
X/Open CAE Specification

IPC Mechanisms for SMB

X/Open Company Ltd.

 December 1991, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

IPC Mechanisms for SMB

ISBN: 1 872630 28 6
X/Open Document Number: XO/CAE/91/500

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification (1991)

Contents

Chapter 1 Introduction... 1

Chapter 2 SMB IPC Service Model .. 3
 2.1 Security Overview .. 3
 2.2 Naming ... 4
 2.2.1 Named Pipe and Mailslot Names .. 4
 2.2.2 NetBIOS Names ... 4
 2.2.3 Messaging Names.. 5
 2.2.4 Name Ownership... 5
 2.3 Mailslot Service Model .. 6
 2.3.1 Distributed Computing Model ... 6
 2.3.2 Naming .. 6
 2.3.3 Security .. 6
 2.3.4 Inheritance... 6
 2.3.5 Process Termination .. 6
 2.3.6 API Summary ... 7
 2.3.7 Sample Mailslot Communication Scenario.. 7
 2.4 Named Pipe Service Model .. 8
 2.4.1 Distributed Computing Model ... 8
 2.4.2 Naming .. 8
 2.4.3 Security .. 8
 2.4.4 Pipe Instances and Inheritance ... 9
 2.4.5 Process Termination .. 9
 2.4.6 Modes... 9
 2.4.7 API Summary ... 10
 2.4.8 States... 10
 2.4.9 Sample Named Pipe Communication Scenario 13
 2.5 Messaging Service Model.. 14
 2.5.1 Basic Model of the Messaging Service... 14
 2.5.2 Naming .. 14
 2.5.3 Security .. 14
 2.5.4 Sample Messaging Communication Scenario 14
 2.5.5 API Summary ... 14

Chapter 3 Application Programming Interfaces .. 15
 3.1 Introduction ... 15
 3.2 Include Files ... 15
 <lmerror.h> .. 16
 <mailslot.h> .. 18
 <message.h>.. 19
 <nmpipe.h> ... 20
 3.3 Mailslots.. 21

IPC Mechanisms for SMB iii

Contents

 DosDeleteMailslot () .. 22
 DosMailslotInfo () .. 23
 DosMakeMailslot () ... 25
 DosPeekMailslot () ... 27
 DosReadMailslot () .. 29
 DosWriteMailslot () ... 31
 3.4 Named Pipes.. 33
 3.4.1 Named Pipe States... 33
 DosBufReset() .. 34
 DosCallNmPipe() .. 35
 DosClose() .. 37
 DosConnectNmPipe() ... 38
 DosDisconnectNmPipe() .. 40
 DosDupHandle() ... 41
 DosMakeNmPipe() .. 42
 DosOpen().. 45
 DosPeekNmPipe().. 47
 DosQFHandState() ... 49
 DosQNmpHandState() ... 50
 DosQNmPipeInfo() ... 52
 DosRead()... 54
 DosSetFHandState() ... 56
 DosSetNmpHandState() ... 57
 DosTransactNmPipe()... 58
 DosWaitNmPipe() ... 60
 DosWrite().. 61
 LmForkNmPipe()... 63
 3.5 Messaging... 64
 NetMessageBufferSend()... 65

Chapter 4 Transmission Analysis ... 67
 4.1 Mailslots.. 67
 4.1.1 Introduction.. 67
 4.1.2 DosDeleteMailslot().. 69
 4.1.3 DosMailslotInfo() .. 70
 4.1.4 DosMakeMailslot() ... 71
 4.1.5 DosPeekMailslot() ... 72
 4.1.6 DosReadMailslot() .. 73
 4.1.7 DosWriteMailslot().. 74
 4.2 Named Pipes.. 75
 4.2.1 Introduction.. 75
 4.2.2 DosBufReset() .. 76
 4.2.3 DosCallNmPipe().. 77
 4.2.4 DosClose() .. 79
 4.2.5 DosConnectNmPipe() .. 80
 4.2.6 DosDisconnectNmPipe()... 81
 4.2.7 DosDupHandle()... 82
 4.2.8 DosMakeNmPipe() ... 83

iv X/Open CAE Specification (1991)

Contents

 4.2.9 DosOpen()... 84
 4.2.10 DosPeekNmPipe()... 86
 4.2.11 DosQFHandState().. 88
 4.2.12 DosQNmPipeInfo()... 89
 4.2.13 DosQNmpHandState() .. 90
 4.2.14 DosRead() ... 91
 4.2.15 DosSetFHandState() ... 92
 4.2.16 DosSetNmpHandState().. 93
 4.2.17 DosTransactNmPipe() .. 94
 4.2.18 DosWaitNmPipe()... 96
 4.2.19 DosWrite()... 97
 4.2.20 LmForkNmPipe() .. 98
 4.3 Messaging... 99
 4.3.1 Introduction.. 99
 4.3.2 NetMessageBufferSend()... 100

Chapter 5 SMB Protocol Specification for Named Pipes
and Mailslots .. 103

 5.1 Extended SMB Transaction Requests ... 103
 5.2 SMBtrans Structure and Flow .. 104
 5.2.1 Request Formats... 104
 5.2.2 Response Formats.. 106
 5.2.3 Transaction Flow.. 106
 5.2.4 SMBtrans Error Code Descriptions .. 108
 5.2.5 SMBtrans Deviations... 108
 5.2.6 Conventions.. 108
 5.3 Mailslot Usage of SMBtrans ... 109
 5.3.1 Mailslot Request Parameters ... 109
 5.3.2 Mailslot Response Parameters .. 109
 5.3.3 Special Forms of Mailslot Usage... 110
 5.4 Named Pipe Usage of SMBtrans.. 112
 5.4.1 Named Pipe Requests - Detailed Discussion..................................... 112
 5.4.2 CallNmPipe - Function 0x54 ... 113
 5.4.3 PeekNmPipe - Function 0x23 .. 113
 5.4.4 QNmPHandState - Function 0x21.. 114
 5.4.5 QNmPipeInfo - Function 0x22 .. 115
 5.4.6 RawReadNmPipe - Function 0x11 ... 115
 5.4.7 RawWriteNmPipe - Function 0x31... 116
 5.4.8 SetNmPHandState - Function 0x01 ... 116
 5.4.9 TransactNmPipe - Function 0x26 ... 117
 5.4.10 WaitNmPipe - Function 0x53 .. 117

Chapter 6 SMB Protocols for Messaging.. 119
 6.1 Introduction ... 119
 6.2 SMBsends Specification... 120
 6.2.1 SMBsends Detailed Description ... 120
 6.2.2 SMBsends Deviations ... 120
 6.2.3 SMBsends Field Descriptions .. 120

IPC Mechanisms for SMB v

Contents

 6.2.4 SMBsends Error Code Descriptions... 120
 6.2.5 SMBsends Preconditions .. 121
 6.2.6 SMBsends Postconditions .. 121
 6.2.7 Conventions.. 121
 6.3 SMBsendb Specification .. 122
 6.3.1 SMBsendb Detailed Description... 122
 6.3.2 SMBsendb Deviations ... 122
 6.3.3 SMBsendb Field Descriptions ... 122
 6.3.4 SMBsendb Error Code Descriptions .. 122
 6.3.5 SMBsendb Preconditions.. 122
 6.3.6 SMBsendb Postconditions.. 122
 6.3.7 Conventions.. 123
 6.4 SMBsendstrt Specification .. 124
 6.4.1 SMBsendstrt Detailed Description... 124
 6.4.2 SMBsendstrt Deviations ... 124
 6.4.3 SMBsendstrt Field Descriptions.. 124
 6.4.4 SMBsendstrt Error Code Descriptions .. 124
 6.4.5 SMBsendstrt Preconditions.. 125
 6.4.6 SMBsendstrt Postconditions.. 125
 6.4.7 Conventions.. 125
 6.5 SMBsendtxt Specification.. 126
 6.5.1 SMBsendtxt Detailed Description .. 126
 6.5.2 SMBsendtxt Deviations .. 126
 6.5.3 SMBsendtxt Field Descriptions... 126
 6.5.4 SMBsendtxt Error Code Descriptions.. 126
 6.5.5 SMBsendtxt Preconditions... 127
 6.5.6 SMBsendtxt Postconditions ... 127
 6.5.7 Conventions.. 127
 6.6 SMBsendend Specification.. 128
 6.6.1 SMBsendend Detailed Description .. 128
 6.6.2 SMBsendend Deviations .. 128
 6.6.3 SMBsendend Field Descriptions... 128
 6.6.4 SMBsendend Error Code Descriptions.. 128
 6.6.5 SMBsendend Preconditions... 128
 6.6.6 SMBsendend Postconditions ... 128
 6.6.7 Conventions.. 128
 6.7 SMBsendfwd Specification ... 129
 6.7.1 SMBsendfwd Detailed Description.. 129
 6.7.2 SMBsendfwd Field Descriptions .. 129
 6.7.3 SMBsendfwd Error Code Descriptions ... 129
 6.7.4 SMBsendfwd Preconditions .. 129
 6.7.5 SMBsendfwd Postconditions... 129
 6.7.6 Conventions.. 129
 6.8 SMBcancelf Specification .. 130
 6.8.1 SMBcancelf Detailed Description... 130
 6.8.2 SMBcancelf Deviations ... 130
 6.8.3 SMBcancelf Field Descriptions.. 130
 6.8.4 SMBcancelf Error Code Descriptions .. 130

vi X/Open CAE Specification (1991)

Contents

 6.8.5 SMBcancelf Preconditions.. 130
 6.8.6 SMBcancelf Postconditions.. 130
 6.8.7 Conventions.. 130
 6.9 SMBgetmac Specification.. 131
 6.9.1 SMBgetmac Detailed Description .. 131
 6.9.2 SMBgetmac Deviations... 131
 6.9.3 SMBgetmac Field Descriptions ... 131
 6.9.4 SMBgetmac Error Code Descriptions.. 131
 6.9.5 SMBgetmac Preconditions ... 131
 6.9.6 SMBgetmac Postconditions ... 131
 6.9.7 Conventions.. 131

 Glossary ... 133

 Index... 139

List of Tables

5-1 Transaction SMB Request Formats... 104
5-2 Transaction SMB Response Formats.. 106
5-3 SMBtrans Error Codes .. 108
6-1 SMBsends Success Codes... 120
6-2 SMBsends Error Codes ... 121
6-3 SMBsendstrt Success Codes .. 124
6-4 SMBsendstrt Error Codes... 125
6-5 SMBsendtxt Success Codes.. 126
6-6 SMBsendtxt Error Codes .. 126
6-7 SMBsendend Error Codes .. 128
6-8 SMBsendfwd Error Codes.. 129
6-9 SMBcancelf Error Codes... 130
6-10 SMBgetmac Error Codes .. 131

IPC Mechanisms for SMB vii

Contents

viii X/Open CAE Specification (1991)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

IPC Mechanisms for SMB ix

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

x X/Open CAE Specification (1991)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

This document is a CAE Specification (see above). It is intended for application programmers
designing distributed client/server applications whose server component is portable to all
X/Open-compliant systems. This specification defines the Application Programming Interfaces
to be used and the necessary Server Message Block protocol extensions for interprocess
communication.

Chapter 1 describes the structure of the book and explains the relationship of this specification
to other X/Open documents.

Readers should be experienced C programmers. Programmers writing applications using the
API covered in this document should read Chapters 1 to 3. Programmers writing applications to
implement an LMX server should have read the referenced document Protocols for X/Open PC
Interworking: SMB before reading the whole of this document.

Throughout this book C language conventions are used, for example, a hexadecimal number has
the prefix 0x.

IPC Mechanisms for SMB xi

Trademarks

Ethernet is a registered trademark of Xerox Corporation.

IBM is a registered trademark of International Business Machines Corporation.

LAN ManagerTM is a trademark of Microsoft Corporation.

Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.

NFS is a registered trademark of Sun Microsystems.

OS/2 is a registered trademark of International Business Machines Corporation.

PalatinoTM is a trademark of Linotype AG and/or its subsidiaries.

PC-NFSTM is trademark of Sun Microsystems.

Sun Microsystems is a registered trademark of Sun Microsystems.

X/OpenTM and the ‘‘X’’ device are trademarks of X/Open Company Ltd. in the U.K. and other
countries.

xii X/Open CAE Specification (1991)

Referenced Documents

(PC)NFS
Protocols for X/Open PC Interworking: (PC)NFS, Developers’ Specification, X/Open
Company Ltd., 1991 (XO/DEV/90/030).

SMB
Protocols for X/Open PC Interworking: SMB, Developers’ Specification, X/Open Company
Ltd., 1991 (XO/DEV/91/010).

XPG3
X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface and Headers.

XTI
Revised XTI (X/Open Transport Interface), Developers’ Specification, X/Open Company
Ltd., 1990 (XO/DEV/90/060), Appendix D, Use of XTI to Access NetBIOS, Preliminary
Specification.

The Waite Group OS/2 Programmer’s Reference.

IPC Mechanisms for SMB xiii

Referenced Documents

xiv X/Open CAE Specification (1991)

Chapter 1

Introduction

X/Open realises how important it is to facilitate interworking between personal computers and
X/Open-compliant systems in a standardised way.

With the referenced documents Protocols for X/Open PC Interworking: (PC)NFS and Protocols
for X/Open PC Interworking: SMB methods were defined to access remotely resources that are
local to an X/Open-compliant system. Application Programming Interfaces (APIs) are not
addressed in these specifications. This document makes it possible to write distributed
client/server applications whose server component is portable to all systems that implement
this specification. Another method is provided in Appendix D of the referenced document
Revised XTI (X/Open Transport Interface). This method makes it possible for a PC application
utilising the NetBIOS interface to communicate with its peer application running on an
X/Open-compliant system. NetBIOS is an important de facto standard interface for networking
PCs.

The Server Message Block (SMB) protocol from Microsoft Corporation, as defined in the
referenced document Protocols for X/Open PC Interworking: SMB, provides file and print-
sharing facilities. This specification defines the APIs to be used on the X/Open-compliant
system and necessary SMB protocol extensions for Interprocess Communication (IPC).

The X/Open LAN Manager (LMX) IPC mechanisms include three facilities:

mailslots are named receptors for simple unidirectional communication.

named pipes let applications exchange information in a connection-oriented fashion in
either byte stream or message mode. These are distinct from pipes or first in
first out (FIFO) special files as defined in the X/Open Portability Guide, Issue
3, Volume 2, XSI System Interface and Headers.

messaging allows notification messages to be sent to DOS and OS/2 systems running a
messaging service.

The service models of the three IPC mechanisms are defined in Chapter 2.

Chapter 3 defines the LMX IPC APIs that are supported on the X/Open-compliant system.
These APIs are defined to be as similar as possible to the interfaces defined for DOS and OS/2 by
Microsoft’s LAN Manager 1.0.

Chapter 4 provides information to the developer of an X/Open-compliant LMX server
implementation on mapping the APIs to SMB protocol elements.

Chapter 5 specifies the extended SMB protocol elements necessary to implement the APIs for
named pipes and mailslots. These protocol elements are additions to the SMBs for PC file and
print sharing as defined in the referenced document Protocols for X/Open PC Interworking:
SMB. Chapter 5 supersedes Appendix B in the referenced document Protocols for X/Open PC
Interworking: SMB.

Chapter 6 specifies a distinct set of SMB protocol elements necessary to support messaging; this
supersedes Appendix C in the referenced document Protocols for X/Open PC Interworking:
SMB.

The usage of LMX IPC mechanisms between processes on the same X/Open-compliant system
is not defined, but is not precluded.

IPC Mechanisms for SMB 1

Introduction

2 X/Open CAE Specification (1991)

Chapter 2

SMB IPC Service Model

This chapter describes the basic service model for the mailslot, named pipe and messaging IPC
mechanisms. It describes the higher-level operations that must occur (in addition to the API
calls specified in Chapter 3) to enable one of these mechanisms between processes.
Implementation-defined operations are described in abstract terms.

2.1 Security Overview
In the referenced document Protocols for X/Open PC Interworking: SMB the concepts of user-
level and share-level security are discussed. This document should be referenced for additional
information, but a short description of these security mechanisms follows.

In LMX, resources are shared by making the name of the resource available for access from the
network. For example, the server named XOPEN may create a resource name SMB which
contains the contents of this document. This allows systems on the network to connect to the
resource and access this data. There are two forms of security which can be applied to the data
located behind the resource name SMB. One form of security within LMX is to place access
control at the level of the resource. In this case, if users on the network know the name of the
resource and the password associated with the resource they are able to connect and access all
data located on the LMX server identified by the resource name SMB. This is called share-level
security.

Another form of security is to assign a user context to anyone making a connection to a resource.
This way more control can be granted to people connecting to the same resource location. For
example, a user called ARTHUR could be the author of the document and a user called REED
could be a reviewer for the document. When user-level security is used the LMX server
distinguishes between users when the connection to the resource is made. Now, ARTHUR can
have read/write access to the documents and REED is only able to read the data located by the
resource.

IPC Mechanisms for SMB 3

Naming SMB IPC Service Model

2.2 Naming

2.2.1 Named Pipe and Mailslot Names

An LMX implementation supports the following hierarchy of names for named pipes and
mailslots.

IPC name
resource name

LMX server name

The first layer, the LMX server name, is the name used by users of LMX servers to identify the
specific LMX server desired. There is no predefined restriction on the length and format of a
server name. The term computername is used to refer to nodes on the network that are
addressable through SMB IPC mechanisms but are not running an LMX server implementation.
The LMX server name is converted by clients into NetBIOS names, which are described below.
Each LMX server supports a collection of resource names. A resource name represents a resource
to the client of the LMX server. Examples of resources are printers, file storage and IPC. In the
context of this specification, the only resource is IPC. The resource name used to support named
pipes and mailslots is fixed and is ‘‘IPC$’’. This resource name is not visible to applications
using named pipes and mailslots, but is known by the LMX client implementation. A resource
name follows the Uniform Naming Convention (UNC). UNC names are constructed from
names having an 8.3 format that are separated by a backslash (\). An 8.3 format name consists
of two components: a one to eight character name must be present and an optional one to three
character extension may be added. The two components are separated by a period, hence the
term 8.3 format. Legal characters are alphanumerics and punctuation symbols except for the
period (.), backslash (\) and slash (/). These names are case-insensitive.

The IPC name is supplied by the users of named pipes and mailslots. An IPC name is a UNC
name. There are two types of IPC names:

mailslot These names start with the first 8.3 format component \MAILSLOT followed
by at least one additional component.

named pipe These names start with the first 8.3 format component \PIPE followed by at
least one additional component.

An LMX implementation has a restriction on the length of an IPC name which is at least 128
bytes.

2.2.2 NetBIOS Names

NetBIOS names are used to establish the actual connections or NetBIOS sessions between an LMX
client and LMX server systems (see the referenced document Protocols for X/Open PC
Interworking: SMB, Chapters 13, 14 and 15). A NetBIOS name is 16 bytes in length. The 16th
byte of a NetBIOS name has particular meaning. If the value of the 16th byte is 0x20, the name
represents a name requesting service from an LMX server. Other values for the 16th byte are
discussed in Chapter 6.

For the purposes of this specification, NetBIOS names are obtained by converting the LMX
server name to upper case and padding with 0x20 up to 16 bytes. The 16th byte is always set to
0x20, so the length of the LMX server name is restricted to 15 characters.

4 X/Open CAE Specification (1991)

SMB IPC Service Model Naming

2.2.3 Messaging Names

Messaging names are converted to NetBIOS names via the rules described in Chapter 6 on page
119. They consist of only one component representing the individual that should receive the
message. A messaging name can be from 1 to 15 characters in length.

2.2.4 Name Ownership

It is important to recognise where the ownership of each of these names resides.

server
applications

IPC names

LMX server

LMX server name

resource names

As shown above, an LMX server owns one LMX server name to identify itself, and one or more
resource names. For the support of named pipes and mailslots, the resource name ‘‘IPC$’’ must
be available. Server applications own one or more IPC names. The IPC name ‘‘LANMAN’’ is
reserved.

IPC Mechanisms for SMB 5

Mailslot Service Model SMB IPC Service Model

2.3 Mailslot Service Model

2.3.1 Distributed Computing Model

Mailslots provide a unidirectional, connectionless, interprocess communication (IPC)
mechanism.

There are two classes of mailslot:

• Class 1 mailslots are guaranteed - the message is delivered or the sender is notified of failure.

• Class 2 mailslots are simply sent; no return code informs the sender of an unsuccessful
delivery. Class 2 mailslots can be used to send messages to all systems that have a mailslot
created with the same IPC mailslot name.

2.3.2 Naming

The name for a mailslot has the following form:

local: \MAILSLOT\mailslotname
remote: \\computername\MAILSLOT\mailslotname
broadcast: *\MAILSLOT\mailslotname

computername identifies the node where the mailslot was created.

* means broadcast to all nodes; may only be used with a Class 2 mailslot.

mailslotname the name assigned to the mailslot by the creating server application. Names
for mailslots are IPC names.

2.3.3 Security

If the specified mailslot does not exist on a Common Applications Environment (CAE) system,
the LMX server security and access control mechanisms may not be enforced.

In a CAE it may be desirable to limit which processes can create a mailslot. This can be done by
limiting mailslot creation to processes belonging to a special user or group (such as lmpipe) or to
a process of appropriate privileges. For example, on Class 1 mailslots it is necessary to connect
to the ‘‘IPC$’’ share on the server system. Therefore, the access to this share may be restricted to
a certain group of users.

2.3.4 Inheritance

A mailslot is not inheritable by a child process.

2.3.5 Process Termination

When the CAE server application that created the mailslot terminates, either via a normal exit
condition or a process failure, the LMX server removes the name of the mailslot from the
mailslot name space.

6 X/Open CAE Specification (1991)

SMB IPC Service Model Mailslot Service Model

2.3.6 API Summary

The following table summarises the APIs for mailslot usage. The first column lists the API; the
second column shows whether the API is issued by the sending process or the creating process;
and the third column is a short description.

