.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_TOKENGIVE_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_TOKENGIVE_IND.

cdata The following members of cdata are used for this primitive:

unsigned long tokens; /* tokens acquired */

cdata→tokens indicates which tokens were received. The newly acquired tokens
will be indicated by one or more of the following values OR’ed together:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

In addition, the XAP Library environment attribute AP_TOKENS_OWNED will be
updated to reflect this acquisition.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

ACSE/Presentation Services API (XAP) 209

P_TOKENGIVE_IND XAP Primitives

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

210 X/Open CAE Specification (1993)

XAP Primitives P_TOKENPLEASE_REQ

NAME
P_TOKENPLEASE_REQ - used to request a Session token

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_TOKENPLEASE_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-TOKEN-PLEASE service of the Session
Layer. The S-TOKEN-PLEASE session service allows one session service user to request one or
more tokens from the other session service user. A token is an attribute of an association which
is dynamically assigned to one user at a time. The user that currently possesses a token has the
exclusive use of the service it controls.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_TOKENPLEASE_REQ primitive and restrictions on its
use.

To send an P_TOKENPLEASE_REQ primitive, the arguments to ap_snd must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_TOKENPLEASE_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

ACSE/Presentation Services API (XAP) 211

P_TOKENPLEASE_REQ XAP Primitives

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_TOKENPLEASE_REQ primitive via multiple ap_snd() calls
(using the AP_MORE bit feature), one or more octets of data must be sent on the
final ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
Refer to the manual page for ap_snd() on page 93.

212 X/Open CAE Specification (1993)

XAP Primitives P_TOKENPLEASE_IND

NAME
P_TOKENPLEASE_IND - used to indicate request for tokens

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_TOKENPLEASE_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the receipt of a request for tokens. A token is an attribute of an
association which is dynamically assinged to one user at a time. The user that currently
possesses a token has the exclusive use of the service it controls.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_TOKENPLEASE_IND primitive and restrictions on its
use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_TOKENPLEASE_IND.

cdata The following members of cdata are used for this primitive:

unsigned long tokens; /* tokens requested */

cdata→tokens, will indicate which token(s) was (were) requested by the remote
service user. Each requested token is indicated by setting a different bit in the
argument. Thus, cdata→tokens will be set to one or more of the following values
OR’ed together:

AP_DATA_TOK Data token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 213

P_TOKENPLEASE_IND XAP Primitives

ERRORS
Refer to the manual page for ap_rcv() on page 80.

214 X/Open CAE Specification (1993)

XAP Primitives P_XDATA_REQ

NAME
P_XDATA_REQ - used to send expedited user data

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_XDATA_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to send from 1 to 14 octets of expedited data over an established association, in a
single call to ap_snd() (with the AP_MORE flag unset). Expedited data is free from the token
and flow control constraints that apply to normal, typed, and capability data transfers.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_XDATA_REQ primitive and restrictions on its use.

To send an P_XDATA_REQ primitive, the arguments to ap_snd() must be set as described below:

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_XDATA_REQ.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd(), with the exception that setting the
AP_MORE flag will result in the [AP_BADFLAGS] error being returned.

Note that the P_XDATA_REQ primitive may not be issued without one or more
octets of user-data.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_NODATA] An attempt was made to send this primitive with no user-data.

ACSE/Presentation Services API (XAP) 215

P_XDATA_IND XAP Primitives

NAME
P_XDATA_IND - used to indicate receipt of expedited data

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_XDATA_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the receipt of expedited user data. Expedited data is free from the token
and flow control constraints that apply to normal, typed and capability data transfers.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_XDATA_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to AP_P_XDATA_IND.

cdata The following members of cdata are used for this primitive:

None

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

216 X/Open CAE Specification (1993)

XAP Primitives P_PXREPORT_IND

NAME
P_PXREPORT_IND - indicate receipt of an exception report from the SS-provider

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_PXREPORT_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to provide access to the S-P-EXCEPTION-REPORT service of the session layer.
The S-P-EXCEPTION-REPORT service permits users to be notified that a service cannot be
completed due to SS-provider protocol errors or malfunctions.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_PXREPORT_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_PXREPORT_IND.

cdata The following members of cdata are used for this primitive:

long rsn; /* reason */

The argument cdata→rsn indicates the reason for the exception report. The
following values are legal for this field:

AP_PROTOCOL_ERR Protocol error.

