
Distributed Computing Page 1
The Open Group July 1998

The Open Group – Discussion Paper

Distributed Computing for the Extended Enterprise –
Challenges and Directions, July 1998

Executive Summary
This discussion paper is concerned with distributed computing for the extended enterprise. It
addresses integration and interworking of a variety of software deployed to handle distributed
computing in a heterogeneous network environment. It compares and contrasts four different
technologies: CORBA, DCE, DCOM, and Java. It also looks at the development of high-level
services such as Business Objects. The paper is not exhaustive nor is it complete in all areas; its
purpose is to stimulate discussion. It will be reviewed and improved in the light of feedback.

The document is written based on the notion that enterprises will need to employ multiple
middleware technologies. There is no intent to provide advice that would inform the selection
or purchase of a particular middleware. The technical annex is there to show the differences
between the technologies using our layered model to highlight the problems of interworking.
We would seek coallescence rather than divergence in the future.

We should stress The Open Group position in relation to Distributed Computing Services. The
reality is that there are different technologies deployed. Most enterprises will have to live with
this diversity. We therefore have to be concerned with the questions of co-existence and
interoperability, working to facilitate co-operation between the various technologies and
encouraging standardization. An effective program in this area will allow customers to get the
maximum business value from distributed computing.

We use a simple layered model to compare the different technologies. The paper identifies
challenges in working with multiple technologies. Where similar services exist they tend to be
incompatible, which leads to security, naming, and management problems. Interoperability
problems are also identified at the transport, infrastructure, and language levels.

The paper also identifies other problems related to performance and the maturity of the
technologies. Finally the paper highlights the business need for Business Objects or their
equivalent to aid enterprises in achieving their goals of reduced cost, increased flexibility, and
adaptability to change in a world involving distributed computing within and beyond the
enterprise.

Distributed Computing Page 2
The Open Group July 1998

Contents
Executive Summary... 1
Contents ... 2
Introduction.. 3
The Need for Distributed Computing.. 4

Role of Middleware ... 5
Common Business Objects and Business Object Facility... 5

Distributed Computing – The Choice of Technologies... 6
Challenges .. 9

Qualities .. 9
Adaptability .. 9
Availability .. 9
Integrity .. 9
Interoperability ... 9
Manageability ... 9
Maturity.. 10
Portability ... 10
Productivity... 10
Scalability.. 10
Security... 10

Layers .. 10
Services ... 10
Transport .. 11
Language.. 11
Infrastructure .. 12

Conclusions and Recommended Actions... 12
Four Technologies... 14

What is CORBA? .. 14
What is DCE?... 14
What are COM and DCOM?... 14
What is the Java Platform and Java/RMI? ... 15
The Marketplace.. 15
Convergence ... 16
CORBA Implementations ... 16
DCE Implementations.. 17
DCOM Implementations .. 17
Java/RMI Implementations... 17

Comparison .. 18
Common Features ... 18
Procedural Programming versus Object-Oriented Programming.. 18
Characteristics ... 19

Distributed Computing Page 3
The Open Group July 1998

Introduction

This discussion paper is concerned with distributed computing for the extended enterprise. It
addresses integration and interworking of a variety of software deployed to handle distributed
computing in a heterogeneous network environment. It compares and contrasts four different
technologies: CORBA, DCE, DCOM, and Java. It also looks at the development of high-level
services such as Business Objects. The paper is not exhaustive nor is it complete in all areas; its
purpose is to stimulate discussion. It will be reviewed and improved in the light of feedback.

We should stress The Open Group position in relation to Distributed Computing Services. The
reality is that there are different technologies deployed. Most enterprises will have to live with
this diversity. We therefore have to be concerned with the questions of co-existence and
interoperability, working to facilitate co-operation between the various technologies and
encouraging standardization. An effective program in this area will allow customers to get the
maximum business value from distributed computing.

Businesses are moving to embrace Network Computing (the subject of a recent Open Group
Discussion Paper 1). They are looking to integrate business systems across the enterprise that
extends from the in-house network (or Intranet), across the Internet to the Extranet and
beyond! The enterprise needs to employ diverse IT resources extending from the mainframe to
palm top and must therefore harness multiple technologies such as CORBA, DCE, DCOM, and
Java, and others as appropriate.

It is unlikely that any one system or technology can handle all the user requirements, each has
its strengths and weaknesses. In any case, mergers and acquisitions bring about the need to
integrate different systems, including legacy systems. It is just not practical to rebuild from
scratch, neither is it practical to dictate the choice of technologies or solutions to business or
trading partners, and customers and suppliers, who need to communicate for effective business
operations.