API Issued by Description
Delete a mailslot.DosDeleteMailslot creator
Retrieve information about a mailslot.DosMailslotInfo creator
Create a mailslot and return its handle.DosMakeMailslot creator
Read a message without removing it from the mailslot.DosPeekMailslot creator
Read the next message from the mailslot.DosReadMailslot creator
Send a message to a mailslot.DosWriteMailslot sender

2.3.7 Sample Mailslot Communication Scenario

Creator side Sender side
A process creates the mailslot via
DosMakeMailslot(). This call returns the mailslot
handle used in future operations on this mailslot.

A process calls DosWriteMailslot(), specifying the
name of the mailslot.

The process may call DosPeekMailslot() to see if
data has arrived or DosReadMailslot() to read the
next message from the mailslot.
When finished with the mailslot, the creating
process calls DosDeleteMailslot() to delete the
mailslot and prevent future reception of data
from senders.

IPC Mechanisms for SMB 7

Named Pipe Service Model SMB IPC Service Model

2.4 Named Pipe Service Model

2.4.1 Distributed Computing Model

Named pipes provide a bidirectional, connection-oriented interprocess communication
mechanism. A named pipe is an object which appears to a client process in the file name space
maintained by an LMX server. On the CAE system where the LMX implementation is running,
this object is really a bidirectional communication channel that has been created by a CAE
process to enable data exchange with a client process. Once the server application has created
the named pipe, the client can open it via the name of the named pipe. After the connection is
established either process may read or write using the named pipe handle associated with the
opened named pipe, each reading what the other has written. To enable more than one client
process to communicate with the server application the named pipe can be instanced. Using
instance handles for a named pipe, multiple clients and a single server application can
communicate without conflict. Each named pipe handle refers to a named pipe instance, all
identified by the same name. Note that the client and server application are logical distinctions.
In a multi-tasking environment, the client and server application may reside on the same system.

Access to a named pipe is controlled via the ‘‘IPC$’’ resource. The LMX implementation must
offer the ‘‘IPC$’’ resource name before a server application can create a named pipe. The system
running the client process must connect to that ‘‘IPC$’’ resource before a client process can open
a named pipe.

2.4.2 Naming

The name for a pipe has the following form:

local: \PIPE\pipename
remote: \\servername\PIPE\pipename

servername identifies the LMX server local to the process creating the named pipe.

pipename the name assigned to the named pipe by the creating server application.
Names for named pipes are IPC names.

2.4.3 Security

Security on named pipes can be performed using either share-level access or user-level access.
For more information on these types of security see Section 2.1 on page 3 or refer to the
referenced document Protocols for X/Open PC Interworking: SMB.

Access Control Lists

Some LMX server implementations provide access control lists (ACLs) in user-level security. An
ACL may be created for any IPC name. An ACL lists all users and groups of users with their
respective access rights for each object.

Because a named pipe appears in the file name space maintained by an LMX server, it is subject
to the access validation of the server security system. The permissions defined for a named pipe
on the server determine which users can open the pipe.

8 X/Open CAE Specification (1991)

SMB IPC Service Model Named Pipe Service Model

Other Mechanisms

LMX servers that do not implement ACLs may provide additional security via other
mechanisms. A special user identification (ID) and group ID, lmpipe for example, could be
defined by a server implementation for named pipe security. Only clients with the appropriate
user ID or group ID would be allowed access to the named pipe.

In a CAE, it is desirable to limit which processes can create named pipes. This may be done by
limiting named pipe creation to processes belonging to a special user ID or group ID, such as
lmpipe, or to a process with appropriate privileges.

2.4.4 Pipe Instances and Inheritance

Multiple instances of a named pipe can be created by a server application. The first time
DosMakeNmPipe() is called, the named pipe is created and a handle referencing that named pipe
is returned. Each subsequent time that DosMakeNmPipe() is called for the same named pipe
name (on the same LMX server), a new instance of the named pipe is created and a new handle
referencing that instance is returned. The first call to DosMakeNmPipe() controls the number of
instances that can be created for the named pipe.

Open named pipes and named pipe instances on the server may be inherited by child processes
via fork() (see the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface and
Headers) and are inherited via LmForkNmPipe(). Details of named pipe inheritance are
implementation-defined.

There is no process ownership of named pipe handles. Once a named pipe handle is created,
either the original handle or a new instance handle, any process that inherits the handle can
affect the state of that specific handle by issuing calls to DosConnectNmPipe() and
DosDisconnectNmPipe().

2.4.5 Process Termination

All named pipes currently opened by a process are closed if a server application exits without
calling DosClose(). The time needed to clean up resources is implementation-dependent.

When the last CAE server application that is holding the original handle for the named pipe
terminates, either via a normal exit condition or a process failure, the LMX server removes the
name of the named pipe from the named pipe name space.

2.4.6 Modes

A named pipe is created as either a byte-mode or a message-mode pipe. A byte-mode pipe
treats the named pipe like a simple stream of bytes; no boundaries between data sent in separate
calls to DosWrite() are preserved. A message-mode pipe, however, does preserve those
boundaries; all data in a given message is delivered as a unit.

For named pipes in byte stream mode only the API limits the amount of data that can be sent or
received to 65535 bytes. For named pipes in message mode a single message cannot be larger
than 65535 bytes. There is no limit on the amount of data or messages that can be sent with
subsequent API calls.

A named pipe is created as inbound, outbound or bidirectional. An inbound named pipe
transfers data from client to server. An outbound named pipe transfers data from server to
client.

IPC Mechanisms for SMB 9

Named Pipe Service Model SMB IPC Service Model

2.4.7 API Summary

The following table summarises the APIs for named pipe usage. The first column lists the API;
the second column shows whether it may be issued by a client process, server process or both;
and the third column is a short description. The client-only APIs (DosOpen(), DosWaitNmPipe()
and DosCallNmPipe()) are optional on CAE systems.

API Issued by Description
Creation:

Makes it possible for a client to open an instance of a
named pipe.

DosConnectNmPipe server

Create a duplicate handle from an existing named pipe
instance handle.

DosDupHandle both

Create a named pipe, or a new instance of an existing
named pipe, and return its handle.

DosMakeNmPipe server

Open the client end of a named pipe and return its
handle.

DosOpen client

Management:

Retrieve information about a named pipe handle.DosQFHandState both
Retrieve the current state of a named pipe handle.DosQNmpHandState both
Retrieve information about a named pipe.DosQNmPipeInfo both
Modify certain open modes for a named pipe.DosSetFHandState both
Modify the state of a named pipe handle.DosSetNmpHandState both
Wait for the named pipe to become available.DosWaitNmPipe client
Fork a child process, permitting the child to inherit the
open handles.

LmForkNmPipe server

Usage:

Flush a named pipe instance.DosBufReset both
Open the client end of a named pipe, write data to the
pipe, read data from the pipe, and close it.

DosCallNmPipe client

Read data from a named pipe instance without
removing it.

DosPeekNmPipe both

Read data from a named pipe.DosRead both
Write data to and read data from a named pipe.DosTransactNmPipe both
Write data to a named pipe.DosWrite both

Removal:

Close a named pipe instance.DosClose both
Disconnect a named pipe handle.DosDisconnectNmPipe server

2.4.8 States

Once it has been created, a named pipe instance can be in one of four states, defined in
<nmpipe.h> on page 20.

10 X/Open CAE Specification (1991)

SMB IPC Service Model Named Pipe Service Model

State Meaning
The pipe has been created or disconnected but is not ready for client
access.

NP_DISCONNECTED

A DosConnectNmPipe() call has been made, but the client end has not
yet executed a DosOpen().

NP_LISTENING

The client end has executed a DosOpen().NP_CONNECTED
Either the client has executed a DosClose() and the server has not yet
executed a DosDisconnectNmPipe(), or the server has executed a
DosClose() and the client has not yet executed a DosClose().

NP_CLOSING

IPC Mechanisms for SMB 11

Named Pipe Service Model SMB IPC Service Model

The following diagram describes named pipe transition states:

DosClose(S)

DosClose(S)

DosOpen(C)

DosClose(S&C)

DosMakeNmPipe(S) DosDisConnectNmPipe(S)

NP_CONNECTED

DosClose(C)

NP_LISTENING

DosConnectNmPipe(S)

NP_DISCONNECTED

DosDisConnectNmPipe(S)

NP_CLOSING
Server side still open

NP_CLOSING
Client side still open

No Pipe
(Deallocated)

DosClose(S)

DosClose(C)

12 X/Open CAE Specification (1991)

SMB IPC Service Model Named Pipe Service Model

2.4.9 Sample Named Pipe Communication Scenario

Server side Client side
Make the ‘‘IPC$’’ share available for use by a
client.

Connect to the ‘‘IPC$’’ share.
An LMX server running with user-level security
may deny access to the ‘‘IPC$’’ share based on an
ACL, user or group. An LMX server running
with share-level security may deny access to the
‘‘IPC$’’ share based on a password.
A server process for the distributed application
calls DosMakeNmPipe() to create a named pipe
with the specified name and characteristics.
The application server process calls
DosConnectNmPipe() to make the pipe available
for client processes and to return a pipe handle to
the server process for future operations on the
pipe.

A client process for the distributed application
calls DosOpen() to open the named pipe. The file
handle returned on DosOpen() is used for future
operations on the pipe.
The client can send messages to the server via
DosWrite().

The server reads these messages via DosRead()
and responds with DosWrite().

The client receives the information from the
server via DosRead().
To terminate the connection, the client process
may close the pipe handle by calling DosClose().

The application server process may call
DosDisconnectNmPipe() to terminate the pipe
instance and prevent the client further access.
To remove the named pipe from the named pipe
name space, the server process must perform a
DosClose() on all instances for the named pipe, or
exit().

IPC Mechanisms for SMB 13

Messaging Service Model SMB IPC Service Model

2.5 Messaging Service Model

2.5.1 Basic Model of the Messaging Service

This specification defines one side of the messaging service model in detail. That is, the side
which generates messages using the NetMessageBufferSend() interface. The messaging service
model is implementation-specific and typically has a server side that receives the information.

Using the NetMessageBufferSend() interface, information, which is generally assumed to be text,
can be sent to services which either log the information or perform a PopUp feature on the screen
informing the user of actions performed on his behalf, for example, a print job is complete.

2.5.2 Naming

Unlike naming for mailslots and named pipes, messaging uses two names. The first is the
messaging name where the message is directed and the second is the recipient name. The
recipient name indicates the intended messaging service for the information. Wildcarding for
this name is possible. Names used for messaging are restricted in length (see
NetMessageBufferSend() on page 65) and are case-sensitive.

2.5.3 Security

There is no security on the messaging service. Any user is capable of generating messages and
directing them to any messaging service within the network.

2.5.4 Sample Messaging Communication Scenario

Server side Client side
Perform action to allow for receipt of messages.

A process calls NetMessageBufferSend() to send
information to the message name.

The server receives the message.

2.5.5 API Summary

The following table summarises the APIs for messaging:

API Issued by Description
Send a buffer of data to a message name.NetMessageBufferSend sender

14 X/Open CAE Specification (1991)

Chapter 3

Application Programming Interfaces

3.1 Introduction
This chapter defines the headers and Application Programming Interfaces (APIs) used by a CAE
programmer to utilise the LMX interprocess communication (IPC) facilities. A general overview
describes the SMB IPC facilities followed by a description of each API, including parameters and
return codes.

General Information about the LMX APIs

The LMX APIs specified by X/Open can be divided into three categories: named pipes,
mailslots and messaging.

Headers

#include <lm/lmerror.h>
#include <lm/mailslot.h>
#include <lm/message.h>
#include <lm/nmpipe.h>

The various return values which can be returned by the LMX APIs are defined in <lmerror.h> on
page 16, and are identified by name only in manual pages describing the individual function
calls. The LMX APIs will return one of the return values as specified in this file. Only these
symbolic names should be used in programs since the actual value of the error number is
implementation-defined. In case of an LMX API failure the return value will indicate the error
condition.

Types and constants used by named pipes, mailslots and messaging are defined in <nmpipe.h>
on page 20, <mailslot.h> on page 18 and <message.h> on page 19, respectively.

3.2 Include Files
The following pages describe the include files.

IPC Mechanisms for SMB 15

<lmerror.h> Application Programming Interfaces

NAME
<lmerror.h> — LMX error definitions file.

SYNOPSIS
#include <lm/lmerror.h>

DESCRIPTION
The <lm/lmerror.h> header defines the constants for all of the ERROR_ names used within this
specification. These are:

The system does not allow access to the file
specified.

[ERROR_ACCESS_DENIED]

The access code is invalid.[ERROR_INVALID_ACCESS]
The data is invalid.[ERROR_INVALID_DATA]
Incorrect function.[ERROR_INVALID_FUNCTION]
Incorrect internal file identifier.[ERROR_INVALID_HANDLE]
The system cannot find the file specified.[ERROR_FILE_NOT_FOUND]
Insufficient storage to process this
command.

[ERROR_NOT_ENOUGH_MEMORY]

The DosOpen() failed.[ERROR_OPEN_FAILED]
The system cannot find the path specified.[ERROR_PATH_NOT_FOUND]
The system cannot open the file.[ERROR_TOO_MANY_OPEN_FILES]
No errors encountered.[NERR_Success]
Success, no error.[NO_ERROR]

The network path cannot be located.[ERROR_BAD_NETPATH]
This device does not exist on the network.[ERROR_DEV_NOT_EXIST]
A duplicate name exists on the network.[ERROR_DUP_NAME]
The network is busy.[ERROR_NETWORK_BUSY]
There are no more files.[ERROR_NO_MORE_FILES]
The network request is not supported.[ERROR_NOT_SUPPORTED]
This remote computer is not listening.[ERROR_REM_NOT_LIST]

The network has responded incorrectly.[ERROR_BAD_NET_RESP]
The network name was deleted.[ERROR_NETNAME_DELETED]
Network access is denied.[ERROR_NETWORK_ACCESS_DENIED]
An unexpected network error has occurred.[ERROR_UNEXP_NET_ERR]

A broadcast message cannot be made unless
the class argument is 2.

[ERROR_BAD_NET_NAME]

The file exists.[ERROR_FILE_EXISTS]
The parameter is incorrect.[ERROR_INVALID_PARAMETER]
No more structures available.
Implementation-specific error encountered.

[ERROR_OUT_OF_STRUCTURES]

File sharing has been temporarily paused.[ERROR_SHARING_PAUSED]

16 X/Open CAE Specification (1991)

Application Programming Interfaces <lmerror.h>

Pipe is a byte stream pipe or is not
bidirectional.

[ERROR_BAD_FORMAT]

The opposite end of the pipe has broken the
connection.

[ERROR_BROKEN_PIPE]

Buffer passed to system call is too small to
hold return data.

[ERROR_BUFFER_OVERFLOW]

Interrupted system call.[ERROR_INTERRUPT]
Invalid newhandle was specified. This error
is implementation-dependent.

[ERROR_INVALID_TARGET_HANDLE]

There were no items to operate upon.[ERROR_NO_ITEMS]
Read on pipe in progress during flush.[ERROR_NOT_READY]

Timeout occurred.[ERROR_SEM_TIMEOUT]

Unimplemented level for information
retrieval or setting.

[ERROR_INVALID_LEVEL]

Illegal character or malformed file system
name.

[ERROR_INVALID_NAME]

All instances in use.[ERROR_PATH_BUSY]

This is a non-existent pipe or an invalid
operation.

[ERROR_BAD_PIPE]

Additional data is available.[ERROR_MORE_DATA]
No data available for a non-blocking read.[ERROR_NO_DATA]
The specified pipe is busy.[ERROR_PIPE_BUSY]
The pipe was disconnected by the server.[ERROR_PIPE_NOT_CONNECTED]
The session was cancelled.[ERROR_VC_DISCONNECTED]

SEE ALSO
All API specifications within this document.

IPC Mechanisms for SMB 17

<mailslot.h> Application Programming Interfaces

NAME
<mailslot.h>

SYNOPSIS
#include <lm/mailslot.h>

DESCRIPTION
The <lm/mailslot.h> header defines the API definition for the mailslot function calls.

SEE ALSO

DosDeleteMailslot() Delete a mailslot.
DosMailslotInfo() Retrieve information about a mailslot.
DosMakeMailslot() Create a mailslot and return its handle.
DosPeekMailslot() Read a message without removing it.
DosReadMailslot() Read the next message from the mailslot.
DosWriteMailslot() Send a message to a mailslot.

18 X/Open CAE Specification (1991)

Application Programming Interfaces <message.h>

NAME
<message.h>

SYNOPSIS
#include <lm/message.h>

DESCRIPTION
The <lm/message.h> header defines the API definition for the messaging function call.

SEE ALSO

NetMessageBufferSend() Send a message to one or more users or applications.

IPC Mechanisms for SMB 19

<nmpipe.h> Application Programming Interfaces

NAME
<nmpipe.h>

SYNOPSIS
#include <lm/nmpipe.h>

DESCRIPTION
The <lm/nmpipe.h> header defines the API definition for the named pipe function calls and the
following defines:

Manifest Value Description

NP_AMODE 0x0007 Access mode bit mask.
NP_INHERITANCE 0x0080 Inheritance bit.

NP_NBLK 0x8000 Non-blocking read or write.
NP_SERVER 0x4000 Set if server end.
NP_WMESG 0x0400 Write messages.
NP_RMESG 0x0100 Read as message.
NP_ICOUNT 0x00FF Instance count field.

NP_DISCONNECTED 1 Disconnected state indicator.
NP_LISTENING 2 Listening state indicator.
NP_CONNECTED 3 Connected state indicator.
NP_CLOSING 4 Closing state indicator.

SEE ALSO

DosBufReset() Flush a named pipe instance.
DosCallNmPipe() Open the client end of a named pipe, write data to the

pipe, read data from the pipe, and close it.
DosClose() Close a named pipe instance.
DosConnectNmPipe() Wait for a client to open an instance of a named pipe.
DosDisconnectNmPipe() Disconnect a named pipe instance.
DosDupHandle() Create a duplicate handle from an existing named pipe

instance handle.
DosMakeNmPipe() Create a named pipe, or new instance of existing

named pipe, and return handle.
DosOpen() Open the client end of a named pipe and return its

handle.
DosPeekNmPipe() Read data from a named pipe instance without

removing it.
DosQFHandState() Retrieve information about a named pipe handle.
DosQNmPipeInfo() Retrieve information about a named pipe.
DosQNmpHandState() Retrieve the current state of named pipe handle

instance.
DosRead() Read data from a named pipe instance.
DosSetFHandState() Modify certain open modes for a named pipe.
DosSetNmpHandState() Modify the handle state of a named pipe instance.
DosTransactNmPipe() Write/read data to/from a named pipe instance.
DosWaitNmPipe() Wait for a named pipe to become available.
DosWrite() Write data to a named pipe instance.
LmForkNmPipe() Fork a CAE process that inherits named pipe handles.

20 X/Open CAE Specification (1991)

Application Programming Interfaces Mailslots

3.3 Mailslots
The mailslot API provides access to the mailslot messaging IPC mechanism provided by LMX.
(Note that mailslots are completely separate from any interpersonal mail mechanisms defined in
the X/Open Portability Guide.)

A mailslot is a one-way form of interprocess communication. When writing to a mailslot, the
sender must specify a numeric priority in the range 0 to 9, where 9 represents the highest
priority. The receiving system will deliver messages in an order which is based on the priority.
The priority ordering and handling is implementation-defined. It will always be true that a
message with priority 9 is delivered before a message with priority 0. A server may have many
mailslots in existence at any given time.

There are two classes of mailslot:

Class 1 Uses guaranteed means to transmit messages of up to 65535 bytes in length. Messages
to class 1 mailslots may not be broadcast.

Class 2 Delivery is not guaranteed. Maximum length of a message depends on the
configuration of the receiver, but will never be less than 360 bytes. Messages may be
broadcast to class 2 mailslots; that is, a given message can be sent to a particular
mailslot name on all systems. Support for broadcast messages may be configuration-
dependent.

Mailslots are not inheritable by child processes, as a mailslot handle is not a real handle in the
same sense as file handles and named pipe handles.

The semantics of a message sent to a particular mailslot are determined solely by the process
reading the message from that mailslot.

Mailslot API Definitions

The following pages give the Mailslot API definitions.

IPC Mechanisms for SMB 21

DosDeleteMailslot() Application Programming Interfaces

NAME
DosDeleteMailslot() — deletes a mailslot, discarding all messages, whether or not they have been
read.

SYNOPSIS
#include <lm/mailslot.h>
#include <lm/lmerror.h>

unsigned
DosDeleteMailslot(handle)

unsigned handle;

DESCRIPTION
Generally, a mailslot is deleted as the last step in the program’s execution. Only the application
that created the mailslot can delete it.

The parameters are as follows:

handle Specifies which mailslot to delete.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_INVALID_HANDLE] Invalid handle specified.

SEE ALSO

DosMakeMailslot() Create a mailslot and return its handle.
DosMailslotInfo() Retrieve information about a mailslot.

22 X/Open CAE Specification (1991)

Application Programming Interfaces DosMailslotInfo()

NAME
DosMailslotInfo() — retrieves information about a mailslot.

SYNOPSIS
#include <lm/mailslot.h>
#include <lm/lmerror.h>

unsigned
DosMailslotInfo(

handle,
messagesize,
mailslotsize,
nextsize,
nextpriority,
msgcount

)

unsigned handle;
unsigned short * messagesize;
unsigned short * mailslotsize;
unsigned short * nextsize;
unsigned short * nextpriority;
unsigned short * msgcount;

DESCRIPTION
The parameters are as follows:

handle Specifies which mailslot to return information about.

messagesize Points to an unsigned short integer where the maximum size (in bytes) of message
that the mailslot can accept is returned.

mailslotsize Points to an unsigned short integer where the size (in bytes) of the mailslot is
returned. The parameter mailslotsize is equal to or exceeds messagesize.

nextsize Points to an unsigned short integer where the size (in bytes) of the next message in
the mailslot is returned. If 0, no message is available.

nextpriority Points to an unsigned short integer where the priority of the next message in the
mailslot is returned. Reference Section 3.3 on page 21 for more information on
priorities. If nextsize is zero the value is undefined.

msgcount Points to an unsigned short integer where the count of messages the mailslot
contains is returned.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_INVALID_HANDLE] Invalid handle specified.

IPC Mechanisms for SMB 23

DosMailslotInfo() Application Programming Interfaces

SEE ALSO

DosMakeMailslot() Create a mailslot and return its handle.
DosWriteMailslot() Send a message to a mailslot.
DosReadMailslot() Read the next message from the mailslot.