AP_NSPEC_ERR Non-specific error.

ubuf No user data is associated with this primitive. The user data buffers pointed to by
this argument are not updated.

flags Since no data is received with an P_PXREPORT_IND primitive, the AP_MORE bit
of the int pointed to by flags will not be set when ap_rcv() returns.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

ACSE/Presentation Services API (XAP) 217

P_UXREPORT_REQ XAP Primitives

NAME
P_UXREPORT_REQ - send an exception report to the remote user

SYNOPSIS
#include <xap.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The P_UXREPORT_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to provide the user with access to the S-U-EXCEPTION-REPORT session service.
The S-U-EXCEPTION-REPORT session service allows the user to report an exception condition.

Refer to the table in the manual page description for ap_snd() on page 93 for information
concerning the effects of sending the P_UXREPORT_REQ primitive and restrictions on its use.

To send an P_UXREPORT_REQ primitive, the arguments to ap_snd must be set as described
below:

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to AP_P_UXREPORT_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-data field */
long rsn; /* reason */
unsigned long tokens; /* requested tokens */

Where this primitive is to be sent using a series of calls to ap_snd() with the
AP_MORE flag set, cdata→udata_length should be set to the total number of octets
of encoded user data that will be sent with this primitive. If the total number of
octets of encoded user-data is not known this field may be set to −1. However, in
some XAP implementations setting this field to −1 may significantly degrade
performance as it requires the implementation to buffer data until a complete
SPDU can be transmitted.

The total number of octets of encoded user-data that can be sent with this
primitive may be subject to an implementation dependent restriction. Any such
restriction will be stated in the CSQ for an implementation.

The argument cdata→rsn is used to specify the reason for the exception report. The
following values are legal for this field:

AP_DEMAND_DT_TOK Demand data token.

AP_LCL_USER_ERR Local SS-user error.

AP_NSPEC_ERR Non-specific error.

AP_RCV_ABILITY_JEOP SS-user receiving ability jeopardised (i.e., data
received may not be handled properly).

AP_SEQ_ERR Sequence error.

218 X/Open CAE Specification (1993)

XAP Primitives P_UXREPORT_REQ

AP_UNRCVR_PROC_ERR Unrecoverable procedure error.

cdata→tokens identifies the token(s) requested. Tokens are identified by OR’ing
together one or more of the following values:

AP_DATA_TOK Data token.

AP_MAJACT_TOK Synchronize-major/activity token.

AP_SYNCMINOR_TOK Synchronize-minor token.

AP_RELEASE_TOK Release token.

ubuf Use of the ubuf argument is described in the manual page for ap_snd() on page 93.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() on page 93.

When issuing the P_UXREPORT_REQ primitive via multiple ap_snd() calls (using
the AP_MORE bit feature), one or more octets of data must be sent on the final
ap_snd() call of the sequence.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() on page 93.

ERRORS
In addition to those listed in the manual page for ap_snd() on page 93, the following error codes
can be reported for this primitive:

[AP_BADCD_RSN] The value of the rsn field is invalid.

ACSE/Presentation Services API (XAP) 219

P_UXREPORT_IND XAP Primitives

NAME
P_UXREPORT_IND - indicate receipt of an exception report from the remote user

SYNOPSIS
#include <xap.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_P)

DESCRIPTION
The P_UXREPORT_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the receipt of an exception report.

Refer to the table in the manual page description for ap_rcv() on page 80 for information
concerning the effects of receiving the P_UXREPORT_IND primitive and restrictions on its use.

When issuing ap_rcv(), the arguments must be set as described in the manual page for ap_rcv() on
page 80. Upon return, the ap_rcv() arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
AP_P_UXREPORT_IND.

cdata The following members of cdata are used for this primitive:

long rsn; /* reason */

The argument cdata→rsn indicates the reason for the exception report. The
following values are legal for this field:

AP_DEMAND_DT_TOK Demand data token.

AP_LCL_USER_ERR Local SS-user error.

AP_NSPEC_ERR Non-specific error.