Some of the material for this paper is drawn from key reports and it is appropriate to
acknowledge these here. The first report comes from the Open Business Object Environment
(OBOE) project.2 The Mitre Corporation 3 is responsible for the second report. Although a little
dated, the Mitre Report helped in structuring this document prior to in-house review and
update.

This paper has been prepared to assist in identifying the issues; the challenges and the
opportunities in the area of distributed computing. The discussion at The Open Group Member
Conference, especially the meeting in Miami this July, will help us fill out the detail. You will
find some questions for consideration at the end of each chapter. We hope you will participate
in the discussion by emailing ogpubs@opengroup.org.

1 The Open Group Discussion Paper on Network Computing – A New Business Paradigm was
published in April 1998 and is available in hardcopy or from the Web at
http://www.opengroup.org/pubs/catalog/w801.htm.
2 OBOE is a consortium of partner companies brought together under the European Union’s
ESPRIT program to investigate and develop business systems that take advantage of the
principles of Object-Oriented Technology. The partners are Geco, LogOn, Prism, SSA, Sintef,
and The Open Group and the report D5.2.1-1 Business Object Facilities: A Comparative Analysis
(Version 1.0 (Draft)) was published in April 1998.
3 Comparing DCE and CORBA. Mitre Document MP 95B-93 (March 1995) available at
http://www.mitre.org/research/domis/reports/DCEvCORBA.html.

Distributed Computing Page 4
The Open Group July 1998

The Need for Distributed Computing
Before examining the technical solutions, we should be clear as to the general requirements for
Distributed Computing. What are the business requirements and the underlying problems
enterprises are looking to solve?

Where customers need to deploy multiple middleware technologies their first requirement is for
them to interoperate. Basic services (naming, security, time, distributed file, etc.) need to be
compatible across the technologies.

Customers also need to have a wide range of services, including higher-level services for
business operations, enabling them to reduce the cost of software as well as to work more
efficiently

Beyond this there is a clear movement toward the development of higher-level services such as
Business Objects. These have characteristics that go well beyond the usual services, such as a
security service. They offer a solution to a whole business function and integrate the required
components of that function. This is illustrated, for example, in a business object for handling
the acquisition of stocks and shares. The user requirement is for a high volume automated
service which involves the verification of customer details, details of the availability and price of
the stock, interaction with the banks concerned to check credit and initiate a bank transfer,
notification of the acquisition to the company, etc. etc. A business object would integrate
these tasks to ensure a secure and reliable transaction. It would also handle failures and
exceptions to preserve the integrity. There are no shortages of examples.

One of the main drivers for this kind of solution is the evolution of business processes. Business
managers look to integrated business solutions taking account the life cycle management,
physical distribution of activities, speed of response to changing circumstances (agility), and of
coping with mergers and acquisitions. They want applications that are easier to maintain and
evolve. They need a greater degree of compatibility between their systems and those of their
partners, suppliers, and customers. Hence the concept of the Business Objects covering all the
participants/needs for the activity.

A Business Object is a representation of a business concept (physical or procedural) active in a
business domain, including at least its business name and definition, attributes, behavior,
relationship, rules, policies, and constraints. A Business Object may represent, for example, a
person, place, and event or a business process such as an employee personnel file, an invoice, a
personnel timing procedure,or payment procedure.

An object-oriented approach clearly fits the business environment of the future and ties in with
the interest in object-oriented applications and vice versa. There can be direct mapping
between the definition of a Business Object and its implementation. The methodologies for
this are already in widespread use.

We must recognize that messaging, transactions, and workflow are also prevalent in
distributed computing systems. In highlighting the need to handle business objects we must
preserve the qualities which make distributed, necessary to the business environment, including
portability across systems, scalability, security and location independence.

The IT mission needs to match the business requirements of the enterprise. This must be borne
in mind as we approach discussion of distributed computing requirements. In parallel with this
is the constant demand for de-skilling, both in the enterprise and in its computing
environment. The flexibility and value of business objects and their re-use can make a big

Distributed Computing Page 5
The Open Group July 1998

impact in this area. Why write and maintain custom-made applications when one could deploy
a common business object? Why set up communication channels with one to one interfaces
involving specific hand holding, security, and other risks when one could deploy a standard
business object?

Finally, we should accept the need to cope with legacy environments. Enterprises have to
evolve business operations and require systems that interact with legacy systems and the data
embedded in them.