24 X/Open CAE Specification (1991)

Application Programming Interfaces DosMakeMailslot()

NAME
DosMakeMailslot() — creates a mailslot and returns its handle.

SYNOPSIS
#include <lm/mailslot.h>
#include <lm/lmerror.h>

unsigned
DosMakeMailslot(

name,
messagesize,
mailslotsize,
handle

)

char * name;
unsigned short messagesize;
unsigned short mailslotsize;
unsigned * handle;

DESCRIPTION
No two mailslots on any one system can have the same name. Mailslot handles are not inherited
over either fork() or LmForkNmPipe().

The parameters are as follows:

name Points to an ASCIIZ string that assigns a name to the mailslot. The name must be
of the form \MAILSLOT\name. The name is an IPC name (see Section 2.2 on
page 4). The error code [ERROR_PATH_NOT_FOUND] is returned when the
mailslot name is improperly formed.

messagesize Specifies the maximum message size (in bytes) that the mailslot can accept.
Generally, mailslots cannot accept messages larger than some implementation-
dependent value, but this limit is no smaller than 360 bytes. If the size specified is
zero or greater than the maximum allowable size, the error
[ERROR_INVALID_PARAMETER] is returned.

mailslotsize Specifies the size (in bytes) of the mailslot. The mailslotsize parameter must equal
or exceed messagesize, otherwise [ERROR_INVALID_PARAMETER] is returned.
This parameter is advisory to the system for preallocation of resources.

handle Points to a unsigned integer which is the returned handle for the mailslot.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_FILE_EXISTS] The mailslot already exists.
[ERROR_INVALID_PARAMETER] Invalid parameter specified.
[ERROR_NOT_ENOUGH_MEMORY] Not enough memory for operation.
[ERROR_PATH_NOT_FOUND] Unknown pathname specified.

SEE ALSO

DosDeleteMailslot() Delete a mailslot.
DosMailslotInfo() Retrieve information about a mailslot.

IPC Mechanisms for SMB 25

DosMakeMailslot() Application Programming Interfaces

NOTES
The minimum upper bound of 360 bytes on messagesize is based upon a minimum guaranteed
datagram size of 512 bytes minus protocol overhead. Any implementation based on the RFC
1001 and RFC 1002 (published in the referenced document Protocols for X/Open PC
Interworking: SMB) has this limit.

26 X/Open CAE Specification (1991)

Application Programming Interfaces DosPeekMailslot()

NAME
DosPeekMailslot() — reads the most current message, based on priority, in a mailslot without
removing it.

SYNOPSIS
#include <lm/mailslot.h>
#include <lm/lmerror.h>

unsigned
DosPeekMailslot(

handle,
buf,
bytesread,
nextsize,
nextpriority

)

unsigned handle;
char * buf;
unsigned short * bytesread;
unsigned short * nextsize;
unsigned short * nextpriority;

DESCRIPTION
If a higher-priority message arrives, there is no guarantee that a message previously read by the
DosPeekMailslot() function is the same message read by a subsequent call to the
DosReadMailslot() function. See Section 3.3 on page 21 for more information on priorities.

The parameters are as follows:

handle Specifies which mailslot is to be read.

buf Points to the buffer for the returned message. The space pointed to by buf must be
at least as large as the messagesize parameter passed to the DosMakeMailslot()
function that created the mailslot.

bytesread Points to an unsigned short integer where the size (in bytes) of the returned
message is returned. If no message is available, bytesread is 0.

nextsize Points to an unsigned short integer where the size (in bytes) of the next message in
the mailslot is returned. If the mailslot contains no other message, nextsize is 0.

nextpriority Points to an unsigned short integer where the priority of the next message in the
mailslot is returned. Refer to Section 3.3 on page 21 for more information on
priorities. If nextsize is zero the value is undefined.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_BROKEN_PIPE] Data written to a Class 1 mailslot with no reader.

SEE ALSO

DosReadMailslot() Read the next message from the mailslot.
DosWriteMailslot() Send a message to a mailslot.
DosMakeMailslot() Create a mailslot and return its handle.

IPC Mechanisms for SMB 27

DosPeekMailslot() Application Programming Interfaces

28 X/Open CAE Specification (1991)

Application Programming Interfaces DosReadMailslot()

NAME
DosReadMailslot() — reads, then removes, a mailslot’s message.

SYNOPSIS
#include <lm/mailslot.h>
#include <lm/lmerror.h>

unsigned
DosReadMailslot(

handle,
buf,
bytesread,
nextsize,
nextpriority,
timeout

)

unsigned handle;
char * buf;
unsigned short * bytesread;
unsigned short * nextsize;
unsigned short * nextpriority;
long timeout;

DESCRIPTION
Messages are stored in a mailslot based on their priority. An incoming message with a higher
priority is stored ahead of a previously stored message with the same or lower priority.
DosReadMailslot() always reads and removes the highest priority message. Refer to Section 3.3
on page 21 for more information on priorities. It is possible to specify the amount of time the
caller waits for the mailslot message. If this amount of time passes without receiving any
mailslot messages, DosReadMailslot() returns with the error [ERROR_SEM_TIMEOUT].

The parameters are as follows:

handle Specifies the handle for the mailslot read operation.

buf Points to the buffer for the returned message. The space pointed to must contain
at least as many bytes as specified in the messagesize parameter passed to the
DosMakeMailslot() function.

bytesread Points to an unsigned short integer where the size (in bytes) of the returned
message is returned. If 0, no message is available.

nextsize Points to an unsigned short integer where the size (in bytes) of the next message in
the mailslot is returned. If 0, the mailslot contains no more messages.

nextpriority Points to an unsigned short integer where the priority of the next message is
returned (undefined if nextsize is 0). Reference Section 3.3 on page 21 for more
information on priorities.

timeout A long integer indicating to the function how many milliseconds to wait if a
message is not available immediately. If 0, DosReadMailslot() returns immediately
if no message is present. If −1, DosReadMailslot() waits indefinitely.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.

IPC Mechanisms for SMB 29

DosReadMailslot() Application Programming Interfaces

[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_SEM_TIMEOUT] Timeout occurred.
[ERROR_BROKEN_PIPE] Data written to a Class 1 mailslot with no reader.

SEE ALSO

DosPeekMailslot() Read a message without removing it.
DosWriteMailslot() Send a message to a mailslot.
DosMakeMailslot() Create a mailslot and return its handle.

30 X/Open CAE Specification (1991)

Application Programming Interfaces DosWriteMailslot()

NAME
DosWriteMailslot() — writes a message to a particular mailslot.

SYNOPSIS
#include <lm/mailslot.h>
#include <lm/lmerror.h>

unsigned
DosWriteMailslot(

name,
message,
size,
priority,
class,
timeout

)

char * name;
char * message;
unsigned short size;
unsigned short priority;
unsigned short class;
long timeout;

DESCRIPTION
DosWriteMailslot() fails if there is not enough room to write message in the mailslot.

Messages may be subject to implementation-dependent length limitations when writing to
remote mailslots. Messages of at least 360 bytes are supported. Messages can be any size up to
65535 bytes when written to local mailslots.

When writing to a mailslot, the sender must specify a numeric priority. The receiving system
delivers messages in an order which is based on the priority. Refer to Section 3.3 on page 21 for
more information on priorities.

The parameters are as follows:

name Points to an ASCIIZ string containing the name of the mailslot to which the
message is to be written. For a local mailslot, use the format \MAILSLOT\name;
for a remote mailslot the format \\computername\MAILSLOT\name is used
where computername follows the rules for a computer name and name follows
the rules for an IPC name (see Section 2.2 on page 4). For all mailslots with a
particular name, but on different computers, use the format
*\MAILSLOT\name. If an attempt is made to send to all mailslots of a
particular name on different computers using the Class 1 form of mailslot support
the return value [ERROR_BAD_NET_NAME] is returned and the message is not
sent.

message Points to a buffer containing the message to be written to the mailslot.

size Specifies the size (in bytes) of message. Zero length messages are not supported. If
an attempt is made to send a zero length message the return value
[ERROR_INVALID_PARAMETER] is returned.

priority Assigns a priority to the message. Refer to Section 3.3 on page 21 for more
information on priorities.

IPC Mechanisms for SMB 31

DosWriteMailslot() Application Programming Interfaces

class Specifies the class of mailslot service. Only Class 2 mailslots are supported by all
systems. If Class 1 mailslots are not supported the return value
[ERROR_INVALID_PARAMETER] is returned by this function.

timeout Specifies the number of milliseconds to attempt writing a message to a mailslot. If
0, DosWriteMailslot() attempts to write the message only once. If −1,
DosWriteMailslot() attempts to write a message to a mailslot for an indefinite time.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_NET_NAME] A broadcast message cannot be made unless the class

argument is 2.
[ERROR_BROKEN_PIPE] Data written to a Class 1 mailslot with no reader.
[ERROR_BUFFER_OVERFLOW] Buffer too small.
[ERROR_INVALID_PARAMETER] Invalid parameter specified.
[ERROR_PATH_NOT_FOUND] Unknown pathname specified.
[ERROR_SEM_TIMEOUT] Timeout occurred.

SEE ALSO

DosMakeMailslot() Create a mailslot and return its handle.
DosReadMailslot() Read the next message from the mailslot.

NOTES
The length limitation of 360 for remote workstations is based on least-common denominator
memory restrictions for existing client implementations. For remote servers, the length
limitation is related to the protocol stack chosen and its restrictions on datagram length.

32 X/Open CAE Specification (1991)

Application Programming Interfaces Named Pipes

3.4 Named Pipes
The named pipes API provides access to the named pipes IPC mechanism provided by LMX.
(Note that the named pipes referred to here are quite different and distinct from FIFOs as
defined in the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface and Headers.

A named pipe is an object which appears to a PC client as a file in the set of files maintained by
an LMX server. On the server, this object is a communications channel that has been created by
a server application. The named pipe can be instanced, permitting several clients to
communicate over a particular named pipe without conflict. Multiple instances of a named pipe
can be created by a server application. The first time DosMakeNmPipe() is called, the named pipe
will be created and a handle referencing that named pipe is returned. Each subsequent time that
DosMakeNmPipe() is called for the same named pipe name (on the same LMX server), a new
instance of the named pipe is created and a new handle referencing that instance is returned.
The first call to DosMakeNmPipe() controls the number of instances that can be created for the
named pipe.

Pipe handles are inheritable by child processes. It is possible for an LMX implementation to
support the inheritance of created named pipes across a fork() function call. When
LmForkNmPipe() is used all named pipe instances are guaranteed to be inherited by the child
process.

A named pipe is either a byte-stream-mode or message-mode pipe. A byte-stream-mode pipe
treats the named pipe like a simple stream of bytes; no boundaries between data sent in separate
calls to DosWrite() are preserved. A message-mode pipe, however, does preserve those
boundaries; all data in a given message will be delivered as a unit. It is possible for the reader of
a message-mode pipe to interpret the data as a stream instead.

3.4.1 Named Pipe States

Once it has been created, a named pipe instance can be in one of four states, defined in
<nmpipe.h> on page 20:

State Event Causing State Entry

Server invoked DosCreateNmPipe() or DosDisconnectNmPipe().NP_DISCONNECTED
Server invoked DosNmPipeConnect().NP_LISTENING
Client process opened pipe and was connected to this instance.NP_CONNECTED
Client or server process closed its end of the pipe.NP_CLOSING

Named Pipe API Definitions

The following pages contain the Named Pipe API definitions.

IPC Mechanisms for SMB 33

DosBufReset() Application Programming Interfaces

NAME
DosBufReset() — called to flush data on a named pipe instance.

SYNOPSIS
#include <lm/lmerror.h>
#include <lm/nmpipe.h>

unsigned
DosBufReset(handle)

unsigned handle;

DESCRIPTION
If a client process is reading data from the named pipe instance when DosBufReset() is called, the
function blocks the calling process until all of the data is read. If called on the server side,
DosBufReset() times out and returns [ERROR_NOT_READY] if the data is not read within an
implementation-defined interval.

The parameters are as follows:

handle Specifies which named pipe instance to flush.

RETURN VALUES

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_NOT_READY] Read on pipe in progress during flush.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.

SEE ALSO

DosClose() Close a named pipe instance.
DosWrite() Write data to a named pipe instance.
DosMakeNmPipe() Create a named pipe, or new instance of existing

named pipe, and return handle.

34 X/Open CAE Specification (1991)

Application Programming Interfaces DosCallNmPipe()

NAME
DosCallNmPipe() — called by a client process to open a named pipe, write data to the pipe, read
data from the pipe, and close it.

SYNOPSIS
#include <lm/lmerror.h>
#include <lm/nmpipe.h>

unsigned
DosCallNmPipe(

name,
writebuf,
writelen,
readbuf,
readlen,
bytesread,
timeout

)

char *name;
char *writebuf;
unsigned short writelen;
char *readbuf
unsigned short readlen;
unsigned short *bytesread;
long timeout;

DESCRIPTION
For this function to succeed the named pipe must be a bidirectional message mode pipe. If this
is not true [ERROR_BAD_FORMAT] is returned. If the amount of data to be returned is greater
than readlen then the data that fits into the readbuf area is returned, [ERROR_MORE_DATA] is
returned and all other data is lost.

The parameters are as follows:

name Points to an ASCIIZ string containing the name of a pipe in the format
\PIPE\name for a local pipe or \\LMXservername\PIPE\name for a remote
pipe. Refer to the definition for IPC resource names in Section 2.2 on page 4.

writebuf Points to a buffer containing the data to be written.

writelen Specifies the size of the writebuf buffer in bytes.

readbuf Points to a buffer where the data returned is to be placed.

readlen Specifies the size of the readbuf buffer in bytes.

bytesread Indicates how many bytes of data were returned in readbuf.

timeout Specifies how many milliseconds to wait for the named pipe to become available.
If the value is −1, the default time (set by DosMakeNmPipe()) is used.

IPC Mechanisms for SMB 35

DosCallNmPipe() Application Programming Interfaces

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_ACCESS_DENIED] Access not allowed.
[ERROR_BAD_FORMAT] Pipe is a byte stream pipe or is not bidirectional.
[ERROR_BROKEN_PIPE] The pipe has been closed or has no reader.
[ERROR_INTERRUPT] System call interrupted.
[ERROR_INVALID_NAME] Syntax of name provided was invalid.
[ERROR_INVALID_PARAMETER] Invalid parameter specified.
[ERROR_MORE_DATA] More data available, buffer too small.
[ERROR_NOT_ENOUGH_MEMORY] Not enough memory for operation.
[ERROR_OUT_OF_STRUCTURES] No more structures available. Implementation-specific

error encountered.
[ERROR_PATH_NOT_FOUND] Unknown pathname specified.
[ERROR_PIPE_BUSY] The specified pipe is busy.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.
[ERROR_SEM_TIMEOUT] Timeout occurred.

SEE ALSO

DosClose() Close a named pipe instance.
DosMakeNmPipe() Create a named pipe, or new instance of existing

named pipe, and return handle.
DosOpen() Open the client end of a named pipe and return its

handle.
DosTransactNmPipe() Write/read data to/from a named pipe instance.

36 X/Open CAE Specification (1991)

Application Programming Interfaces DosClose()

NAME
DosClose() — closes a named pipe instance.

SYNOPSIS
#include <lm/lmerror.h>
#include <lm/nmpipe.h>

unsigned
DosClose(handle)

unsigned handle;

DESCRIPTION
When the DosClose() function is called on either the client or server side of a named pipe, the
named pipe instance is closed and the other end of the named pipe is notified of this via the
error code [ERROR_BROKEN_PIPE] when another attempt is made to read or write to the
named pipe. After the call to DosClose() the instance handle is invalid. If the DosClose() call is
on the server side and this is the last instance for the named pipe, the named pipe’s name is freed
and no longer exists.

If a process exits an implicit DosClose() occurs for all open named pipe instances.

The parameters are as follows:

handle Specifies the handle of the named pipe instance to close.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_BROKEN_PIPE] The pipe has been closed or has no reader.
[ERROR_INVALID_HANDLE] Invalid handle specified.

SEE ALSO

DosDisconnectNmPipe() Disconnect a named pipe instance.

IPC Mechanisms for SMB 37

DosConnectNmPipe() Application Programming Interfaces

NAME
DosConnectNmPipe() — waits for a client process to open, via DosOpen(), an instance of a named
pipe.

SYNOPSIS
#include <lm/lmerror.h>
#include <lm/nmpipe.h>

unsigned
DosConnectNmPipe(handle)

unsigned handle;

DESCRIPTION
DosConnectNmPipe() may only be executed by the server application that created the named
pipe, otherwise [ERROR_INVALID_FUNCTION] is returned.

If the instance is already connected the DosConnectNmPipe() has no effect and immediately
returns [NERR_Success].

If the instance is not opened by the client and the pipe is in blocking mode, then
DosConnectNmPipe() blocks until a client process opens the named pipe. The state of the named
pipe instance is changed to NP_CONNECTED.

If the instance is not opened by the client and the named pipe is in non-blocking mode, then
DosConnectNmPipe() places the instance in the NP_LISTENING state (see Section 2.4.8 on page
10) and immediately returns with [ERROR_PIPE_NOT_CONNECTED]. Subsequent
DosConnectNmPipe() calls can be made to poll the named pipe instance.
[ERROR_PIPE_NOT_CONNECTED] is returned until a client opens the named pipe and the
named pipe instance’s state changes to NP_CONNECTED. A subsequent DosConnectNmPipe()
returns [NERR_Success].

If a named pipe instance that was previously opened by a client process has been closed but not
disconnected by the server process, DosConnectNmPipe() returns the [ERROR_BROKEN_PIPE]
error code. The connection must be removed via DosDisconnectNmPipe() before a new
connection can be made.

The blocking and non-blocking mode is set by the omode of DosMakeNmPipe() and can be adjusted
by calling DosSetNmpHandState().

The parameters are as follows:

handle Specifies the handle for the named pipe instance, as returned by the
DosMakeNmPipe() function.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_BROKEN_PIPE] The pipe has been closed or has no reader.
[ERROR_INTERRUPT] System call interrupted.
[ERROR_INVALID_FUNCTION] Attempt to invoke on client end of pipe.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.

38 X/Open CAE Specification (1991)

Application Programming Interfaces DosConnectNmPipe()

SEE ALSO

DosDisconnectNmPipe() Disconnect a named pipe instance.
DosMakeNmPipe() Create a named pipe, or new instance of existing

named pipe, and return handle.
DosSetNmpHandState() Modify the handle state of a named pipe instance.

IPC Mechanisms for SMB 39

DosDisconnectNmPipe() Application Programming Interfaces

NAME
DosDisconnectNmPipe() — called by a server application to disconnect a named pipe instance,
denying a client process any further access to it.

SYNOPSIS
#include <lm/lmerror.h>
#include <lm/nmpipe.h>

unsigned
DosDisconnectNmPipe(handle)

unsigned handle;

DESCRIPTION
After the server call, the named pipe is placed in the NP_DISCONNECTED state.

DosDisconnectNmPipe() can only be executed by the server application which created the named
pipe. When called by any other process, the function returns the
[ERROR_INVALID_FUNCTION] error code.

If a client process has the named pipe instance open when DosDisconnectNmPipe() is called, the
client handle remains open and is placed in the NP_DISCONNECTED state.

DosDisconnectNmPipe() discards all unread queued data from a named pipe instance.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_INVALID_FUNCTION] Attempt to invoke on client end of pipe.
[ERROR_INVALID_HANDLE] Invalid handle specified.

SEE ALSO

DosClose() Close a named pipe instance.
DosConnectNmPipe() Wait for a client to open an instance of a named pipe.

40 X/Open CAE Specification (1991)

Application Programming Interfaces DosDupHandle()

NAME
DosDupHandle() — creates a duplicate of a handle to a named pipe instance.

SYNOPSIS
#include <lm/lmerror.h>
#include <lm/nmpipe.h>

unsigned
DosDupHandle(

oldhandle,
newhandle

)

unsigned oldhandle;
unsigned * newhandle;

DESCRIPTION
Duplicating a handle duplicates all handle-specific information between oldhandle and
newhandle. Thus, the original handle and the duplicate handle are interchangeable; changes to
one handle affect the other. If the parameter newhandle specifies a valid named pipe handle,
DosDupHandle() closes this handle via DosClose() prior to performing the duplication operation.
If newhandle specifies a CAE file handle the action taken by this function is implementation-
defined.

The parameters are as follows:

oldhandle Specifies the original handle of a named pipe instance.

newhandle Points to an unsigned integer specifying the new handle for the named pipe
instance.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_INVALID_TARGET_HANDLE]

Invalid newhandle was specified. This error is
implementation-dependent.

SEE ALSO

DosMakeNmPipe() Create a named pipe, or new instance of existing
named pipe, and return handle.

IPC Mechanisms for SMB 41

DosMakeNmPipe() Application Programming Interfaces

NAME
DosMakeNmPipe() — creates a new named pipe or a new instance of an existing named pipe, and
returns its handle.

SYNOPSIS
#include <lm/lmerror.h>
#include <lm/nmpipe.h>

unsigned
DosMakeNmPipe(

name,
handle,
omode,
pmode,
outsize,
insize,
timeout

)

char * name;
unsigned * handle;
unsigned short omode;
unsigned short pmode;
unsigned short outsize;
unsigned short insize;
long timeout;

DESCRIPTION
If multiple instances of a named pipe are created and they are in an NP_LISTENING state (via
DosConnectNmPipe()), several clients can simultaneously open instances and receive a handle to
them by calling the DosOpen() function.

The parameters are as follows:

name Points to an ASCIIZ string containing the name of a local pipe in the format
\PIPE\name. Legal names are IPC resource names (see Section 2.3.2 on page 6).

handle Specifies the handle for the new named pipe or new instance of a previously
created named pipe.

omode A bitmap that specifies the open modes for the named pipe, defined as follows:

Bit
Manifest Mask Meaning

Sets access mode.
If 0, pipe is inbound, going from client to
server.
If 1, pipe is outbound, going from server to
client.
If 2, pipe is bidirectional.