AP_RCV_ABILITY_JEOP SS-user receiving ability jeopardised (i.e., data
received may not be handled properly).

AP_SEQ_ERR Sequence error.

AP_UNRCVR_PROC_ERR Unrecoverable procedure error.

ubuf Use of the ubuf parameter is described in the manual page for ap_rcv() on page 80.

flags The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() on page 80.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() on page 80.

ERRORS
Refer to the manual page for ap_rcv() on page 80.

220 X/Open CAE Specification (1993)

Appendix A

XAP Header File

This appendix reproduces the basic structures of the <xap.h> header file.

/*
* xap.h
*/

/*
* Data structures for X/Open ACSE/Presentation
* Library environment attributes and cdata parameters.
*/

/*
* Environment data structures
*/

/*
* The following ID numbers for each protocol are used to
* distinguish #defines of various kinds for each layer,
* such as primitive names, environment attribute names,
* error codes, etc.
*/

#define AP_ASN1_ID (11)
#define AP_ID (8) /* Also used to indicate inclusion */

/* of XAP header file */
#define AP_ACSE_ID (7)
#define AP_PRES_ID (6)
#define AP_SESS_ID (5)
#define AP_TRAN_ID (4)
#define AP_OS_ID (0)

/*
* Object Identifier structure
*/

#define AP_MAXOBJBUF 12
#define AP_CK_OBJ_NULL(O) ((O)->length ? 0 : 1)
#define AP_SET_OBJ_NULL(O) ((O)->length = 0)

ACSE/Presentation Services API (XAP) 221

XAP Header File

typedef struct {
long length;
union {

unsigned char short_buf[AP_MAXOBJBUF];
unsigned char *long_buf;

} b;
} ap_objid_t;

/* AP_PCDL */
typedef struct {

long pci;
ap_objid_t *a_sytx;
int size_t_sytx;
ap_objid_t **m_t_sytx;

} ap_cdl_elt_t;

typedef struct {
int size;
ap_cdl_elt_t *m_ap_cdl;

} ap_cdl_t;

/* AP_DCN */
typedef struct {

ap_objid_t *a_sytx;
ap_objid_t *t_sytx;

} ap_dcn_t;

/* AP_PCDRL */
/* AP_PCDRL.res */
#define AP_ACCEPT (0)
#define AP_USER_REJ (1)
#define AP_PROV_REJ (2)

/* AP_PCDRL.prov_rsn */
#define AP_RSN_NSPEC (0)
#define AP_A_SYTX_NSUP (1)
#define AP_PROP_T_SYTX_NSUP (2)
#define AP_LCL_LMT_DCS_EXCEEDED (3)

222 X/Open CAE Specification (1993)

XAP Header File

typedef struct {
long res;
ap_objid_t *t_sytx;
long prov_rsn;

} ap_cdrl_elt_t;

typedef struct {
int size ;
ap_cdrl_elt_t *m_ap_cdl;

} ap_cdrl_t;

typedef struct {
int size;
unsigned char *udata;

} ap_aeq_t;

typedef struct {
int size;
unsigned char *udata;

} ap_apt_t;

typedef struct {
int size;
unsigned char *udata;

} ap_aei_api_id_t;

typedef struct {
long length;
unsigned char * data;

} ap_octet_string_t;

#define AP_UNKNOWN 0
#define AP_CLNS 1
#define AP_CONS 2
#define AP_RFC1006 3

/* AP_BIND_PADDR, AP_LCL_PADDR, AP_REM_PADDR */
typedef struct {

ap_octet_string_t nsap; /* NSAPAddress */
int nsap_type; /* AP_UNKNOWN, AP_CLNS, AP_CONS, */

/* AP_RFC1006, other = system dependent */
} ap_nsap_t;

ACSE/Presentation Services API (XAP) 223

XAP Header File

typedef struct {
ap_octet_string_t *p_selector;
ap_octet_string_t *s_selector;
ap_octet_string_t *t_selector;
int n_nsaps;
ap_nsap_t *nsaps;

} ap_paddr_t;

/* AP_DCS */
typedef struct {

long pci;
ap_objid_t *a_sytx;
ap_objid_t *t_sytx;