NP_AMODE 0x0007

Reserved, with the value 0.0x0078

42 X/Open CAE Specification (1991)

Application Programming Interfaces DosMakeNmPipe()

Sets inheritance mode. (See
LmForkNmPipe() on page 63.)
If 0, spawned processes inherit the named
pipe’s handle.
If 1, spawned processes cannot inherit the
handle.

NP_INHERITANCE 0x0080

0x3F00 Reserved, with the value 0.

Sets write behaviour.
If 0, write-behind to remote named pipes is
allowed.
If 1, write-behind to remote named pipes is
not allowed.
Behaviour for this mode is implementation-
defined.

NP_WB 0x4000

Reserved, with the value 0.0x8000

pmode A bitmap specifying the pipe open mode for the named pipe, defined in
<nmpipe.h> on page 20 as follows:

Bit
Manifest Mask Meaning

Sets instance count (maximum number of
concurrent openings allowed on this named
pipe name).

If 0xFF, then an implementation-defined
number of instances can be created. The
value 0 is reserved.

The instance count is only required when
the named pipe is created; in subsequent
DosMakeNmPipe() calls for the same pipe
this field is ignored.

NP_ICOUNT 0x00FF

Sets pipe read mode.
If 0, the pipe can be read as a byte-stream
pipe.
If 1, the pipe can be read either as a byte-
stream or a message-mode pipe.

This mode can be changed by calling the
DosSetNmpHandState() function.

NP_RMESG 0x0100

Sets pipe type.
If 0, the pipe is a byte-stream pipe.
If 1, the pipe is a message-stream pipe.

NP_WMESG 0x0400

Must be 1. This bit is ignored as input to the
DosMakeNmPipe() call.

NP_SERVER 0x4000

IPC Mechanisms for SMB 43

DosMakeNmPipe() Application Programming Interfaces

Sets blocking mode.
If 0 (blocking mode), all reads and writes
block when no data is available.
Reads from a named pipe block until at least
some data is available.
Writes to a named pipe block until all data is
written.
If 1 (non-blocking mode), all reads and
writes return immediately when no data is
available.
The blocking mode can be reset by calling
the DosSetNmpHandState() function.

NP_NBLK 0x8000

- All other bits reserved, values undefined.

outsize Specifies a recommendation on how many bytes to allocate for the named pipe’s
outgoing buffer.

insize Specifies a recommendation on how many bytes to allocate for the named pipe’s
incoming buffer.

timeout Specifies the default timeout parameter (in milliseconds) for the DosWaitNmPipe()
function to be used by the client. If 0, a default value is used. timeout takes effect
on the first invocation of DosWaitNmPipe(). For all subsequent invocations with
the same named pipe name this parameter is ignored.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_INVALID_NAME] Syntax of name provided was invalid.
[ERROR_INVALID_PARAMETER] Invalid parameter specified.
[ERROR_NOT_ENOUGH_MEMORY] Not enough memory for operation.
[ERROR_OUT_OF_STRUCTURES] No more structures available. Implementation-specific

error encountered.
[ERROR_PATH_NOT_FOUND] Unknown pathname specified.
[ERROR_PIPE_BUSY] All instances in use.

SEE ALSO

DosConnectNmPipe() Wait for a client to open an instance of a named pipe.
DosOpen() Open the client end of a named pipe and return its

handle.
DosQNmpHandState() Retrieve the current state of named pipe handle

instance.
DosSetNmpHandState() Modify the handle state of a named pipe instance.
DosWaitNmPipe() Wait for a named pipe to become available.
LmForkNmPipe() Fork a CAE process that inherits named pipe handles.

44 X/Open CAE Specification (1991)

Application Programming Interfaces DosOpen()

NAME
DosOpen() — called by a client process to open the client process end of a named pipe and return
its handle.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosOpen(

name,
handle,
action,
size,
attribute,
openflag,
omode,
reserved

)

char * name;
unsigned * handle;
unsigned short * action;
unsigned long size;
unsigned attribute;
unsigned short openflag;
unsigned short omode;
unsigned long reserved;

DESCRIPTION
If the named pipe being opened was created as an outbound pipe and an attempt is made to open
the pipe for writing, the error [ERROR_ACCESS_DENIED] is returned. If the named pipe being
opened was created as an inbound pipe and an attempt is made to open the pipe for reading, the
error [ERROR_ACCESS_DENIED] is returned. The mode of the named pipe after DosOpen() is
what was specified via DosMakeNmPipe().

The parameters are as follows:

name Points to an ASCIIZ string containing the name of a pipe in the format
\PIPE\name for a local pipe or \\LMXservername\PIPE\name for a remote
pipe.

handle Points to the unsigned integer where the handle for the new named pipe instance
is returned.

action Points to the unsigned short in which DosOpen() returns the action taken in the
open. A value of 1 indicates that the named pipe was opened; any other value
indicates that the open failed.

size Ignored, should be zero.

attribute Specifies the attributes of the named pipe. A value of 0 indicates read and write.
A value of 1 indicates read only. There is no value to indicate write only.

openflag Specifies the action to take if the named pipe exists. A value of 0 indicates that the
DosOpen() call should fail with return value [ERROR_OPEN_FAILED] if the
specified name exists. A value of 1 indicates that the named pipe is to be opened if
it exists.

IPC Mechanisms for SMB 45

DosOpen() Application Programming Interfaces

omode A bitmap that specifies the open modes for the named pipe, defined as follows:

Bit
Manifest Mask Meaning

Sets access mode.
If 0, pipe is inbound, going from client to
server.
If 1, pipe is outbound, going from server to
client.
If 2, pipe is full duplex, going both to and
from server and client.

NP_AMODE 0x0007

Sets inheritance mode. (See
LmForkNmPipe() on page 63.)
If 0, spawned processes inherit the named
pipe’s handle.
If 1, spawned processes cannot inherit the
handle.

NP_INHERITANCE 0x0080

Sets write behaviour.
If 0, write-behind to remote pipes is allowed.
If 1, write-behind to remote pipes is not
allowed.

NP_WB 0x4000

- All other bits reserved, values undefined.

reserved MBZ.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_ACCESS_DENIED] Access not allowed.
[ERROR_NOT_ENOUGH_MEMORY] Not enough memory for operation.
[ERROR_OPEN_FAILED] Open failed due to the existence of named pipe name

and openflag set to 0.
[ERROR_PATH_NOT_FOUND] Unknown pathname specified.
[ERROR_PIPE_BUSY] All instances in use.

SEE ALSO

DosClose() Close a named pipe instance.
DosRead() Read data from a named pipe instance.
DosSetNmpHandState() Modify the handle state of a named pipe instance.
DosWrite() Write data to a named pipe instance.
LmForkNmPipe() Fork a CAE process that inherits named pipe handles.

46 X/Open CAE Specification (1991)

Application Programming Interfaces DosPeekNmPipe()

NAME
DosPeekNmPipe() — performs a non-destructive read of the data from a named pipe instance.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosPeekNmPipe(

handle,
buf,
buflen,
bytesread,
bytesavail,
status

)

unsigned handle;
char *buf;
unsigned short buflen;
unsigned short *bytesread;
unsigned short bytesavail[2];
unsigned short *status;

DESCRIPTION
DosPeekNmPipe() acts like DosRead() with the following exceptions:

• The bytes read are not removed from the named pipe.

• DosPeekNmPipe() may return for a named pipe in message mode only part of the message
(that part currently in the named pipe), even if the size of the peek would accommodate the
whole message.

• DosPeekNmPipe() never blocks regardless of the blocking mode.

• Additional information about the status of the named pipe and remaining data is returned.
This can be used to determine whether all of the current message has been returned. The
named pipe is at "End-of-File" if no bytes are returned and status is NP_CLOSING or
NP_DISCONNECTED.

The parameters are as follows:

handle Specifies the handle of the named pipe instance.

buf Points to the buffer where data is to be returned.

buflen Specifies the size (in bytes) of the buffer.

bytesread Points to an unsigned short integer telling how many bytes were read.

bytesavail Points to an array of two unsigned shorts. The function returns the number of
bytes left in the named pipe in bytesavail[0] and the number of bytes left in the
current message in bytesavail[1].

status Points to an unsigned short where the state of the named pipe is returned. Refer to
Section 3.4.1 on page 33.

If DosPeekNmPipe() returns successfully with bytesread set to 0 then no data is available.

IPC Mechanisms for SMB 47

DosPeekNmPipe() Application Programming Interfaces

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_ACCESS_DENIED] Access not allowed.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_BROKEN_PIPE] The pipe has been closed or has no reader.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_MORE_DATA] More data available, buffer too small.
[ERROR_PIPE_BUSY] The specified pipe is busy.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.

SEE ALSO

DosRead() Read data from a named pipe instance.

48 X/Open CAE Specification (1991)

Application Programming Interfaces DosQFHandState()

NAME
DosQFHandState() — retrieves information about the named pipe instance.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosQFHandState(

handle,
handlestate

)

unsigned handle;
unsigned short * handlestate;

DESCRIPTION
The parameters are as follows:

handle Specifies the handle of the named pipe to be queried.

handlestate Points to an unsigned integer where the state of the specified pipe handle, defined
as follows, is returned.

Bit
Manifest Mask Meaning

If 0, spawned processes can inherit the
named pipe’s handle.
If 1, spawned processes cannot inherit the
handle.

NP_INHERITANCE 0x0080

If 0, write-behind to a remote pipe is
allowed.
If 1, write-behind to a remote pipe is not
allowed.

NP_WB 0x4000

- All other bits reserved, values undefined.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_INVALID_HANDLE] Invalid handle specified.

SEE ALSO

DosQNmpHandState() Retrieve the current state of named pipe handle
instance.

LmForkNmPipe() Fork a CAE process that inherits named pipe handles.

IPC Mechanisms for SMB 49

DosQNmpHandState() Application Programming Interfaces

NAME
DosQNmpHandState() — returns information about the current state of a named pipe instance
handle.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosQNmpHandState(

handle,
pmode

)

unsigned handle;
unsigned short *pmode;

DESCRIPTION
When invoked by the server process of a named pipe, the state bits reflect values established by
the DosMakeNmPipe() function or subsequent calls to the DosSetNmpHandState() function. When
invoked by the client process, the state bits reflect values established by the DosOpen() function
or subsequent calls to the DosSetNmpHandState() function.

The parameters are as follows:

handle Specifies the handle of a named pipe instance.

pmode Points to an unsigned short where the pipe open mode for the named pipe instance
(as defined below) is returned.

Bit
Manifest Mask Meaning

Instance count (maximum number of
instances allowed to be open concurrently
for the named pipe). If 0xFF, an
implementation-dependent maximum
number of instances can be created. The
value 0 is reserved.

NP_ICOUNT 0x00FF

Pipe read mode.
If 0, the pipe instance can be read as a byte
stream.
If 1, the pipe instance can be read either as a
byte or a message stream pipe.

NP_RMESG 0x0100

Pipe type.
If 0, the pipe is in byte stream mode.
If 1, the pipe is in message mode.

NP_WMESG 0x0400

If 1, serving end of pipe.
If 0, client end of the pipe.

NP_SERVER 0x4000

Indicates the blocking mode.
If 0 (blocking mode), all reads and writes
block when no data is available.

NP_NBLK 0x8000

50 X/Open CAE Specification (1991)

Application Programming Interfaces DosQNmpHandState()

Reads from a named pipe block until at least
some data is available. Writes to a named
pipe block until all data is written.
If 1 (non-blocking mode), all reads and
writes return immediately when no data is
available.
The blocking mode can be reset by calling
the DosSetNmpHandState() function.

- All other bits are undefined.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] If client side made call and handle does not refer to a

named pipe instance.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_PIPE_NOT_CONNECTED] If client side made call and the named pipe is currently

not in the NP_CONNECTED state.

SEE ALSO

DosQFHandState() Retrieve information about a named pipe handle.
DosSetNmpHandState() Modify the handle state of a named pipe instance.

IPC Mechanisms for SMB 51

DosQNmPipeInfo() Application Programming Interfaces

NAME
DosQNmPipeInfo() — retrieves information about the sizes of a particular named pipe’s
incoming and outgoing buffers and how many instances are available.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosQNmPipeInfo(

handle,
level,
buf,
buflen

)

unsigned handle;
short level;
char * buf;
unsigned short buflen;

DESCRIPTION
The parameters are as follows:

handle Specifies the handle of a named pipe instance.

level Specifies the level of detail of information to be returned in buf.

buf Points to the data area appropriate for the level of information requested.

buflen Specifies the size in bytes of buf.

If the size of the buffer supplied by the caller is too small for the information to be returned, as
much information as fits is moved into the buffer and the error [ERROR_BUFFER_OVERFLOW]
is returned. The system discards the additional information.

The only valid value for level is 1. At this level, on success the information returned is in the
following structure:

struct npi_data1 {
unsigned short npi_obuflen;
unsigned short npi_ibuflen;
unsigned char npi_maxicnt;
unsigned char npi_curicnt;
unsigned char npi_namlen;

char npi_name[1];
};

where:

npi_obuflen Size in bytes of the named pipe’s outgoing I/O buffer.

npi_ibuflen Size in bytes of the named pipe’s incoming I/O buffer.

npi_maxicnt How many instances are allowed for the named pipe.

npi_curicnt How many instances of the named pipe are open.

npi_namlen Length of npi_name.

52 X/Open CAE Specification (1991)

Application Programming Interfaces DosQNmPipeInfo()

npi_name A variable-length ASCIIZ string containing the pipe’s name, in the form
\PIPE\name.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] If client side made call and handle does not refer to a

named pipe instance.
[ERROR_BUFFER_OVERFLOW] Buffer too small.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_INVALID_LEVEL] Invalid level parameter.

SEE ALSO

DosMakeNmPipe() Create a named pipe, or new instance of existing
named pipe, and return handle.

DosQNmpHandState() Retrieve the current state of named pipe handle
instance.

IPC Mechanisms for SMB 53

DosRead() Application Programming Interfaces

NAME
DosRead() — reads data from a named pipe instance.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosRead(

handle,
buf,
buflen,
bytesread

)

unsigned handle;
char * buf;
unsigned short buflen;
unsigned short * bytesread;

DESCRIPTION
The parameters are as follows:

handle Specifies the handle of the named pipe instance.

buf Points to the buffer where data is read into.

buflen Specifies the size (in bytes) of the buffer.

bytesread Points to an unsigned short integer telling how many bytes were read.

If DosRead() returns successfully with bytesread set to 0, then no data is available because the
pipe was closed at the other end.

The behaviour of DosRead() is controlled by the state of the NP_RMESG, NP_WMESG and
NP_NBLK bits of the named pipe handle state (see DosQNmpHandState() on page 50).

WMESG RMESG Behaviour

All available data, up to the size specified by buflen, is returned in
buf.

0 0/1

Only the data in the messages is returned, as if it had been written
to a byte-mode (NP_WMESG=0) pipe. Message headers are
discarded.

1 0

If buf is larger than the message, the message is read and DosRead()
sets bytesread to the number of bytes read from the named pipe.

If buf is smaller than the message, DosRead() reads as many bytes
as the buffer can store, sets bytesread to the number of stored bytes,
and returns the [ERROR_MORE_DATA] error code. In this case,
the next call to DosRead() picks up where this one left off, reading
the remaining portion of the message.

1 1

In blocking mode (NP_NBLK=0), a read waits until any data is available. If
NP_WMESG=NP_RMESG=1, a blocking-mode read waits until an entire message is available or
until the current message fills the buffer.

54 X/Open CAE Specification (1991)

Application Programming Interfaces DosRead()

In non-blocking mode (NP_NBLK=1), a read immediately returns an [ERROR_NO_DATA] error
if no data is available. If a read returns the [ERROR_MORE_DATA] error, a message was
received that is too large to fit in buf; as much of the message as would fit is returned, and
another read should be initiated to read the remaining data. (Since this condition can only occur
when NP_WMESG=NP_RMESG=1, the first read would not return until the entire message was
received; hence, the subsequent read should return more data immediately.)

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_ACCESS_DENIED] Access not allowed.
[ERROR_BROKEN_PIPE] The pipe has been closed or has no reader.
[ERROR_MORE_DATA] More data available, buffer too small.
[ERROR_NO_DATA] Data unavailable on non-blocking read.
[ERROR_PIPE_BUSY] The specified pipe is busy.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.

SEE ALSO

DosPeekNmPipe() Read data from a named pipe instance without
removing it.

IPC Mechanisms for SMB 55

DosSetFHandState() Application Programming Interfaces

NAME
DosSetFHandState() — modifies some of the open modes for a named pipe instance in
NP_CONNECTED state.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosSetFHandState(

handle,
handlestate

)

unsigned handle;
unsigned short handlestate;

DESCRIPTION
The parameters are as follows:

handle Specifies the handle of a named pipe instance.

handlestate A bitmap specifying the state of a named pipe handle, defined as follows:

Bit
Manifest Mask Meaning

If 0, then spawned processes inherit the
named pipe handle.
If 1, then spawned processes do not inherit
the handle.

NP_INHERITANCE 0x0080

If 0, write-behind to remote pipes is allowed.
If 1, write-behind is not allowed. Behaviour
for this mode is implementation-defined.

NP_WB 0x4000

- All other bits are undefined.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_INVALID_PARAMETER] Invalid parameter specified.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.

SEE ALSO

DosQNmpHandState() Retrieve the current state of named pipe handle
instance.

DosQFHandState() Retrieve information about a named pipe handle.
LmForkNmPipe() Fork a CAE process that inherits named pipe handles.

56 X/Open CAE Specification (1991)

Application Programming Interfaces DosSetNmpHandState()

NAME
DosSetNmpHandState() — modifies the state of the read mode and blocking mode of a named
pipe instance in NP_CONNECTED state.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosSetNmpHandState(

handle,
handlestate

)

unsigned handle;
unsigned short handlestate;

DESCRIPTION
The parameters are as follows:

handle Specifies the handle of a named pipe instance.

handlestate A bitmap that sets the mode of the handle, defined as follows:

Bit
Manifest Mask Meaning

If 0, the pipe instance is read as a byte
stream.
If 1, the pipe instance is read either as a
message stream or a byte stream.

NP_RMESG 0x0100

If 0, all reads and writes are blocked when
no data is available.
If 1, all reads and writes return immediately
(non-blocking) when no data is available.

NP_NBLK 0x8000

- All other bits are undefined.

The handlestate bit settings correspond to those in the DosMakeNmPipe() function’s pmode
argument. DosQNmpHandState() retrieves information on these settings.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_INVALID_PARAMETER] Invalid parameter specified.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.

SEE ALSO

DosQNmpHandState() Retrieve the current state of named pipe handle
instance.

DosQFHandState() Retrieve information about a named pipe handle.

IPC Mechanisms for SMB 57

DosTransactNmPipe() Application Programming Interfaces

NAME
DosTransactNmPipe() — writes a message to and then reads a message from a named pipe
instance.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosTransactNmPipe(

handle,
writebuf,
writelen,
readbuf,
readlen,
bytesread

)

unsigned handle;
char *writebuf;
unsigned short writelen;
char *readbuf;
unsigned short readlen;
unsigned short *bytesread;

DESCRIPTION
DosTransactNmPipe() provides a mechanism for two processes to complete a transaction over a
message named pipe instance. DosTransactNmPipe() fails if the named pipe instance is not in
message mode or is in message mode and is not a bidirectional named pipe.

A named pipe’s blocking state has no effect on DosTransactNmPipe(). The function does not
return until a message is stored into readbuf, even in non-blocking mode. If readbuf is too small to
hold the entire returned message, DosTransactNmPipe() returns an [ERROR_MORE_DATA] error,
filling readbuf with as many bytes as fit. The remaining data can be obtained with a call to
DosRead().

When using DosTransactNmPipe() it is assumed the programs using the interface are working in
a request/response mode. Therefore it may be useful to place a call to DosBufReset() prior to the
first use of DosTransactNmPipe() to ensure that no data is in the named pipe prior to starting the
request/response sequence.

The parameters are as follows:

handle Specifies the file descriptor of a named pipe instance.

writebuf Points to the buffer containing data to write to the pipe.

writelen Specifies the size (in bytes) of writebuf.

readbuf Points to the buffer containing returned data.

readlen Specifies the size (in bytes) of readbuf.

bytesread Points to an unsigned short integer telling how many bytes were actually read
from the pipe instance.

RETURN VALUE

Manifest Meaning

58 X/Open CAE Specification (1991)

Application Programming Interfaces DosTransactNmPipe()

[NERR_Success] No errors encountered.
[ERROR_BAD_FORMAT] Pipe is a byte stream pipe or is not bidirectional.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_BROKEN_PIPE] The pipe has been closed or has no reader.
[ERROR_INVALID_HANDLE] Invalid handle specified.
[ERROR_MORE_DATA] More data available, buffer too small.
[ERROR_PIPE_BUSY] The specified pipe is busy.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.

SEE ALSO

DosBufReset() Flush a named pipe instance.
DosRead() Read data from a named pipe instance.
DosWrite() Write data to a named pipe instance.

IPC Mechanisms for SMB 59

DosWaitNmPipe() Application Programming Interfaces

NAME
DosWaitNmPipe() — waits for an instance of the named pipe to become available.

SYNOPSIS
#include <lm/lmerror.h>
#include <lm/nmpipe.h>

unsigned
DosWaitNmPipe(

name,
timeout

)

char * name;
unsigned long timeout;

DESCRIPTION
The function DosWaitNmPipe() can be used when DosOpen() returns with the error code
[ERROR_PIPE_BUSY] to allow the process to wait for an instance of the named pipe to become
available. If more than one process is waiting for the named pipe to become available, LMX
gives the next available named pipe instance to the process that has been waiting the longest.

The parameters are as follows:

name Points to an ASCIIZ string containing the name of a pipe in the format
\PIPE\name for a local pipe or \\LMXservername\PIPE\name for a remote
pipe.

timeout Specifies the amount of time in milliseconds the LMX server should wait for the
named pipe to become available. If the value is −1, the default time (set by
DosMakeNmPipe()) is used. A value of 0 waits indefinitely.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_BAD_PIPE] Handle does not refer to a named pipe instance.
[ERROR_PATH_NOT_FOUND] Unknown pathname specified.
[ERROR_INTERRUPT] System call interrupted.
[ERROR_SEM_TIMEOUT] Timeout occurred.

SEE ALSO

DosMakeNmPipe() Create a named pipe, or new instance of existing
named pipe, and return handle.

DosOpen() Open the client end of a named pipe and return its
handle.

60 X/Open CAE Specification (1991)

Application Programming Interfaces DosWrite()

NAME
DosWrite() — writes data to a named pipe instance.

SYNOPSIS
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

unsigned
DosWrite(

handle,
buf,
buflen,
byteswritten

)

unsigned handle;
char *buf;
unsigned short buflen;
unsigned short *byteswritten;

DESCRIPTION
If the named pipe is in message mode, each call to DosWrite() sends a single message - which in
this case means the contents of the buffer passed during a call to DosWrite(). A message header
is automatically prepended to the data that is written. Data may be lost in a DosWrite() and
DosClose() sequence. To ensure delivery of data a call to DosBufReset() should be made prior to
calling DosClose().

The parameters are as follows:

handle Specifies the handle of a named pipe instance.

buf Points to the data that is to be written to the named pipe instance.

buflen Specifies the size (in bytes) of the data to write.

byteswritten Points to an unsigned short indicating how many bytes of data were written to the
pipe instance. If this value is less than the number requested, it indicates that
either the amount of data that the named pipe queues has reached its maximum or
that there is a lack of resources to hold the data at the present time.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[ERROR_ACCESS_DENIED] Access not allowed.
[ERROR_BROKEN_PIPE] The pipe has been closed or has no reader.
[ERROR_PIPE_BUSY] The specified pipe is busy or there is insufficient buffer

space to complete the write.
[ERROR_PIPE_NOT_CONNECTED] Named pipe is currently not in the NP_CONNECTED

state.

IPC Mechanisms for SMB 61

DosWrite() Application Programming Interfaces

SEE ALSO

DosBufReset() Flush a named pipe instance.
DosRead() Read data from a named pipe instance.

NOTES
Some books for the OS/2 system calls refer to the parameters buflen and byteswritten as being
integers (see the referenced Waite Group document). On some implementations this means that
the return of the byteswritten information may destroy some data if the memory area if
byteswritten is not large enough to hold an integer.

62 X/Open CAE Specification (1991)

Application Programming Interfaces LmForkNmPipe()

NAME
LmForkNmPipe() — used by a CAE application to create a child process.

SYNOPSIS
#include <errno.h>
#include <lm/nmpipe.h>
#include <lm/lmerror.h>

int
LmForkNmPipe()

DESCRIPTION
The child process inherits the parent named pipe handles that the parent allows to be inherited.
Although some implementations of LMX support the inheritance of named pipe handles when
the fork() is used, LmForkNmPipe() should be used in place of the fork() system call to ensure
portability.

This call is designed for LMX implementations which do not support inheritance of named pipe
handles across the fork() system call.

RETURN VALUE
LmForkNmPipe() sets its return value in the same way the fork() system call does. That is:

Value Meaning

0 This value is returned to the child process.
This value indicates that an error has occurred. In this case, errno is set to the
appropriate CAE error.

−1

pid is the process ID of the child process. This value is returned to the parent
process.

pid

NOTES
It is possible that in attempting the fork() operation the LMX maximum value for named pipe
handles may be exceeded. If this occurs, a −1 is returned and errno is set to [EAGAIN]. All
other failures mean the fork() system call failed and errno is set by that failure.

SEE ALSO

DosMakeNmPipe() Create a named pipe, or new instance of existing
named pipe, and return handle.

fork Create a new process.
errno.h X/Open Portability Guide, Issue 3, Volume 2, XSI

System Interface and Headers.

IPC Mechanisms for SMB 63

Messaging Application Programming Interfaces

3.5 Messaging
The Messaging API provides access to the simple NetBIOS message service provided by LMX.
This form of messaging differs from that provided by the mailslot service in that simple
messages can only be sent to a particular workstation. Generally, there is only one simple
message delivery point on a single workstation. (There is some provision for forwarding of
messages to a message server, but that server is still receiving all messages that were sent to the
forwarded workstation through one delivery point.)

Messaging API Definition

The following page gives the Messaging API definition.

64 X/Open CAE Specification (1991)

Application Programming Interfaces NetMessageBufferSend()

NAME
NetMessageBufferSend() — sends a message to DOS or OS/2 systems.

SYNOPSIS
#include <stdio.h>
#include <lm/message.h>
#include <lm/lmerror.h>

unsigned
NetMessageBufferSend(

messenger_name,
name,
buf,
buf_len

)

char * messenger_name;
char * name;
char * buf;
unsigned short buf_len;

DESCRIPTION
NetMessageBufferSend() sends a message to one or more users or applications on DOS or OS/2
systems, not on other CAE systems. A server may send a buffer without necessarily being able
to receive any data itself; in this case, name cannot point to the name of that server.

Not all systems are capable of forwarding the NetMessageBufferSend() request to a different
sender; on those systems, messenger_name must be NULL.

The maximum message size is a configuration-dependent parameter of the receiving system and
is no greater than 65535.

The parameters are as follows:

messenger_name
Points to an ASCIIZ string containing the name of the remote server from which
the message should be sent. A NULL pointer indicates the message should be sent
from the local server. The maximum length of the name is 15 characters.

name Points to an ASCIIZ string specifying the registered user or application to which
the buffer should be sent. The buffer is sent to all registered users and applications
if name points to the character string "*".

buf Points to the message to be sent. The message need not be terminated by a zero
byte and may contain zero bytes.

buf_len Specifies the size in bytes of buf.

RETURN VALUE

Manifest Meaning

[NERR_Success] No errors encountered.
[NERR_NameNotFound] The name does not exist as a message name at any

system.
[NERR_BadReceive] A communication error occurred while sending the

message.
[NERR_TruncatedBroadcast] The broadcast message was truncated, only the first

128 bytes were sent.

IPC Mechanisms for SMB 65

NetMessageBufferSend() Application Programming Interfaces

[ERROR_NAME_NOT_FOUND] The remote computer name was not found.
[ERROR_REM_NOT_LIST] This remote computer is not listening.

SEE ALSO

<stdio.h> X/Open Portability Guide, Issue 3, Volume 2, XSI
System Interface and Headers.

66 X/Open CAE Specification (1991)

Chapter 4

Transmission Analysis

This chapter addresses the relationship between the LMX API parameters and the SMB requests
that are generated by the API. From this information it is possible to see the relationship
between the API and the SMB requests, and to understand any mapping or transformation that
may occur on any of the API parameters. This chapter does not document any particular
implementation of the API to SMB mapping; it is an example of what can be done. This
description focuses on the logical request/response sequence without describing the issues
regarding secondary SMBtrans requests.

4.1 Mailslots
In this section, a few assumptions are made as described in Section 4.1.1.

4.1.1 Introduction

For the mailslot APIs that require an LMX session (that is, support for Class 1 mailslots), it is
assumed that the session with the server is established and operational. The construction of an
LMX session requires the following sequence:

Client Server
Establish LMX session to server system.

Send an SMBnegprot.
Receipt of negotiation and transmission of reply.

Verify that the extended dialect was chosen. If
not, the sequence is aborted.

Send an SMBsesssetupX if user-level security is
negotiated.

In user-level security validate that the user name
and password provided are correct.

If no validation error, send an SMBtcon for the
IPC$ share.

Validate that the user has access to the IPC$
share.

If no error, the session is established and other
SMB requests can follow as described below.

If an LMX session is already established at the time a mailslot API is called, a connection to the
IPC$ resource is required. The sequence to do this is as follows:

Client Server
If the extended dialect was not negotiated, return
[ERROR_PATH_NOT_FOUND].

Send an SMBtcon for the IPC$ resource.
Validate that the user has access to the IPC$
resource.

If no error, the connection to IPC$ is established
and other IPC SMB requests can be exchanged.

IPC Mechanisms for SMB 67

Mailslots Transmission Analysis

Mapping of errors during this process to the caller is as follows:

Virtual circuit connection failure ERROR_PATH_NOT_FOUND

Negotiate failure or wrong level ERROR_PATH_NOT_FOUND

Session Setup failure ERROR_PATH_NOT_FOUND

Insufficient rights to access IPC$ resource ERROR_ACCESS_DENIED

Other SMB failures Error code as mapped in Chapter 5 on page 103.

To support Class 2 mailslots the LMX server needs to support NetBIOS datagrams. Without
establishing an LMX session directly, a NetBIOS datagram containing the SMBtrans request is
sent. Therefore, LMX servers listen for incoming NetBIOS datagrams on the same NetBIOS
name as for the LMX session support. Since Class 2 mailslots are not guaranteed, the responses
to the SMBtrans request need not be sent by the receiving system.

68 X/Open CAE Specification (1991)

Transmission Analysis Mailslots

4.1.2 DosDeleteMailslot()

Invocation

DosDeleteMailslot(handle)

Processing

DosDeleteMailslot() removes the mailslot name from the system area reserved to maintain
mailslot names.

Requests Generated

None.

IPC Mechanisms for SMB 69

Mailslots Transmission Analysis

4.1.3 DosMailslotInfo()

Invocation

DosMailslotInfo(
handle,
messagesize,
mailslotsize,
nextsize,
nextpriority,
msgcount

)

Processing

DosMailslotInfo() simply returns the information concerning the mailslot specified by the handle.
This call is only possible on the server side of mailslot processing.

Requests Generated

None.

70 X/Open CAE Specification (1991)

Transmission Analysis Mailslots

4.1.4 DosMakeMailslot()

Invocation

DosMakeMailslot(
name,
messagesize,
mailslotsize,
handle

)

Processing

DosMakeMailslot() verifies the validity and uniqueness of the mailslot name. If the name is valid
then it is stored for use when servicing is required.

Requests Generated

None.

IPC Mechanisms for SMB 71

Mailslots Transmission Analysis

4.1.5 DosPeekMailslot()

Invocation

DosPeekMailslot(
handle,
buf,
bytesread,
nextsize,
nextpriority

)

Processing

DosPeekMailslot() returns the next message on the mailslot if it is present without removing it
from the message queue.

Requests Generated

None.

72 X/Open CAE Specification (1991)

Transmission Analysis Mailslots

4.1.6 DosReadMailslot()

Invocation

DosReadMailslot(
handle,
buf,
bytesread,
nextsize,
nextpriority,
timeout

)

Processing

DosReadMailslot() only returns the next message on the mailslot if a message is present. The
function waits for data to arrive for the specified timeout if no data is present.

Requests Generated

None.

IPC Mechanisms for SMB 73

Mailslots Transmission Analysis

4.1.7 DosWriteMailslot()

Invocation

DosWriteMailslot(
name,
message,
size,
priority,
class,
timeout

)

Processing

For both Class 1 and Class 2 mailslots this function uses the LMX server name given in the
\\computername\MAILSLOT\name path pointed to by name. The remainder of the
\MAILSLOT\name is moved, and zero-terminated, into the smb_name[] field of the SMBtrans
request. The size parameter is used to determine the amount of user supplied data to move in
the smb_data[] portion of the SMBtrans(WriteMailslot) request. The timeout parameter is
transferred directly into the smb_timeout field of the SMBtrans request. The smb_setup[0] field is
set to the command code for WriteMailslot. priority is copied directly into the smb_setup[1] field
and class is copied directly into the smb_setup[2] field of the SMBtrans request.

The setting of the smb_flags field is largely implementation-dependent, but can be used in the
following manner. For Class 2 mailslots bit 1 of this field can be set to indicate that no response
is required in order to decrease the overhead of both the server and client machines. Class 1
mailslots must use an existing session or create a new session if none exists on behalf of the
client system user and send the request over the session. Using this approach there is no need
for the response bit to be set for a response since the session guarantees the delivery of the
request. Alternatively, the application may choose to set bit 1 to indicate a response is required.

The setting of bit 0 to indicate the automatic disconnection of a TID supplied in smb_tid could be
used if the client and server implementation of the SMB allow for the connection of a generic
mailslot service.

Requests Generated

Class 2: SMBtrans(WriteMailslot)

Class 1: If no connection to IPC$ exists:

Refer to Section 4.1.1 on page 67.

After the connection exists:

SMBtrans(WriteMailslot)

If the connection to the server did not exist prior to the transaction, it may be
disconnected at this time.

74 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2 Named Pipes
In this section, a few assumptions are made as described in Section 4.2.1.

4.2.1 Introduction

For each of the named pipe APIs that have handles and require network traffic, it is assumed
that the session with the server is established and operational. In a few APIs it is possible that
the session is not established, therefore a comment is made in the Requests Generated section
that a session must be established. The construction of an LMX session requires the following
sequence:

Client Server
Establish LMX session to server system.

Send an SMBnegprot.
Receipt of negotiation and transmission of reply.

Verify that the extended dialect was chosen. If
not, the sequence is aborted.

Send an SMBsesssetupX.
If in user-level security validate that the user
name and password provided are correct.

If no validation error, send an SMBtcon for the
IPC$ share.

Validate that the user has access to the IPC$
share.

If no error, the session is established and other
SMB requests can follow as described below.

During this process, mapping of errors to be returned to the caller is as follows:

Virtual circuit connection failure ERROR_PATH_NOT_FOUND

Negotiate failure or wrong level ERROR_PATH_NOT_FOUND

Session Setup failure ERROR_PATH_NOT_FOUND

Insufficient rights to access IPC$ resource ERROR_ACCESS_DENIED

Other SMB failures Error code as mapped in Chapter 5 on page 103.

Due to considerations of space and performance trade-offs, there are different ways in which
some of the named pipe APIs may work. This section touches on each of these approaches.
There are scenario tables listed in the Requests Generated section for the APIs that have
multiple implementations.

IPC Mechanisms for SMB 75

Named Pipes Transmission Analysis

4.2.2 DosBufReset()

Invocation

DosBufReset(handle)

Processing

When called on the server side of the pipe no protocol is generated. The processing for the
server code is to cause the caller’s execution path to wait until the client side has read all of the
data cached in the named pipe.

When called on the client side all cached data for the file handle is written using SMBwrite
requests. After completion of the writes, an SMBflush is sent to wait for all of the data to be read
on the server side. DosBufReset() waits for an implementation-defined amount of time, in
seconds, for the data to be read from the named pipe. The suggested default is to have no
timeout.

The writing of the cached data sequence can be done with the SMBwriteX protocol.

Requests Generated

Scenario 1 Scenario 2

SMBwrite SMBwriteX
SMBflush SMBflush

76 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2.3 DosCallNmPipe()

Invocation

DosCallNmPipe(
name,
writebuf,
writelen,
readbuf,
readlen,
bytesread,
timeout

)

Processing

DosCallNmPipe() can be implemented as a sequence of calls starting from the opening of the
named pipe via DosOpen(), sending and receiving replies via DosTransactNmPipe(), and the
closing of the named pipe handle via DosClose(). The parameters given to the routine map to
parameters for these functions.

A more optimal approach is to use the SMBtrans protocol with the smb_setup[0] field set to
CallNmPipe. The server name is given in the \\LMXservername\PIPE\name path pointed to
by name. The remainder of the \PIPE\name is moved, and zero-terminated, into the smb_name[]
field of the SMBtrans request. The timeout parameter is copied into the smb_timeout field of the
SMBtrans request. The data bytes to write in the named pipe are moved into the smb_data[] field
from the area referenced by the writebuf parameter for the size specified by the writelen
parameter. When the response is received the data is moved from the smb_data[] field of the
SMBtrans request into the buffer referenced by the readbuf parameter up to the maximum of the
size specified by the readlen parameter and the number of data bytes received as indicated in
smb_tdrcnt. This size of the data moved is stored in the unsigned short location pointed to by the
bytesread parameter.

Request mapping:

API parameter action SMB location

name string copied to smb_name
writebuf memory copied for writelen bytes to smb_data
writelen stored in smb_tdscnt
readlen stored in smb_mdrcnt
timeout stored in smb_timeout

IPC Mechanisms for SMB 77

Named Pipes Transmission Analysis

Response mapping:

SMB location action API parameter

smb_data memory copied for smb_tdrcnt bytes to readbuf
smb_tdrcnt stored in bytesread

If the readlen value is less than the amount of data to be returned, the data up to readlen size is
copied into the readbuf data area and the error code [ERROR_MORE_DATA] is returned to the
caller. Since DosCallNmPipe() closes the pipe after the action, the additional data is lost.

Requests Generated

If no connection to IPC$ exists:

Refer to Section 4.2.1 on page 75.

After the connection exists:

Scenario 1 Scenario 2 Scenario 3

SMBopenX SMBopenX SMBtrans(CallNmPipe)
SMBwrite SMBwriteX
SMBread SMBreadX
SMBclose SMBclose

78 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2.4 DosClose()

Invocation

DosClose(handle)

Processing

When called on the server side of the named pipe, DosClose() places the named pipe instance
into an NP_CLOSING state. This state means all subsequent server calls to read or write on this
named pipe instance return with errors, yet all data that has been queued in the pipe remains
until the client side has performed the reads necessary to receive the data or closes the named
pipe. After the data has been flushed from the named pipe instance the resources associated
with the instance are completely freed. Any use of the named pipe handle by the server at this
time results in an error.

When called on the client side all cached data is written using SMBwrite or SMBwriteX requests.
After completion of the writes, the named pipe is closed with SMBclose.

Requests Generated

If there is buffered data:

SMBwrite or SMBwriteX

After buffered data is flushed:

SMBclose

IPC Mechanisms for SMB 79

Named Pipes Transmission Analysis

4.2.5 DosConnectNmPipe()

Invocation

DosConnectNmPipe(handle)

Processing

DosConnectNmPipe() is a server-side call only. If the blocking mode is selected,
DosConnectNmPipe() causes the caller to wait until the specified named pipe instance indicated
by the parameter handle is opened. In non-blocking mode this call is necessary to change the
state of the named pipe instance from NP_DISCONNECTED to NP_LISTEN such that a client
DosOpen() succeeds.

Requests Generated

None.

80 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2.6 DosDisconnectNmPipe()

Invocation

DosDisconnectNmPipe(handle)

Processing

DosDisconnectNmPipe() is a server-side call that marks the network file handle for the named
pipe referenced via the parameter handle as invalid. This has a similar action as for DosClose() on
the server side of the named pipe except that after the client has read all of the cached data the
named pipe instance returns to the NP_DISCONNECTED state and it is legal for the server side
to issue the DosConnectNmPipe() function call.

Requests Generated

None.

IPC Mechanisms for SMB 81

Named Pipes Transmission Analysis

4.2.7 DosDupHandle()

Invocation

DosDupHandle(
oldhandle,
newhandle

)

Processing

If newhandle is a valid handle to a named pipe a DosClose() is performed on the handle, otherwise
no SMB is sent. DosDupHandle() then performs the duplication function.

Requests Generated

None.

82 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2.8 DosMakeNmPipe()

Invocation

DosMakeNmPipe(
name,
handle,
omode,
pmode,
outsize,
insize,
timeout

)

Processing

DosMakeNmPipe() stores the pipe name and associated information in such a way that it can be
accessed by the LMX implementation to respond to SMBopenX protocols containing the name.
The initial state of this instance is set to NP_DISCONNECTED. If the timeout value is defaulted
(that is, equal to 0), the suggested timeout default is 50 milliseconds.

Requests Generated

None.

IPC Mechanisms for SMB 83

Named Pipes Transmission Analysis

4.2.9 DosOpen()

Invocation

DosOpen(
name,
handle,
action,
size,
attribute,
openflag,
omode,
reserved

)

Processing

This is a client-side call. DosOpen() uses the server name given in the
\\LMXservername\PIPE\name path pointed to by name. The remainder of the \PIPE\name is
moved, and zero-terminated, into the smb_pathname[] field of the SMBopenX request. The size
parameter is copied into the smb_size field of the SMBopenX request. The attribute parameter is
copied into the smb_attr field of the SMBopenX request. The openflag parameter is mapped into
the smb_ofun field of the SMBopenX request. The omode parameter is copied into the smb_mode
field of the SMBopenX request. The remaining SMBopenX information is filled out as directed by
the SMB specification (see Protocols for X/Open PC Interworking: SMB). The smb_time field has
no meaning on named pipes since they cannot be created by DosOpen(). The smb_timeout may be
ignored. In the response to the SMBopenX the client system uses the resource type field
(smb_type) to recognise that the item opened is either a message-mode or stream-mode named
pipe. For further information see Section 4.2.19 on page 97.

Request mapping:

API parameter action SMB location

name string copied to smb_name
size stored in smb_size
attribute stored in smb_attr
openflag mapped into smb_ofun
omode stored in smb_mode

Response mapping:

SMB location usage

smb_fid stored for later retrieval via handle returned.
smb_type stored to indicate type of named pipe opened.
smb_action stored in unsigned short located by action parameter.

If the SMBopenX succeeds, a value must be returned to the caller which acts as the handle to the
named pipe. This value does not have to be the value returned in the SMBopenX request in the
smb_fid field, it can be any value. But, the implementation must make a mapping between the
value returned and the value received in the SMBopenX request.

84 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

Requests Generated

If no connection to IPC$ exists:

Refer to Section 4.2.1 on page 75.

After the connection exists:

SMBopenX

IPC Mechanisms for SMB 85

Named Pipes Transmission Analysis

4.2.10 DosPeekNmPipe()

Invocation

DosPeekNmPipe(
handle,
buf,
buflen,
bytesread,
bytesavail,
status

)

Processing

When called on the server side of the named pipe DosPeekNmPipe() checks for locally (located on
the server) buffered data and returns the expected information based on this data.

When called on the client side of the named piped an SMBtrans with the transaction type set to
PeekNmPipe is sent. The parameter handle is used to obtain the network file handle for the named
pipe which is stored in the smb_setup[1] field of the SMBtrans request. The field smb_dscnt is set
to the value of the parameter buflen. From the response, the data (if any) and the count of the
data is returned in the data areas referenced by the buf and bytesread parameters. The two short
unsigned integers referenced by bytesavail are filled in with the value from the smb_param[0] area
of the SMBtrans response per the definition in the Protocols for X/Open PC Interworking: SMB.
The unsigned short referenced by the parameter status is set to the value of the status
information returned in the smb_param[2] field of the SMBtrans response per the description in
the Protocols for X/Open PC Interworking: SMB.