} ap_dcs_elt_t;

typedef struct {
int size ;
ap_dcs_elt_t *dcs;

} ap_dcs_t;

/* AP_CLD_CONN_ID, AP_CLG_CONN_ID */
typedef struct {

ap_octet_string_t *user_ref; /* SS-user Ref. */
ap_octet_string_t *comm_ref; /* Common Ref. */
ap_octet_string_t *addtl_ref; /* Additional Ref. */

} ap_conn_id_t;

typedef struct {
ap_octet_string_t *clg_user_ref; /* Calling SS-user Reference */
ap_octet_string_t *cld_user_ref; /* Called SS-user Reference */
ap_octet_string_t *comm_ref; /* Common Reference */
ap_octet_string_t *addtl_ref; /* Additional Reference */

} ap_old_conn_id_t;

/* AP_QOS */
#define AP_NO 0
#define AP_YES 1
#define AP_PRITOP 0
#define AP_PRIHIGH 1
#define AP_PRIMID 2
#define AP_PRILOW 3
#define AP_PRIDFLT 4

224 X/Open CAE Specification (1993)

XAP Header File

typedef struct {
long targetvalue; /* target value */
long minacceptvalue; /* limiting acceptable value */

} ap_rate_t;

typedef struct {
ap_rate_t called; /* called rate */
ap_rate_t calling; /* calling rate */

} ap_reqvalue_t;

typedef struct {
ap_reqvalue_t maxthrpt; /* maximum throughput */
ap_reqvalue_t avgthrpt; /* average throughput */

} ap_thrpt_t;

typedef struct {
ap_reqvalue_t maxdel; /* maximum transit delay */
ap_reqvalue_t avgdel; /* average transit delay */

} ap_transdel_t;

typedef struct {
ap_thrpt_t throughput; /* throughput */
ap_transdel_t transdel; /* transit delay */
ap_rate_t reserrorrate; /* residual error rate */
ap_rate_t transffailprob; /* transfer failure probability */
ap_rate_t estfailprob; /* connection establ failure */

/* probability */
ap_rate_t relfailprob; /* connection release failure */

/* probability */
ap_rate_t estdelay; /* connection establishment delay */
ap_rate_t reldelay; /* connection release delay */
ap_rate_t connresil; /* connection resilience */
unsigned int protection; /* protection */
int priority; /* priority */
char optimizedtrans; /* optimized dialogue transfer */

/* value: AP_YES or AP_NO */
char extcntl; /* extended control */

/* value: AP_YES or AP_NO */
} ap_qos_t;

ACSE/Presentation Services API (XAP) 225

XAP Header File

/* AP_DIAGNOSTIC */

typedef struct {
long rsn; /* reason for the abort */
long evt; /* event that caused abort */
long src; /* source of abort */
char *error; /* textual message */

} ap_diag_t;

/*
* ap_pollfd structure for ’fds’ argument to ap_poll().
*/

typedef struct {
int fd; /* XAP instance identifier */
short events; /* requested events */
short revents; /* returned events */

} ap_pollfd_t;

/*
* Vectored buffer definitions
*/

typedef struct {
unsigned char *db_base; /* beginning of buffer */
unsigned char *db_lim; /* last octet+1 of buffer */
unsigned char db_ref; /* reference count */

} ap_osi_dbuf_t ;

typedef struct ap_osi_vbuf ap_osi_vbuf_t;
struct ap_osi_vbuf {

ap_osi_vbuf_t *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st octet of data */
unsigned char *b_wptr; /* 1st free location */
ap_osi_dbuf_t *b_datap; /* data block */

} ;

226 X/Open CAE Specification (1993)

XAP Header File

/*
* Cdata type definition
*/

typedef struct {
long udata_length; /* length of user-data field */
long rsn; /* reason for activity or */

/* abort/release primitives */
long evt; /* event that caused abort */
long sync_p_sn; /* synchronization point */

/* serial number */
long sync_type; /* synchronization type */
long resync_type; /* resynchronization type */
long src; /* source of abort */
long res; /* result of association or */

/* release request */
long res_src; /* source of result */
long diag; /* reason for association */