Request mapping:

API parameter action SMB location

handle used to derive value for smb_fid
buflen stored in smb_dscnt

Response mapping:

SMB location action API parameter

smb_data[] memory copied to buf
smb_dscnt copied to bytesread
smb_param[0] two words copied to bytesavail
smb_param[2] copied to status

86 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

Requests Generated

SMBtrans(PeekNmPipe)

IPC Mechanisms for SMB 87

Named Pipes Transmission Analysis

4.2.11 DosQFHandState()

Invocation

DosQFHandState(
handle,
handlestate

)

Processing

For both the server and client side of a named pipe DosQFHandState() gets the state information
for the named pipe handle in the local system and returns it in the memory location pointed to
by the parameter handlestate.

Requests Generated

None.

88 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2.12 DosQNmPipeInfo()

Invocation

DosQNmPipeInfo(
handle,
level,
buf,
buflen

)

Processing

When called on the server side, no protocol is generated for this function. The function simply
returns the information concerning the named pipe.

On the client side, the parameter handle is used to obtain the network file handle for the named
pipe which is stored in the smb_setup[1] field of the SMBtrans request. The parameter level is
copied into the smb_param[0] field of the SMBtrans request and the request is sent to the server
machine. When a response is returned, the response data area, smb_data, contains the
information to be returned to the caller in the data buffer referenced by the buf parameter. This
information is transferred by the DosQNmPipeInfo() function into the provided data area up to
the size specified by the parameter buflen. In the transfer of the data the client system must
ensure that the prefix \\<LMXservername> of the remote server is added to the name of the
pipe.

Requests Generated

SMBtrans(QNmPipeInfo)

IPC Mechanisms for SMB 89

Named Pipes Transmission Analysis

4.2.13 DosQNmpHandState()

Invocation

DosQNmpHandState(
handle,
pmode

)

Processing

When called on the server side DosQNmpHandState() returns the server state for the named pipe.
When called on the client side the SMBtrans protocol is generated. The only parameter mapping
for the request protocol is the handle to the network file identifier which is stored in the
smb_setup[1] field of the protocol. For the response, the pipe state information referenced in the
smb_param[0] is stored in the unsigned short location pointed to by the parameter pmode.

Requests Generated

SMBtrans(QNmpHandState)

90 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2.14 DosRead()

Invocation

DosRead(
handle,
buf,
buflen,
bytesread

)

Processing

When called on the server side this function performs its action based on whether the named
pipe is in blocking or non-blocking mode. In blocking mode DosRead() waits until data is
received via a write request from the client side of the named pipe or the client closes the named
pipe. In non-blocking mode DosRead() returns with the unsigned short referenced by the
parameter bytesread set to zero if there is no data and the error [ERROR_NO_DATA] is returned.

When called on the client side DosRead() may generate an SMBread, or another read protocol for
byte stream pipes. The parameter handle is used to obtain the network file handle for the named
pipe. When the response to the SMBread is returned, the data received in the smb_bcc[] portion
of the protocol is copied into the buffer area referenced by the parameter buf and the number of
bytes received is stored in the unsigned short referenced by the parameter bytesread. If the pipe
is in message mode then the error code returned with the data indicates whether the complete
message has been returned. If the values for smb_rcls and smb_err (error class and error code) are
[ERRDOS] and [ERRmoredata], respectively, then DosRead() must issue another read request
until this error is no longer returned or the requested buflen amount has been satisfied. If the buf
should become full before all data for the message has been read, the function returns
[ERROR_MORE_DATA] to the caller. When no error is returned in the SMBread response, then
the complete message has been returned and copied into the user buffer. Note that it is possible
for the data length to be greater than the buffer supplied in the DosRead() call. In this case all of
the data that fits in the buffer is returned and the error [ERROR_MORE_DATA] is returned to
the caller. Depending on the caching scheme used by the client, or the amount of data expected
in the response to the read, the client software may choose to use the SMBreadX, SMBreadbraw or
the SMBreadbmpx protocol to perform the action of the DosRead() function.

Requests Generated

SMBread, SMBreadX, SMBreadbmpx or SMBreadbraw

IPC Mechanisms for SMB 91

Named Pipes Transmission Analysis

4.2.15 DosSetFHandState()

Invocation

DosSetFHandState(
handle,
handlestate

)

Processing

For both the server and client side of a named pipe DosSetFHandState() sets the state information
for the named pipe handle in the local system based on the parameter handlestate.

Requests Generated

None.

92 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2.16 DosSetNmpHandState()

Invocation

DosSetNmpHandState(
handle,
handlestate

)

Processing

When called on the server side DosQNmpHandState() sets the server state for the named pipe.
When called on the client side the SMBtrans protocol is generated. The handle parameter is used
to provide the network file identifier for the message and stored in smb_setup[1]. The handlestate
parameter is stored in the smb_param[0]. For the response, the pipe state information in
smb_param[0] is stored in the unsigned short location pointed to by the parameter handlestate.

Requests Generated

SMBtrans(SetNmPHandState)

IPC Mechanisms for SMB 93

Named Pipes Transmission Analysis

4.2.17 DosTransactNmPipe()

Invocation

DosTransactNmPipe(
handle,
writebuf,
writelen,
readbuf,
readlen,
bytesread

)

Processing

Prior to any functioning on either the server or client side, a check is made to ensure that the
named pipe referenced by handle is a bidirectional message-mode named pipe. If this condition
is not true, DosTransactNmPipe() returns [ERROR_BAD_FORMAT].

When invoked on the server side DosTransactNmPipe() works entirely on local queues. No SMB
requests are generated.

DosTransactNmPipe() only operates on the client side of a named pipe when the named pipe is in
message mode. DosTransactNmPipe() can generate two different SMB request sequences. The
first is to send the data referenced by the parameter writebuf via an SMBwrite protocol and then
issue an SMBread and return the response data in the readbuf buffer and a count of bytes in the
unsigned short referenced by the bytesread parameter. If the request and/or response for the
transaction does not fit in the negotiated message size for the LMX session, this sequence
expands in the same manner as DosWrite() and DosRead().

The second sequence for this function is to generate the SMBtrans protocol with the function
code TransactNmPipe in the smb_setup[0] field. The handle parameter is used to find the network
file handle for the pipe and the data located in writebuf is copied into the smb_data[] portion of
the SMBtrans(TransactNmPipe) request. The response data is returned in the smb_data[] portion
of the SMBtrans(TransactNmPipe) response and copied back into the user buffer area referenced
by the parameter readbuf.

If the readlen value is less than the amount of data to be returned, the data up to readlen size is
copied into the readbuf data area and the error code [ERROR_MORE_DATA] is returned to the
caller. The remaining data is to be buffered until the caller issues a function call to either read
the data (that is, DosRead()) or destroy the data (that is, DosClose(), DosDisconnectNmPipe()).

Request mapping (SMBtrans(TransactNmPipe) sequence):

API parameter action SMB location

handle used to derive value for smb_setup[1]
writebuf memory copied for writelen bytes to smb_data[]
readlen copied to smb_mdrcnt

Response mapping:

94 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

SMB location action API parameter

smb_data[] memory copied for smb_tdrcnt bytes to readbuf
smb_mdrcnt stored in bytesread

Requests Generated

Scenario 1 Scenario 2 Scenario 3

SMBwrite SMBwriteX SMBtrans(TransactNmPipe)
SMBread SMBreadX

IPC Mechanisms for SMB 95

Named Pipes Transmission Analysis

4.2.18 DosWaitNmPipe()

Invocation

DosWaitNmPipe(
name,
timeout

)

Processing

This is a client-side call. This routine generates an SMBtrans request. DosWaitNmPipe() uses the
server name given in the \\LMXservername\PIPE\name path pointed to by name to indicate
which NetBIOS named server is requested for this named pipe. The remainder of the
\PIPE\name is moved, and zero-terminated, into the smb_name[] field of the SMBtrans request.
The timeout parameter is moved into the smb_timeout and the message is sent.

Requests Generated

SMBtrans(WaitNmPipe)

96 X/Open CAE Specification (1991)

Transmission Analysis Named Pipes

4.2.19 DosWrite()

Invocation

DosWrite(
handle,
buf,
buflen,
byteswritten

)

Processing

When called on the server side of the pipe, data written with DosWrite() is queued until the client
system issues a read to receive the data. The queuing preserves the message boundary.

When called on the client side, the parameter handle is used to obtain the network file handle for
the selected write protocol. If the named pipe is in byte stream mode then the SMBwrite or
SMBwritebraw request can be used. If the named pipe is in message mode then the SMBwriteX
protocol must be used in order to communicate to the server the length of the message via the
start of message bit in the smb_wmode field of the SMBwriteX request. The data referenced by the
parameter buf is moved into the smb_bcc[] portion of the SMBwrite request for buflen bytes. For
the SMBwriteX and SMBwritebraw protocols the data is moved into the smb_data[] field. When
the response to the write is received the count of bytes actually written is taken from the field
smb_count in the selected SMB response and stored in the unsigned short referenced by the
parameter byteswritten.

Requests Generated

Scenario 1 Scenario 2 Scenario 3 Scenario 4

SMBwrite SMBwriteX SMBwritebraw SMBwritebmpx

IPC Mechanisms for SMB 97

Named Pipes Transmission Analysis

4.2.20 LmForkNmPipe()

Invocation

LmForkNmPipe()

Processing

This function provides the semantics of XSI fork() with the addition of named pipe inheritance.
There are no protocols generated.

Requests Generated

None.

98 X/Open CAE Specification (1991)

Transmission Analysis Messaging

4.3 Messaging
Since there is only one API for messaging, this section is in two parts:

• Section 4.3.1 discusses how the transmissions for messaging are set up.

• NetMessageBufferSend() on page 65 discusses the construction of the SMB requests and
responses.

4.3.1 Introduction

The messaging service allows for three forms of transmission for the message:

• The first is a directed message which is to be sent from the caller of NetMessageBufferSend() to
a single recipient of the message.

• The second is a message directed at a group of users within the network.

• The third is a message that is broadcast to any and all message recipients on the network;
that is, a broadcast message.

Support for the second form (that is, message directed at a group) is implementation-dependent.
If an LMX implementation does not support this form of messaging, the function
NetMessageBufferSend() returns the value [NERR_NameNotFound].

These three forms of messaging take different approaches to delivering the message. For the
first case, a directed message, NetMessageBufferSend() attempts to establish a NetBIOS session
with the specified system if an existing LMX session is not present. Two attempts are made, the
first being to a forwarded name (see Chapter 6 on page 119), and the second being the message
name; the sixteenth byte is 0x05 and 0x03 respectively. If one of these NetBIOS sessions is
established, the function proceeds with the construction and transmission of the messaging
protocols. There is no requirement to issue the SMBnegprot or other LMX server session setup
protocols for the NetBIOS session. If this new NetBIOS session is used, then it is destroyed after
the message has been sent.

In the case of a message directed at a group of users within the network, NetMessageBufferSend()
sends the message using NetBIOS group names (refer to Chapters 14 and 15 of the Protocols for
X/Open PC Interworking: SMB). The NetBIOS group name is constructed from a domain name.
Each LMX server implementation has an implementation-defined method of specifying this
name.

For broadcast messages, NetBIOS broadcast datagrams are used to send the protocol block. (See
Chapters 14 and 15 of Protocols for X/Open PC Interworking: SMB.)

IPC Mechanisms for SMB 99

Messaging Transmission Analysis

4.3.2 NetMessageBufferSend()

Invocation

NetMessageBufferSend(
messenger_name,
name,
buf,
buf_len

)

Processing

The actions taken by NetMessageBufferSend() key on the messaging name located by name.

If name points to the character string representing the NetBIOS name of a system on the network,
then the function performs the directed form of messaging. For the directed form of networking
buf_len is compared against the maximum length of a message packet (128 bytes). If the length is
less than or equal to this value, a single SMBsends is constructed as follows:

API parameter action SMBsends location

messenger_name stored as type 04 buffer in smb_orig
name stored as type 04 buffer in smb_dest
buf stored as type 01 buffer of size buf_len in smb_message

If the length is greater than 128, the message is broken up into an SMBsendstrt, SMBsendtxt and
SMBsendend sequence as follows:

API parameter action SMBsendstrt location

messenger_name stored as type 04 buffer in smb_orig
name stored as type 04 buffer in smb_dest

A message group ID is returned from the destination system in the SMBsendstrt response in the
field smb_grpid. This is called grpid and is used in the next protocol requests. One or more
SMBsendtxt requests are sent until buf_len bytes of data have been transmitted. The maximum
number of bytes per message stored in smb_message for SMBsendtxt is 128.

API parameter action SMBsendtxt location

grpid from SMBsendstrt stored in smb_grpid
buf stored as type 01 buffer of up to

128 bytes in smb_message

For each SMBsendtxt request there is a response. The requestor must wait for each response
before sending the next request. After buf_len bytes of data have been transmitted an
SMBsendend is sent.

API parameter action SMBsendend location

100 X/Open CAE Specification (1991)

Transmission Analysis Messaging

grpid from SMBsendstrt stored in smb_grpid

NetMessageBufferSend() then waits for the response to SMBsendend.

If name points to a character string representing a NetBIOS group name or the character string
"*", then the function is to send the supplied message as a broadcast to a group or the entire
network. This is done using a single SMBsendb request as follows:

API parameter action SMBsendb location

messenger_name stored as type 04 buffer in smb_orig
name stored as type 04 buffer in smb_dest
buf stored as type 01 buffer of size buf_len in smb_message

If buf_len is greater then 128 bytes, the first 128 bytes are sent in the message and the return code
[NERR_TruncatedBroadcast] is returned. There is no response to this request.

Requests Generated

Scenario 1 Scenario 2 Scenario 3

SMBsends SMBsendstrt SMBsendb (broadcast only)
SMBsendtxt
SMBsendend

IPC Mechanisms for SMB 101

Transmission Analysis

102 X/Open CAE Specification (1991)

Chapter 5

SMB Protocol Specification for Named Pipes and
Mailslots

This chapter supersedes information given in Appendix B of the referenced document Protocols
for X/Open PC Interworking: SMB. Many terms are used within this section which are defined
in Protocols for X/Open PC Interworking: SMB.

5.1 Extended SMB Transaction Requests
The SMBtrans requests are used to perform operations that are not necessarily related to file or
print sharing. The SMBtrans is a generic operation similar to a remote procedure call; each
SMBtrans request identifies the function to be performed and the parameters and raw data on
which the function should operate, and expects parameters and raw data to be returned in the
response.

SMBtrans is more flexible than the core SMBs in that all uses of SMBtrans may involve multiple
request or response messages, circumventing many size and length limitations imposed on core
SMBs. Because of their more flexible argument structure, SMBtrans requests can be used to
perform more complex operations than are supported by other extended SMBs.

SMBtrans is sometimes used in a different fashion from other SMB requests. It is not always
used in a strictly client/server fashion; that is, the sender of an SMBtrans request is not always a
file-sharing client; nor is the responder to such a request always a file server. For this reason, the
terms client and server are not used in the descriptions in this chapter; instead, requester and
responder are used.

For the extended dialects, SMBtrans requests are used to provide all or part of the following
services:

1. mailslot IPC

2. named pipe IPC

3. remote server administration

Future dialects may provide additional uses for SMBtrans.

IPC Mechanisms for SMB 103

SMBtrans Structure and Flow SMB Protocol Specification for Named Pipes and Mailslots

5.2 SMBtrans Structure and Flow
Because of the flexibility supported, SMBtrans actually consists of four protocol elements. The
set of all protocol elements sent to perform a particular function is referred to as a transaction.

1. The Primary Request is used to initiate a particular transaction.

2. The Secondary Request is used to continue a transaction started with a primary request; it
is only used if the data required did not fit completely within the primary.

3. The Interim Response is used only if all the data required for the transaction did not fit
within the primary request and the responder is expecting one or more secondary requests.

4. The Final Response is used to convey the actual reply to the request; one or more of these
may be sent.

The TID, PID, UID and MID (reference Protocols for X/Open PC Interworking: SMB) must be
the same for all requests and responses related to a single transaction.

5.2.1 Request Formats

Primary Request Secondary Request
Field Name Field Value Field Name Field Value
smb_com SMBtrans smb_com SMBtranss
smb_wct 14+smb_suwcnt smb_wct 8
smb_vwv[0] smb_tpscnt smb_vwv[0] smb_tpscnt
smb_vwv[1] smb_tdscnt smb_vwv[1] smb_tdscnt
smb_vwv[2] smb_mprcnt smb_vwv[2] smb_pscnt
smb_vwv[3] smb_mdrcnt smb_vwv[3] smb_psoff
smb_vwv[4] smb_msrcnt smb_vwv[4] smb_psdisp
smb_vwv[5] smb_flags smb_vwv[5] smb_dscnt
smb_vwv[6-7] smb_timeout smb_vwv[6] smb_dsoff
smb_vwv[8] smb_rsvd1 smb_vwv[7] smb_dsdisp
smb_vwv[9] smb_pscnt smb_bcc
smb_vwv[10] smb_psoff smb_param
smb_vwv[11] smb_dscnt smb_data
smb_vwv[12] smb_dsoff
smb_vwv[13] smb_suwcnt
smb_vwv[14-] smb_setup[]
smb_bcc

smb_name
smb_param
smb_data

Table 5-1 Transaction SMB Request Formats

smb_tpscnt A word containing the total number of parameter bytes being sent. This value
may be revised downward in any or all secondary requests. The smallest
value of smb_tpscnt sent during this transaction must equal the sum of all the
smb_pscnt fields in all requests sent during the transaction.

smb_tdscnt A word containing the total number of data bytes being sent. This value may
be revised downward in any or all secondary requests. The smallest value of
smb_tdscnt sent during this transaction must equal the sum of all the smb_dscnt
fields in all requests sent during the transaction.

smb_mprcnt A word containing the maximum number of parameter bytes the requester
expects to be returned. The responder may not exceed this limit in its
response.

104 X/Open CAE Specification (1991)

SMB Protocol Specification for Named Pipes and Mailslots SMBtrans Structure and Flow

smb_mdrcnt A word containing the maximum number of data bytes the requester expects
to be returned. The responder may not exceed this limit in its response.

smb_msrcnt A word containing the maximum number of setup words the requester
expects to be returned. The responder may not exceed this limit in its
response. The value of smb_msrcnt must be less than or equal to 255 and is
stored in the low-order byte of the word; the high-order byte is reserved and
must be zero.

smb_flags A word containing flags altering the behaviour of the request. This flag field is
distinct from that defined in Protocols for X/Open PC Interworking: SMB.
The flags are:

Bit 0 If set, the TID on which this transaction was requested is closed
after the transaction is completed.

Bit 1 If set, the transaction is one way; that is, no final response should
be generated by the responder. An interim response, if required
by the flow of the transaction, should be produced regardless of
the setting of this bit.

Bits 2-15 Reserved; MBZ.

smb_timeout A 32-bit integer specifying the number of milliseconds to wait for completion
of the requested operation before causing a timeout.

smb_rsvd1 A one-word reserved field which must be zero.

smb_pscnt A word indicating the number of parameter bytes being sent in this particular
request; i.e., the size of smb_param.

smb_psoff A word giving the offset, in bytes, from the start of the SMB header to the
beginning of the smb_param field. This permits smb_param to be preceded in
the request by pad bytes to result in better alignment of the buffer.

smb_psdisp A word giving the displacement amongst all parameter bytes for this
transaction of the parameter bytes contained in this request. This is used by
the responder to correctly assemble all the parameter bytes received even if
the requests were received out of sequence.

smb_dscnt A word indicating the number of data bytes being sent in this particular
request; that is, the size of smb_data.

smb_dsoff A word giving the offset, in bytes, from the start of the SMB header to the
beginning of the smb_data field. This permits smb_data to be preceded in the
request by pad bytes to result in better alignment of the buffer.

smb_dsdisp A word giving the displacement amongst all data bytes for this transaction of
the data bytes contained in this request. This is used by the responder to
correctly assemble all the data bytes received even if the requests were
received out of sequence.

smb_suwcnt A word containing the number of setup words sent in the primary request.
This value must be less than or equal to 255 and is stored in the low-order byte
of the word; the high-order word is reserved and must be zero.

smb_setup An array of words of setup data. The length of this array is given by smb_swcnt
(above) and may be zero.

IPC Mechanisms for SMB 105

SMBtrans Structure and Flow SMB Protocol Specification for Named Pipes and Mailslots

smb_name A null-terminated ASCIIZ string containing the transaction name. No pad
bytes are permitted before this field; it must immediately follow the smb_bcc
field.

smb_param A string of bytes, beginning at smb_psoff bytes into the request and containing
smb_pscnt bytes. Padding may precede this field, as smb_psdisp points to its
beginning; for the same reason, smb_param is not required to precede smb_data
in each message (although it usually does).

smb_data A string of bytes, beginning at smb_dsoff bytes into the request and containing
smb_dscnt bytes. Padding may precede this field, as smb_dsdisp points to its
beginning; for the same reason, this field is not always required to follow
smb_param (although it usually does).

5.2.2 Response Formats

Interim Response Final Response
Field Name Field Value Field Name Field Value
smb_com SMBtrans smb_com SMBtrans
smb_wct 0 smb_wct 10+smb_suwcnt
smb_bcc 0 smb_vwv[0] smb_tprcnt

smb_vwv[1] smb_tdrcnt
smb_vwv[2] smb_rsvd
smb_vwv[3] smb_prcnt
smb_vwv[4] smb_proff
smb_vwv[5] smb_prdisp
smb_vwv[6] smb_drcnt
smb_vwv[7] smb_droff
smb_vwv[8] smb_drdisp
smb_vwv[9] smb_suwcnt
smb_vwv[10-] smb_setup
smb_bcc

smb_param
smb_data

Table 5-2 Transaction SMB Response Formats

The meaning of the parameters is identical to the definitions above with the parameter names
slightly changed; for example, smb_tprcnt is the total number of parameter bytes being returned,
and is used in the same way as smb_tpscnt in the request messages.

As was the case in the request messages, the ordering of smb_param and smb_data is not required,
since smb_prdisp and smb_drdisp are sufficient to locate each correctly.

5.2.3 Transaction Flow

A small set of rules governs the flow of the various protocol elements making up a transaction,
including which request or response type to send at any particular time.