/* rejection */
unsigned long tokens; /* tokens identifier: */

/* 0 => "tokens absent" */
ap_a_assoc_env_t *env; /* environment attribute */

/* values */
ap_octet_string_t act_id; /* activity identifier */
ap_octet_string_t old_act_id; /* old activity identifier */
ap_old_conn_id_t *old_conn_id; /* old session connection */

/* identifier */
} ap_cdata_t;

ACSE/Presentation Services API (XAP) 227

XAP Header File

typedef struct {
unsigned long mask; /* bit mask */
unsigned long mode_sel; /* AP_MODE_SEL */
ap_objid_t cntx_name; /* AP_CNTX_NAME */
ap_aei_api_id_t clg_aeid; /* AP_CLG_AEID */
ap_aeq_t clg_aeq; /* AP_CLG_AEQ */
ap_aei_api_id_t clg_apid; /* AP_CLG_APID */
ap_apt_t clg_apt; /* AP_CLG_APT */
ap_aei_api_id_t cld_aeid; /* AP_CLD_AEID */
ap_aeq_t cld_aeq; /* AP_CLD_AEQ */
ap_aei_api_id_t cld_apid; /* AP_CLD_APID */
ap_apt_t cld_apt; /* AP_CLD_APT */
ap_paddr_t rem_paddr; /* AP_REM_PADDR */
ap_cdl_t pcdl; /* AP_PCDL */
ap_dcn_t dpcn; /* AP_DPCN */
ap_qos_t qos; /* AP_QOS */
unsigned long a_version_sel; /* AP_ACSE_SEL */
unsigned long p_version_sel; /* AP_PRES_SEL */
unsigned long s_version_sel; /* AP_SESS_SEL */
unsigned long afu_sel; /* AP_AFU_SEL */
unsigned long pfu_sel; /* AP_PFU_SEL */
unsigned long sfu_sel; /* AP_SFU_SEL */
ap_conn_id_t *clg_conn_id; /* AP_CLG_CONN_ID */
ap_conn_id_t *cld_conn_id; /* AP_CLD_CONN_ID */
unsigned long init_sync_pt; /* AP_INIT_SYNC_PT */
unsigned long init_tokens; /* AP_INIT_TOKENS */
ap_aei_api_id_t rsp_aeid; /* AP_RSP_AEID */
ap_aeq_t rsp_aeq; /* AP_RSP_AEQ */
ap_aei_api_id_t rsp_apid; /* AP_RSP_APID */
ap_apt_t rsp_apt; /* AP_RSP_APT */
ap_cdrl_t pcdrl; /* AP_PCDRL */
long dpcr; /* AP_DPCR */

} ap_a_assoc_env_t;

/*
* ap_val_t union for ’val’ argument to ap_set_env()
*/

typedef union {
long l;
void *v;

} ap_val_t;

228 X/Open CAE Specification (1993)

Glossary

abstract syntax
The abstract description of a set of data values. Used by an application-service-element to or
application to define the data structures to be transferred. Usually expressed using the ASN.1
abstract syntax notation. The Application and Presentation Layers negotiate the set of abstract
syntaxes to be used to transfer data values on an association.

AE
Application-entity.

AET
Application-entity-title.

application-context
The set of rules that govern the communication between two AEs. These rules include the list of
ASEs required to support that communication.

application-entity
(AE) Defined as ‘‘The aspects of an application-process pertinent to OSI’’. An application may
contain one or more AEs, each of which performs part of the OSI-related functions required by
the application. For example, a network management application might contain one application
entity to access an OSI directory service and another to perform the OSI management functions.

An AE communicates with other AEs (using the services of one or more ASEs) to perform its
functions.

application-entity-title
(AET) Identifies a particular AE within an application-process. An AET is associated with a
single presentation address.

Application Layer
Seventh and highest layer in the OSI basic reference model. This layer provides the means by
which application processes access the OSI environment. The Application Layer is structured as
a set of application-service-elements that an application may use to access OSI communications
capabilities.

application-service-element
(ASE) Defined as ‘‘a set of application-functions that provides a capability for the interworking
of application-entity-invocations for a specific purpose’’. Some ASEs provide generally useful
services (e.g., ACSE - the connection management service element), whilst others provide
services oriented to a particular application (e.g., CMISE - the common management information
service element).

ASE
Application-service-element

presentation context
An association of an abstract syntax with a transfer syntax, negotiated by the Presentation Layer
when an application association is established. The Application Layers propose the abstract
syntaxes to be used on the association; the Presentation Layer negotiates the transfer syntaxes to
be used to support each of the abstract syntaxes. When transferring data, the Application Layer
identifies the presentation context to be used to encode and decode the data.

ACSE/Presentation Services API (XAP) 229

Glossary

Presentation Layer
Sixth layer in the OSI basic reference model. This layer preserves the meaning of the data
transferred between AEs. In addition it provides access to the services of the Session Layer.
Presentation Layer functions include syntax negotiation (agreement of the abstract syntaxes to be
used for transferring data and the transfer syntaxes to be used to encode and decode them), and
syntax transformation (from local concrete syntax to transfer syntax and back again).

transfer syntax
The concrete syntax used to transfer data between AEs. For a given abstract syntax, the
Presentation Layer negotiates one or more transfer syntaxes that may be used to preserve the
meaning of the data during transfer.

Session Layer
Fifth layer in the OSI basic reference model. This layer provides services which allow AEs to
organise and synchronise their interactions. In addition to the connection and data transfer
services of the Transport Layer, the Session Layer provides orderly release, synchronisation,
activity management and half-duplex operation.

Transport Layer
Fourth layer in the OSI basic reference model. This layer provides a transparent connection and
duplex data transfer service between OSI end systems. Transport Layer functions include end-
to-end sequencing, flow control, error detection and recovery.

230 X/Open CAE Specification (1993)

Index

abstract syntax ..7, 26, 229
ACSE ...7
AE ..229
AET..229
aperrno_p ...24
Application Layer...7, 229
application-context ..229
application-entity ...7, 15, 229
application-entity-title...229
application-service-element7, 229
AP_ACSE_AVAIL

environment attribute ...33
AP_ACSE_SEL

environment attribute ...33
ap_aei_api_id_t ...48
ap_aeq_t..48
AP_AFU_AVAIL

environment attribute ...33
AP_AFU_SEL

environment attribute ...33
AP_AGAIN flag..24, 99
AP_ALLOC flag..73, 85, 99
ap_apt_t ..48
ap_a_assoc_env_t ...59
ap_bind()..61
AP_BIND_PADDR

environment attribute33, 36
AP_BUFFERS_ONLY...75
ap_cdata_t ..23, 59
ap_cdl_t ..48
ap_cdrl_t...49
AP_CLD_AEID

environment attribute ...33
AP_CLD_AEQ

environment attribute ...34
AP_CLD_APID

environment attribute ...34
AP_CLD_APT

environment attribute ...34
AP_CLD_CONN_ID

environment attribute ...34
AP_CLG_AEID

environment attribute ...34
AP_CLG_AEQ

environment attribute ...34

AP_CLG_APID
environment attribute ...34

AP_CLG_APT
environment attribute ...34

AP_CLG_CONN_ID
environment attribute ...34

ap_close()...62
ap_close()...18
AP_CNTX_NAME

environment attribute ...34
ap_conn_id_t ...52
AP_COPYENV

environment attribute ...35
AP_DCN

environment attribute ...49
ap_dcn_t ...49
AP_DCS

environment attribute..............................35, 37-38
ap_dcs_t ..50
AP_DIAGNOSTIC

environment attribute ...35
ap_diag_t ..50
AP_DPCN

environment attribute21, 35
AP_DPCR

environment attribute21, 35
ap_error() ...63
ap_error()...24
AP_FLAGS

environment attribute ...36
ap_free() ...64
ap_free()...18, 23
ap_get_env() ...66
ap_get_env() ...18
ap_init_env() ...67
ap_init_env()...18
AP_INIT_SYNC_PT

environment attribute ...36
AP_INIT_TOKENS

environment attribute ...36
ap_ioctl() ..69
AP_LCL_PADDR

environment attribute33, 36
AP_LIB_AVAIL

environment attribute ...36

ACSE/Presentation Services API (XAP) 231

Index

AP_LIB_SEL
environment attribute ...36

AP_LOOK flag ..73, 85
ap_look() ..71
AP_MODE_AVAIL

environment attribute ...36
AP_MODE_SEL

environment attribute ...37
AP_MORE flag24, 29, 73, 85, 99
AP_MSTATE

environment attribute ...37
AP_NDELAY flag24, 73, 75, 85, 99
ap_objid_t...52
AP_OLD_CONN_ID