1. The requester sends the first (primary) request which identifies the total bytes (parameters
and data) which are to be sent, and contains the setup words, and as many of the
parameter and data bytes as fit in a negotiated size buffer. This request also identifies the
maximum number of bytes (setup, parameters and data) the responder may return when
the transaction is completed. The parameter bytes are immediately followed by the data
bytes (the length fields identify the break point). If all the bytes fit in the single buffer, skip
to step 4.

106 X/Open CAE Specification (1991)

SMB Protocol Specification for Named Pipes and Mailslots SMBtrans Structure and Flow

2. The responder responds with a single interim response meaning ‘‘OK, send the remainder
of the bytes’’, or (if error response) terminate the transaction.

3. The requester then sends a secondary request full of bytes to the responder. This step is
repeated until all bytes have been delivered to the responder.

4. The responder sets up and performs the transaction with the information provided.

5. Upon completion of the transaction, if bit 1 of smb_flag was not set in the primary request,
the responder sends back up to the number of parameter and data bytes requested (or as
many as fit in the negotiated buffer size). This step is repeated until all bytes requested
have been returned. Fewer than the requested number of bytes (from smb_mdrcnt and
smb_mprcnt) may be returned.

The flow of a transaction when the request parameters and data do not all fit in a single buffer is:

requester —> TRANSACTION request (data) >—> responder
requester <—< OK send remaining data <— responder
requester —> TRANSACTION secondary request 1 (data) >—> responder
requester —> TRANSACTION secondary request 2 (data) >—> responder
requester —> TRANSACTION secondary request n (data) >—> responder

(responder sets up and performs the
TRANSACTION)

requester <—< TRANSACTION response 1 (data) <— responder
requester <—< TRANSACTION response 2 (data) <— responder
requester <—< TRANSACTION response n (data) <— responder

The flow for the Transaction protocol when the request parameters and data do all fit in a single
buffer is:

requester —> TRANSACTION request (data) >—> responder
(responder sets up and performs the
TRANSACTION)

requester <—< TRANSACTION response 1 (data) <— responder
(only one if all data fits in buffer)

requester <—< TRANSACTION response 2 (data) <— responder
requester <—< TRANSACTION response n (data) <— responder

Note that the primary request through to the final response make up the complete protocol:
thus, the TID, PID, UID and MID are expected to remain constant and can be used by both the
responder and requester to route the individual messages of the protocol to the correct process.

The simplest form of a Transaction sends a single primary request and (optionally) receives a
single final response. Thus, if the entire Transaction message fits within the size limits for a
Datagram (transport-dependent but no smaller than 512 bytes) and reliable delivery of the
information is not required, the request and response may be sent/received as NetBIOS
datagrams. If the request is sent in a NetBIOS datagram, the reply (if any) must also be a
NetBIOS datagram.

IPC Mechanisms for SMB 107

SMBtrans Structure and Flow SMB Protocol Specification for Named Pipes and Mailslots

5.2.4 SMBtrans Error Code Descriptions

CAE Code DOS Class DOS Code Description
Access denied, the requester’s context does not
permit the requested function.

EPERM ERRDOS ERRnoaccess

Invalid open mode.ERRDOS ERRbadaccess
Non-specific error code.ERRSRV ERRerror
The tree ID (TID) specified was invalid.ERRSRV ERRinvnid
The requester does not have the necessary access
rights within the specified context for the requested
function. The context is defined by the TID or the
UID.

EACCES ERRSRV ERRaccess

There is more data to be returned.ERRSRV ERRmoredata

Table 5-3 SMBtrans Error Codes

5.2.5 SMBtrans Deviations

Support for Class 1 mailslots is not mandatory.

5.2.6 Conventions

None.

108 X/Open CAE Specification (1991)

SMB Protocol Specification for Named Pipes and Mailslots Mailslot Usage of SMBtrans

5.3 Mailslot Usage of SMBtrans
The identifier \MAILSLOT\name denotes a mailslot transaction, where the name is the
mailslot name to apply the transaction against.

Mailslots using unreliable Class 2 mode may be transmitted via NetBIOS datagrams. However,
mailslots using reliable Class 1 mode must be transmitted on an established LMX session
(reliable delivery is needed).

When Class 1 mailslot transactions are transmitted via an LMX session, a response may still be
desired to ensure that the mailslot transaction was delivered to the mailslot without error. Thus
the response bit may be zero in smb_flags to indicate that the error code associated with the
delivery should be returned.

No parameter bytes are sent, and no data bytes or setup words are expected to be returned.

5.3.1 Mailslot Request Parameters

Refer to Section 5.2.1 on page 104 for the structure of requests. Only the parameter names and
their contents are described below. The values of unmentioned parameters are determined
according to the definition of the request messages.

smb_wct Must be 17.

smb_tdscnt This is the total size of data to write to a mailslot (if any).

smb_mprcnt If bit 1 of smb_flags is 0, this must be 2, as a one-word return code is expected.

smb_flags All flags should be set appropriately. Class 2 mailslots are usually sent with
bit 1 set.

smb_timeout Undefined.

smb_suwcnt Must be 3.

smb_setup[0] Interpreted as an opcode. The only defined value is 1=Write Mailslot.

smb_setup[1] The priority of the message being written to the mailslot. The larger the value
the higher the priority.

smb_setup[2] The class of the message. Class 1 messages are delivered reliably and must be
delivered over an existing LMX session. Class 2 messages are not reliable and
may be sent over NetBIOS datagrams.

smb_name This is the mailslot name the message is to be written to. It is an ASCIIZ string
of the form \MAILSLOT\name.

smb_data The data to be written to the mailslot.

5.3.2 Mailslot Response Parameters

Refer to Section 5.2.2 on page 106 for the structure of responses. Only the parameter names and
their contents are described below. The values of unmentioned parameters are determined
according to the definition of the response messages. If a response is generated it should fit in a
single response message.

smb_wct Must be 10.

smb_tprcnt Must be 2; a single word return code is returned as a parameter.

smb_prcnt Must be 2.

IPC Mechanisms for SMB 109

Mailslot Usage of SMBtrans SMB Protocol Specification for Named Pipes and Mailslots

smb_suwcnt Must be 0.

smb_param This is interpreted as a single word integer containing the mailslot delivery
return code. A value of 0 indicates successful delivery.

5.3.3 Special Forms of Mailslot Usage

Servers providing the extended dialect may periodically send a special form of mailslot message,
called an Announcement Message, to inform client nodes that the server exists and is ready to
accept LMX session connection requests. This message is sent as a Class 2 mailslot message in a
NetBIOS datagram sent to an installation-specific NetBIOS group name. No response is
permitted.

Clients using the extended dialect may send an Announcement Request Message to request that
server nodes available identify themselves via the Announcement Transaction NetBIOS
datagram. This message is sent as a Class 2 mailslot message in a NetBIOS datagram sent to an
installation-specific NetBIOS group name. No response is permitted.

The Announce and Announce Request messages are sent to a distinguished mailslot named
\MAILSLOT\LANMAN. The default NetBIOS group name to which the broadcast messages
are sent is the 0x20 padded name LANGROUP.

Also note that there is no security involved with these protocols. The smb_tid and smb_uid fields
are set to −1 and are ignored by the node receiving this transaction. Each node may apply its
own security mechanisms to determine whether to reply to (or send) these protocols.

Announce Mailslot Request Format

Since this is a form of mailslot write transaction, the definitions in the previous section apply;
only where values are different or more specific are they specified here. No response is
permitted from the responder, so all return counts should be zero. No parameters are sent.

smb_flags Since these messages are sent over a NetBIOS datagram, bit 0 is ignored but
should be 0. Bit 1 must be set to indicate no response is to be generated.

smb_setup[2] Must be 2 indicating this is a Class 2 message.

smb_name Must be \MAILSLOT\LANMAN.

smb_data This data structure determines whether this is an Announce or Announce
Request message.

Announce fields:

110 X/Open CAE Specification (1991)

SMB Protocol Specification for Named Pipes and Mailslots Mailslot Usage of SMBtrans

Position Field Name Description
A single word whose value must be
1=Announce.

00 op_code

A double word containing flags indicating, if
set, that the Announcer provides the
indicated service:

Bit 0 Announcer is an LMX client
(workstation).

Bit 1 Announcer is an LMX server.

Bits 2-31 Reserved.

02 services

A single byte giving the major version
number of the software running on the
server.

06 vers_major

A single byte giving the minor version
number of the software running on the
server.

07 vers_minor

A single word indicating the number of
seconds between announcements generated
by the sending system.

08 periodicity

A null-terminated ASCIIZ string containing
the computername of the sending node.

10 node_name

after
A null-terminated ASCIIZ string containing
any arbitrary information the sending system
wishes to announce.

node_name comment

Announce Request fields:

Position Field Name Description
A single word whose value must be
2=Announce Request.

00 op_code

A null-terminated ASCIIZ string containing
the computername of the sending node.

02 node_name

IPC Mechanisms for SMB 111

Named Pipe Usage of SMBtrans SMB Protocol Specification for Named Pipes and Mailslots

5.4 Named Pipe Usage of SMBtrans
Named pipes are an IPC mechanism for communication between a client and server process
which resides partially in the file system made available to the client by the server. Many file-
oriented operations supported by the SMB protocol are supported on named pipes as well, and
have obvious semantics.

Certain operations on named pipes do not easily map onto the file-oriented SMB requests,
though; these operations are provided by use of SMBtrans. They fall into two broad classes:

• Complex or Unique Named Pipe Operations

Complex operations that require multiple SMB protocol interchanges can be supported by a
single SMBtrans. Examples are CallNmPipe and TransactNmPipe. The CallNmPipe operation,
provided via SMBtrans, permits the Open, Write, Read and Close operations to be performed in
one transaction on a named pipe. Similarly, the TransactNmPipe operation permits the Write
and Read operations to be performed in one transaction.

RawWriteNmPipe and RawReadNmPipe are unique operations that require SMBtrans to
implement. They cannot be supported via the other SMB protocols.

• Status Operations

Operations to query and change the modes and attributes of named pipes are required, as are
mechanisms to query the status of a named pipe. They are provided via SMBtrans as well.

Named pipes require reliable delivery; thus, the SMBtrans transaction must take place on an
established LMX session.

When discussing named pipe requests, the terms client and requester are used
interchangeably, as are server and responder.

5.4.1 Named Pipe Requests - Detailed Discussion

The identifier \PIPE\name denotes a named pipe transaction, where the name is the pipe name
to apply the transaction against. Note that the named pipe transaction name \PIPE\LANMAN
is reserved for use by LMX.

The parameters are used as defined in the preceding section on SMBtrans. Only parameters
whose meaning is more specific for named pipes usage are described here.

smb_wct Must be 16.

smb_msrcnt Must be zero. No named pipe requests cause a response with setup words.

smb_suwcnt Must be 2.

smb_setup[0] This is the specific function to be performed as a result of the request. The
values are (in numeric order):

0x01 SetNmPHandState set pipe handle modes.
0x11 RawReadNmPipe read pipe in raw (non-message mode).
0x21 QNmPHandState query pipe handle modes.
0x22 QNmPipeInfo query pipe attributes.
0x23 PeekNmPipe read but do not remove data.
0x26 TransactNmPipe write/read operation on pipe.

112 X/Open CAE Specification (1991)

SMB Protocol Specification for Named Pipes and Mailslots Named Pipe Usage of SMBtrans

0x31 RawWriteNmPipe write pipe raw (non-message mode).
0x53 WaitNmPipe wait for pipe to be non-busy.
0x54 CallNmPipe open/write/read/close pipe.

smb_setup[1] Either the FID of the pipe on which the function is to be performed, or the
priority to be used for the operation; the particular meaning used is defined
below with the description of each function.

smb_name An ASCIIZ string of the form \PIPE\name specifying the pipe on which the
operation is to be performed.

smb_param Specific to the particular operation.

smb_data Specific to the particular operation.

Each of the defined named pipe functions is specified in the following sections in alphabetical
order.

5.4.2 CallNmPipe - Function 0x54

This transaction has the combined effect on a named pipe of SMBopen, followed by
TransactNmPipe, followed by SMBclose.

This form of transaction neither sends nor receives parameter bytes. The bytes to be written to
the pipe are sent in the smb_data field of the request message(s), and the bytes read from the pipe
are returned in the smb_data field of the response(s).

The largest amount of data that can be written to or read from a named pipe is 65536 bytes.

If the timeout specified in smb_timeout expires before smb_mdrcnt bytes of data can be read from
the pipe, the responder should return all the data that could be read.

Message Parameter Values

smb_tdscnt The number of data bytes to be written to the named pipe.

smb_mdrcnt The maximum number of data bytes that may be read from the named pipe
and returned in this transaction.

smb_setup[1] Interpreted as a priority (0 is default priority, 1023 is the highest priority). This
value is used by the server in determining which request to service when the
named pipe server process becomes available.

smb_tdrcnt The total number of bytes that were read from the pipe on the responder and
is returned to the requester. This is smaller than smb_mdrcnt if a timeout
occurred.

5.4.3 PeekNmPipe - Function 0x23

This named pipe transaction is used to read a pipe without removing the read data from the
pipe.

No parameters or data are sent by the requester, and no setup words are returned by the
responder.

IPC Mechanisms for SMB 113

Named Pipe Usage of SMBtrans SMB Protocol Specification for Named Pipes and Mailslots

Message Parameter Values

smb_mdrcnt The maximum number of bytes the client wants to peek from the pipe.

smb_setup[1] This should be the FID (handle) of the named pipe on which the peek should
be performed.

smb_prcnt Must be 6 (see smb_param).

smb_tdrcnt The number of bytes actually read from the pipe. May be smaller than
smb_mdrcnt if a timeout occurred.

smb_param In the response, this is formatted as follows:

pipecnt An unsigned word giving the number of bytes remaining in the
pipe.

msgcnt An unsigned word giving the number of bytes remaining in
current message.

pipestat A word indicating the status of the pipe. Possible values are:

— NP_DISCONNECTED (disconnected by server).

— NP_LISTENING (N/A not returned on client end of pipe).

— NP_CONNECTED (connection to server OK).

— NP_CLOSING (server end of pipe closed).

5.4.4 QNmPHandState - Function 0x21

This named pipe transaction returns pipe-specific state information. The values returned are
those originally established at the time of opening the pipe or by a subsequent SetNmPHandState.

Data is neither sent nor returned, and parameters are not sent. No setup words are returned.

Message Parameter Usage

smb_setup[1] This is the FID (handle) of the named pipe for which information should be
returned.

smb_tprcnt Must be 2.

smb_param A two-byte flag word defined as follows:

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
B E 0 0 T T R R ________ Icount ________

where:

B - Blocking 0 reads/writes block if no data available.
1 reads/writes return immediately if no data.

E - Endpoint 0 client end of pipe.
1 server end of pipe.

TT - Type of pipe 00 pipe is a byte stream pipe.
01 pipe is a message pipe.

RR - Read Mode 00 Read pipe as a byte stream.

114 X/Open CAE Specification (1991)

SMB Protocol Specification for Named Pipes and Mailslots Named Pipe Usage of SMBtrans

01 Read messages from pipe.
Icount 8-bit count to control pipe instancing (N/A).

A server must set the E bit to 0 when responding to this SMB because the
handle specified is the client end of the pipe.

5.4.5 QNmPipeInfo - Function 0x22

This named pipe transaction returns information about a pipe.

No data is sent by the requester, and no parameters or setup words are returned by the
responder.

Message Parameter Values

smb_mdrcnt The maximum amount of information data the requester would like returned.

smb_setup[1] The FID (handle) of the pipe for which information should be returned.

smb_param A signed integer indicating the level of information requested. Only level 1 is
currently defined.

smb_tdrcnt The length of the data being returned. This may be less than smb_mdrcnt.

smb_data The pipe information being returned. The format of the data depends on the
information level requested (in smb_param). The information may be truncated
if smb_mdrcnt is smaller than the number of bytes needed for the information.
For level 1, the data contains the following pieces of information, in this order
with no padding:

— An unsigned word containing the actual size of buffer for outgoing
(server) I/O.

— An unsigned word containing the actual size of buffer for incoming (client)
I/O.

— An unsigned byte indicating the maximum allowed number of instances of
this pipe.

— An unsigned byte indicating the current number of instances for this pipe.

— An unsigned byte giving the length of pipe name, including the
terminating null.

— An ASCIIZ string containing the name of the pipe, in the form
\PIPE\name.

5.4.6 RawReadNmPipe - Function 0x11

This named pipe transaction reads a named pipe without removing record information. Bytes
are read directly from a pipe, regardless of whether it is a message or byte pipe. For a byte
stream pipe, this transaction behaves exactly like SMBread. For a message pipe, this is exactly
like reading the pipe in byte stream read mode, except message headers can also be returned in
the buffer (note that message headers are always returned completely - never split at a byte
boundary).

No parameters are sent or received, no data is sent, and no setup words are received.

IPC Mechanisms for SMB 115

Named Pipe Usage of SMBtrans SMB Protocol Specification for Named Pipes and Mailslots

Message Parameter Values

smb_mdrcnt The number of bytes to be read from the pipe.

smb_setup[1] The FID (handle) of the named pipe to be read from.

smb_tdrcnt The number of bytes actually read.

smb_data The bytes read from the named pipe. Where more than one response is
required subsequent responses would indicate the data bytes remaining.

5.4.7 RawWriteNmPipe - Function 0x31

This named pipe transaction writes a named pipe without adding record information. It causes
bytes to be put directly into a pipe, regardless of whether it is a message or byte pipe. The data
includes message headers if it is a message pipe. This call ignores the blocking/non-blocking
state and always acts in a blocking manner. It returns only after all bytes have been written.

No parameters are sent in the request, and no data is returned in the response; also, no setup
words are returned.

Message Parameter Values

smb_mprcnt Must be 2.

smb_setup[1] This should contain the FID (handle) of the named pipe to which the bytes
should be written.

smb_data The data to be written.

smb_param In the response, this is an unsigned integer indicating the number of bytes
actually written to the pipe.

5.4.8 SetNmPHandState - Function 0x01

This named pipe transaction sets pipe-specific handle states. Only the read mode (byte versus
message) and blocking/non-blocking mode of a named pipe can be changed. Some
combinations of parameters may be illegal and rejected as an error.

No data is sent or returned, and no parameters or setup words are returned.

Message Parameter Values

smb_setup[1] The FID (handle) of the pipe whose state should be changed.

smb_param A two-byte bit field defined as follows:

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
B 0 0 0 0 0 R R 0 0 0 0 0 0 0 0

where:

B - Blocking 0 reads/writes block if no data available.
1 reads/writes return immediately if no data.

RR - Read Mode 00 Read pipe as a byte stream.
01 Read messages from pipe.

116 X/Open CAE Specification (1991)

SMB Protocol Specification for Named Pipes and Mailslots Named Pipe Usage of SMBtrans

5.4.9 TransactNmPipe - Function 0x26

This named pipe transaction combines a write and read operation on a named pipe. It provides
an optimum way to implement transaction-oriented, or request-reply, dialogues.

TransactNmPipe fails if the pipe currently contains any unread data or is not in message read
mode. Otherwise the call writes the entire request data bytes to the pipe and then reads a
response from the pipe and returns it in the data bytes area of the response protocol.

The state of blocking/non-blocking has no effect on this protocol; that is, the transaction does
not return until a message has been read from the pipe.

No parameters are sent or returned, and no setup words are returned.

Message Parameter Values

smb_mdrcnt The maximum amount of data that may be returned in this transaction. If the
response read from the pipe is larger than this value, [ERRmoredata] is
returned.

smb_setup[1] The FID (handle) of the named pipe on which the write and read should be
performed.

smb_data In the request, the data to be written; in the response, the data that was read.

5.4.10 WaitNmPipe - Function 0x53

This form of named pipe transaction waits for the availability of a named pipe instance.

DosWaitNmPipe allows an application to wait for a pipe when all available instances are
currently busy. This might be used when the error [ERRpipebusy] is returned from an attempt
to open a named pipe.

The server waits up to smb_timeout milliseconds for a pipe of the name given to become
available. Although the timeout is specified in milliseconds, by the time the timeout occurs and
the client receives the response indicating this fact, much more time than specified may have
occurred.

Both the request and response contain no data and parameter bytes. If no error is returned, the
pipe instance may be available. This request does not reserve the pipe, thus all waiting
programmes may race to get the pipe now available. The losers again get [ERRpipebusy] on
open attempts.

The smb_setup[1] field is interpreted as a priority. The priority values range from 0 (use server
default) to 1023 (highest priority). The server may use the priority in determining which process
to notify when a pipe becomes available.

IPC Mechanisms for SMB 117

SMB Protocol Specification for Named Pipes and Mailslots

118 X/Open CAE Specification (1991)

Chapter 6

SMB Protocols for Messaging

This chapter supersedes information given in Appendix C of the referenced document Protocols
for X/Open PC Interworking: SMB. Many terms are used within this section which are defined
in Protocols for X/Open PC Interworking: SMB.

6.1 Introduction
These commands provide a message delivery system between users of systems participating in
the network. The message commands cannot use LMX sessions established for the file-sharing
commands. A separate NetBIOS session, dedicated to messaging, must be established.

Messaging services should support message forwarding. By convention NetBIOS names used
for message delivery have a suffix (in byte 16) of 0x03; forwarded names have a suffix of 0x05.
The algorithm for sending messages is first to attempt to deliver the message to the forwarded
name, and only if this fails to attempt to deliver to the normal name. In all of the interfaces
where the NetBIOS name is to be supplied, the maximum number of bytes that can be supplied
for the name is 15. For additional information, see Appendix D of the referenced document
Revised XTI (X/Open Transport Interface) and Section 3.8 of Protocols for X/Open PC
Interworking: SMB.

The following sections make reference to typed buffers. Two buffer types are used within the
protocols described in this chapter: type 01 and type 04. For typed buffers, the first byte of the
buffer contains the type indicator (0x01 for type 01 or 0x04 for type 04). A type 01 buffer is a
buffer block where the first word after the type indicator contains the size of the data contained
in the buffer. A type 04 buffer indicates that the following data is an ASCIIZ string. For
additional information on typed buffers see Section 4.2.5 of Protocols for X/Open PC
Interworking: SMB.