environment attribute ...37
ap_old_conn_id_t ...52
ap_open()...75
ap_open() ..17, 23
AP_OPT_AVAIL

environment attribute ...37
ap_osic ..102
ap_osi_dbuf_t..25, 83, 98
ap_osi_vbuf_t..25, 83, 98
ap_paddr_t...51
AP_PCDL

environment attribute21, 35, 37-38, 49
AP_PCDRL

environment attribute21, 35, 38
AP_PDCR

environment attribute ...49
AP_PFU_AVAIL

environment attribute ...38
AP_PFU_SEL

environment attribute ...38
ap_poll()...78
ap_poll()...24
AP_PRES_AVAIL

environment attribute ...38
AP_PRES_SEL

environment attribute ...38
AP_QLEN

environment attribute ...38
AP_QOS

environment attribute ...39
ap_qos_t..53
ap_rcv() ..80
ap_rcv() ..18, 23-24
AP_REM_PADDR

environment attribute ...39
ap_restore() ...87
ap_restore() ...20

AP_ROLE_ALLOWED
environment attribute ...39

AP_ROLE_CURRENT
environment attribute ...39

AP_RSP_AEID
environment attribute ...39

AP_RSP_AEQ
environment attribute ...39

AP_RSP_APID
environment attribute ...40

AP_RSP_APT
environment attribute ...40

ap_save()..90
ap_save() ...20
AP_SESS_AVAIL

environment attribute ...40
AP_SESS_OPT_AVAIL

environment attribute ...40
AP_SESS_SEL

environment attribute ...40
ap_set_env() ..91
ap_set_env()..18
AP_SFU_AVAIL

environment attribute ...40
AP_SFU_SEL

environment attribute ...40
ap_snd() ...93
ap_snd() ...18, 23-24
AP_STATE

environment attribute ...40
AP_TOKENS_AVAIL

environment attribute....................................40-41
AP_TOKENS_OWNED

environment attribute ...41
ap_user_alloc() ...76, 88
ap_user_alloc() ...23
ap_user_dealloc()...76, 88
ap_user_dealloc()...23
ASE ..229
Association Control..7
Association Listeners...32
A_ABORT_IND ..113
A_ABORT_REQ..112
A_ASSOC_CNF ..125
A_ASSOC_IND...118
A_ASSOC_REQ ..115
A_ASSOC_RSP ...121
A_PABORT_IND..133
A_PABORT_REQ ...130
A_RELEASE_CNF..143
A_RELEASE_IND ..139

232 X/Open CAE Specification (1993)

Index

A_RELEASE_REQ..137
A_RELEASE_RSP...141
blocking

execution mode...24
environment ..15, 18, 33
environment attribute

AP_ACSE_AVAIL...33
AP_ACSE_SEL..33
AP_AFU_AVAIL...33
AP_AFU_SEL..33
AP_BIND_PADDR...33, 36
AP_CLD_AEID...33
AP_CLD_AEQ ..34
AP_CLD_APID...34
AP_CLD_APT ...34
AP_CLD_CONN_ID ...34
AP_CLG_AEID...34
AP_CLG_AEQ ..34
AP_CLG_APID...34
AP_CLG_APT ...34
AP_CLG_CONN_ID ...34
AP_CNTX_NAME ...34
AP_COPYENV..35
AP_DCN...49
AP_DCS..35, 37-38
AP_DIAGNOSTIC ...35
AP_DPCN..21, 35
AP_DPCR...21, 35
AP_FLAGS...36
AP_INIT_SYNC_PT...36
AP_INIT_TOKENS ..36
AP_LCL_PADDR ...33, 36
AP_LIB_AVAIL...36
AP_LIB_SEL...36
AP_MODE_AVAIL...36
AP_MODE_SEL..37
AP_MSTATE..37
AP_OLD_CONN_ID ...37
AP_OPT_AVAIL...37
AP_PCDL.......................................21, 35, 37-38, 49
AP_PCDRL..21, 35, 38
AP_PDCR...49
AP_PFU_AVAIL..38
AP_PFU_SEL...38
AP_PRES_AVAIL..38
AP_PRES_SEL...38
AP_QLEN ..38
AP_QOS ...39
AP_REM_PADDR ..39
AP_ROLE_ALLOWED..39
AP_ROLE_CURRENT...39

AP_RSP_AEID ..39
AP_RSP_AEQ..39
AP_RSP_APID ..40
AP_RSP_APT ..40
AP_SESS_AVAIL ..40
AP_SESS_OPT_AVAIL..40
AP_SESS_SEL..40
AP_SFU_AVAIL..40
AP_SFU_SEL ...40
AP_STATE..40
AP_TOKENS_AVAIL.....................................40-41
AP_TOKENS_OWNED41

environment file..105
execution mode

blocking ..24
non-blocking..24

instance...15, 17, 20
non-blocking

execution mode...24
OSI

abstract syntax ..7, 26
ACSE ...7
Application Layer...7
application-entity ...7, 15
application-service-element7
Association Control ...7
presentation context ..21
Presentation Layer..7
Session Layer...8
transfer syntax ..7, 26

presentation context ..21, 229
Presentation Layer..7, 230
P_ACTDISCARD_CNF...151
P_ACTDISCARD_IND..147
P_ACTDISCARD_REQ ...145
P_ACTDISCARD_RSP ..149
P_ACTEND_CNF...157
P_ACTEND_IND ...154
P_ACTEND_REQ...152
P_ACTEND_RSP..155
P_ACTINTR_CNF..164
P_ACTINTR_IND ..160
P_ACTINTR_REQ..158
P_ACTINTR_RSP...162
P_ACTRESUME_IND ...168
P_ACTRESUME_REQ...165
P_ACTSTART_IND ...172
P_ACTSTART_REQ...170
P_CDATA_CNF ..177
P_CDATA_IND...174
P_CDATA_REQ ..173

ACSE/Presentation Services API (XAP) 233

Index

P_CDATA_RSP ...175
P_CTRLGIVE_IND ..180
P_CTRLGIVE_REQ..178
P_DATA_IND..183
P_DATA_REQ ...181
P_PXREPORT_IND..217
P_RESYNC_CNF..190
P_RESYNC_IND...186
P_RESYNC_REQ ..184
P_RESYNC_RSP ...188
P_SYNCMAJOR_CNF...196
P_SYNCMAJOR_IND ...193
P_SYNCMAJOR_REQ...191
P_SYNCMAJOR_RSP..194
P_SYNCMINOR_CNF ..203
P_SYNCMINOR_IND ...199
P_SYNCMINOR_REQ ..197
P_SYNCMINOR_RSP..201
P_TDATA_IND ...206
P_TDATA_REQ...204
P_TOKENGIVE_IND ..209
P_TOKENGIVE_REQ..207
P_TOKENPLEASE_IND.......................................213
P_TOKENPLEASE_REQ.......................................211
P_UXREPORT_IND...220
P_UXREPORT_REQ ..218
P_XDATA_IND...216
P_XDATA_REQ...215
service provider ..15
service user ..15
Session Layer...8, 230
structure

ap_aei_api_id_t...48
ap_aeq_t ...48
ap_apt_t ..48
ap_a_assoc_env_t ...59
ap_cdata_t..23, 59
ap_cdl_t ..48
ap_cdrl_t...49
ap_conn_id_t ...52
ap_dcn_t ...49
ap_dcs_t..50
ap_diag_t..50
ap_objid_t...52
ap_old_conn_id_t ...52
ap_osi_dbuf_t ...25, 83, 98
ap_osi_vbuf_t ...25, 83, 98
ap_paddr_t...51
ap_qos_t ...53

token assignment..60
transfer syntax ..7, 26, 230

Transport Layer...230
user data ...16

buffering ...25, 98
encoding...26

user data buffering..83
XAP

environment ..15, 18
instance ..15, 17, 20
service provider..15
service user ..15
user data ...16

xap.h..221

234 X/Open CAE Specification (1993)