IPC Mechanisms for SMB 119

SMBsends Specification SMB Protocols for Messaging

6.2 SMBsends Specification

6.2.1 SMBsends Detailed Description

This core request sends a short message (up to 128 bytes in length) to a single destination
system. This SMB may be sent from any system, client or server.

6.2.2 SMBsends Deviations

None.

6.2.3 SMBsends Field Descriptions

From Sender To Sender
Field Name Field Value Field Name Field Value
smb_com SMBsends smb_com SMBsends
smb_wct 0 smb_wct 0
smb_bcc min=7 smb_bcc 0
smb_buf[] smb_orig

smb_dest
smb_message

From Sender Description

smb_orig A type 04 buffer containing the name of the sender (maximum length is 15
bytes).

smb_dest A type 04 buffer containing the name of the destination (maximum length is
15 bytes).

smb_message A type 01 data block containing the message. The length of the data in the
block is 128 bytes or less.

6.2.4 SMBsends Error Code Descriptions

The following error codes indicate that the message was received with the appropriate
conditions:

DOS Class DOS Code Description
SUCCESS SUCCESS The request was successful.
SUCCESS BUFFERED The message has been buffered.
SUCCESS LOGGED The message has been logged.
SUCCESS DISPLAYED The message has been displayed.

Table 6-1 SMBsends Success Codes

120 X/Open CAE Specification (1991)

SMB Protocols for Messaging SMBsends Specification

The following error codes indicate a failure in the message transmission:

CAE Code DOS Class DOS Code Description
Non-specific error code.- ERRSRV ERRerror
Server is paused.- ERRSRV ERRpaused
Not receiving messages.- ERRSRV ERRmsgoff
No buffer space was available on the server; the
message was dropped.

ENOMEM ERRSRV ERRnoroom

Table 6-2 SMBsends Error Codes

6.2.5 SMBsends Preconditions

An LMX session is established.

6.2.6 SMBsends Postconditions

None.

6.2.7 Conventions

None.

IPC Mechanisms for SMB 121

SMBsendb Specification SMB Protocols for Messaging

6.3 SMBsendb Specification

6.3.1 SMBsendb Detailed Description

This Core SMB request sends a short message (up to 128 bytes in length) to every system in the
network. The broadcast mechanism is the responsibility of the transport layer and is outside the
scope of this document. Refer to Chapters 14 and 15 of Protocols for X/Open PC Interworking:
SMB.

6.3.2 SMBsendb Deviations

None.

6.3.3 SMBsendb Field Descriptions

From Sender To Sender
Field Name Field Value
smb_com SMBsendb (No response)
smb_wct 0
smb_bcc min = 8
smb_buf[] smb_orig

smb_dest
smb_message

From Sender Description

smb_orig A type 04 buffer containing the name of the sending system (maximum length
is 15 bytes).

smb_dest A type 04 buffer giving the destination name. This is always a string
containing only an asterisk string ("*").

smb_message A type 01 data block containing the message. This block is 128 bytes or less in
length.

6.3.4 SMBsendb Error Code Descriptions

Since no response is generated to this request, and since the broadcast service is not intended to
be reliable, no errors can be returned to the sender.

6.3.5 SMBsendb Preconditions

An LMX session is established.

6.3.6 SMBsendb Postconditions

None.

122 X/Open CAE Specification (1991)

SMB Protocols for Messaging SMBsendb Specification

6.3.7 Conventions

None.

IPC Mechanisms for SMB 123

SMBsendstrt Specification SMB Protocols for Messaging

6.4 SMBsendstrt Specification

6.4.1 SMBsendstrt Detailed Description

This core requests the beginning of a multi-part message. The total length of all segments in a
multi-block message must be no greater than 1600 bytes.

6.4.2 SMBsendstrt Deviations

None.

6.4.3 SMBsendstrt Field Descriptions

From Sender To Sender
Field Name Field Value Field Name Field Value
smb_com SMBsendstrt smb_com SMBsendstrt
smb_wct 0 smb_wct 1
smb_bcc min = 0 smb_vwv[0] smb_grpid
smb_buf[] smb_orig smb_bcc 0

smb_dest

From Sender Description

smb_orig A type 04 buffer containing the name of the sender (maximum length is 15
bytes).

smb_dest A type 04 buffer containing the name of the destination (maximum length is
15 bytes). The same constraint as for smb_orig applies.

To Sender Description

smb_grpid This is an unsigned short which contains the message group ID. The sender
places this value in all other SMB requests which form part of the multi-block
message started with this request.

6.4.4 SMBsendstrt Error Code Descriptions

The following error codes indicate that the message was received with the appropriate
conditions:

DOS Class DOS Code Description
SUCCESS SUCCESS The request was successful.
SUCCESS BUFFERED The message has been buffered.
SUCCESS LOGGED The message has been logged.
SUCCESS DISPLAYED The message has been displayed.

Table 6-3 SMBsendstrt Success Codes

124 X/Open CAE Specification (1991)

SMB Protocols for Messaging SMBsendstrt Specification

The following error codes indicate a failure in the message transmission:

CAE Code DOS Class DOS Code Description
- ERRSRV ERRerror Non-specific error code.
- ERRSRV ERRpaused Server is paused.
- ERRSRV ERRmsgoff Not receiving messages.

No buffer space was available on the server; the
message was dropped.

ENOMEM ERRSRV ERRnoroom

Table 6-4 SMBsendstrt Error Codes

6.4.5 SMBsendstrt Preconditions

An LMX session is established.

6.4.6 SMBsendstrt Postconditions

None.

6.4.7 Conventions

None.

IPC Mechanisms for SMB 125

SMBsendtxt Specification SMB Protocols for Messaging

6.5 SMBsendtxt Specification

6.5.1 SMBsendtxt Detailed Description

This core request is used to send a segment of a multi-block message. The message must have
been started by an SMBsendstrt request on the same LMX session with the same message group
ID.

Each segment of a multi-block message may be no longer than 128 bytes.

6.5.2 SMBsendtxt Deviations

None.

6.5.3 SMBsendtxt Field Descriptions

From Sender To Sender
Field Name Field Value Field Name Field Value
smb_com SMBsendtxt smb_com SMBsendtxt
smb_wct 1 smb_wct 0
smb_vwv[0] smb_grpid smb_bcc 0
smb_bcc min=3
smb_buf[] smb_message

From Sender Description

smb_grpid This unsigned short is the message group ID, as returned from the receiver in
its response to the SMBsendstrt request. This is used to identify the multi-
block message of which this segment is a part.

smb_message A type 01 data block containing the text of this segment of the multi-block
message.

6.5.4 SMBsendtxt Error Code Descriptions

The following error codes indicate that the message was received with the appropriate
conditions:

DOS Class DOS Code Description
SUCCESS SUCCESS The request was successful.
SUCCESS BUFFERED The message has been buffered.
SUCCESS LOGGED The message has been logged.
SUCCESS DISPLAYED The message has been displayed.

Table 6-5 SMBsendtxt Success Codes

The following error codes indicate a failure in the message transmission:

126 X/Open CAE Specification (1991)

SMB Protocols for Messaging SMBsendtxt Specification

CAE Code DOS Class DOS Code Description
Non-specific error code.- ERRSRV ERRerror
The Tree ID (TID) is not valid for this request.- ERRSRV ERRinvnid
Server is paused.- ERRSRV ERRpaused
Not receiving messages.- ERRSRV ERRmsgoff
No buffer space was available on the server; the
message was dropped.

ENOMEM ERRSRV ERRnoroom

Table 6-6 SMBsendtxt Error Codes

6.5.5 SMBsendtxt Preconditions

An LMX session is established.

6.5.6 SMBsendtxt Postconditions

None.

6.5.7 Conventions

None.

IPC Mechanisms for SMB 127

SMBsendend Specification SMB Protocols for Messaging

6.6 SMBsendend Specification

6.6.1 SMBsendend Detailed Description

This core request is used to indicate the end of a multi-block message. It is sent after all
segments of the message have been received and indicates the message is complete.

6.6.2 SMBsendend Deviations

None.

6.6.3 SMBsendend Field Descriptions

From Sender To Sender
Field Name Field Value Field Name Field Value
smb_com SMBsendend smb_com SMBsendend
smb_wct 1 smb_wct 0
smb_vwv[0] smb_grpid smb_bcc 0
smb_bcc 0

From Sender Description

smb_grpid This unsigned short is the message group ID, as returned from the receiver in
its response to the SMBsendstrt request. This is used to identify the multi-
block message of which this segment is a part.

6.6.4 SMBsendend Error Code Descriptions

CAE Code DOS Class DOS Code Description
ERRSRV ERRerror Non-specific error code.
ERRSRV ERRpaused Server is paused.
ERRSRV ERRmsgoff Not receiving messages.

Table 6-7 SMBsendend Error Codes

6.6.5 SMBsendend Preconditions

An LMX session is established.

6.6.6 SMBsendend Postconditions

None.

6.6.7 Conventions

None.

128 X/Open CAE Specification (1991)

SMB Protocols for Messaging SMBsendfwd Specification

6.7 SMBsendfwd Specification

6.7.1 SMBsendfwd Detailed Description

This core request is sent to a system to instruct it to accept messages sent to a forwarded name.
This request is sent on the same LMX session as other core SMB requests.

6.7.2 SMBsendfwd Field Descriptions

From Sender To Sender
Field Name Field Value Field Name Field Value
smb_com SMBfwdname smb_com SMBfwdname
smb_wct 0 smb_wct 0
smb_bcc min=2 smb_bcc 0
smb_buf[] smb_fwdname

From Sender Description

smb_fwdname A type 04 buffer containing the forwarded name on which the receiver should
be prepared to receive messages (maximum length is 15 bytes).

6.7.3 SMBsendfwd Error Code Descriptions

CAE Code DOS Class DOS Code Description
ERRSRV ERRerror Non-specific error code.
ERRSRV ERRrmuns Too many remote user names.

Table 6-8 SMBsendfwd Error Codes

6.7.4 SMBsendfwd Preconditions

An LMX session is established.

6.7.5 SMBsendfwd Postconditions

None.

6.7.6 Conventions

None.

IPC Mechanisms for SMB 129

SMBcancelf Specification SMB Protocols for Messaging

6.8 SMBcancelf Specification

6.8.1 SMBcancelf Detailed Description

This core request cancels the effect of a prior SMBsendfwd request. The receiving system no
longer accepts messages for the designated system name. This request is sent on the same LMX
session as other core SMB requests.

6.8.2 SMBcancelf Deviations

None.

6.8.3 SMBcancelf Field Descriptions

From Sender To Sender
Field Name Field Value Field Name Field Value
smb_com SMBcancelf smb_com SMBcancelf
smb_wct 0 smb_wct 0
smb_bcc min=2 smb_bcc 0
smb_buf[] smb_fwdname

From Sender Description

smb_fwdname A type 04 buffer containing the forwarded name on which the receiver should
be prepared to receive messages (maximum length is 15 bytes).

6.8.4 SMBcancelf Error Code Descriptions

CAE Code DOS Class DOS Code Description
ERRSRV ERRerror Non-specific error code.
ERRSRV ERRinvnid The Tree ID is not valid for this request.

Table 6-9 SMBcancelf Error Codes

6.8.5 SMBcancelf Preconditions

An LMX session is established.

6.8.6 SMBcancelf Postconditions

None.

6.8.7 Conventions

None.

130 X/Open CAE Specification (1991)

SMB Protocols for Messaging SMBgetmac Specification

6.9 SMBgetmac Specification

6.9.1 SMBgetmac Detailed Description

This core request returns the messaging (system) name of the receiving system. Its most
common usage is with forwarded names; a system could send an SMBgetmac request to a
forwarded name to find the identity of the system to which that name had been forwarded. This
name could then be used, for example, to cancel the forwarding of the original name (via
SMBcancelf).

6.9.2 SMBgetmac Deviations

None.

6.9.3 SMBgetmac Field Descriptions

From Sender To Sender
Field Name Field Value Field Name Field Value
smb_com SMBgetmac smb_com SMBgetmac
smb_wct 0 smb_wct 0
smb_bcc 0 smb_bcc min=2

smb_buf[] smb_name

To Sender Description

smb_name A type 04 buffer containing the actual messaging (system) name of the
receiving system (maximum length is 15 bytes).

6.9.4 SMBgetmac Error Code Descriptions

CAE Code DOS Class DOS Code Description
ERRSRV ERRerror Non-specific error code.
ERRSRV ERRinvnid The Tree ID in the request is invalid.

Table 6-10 SMBgetmac Error Codes

6.9.5 SMBgetmac Preconditions

An LMX session is established.

6.9.6 SMBgetmac Postconditions

None.

6.9.7 Conventions

None.

IPC Mechanisms for SMB 131

SMB Protocols for Messaging

132 X/Open CAE Specification (1991)

Glossary

8.3 format name
A name consisting of two components. A one to eight character name must be present and
an optional one to three character extension may be added. The name is separated from the
extension by a period (.).

ACL
(Access Control List) A list used to control access to a file or resource. The list contains the
user IDs and/or group IDs that are allowed access to the file or resource.

API
(Application Programming Interface) Function definitions for programmers.

ASCIIZ
A zero-terminated ASCII string.

broadcast
The function of delivering a given packet to all hosts that are attached to the broadcasting
delivery system. Broadcasting is implemented both at the hardware and the software
levels.

byte
8 bits.

CAE
Common Applications Environment.

chaining
Transmission of more than one SMB request in a single transport PDU.

client-server
The distributed system model where a requesting program (the client) interacts with a
program that can satisfy the request (the server). The client initiates the interaction and
may wait for the server to respond.

computernames
A name that refers to a system that may or may not be running services. These names have
a length restriction of 15 characters and map to NetBIOS names.

connection-oriented service
A service provided between two applications along which data is passed in a sequenced
and reliable way.

data encapsulation
The way a lower-level protocol accepts a message from a higher-level protocol and places it
in the data portion of the low-level frame.

daemon
A process that is not associated with any user. This sort of process performs system-wide
functions, for example, administration, control of networks and execution-dependent
activities.

domain name
A name used by the messaging IPC mechanism to group users within the network.

IPC Mechanisms for SMB 133

Glossary

DWORD
Consists of four bytes, ordered such that the low-order WORD precedes the high WORD.
See also WORD.

extended dialect
An LMX dialect providing extra services. See Protocols for X/Open PC Interworking: SMB.

FID
(File ID) A unique number associated with a file to enable it to be identified.

FIFO
(First In First Out) One of the file types supported on an XSI system. A FIFO, the alternative
name for a pipe, differs from a regular file because its data is transient; that is, once data is
read from the pipe it cannot be read again.

fork
The XSI system call which is used to create a new process. The process created is a
duplicate of the calling process.

GID
(Group ID) A unique number associated with a group to enable it to be identified.

ID
Identification.

interoperability
The ability of software and hardware on multiple machines and from multiple vendors to
communicate effectively.

IPC
(Interprocess Communication) Methods by which two or more processes can communicate,
for example, formatted data streams or shared memory.

IPC names
This is the collection of names for named pipes, mailslots and messaging. These names
must be consistent with the UNC format. That is, any 8.3 format name using characters that
are legal within the confines of the receiving system’s file system are acceptable. These
names are case-insensitive. The name can imply the existence of a directory. For example,
the mailslot name \MAILSLOT\GSP\SERVICE can be used to put the mailslot SERVICE
within the ‘‘directory’’ GSP. It should be noted, however, that no actual directory exists.
Therefore it is not necessary to create the ‘‘directory’’ name prior to the creation of the
mailslot name. Each implementation of LMX has some restriction on the length of an IPC
name. All LMX implementations guarantee that IPC names of at least 128 characters are
supported.

IPC$
The share name for LMX IPC resource that allows a client system to connect to named pipes
and mailslots.

LAN
(Local Area Network) A physical network that operates at a high speed over short
distances, for example, Ethernet.

LMX server
The implementation of the specification Protocols for X/Open PC Interworking: SMB on a
CAE system.

134 X/Open CAE Specification (1991)

Glossary

LMX server name
The name used by users of LMX servers to identify the specific LMX server desired.

LMX session
A logical communication connection between the LMX server and a client system where
LMX IPC or LMX data sharing can take place. Reference Protocols for X/Open PC
Interworking: SMB.

mailslot
A unidirectional form of communication between cooperating processes on a network.

mailslot class
An indication of the expected service of a mailslot. Class 1 is guaranteed delivery. Class 2
is not guaranteed delivery.

MBZ
(Must Be Zero) Reserved fields are often defined MBZ.

message group ID
A unique number associated with a group of messages to enable it to be identified.

messenger
A service that allows the messaging of LMX IPC to be received on a system.

messaging
A form of IPC between network systems that does not guarantee delivery of the message.

MID
(Multiplex Identifier) A number which uniquely identifies a protocol request and response
within a process.

multicast
A method by which copies of a single packet are passed to a selected subset of all
destinations. Broadcast is a special case of multicast whereby the subset of destinations
receiving a copy of the packet is the entire set of destinations.

named pipe
An interprocess communication mechanism defined by the extended SMB specification, as
defined in Protocols for X/Open PC Interworking: SMB. Also a FIFO.

NetBIOS
(Network Basic Input Output System) The de facto standard programmatic interface to
networks for DOS systems.

NetBIOS broadcast datagram
Similar to a NetBIOS datagram except the destination address indicates that all cooperating
systems on the network are to receive and process the packet. See Chapters 14 and 15 of
Protocols for X/Open PC Interworking: SMB.

NetBIOS datagram
A packet sent independently of the others in the network. It contains the source and
destination addresses as well as the data.

NetBIOS group names
Similar to a NetBIOS datagram except the destination address represents a group of
systems instead of a single system. See Chapters 14 and 15 of Protocols for X/Open PC
Interworking: SMB.

IPC Mechanisms for SMB 135

Glossary

NetBIOS names
Names that refer to NetBIOS naming conventions. Not all legal NetBIOS names are
necessarily legal server names. See Chapters 14 and 15 of Protocols for X/Open PC
Interworking: SMB.

NULL
This is a null pointer obtained by converting the number 0 into a pointer, for example, (char
*) 0. NULL is defined in the XSI header file <stdio.h>.

network
See LAN.

octet
8 bits.

PDU
(Protocol Data Unit) The basic unit of data manipulated by a protocol.

PID
(Process ID) The number assigned to a process so that it can be uniquely identified.

requester
An entity which initiates a transport connection with a responder. See also responder.

resource names
Names that refer to the public name by which a resource is made available on the LMX
server for access from client systems (for example, the IPC$ share).

responder
An entity with which an initiator wishes to establish a transport connection.

RFC
(Request for Comments) The name of a series of notes that contain surveys, measurements,
ideas, techniques and observations, as well as proposed and accepted Internet protocol
standards.

server names
Names that refer to LMX systems that are used to provide services.

SMB
(Server Message Block) A protocol which allows a set of computers to access shared
resources as if they were local. The core protocol was developed by Microsoft Corporation
and Intel, and the extended protocol was developed by Microsoft Corporation.

share security
A form of LMX security where permissions and protection on data are managed by
knowledge of the password to a share name.

TBD
(To Be Defined) Further detail will be provided at a later time.

TID
(Tree connect IDentifier) A TID uniquely identifies a resource connection between an LMX
client and an LMX server.

type byte
The first byte of a typed buffer. See Protocols for X/Open PC Interworking: SMB.

typed buffer
A buffer where the first byte indicates the type of data which follows. For example, the first

136 X/Open CAE Specification (1991)

Glossary

byte could indicate an ASCIIZ string, or a buffer where the size of the data is contained in
the WORD immediately following the type byte.

UID
(User ID) A token representing an authenticated <username, password> tuple. UIDs are
registered by the redirectors.

UNC
(Uniform Naming Convention) Names constructed from names following an 8.3 format and
separated by a backslash (\).

user names
Names that refer to individual users of the LMX services.

user security
A form of LMX security where individual users on the network are given a UID and access
permissions are based on this UID.

WORD or word
Consists of two bytes, ordered such that the low-order byte precedes the high byte.

IPC Mechanisms for SMB 137

Glossary

138 X/Open CAE Specification (1991)

Index

<lmerror.h>..16
<mailslot.h>...18
<message.h> ..19
<nmpipe.h>..20
8.3 format name ..133
ACL ...133
API...133
ASCIIZ ..133
broadcast ..133
byte ..133
CAE ...133
chaining ..133
client-server ...133
computernames ..133
connection-oriented service133
daemon ...133
data encapsulation ...133
domain name...133
DosBufReset() ...34
DosCallNmPipe()...35
DosClose() ...37
DosConnectNmPipe()...38
DosDeleteMailslot()...22
DosDisconnectNmPipe()..40
DosDupHandle()..41
DosMailslotInfo()...23
DosMakeMailslot() ..25
DosMakeNmPipe()..42
DosOpen() ...45
DosPeekMailslot()..27
DosPeekNmPipe() ...47
DosQFHandState() ..49
DosQNmpHandState()...50
DosQNmPipeInfo() ...52
DosRead() ..54
DosReadMailslot() ...29
DosSetFHandState() ..56
DosSetNmpHandState()...57
DosTransactNmPipe()...58
DosWaitNmPipe() ...60
DosWrite() ...61
DosWriteMailslot() ..31
DWORD ...134
extended dialect..134
FID ...134
FIFO...134

fork...134
GID ..134
ID..134
interoperability ...134
IPC ...134
IPC names ..134
IPC$...134
LAN...134
LmForkNmPipe()...63
LMX server...134
LMX server name ...135
LMX session...135
mailslot ...135

security ...6
mailslot class ...135
MBZ...135
message group ID...135
messaging...135
messenger...135
MID..135
multicast ...135
named pipe ..135

modes..9
security ...8
states..10

NetBIOS..135
NetBIOS broadcast datagram..............................135
NetBIOS datagram...135
NetBIOS group names...135
NetBIOS names...136
NetMessageBufferSend()65
network...136
NULL ..136
octet ...136
PDU ...136
PID...136
requester...136
resource names ...136
responder ...136
RFC ..136
server names..136
share security...136
SMB..136
TBD..136
TID...136
type byte...136

IPC Mechanisms for SMB 139

Index

typed buffer ...136
UID ..137
UNC ..137
user names ...137
user security...137
WORD or word...137

140 X/Open CAE Specification (1991)