Role of Middleware
Middleware products are infrastructures needed for the integration of different applications
and legacy components in heterogeneous and distributed environments. Middleware products
hide much of the complexity involved in resolving this heterogeneity and distribution.
Distributed middleware provides features that can’t be provided on a single system: naming
and location services, location-independent remote execution, data transfer, synchronization,
and security capabilities.

Common Business Objects and Business Object Facility
Further information on Business Objects can be found on the OMG web site at
http://www.omg.org/library/schedule/Business_Objects_RFP.htm.

Some questions: Are the business requirements as stated above? What are the
relative priorities? How far can one generalize?

Distributed Computing Page 6
The Open Group July 1998

Distributed Computing – The Choice of Technologies
It is possible to construct a long list of technologies that can be employed to enable and
manage a distributed computing environment. Any list must include CORBA, DCE, DCOM, and
Java. As explained in the introduction we have concentrated on these four technologies at this
time. Other technologies can be brought into the equation. These include MQ-Series, MS-
Messaging, and Pipes. We recognize that other relationships concerned with messaging and
transactions, such as that between CICS and DCE, might be drawn into the equation. We have
concentrated on just four technologies since these are the predominant technologies in the
market today and a comparison of these highlights the differences sufficiently for the purposes
of this paper.

We have developed a greatly simplified diagram as the basis of comparison. A layered model
shows the middleware sitting between the platform and the application. The language,
transport, and some proportion of the infrastructure layer can be regarded as part of the
platform. Above this we have a number of services and a relatively new class of business
objects.

This diagram allows us to examine the various technology solutions for distributed computing.
We can show how each technology caters for the requirements at each level. Again, a
simplified matrix brings out the different approaches for each technology. Note the matrix
could be extended for other technologies. Further details are provided in the technical annex
to this paper that includes a more complete listing of the services. The labels refer to the
names of well-known acronyms or products.

Distributed Computing Page 7
The Open Group July 1998

These diagrams provide a different viewpoint from that of the IT DialTone Architecture
Reference Model. This reference model is shown below with two arrows superimposed. The
arrow show the overall position of distributed computing services above communication
services and the position of the various services. The technologies which are the basis of
discussion in this paper can obviously be mapped onto the IT DialTone Architecture. We have
chosen the simple diagram above as the best way of comparing the technologies and
stimulating discussion at this stage.

Distributed Computing Page 8
The Open Group July 1998

Distributed Computing Page 9
The Open Group July 1998

Challenges
Our matrix with the four technologies illustrates clearly that we have divergent technologies
based on different paradigms and approaches. We could add to the mix by adding the other
technologies. At this stage we can begin to assess the challenges presented for those who
need to work in a distributed computing environment with multiple technologies.

Most customers do not have the luxury of simply selecting a single distributed computing
technology. If they did, then some of the material presented below might help. More likely
customers need applications that collectively depend on more than one technology approach.
In this case, an understanding of the differences between the technologies and an ability to
deal with diversity is the greater challenge.

We have looked at the challenges in two ways: by references to the qualities referred to in the
IT DialTone Architecture and by reference to the layer diagram in this paper.

Qualities
One way of looking at the challenges for distributed computing is to look at the “..ilities”
presented in the IT DialTone Architecture.

These qualities include manageability, interoperability, scalability, and usability. We discuss
only a few of these below.

Adaptability
We mentioned the need for adaptability in relation to changing business circumstances. The
distributed computing systems must also cope with change.

Availability
Customers should be concerned about the availability and reliability of systems and services.
This will be impacted by the decision to employ multiple technologies where problems of
availability may be compounded.

Integrity
The technologies, when working together in a multiple environment, must ensure message and
data integrity. For example, differences in naming services can result in loss of resources. See
the discussion on naming services below.

Interoperability
Given technical diversity and the need to employ more than one distributed computing
technology, interoperability is the key issue.

Manageability
Management of distributed computer systems is costly. Systems management ranks amongst
the most important benefits deriving from network computing and the use of network
computers since it takes responsibility away from the user. However, there must be a question

Distributed Computing Page 10
The Open Group July 1998

mark over the ability to manage systems in a distributed computing environment where
multiple technologies are deployed. This is highlighted in the discussion of services below.

Maturity
Customers are rightly concerned about the maturity of the technologies that they acquire.
Many will prefer not to be pioneers. They will also wish to see a range of suppliers, the
availability of skills, and they will welcome the opportunity to learn from the experience of
other customers. The future development path for the technology will also be a factor.

Portability
Portability is less of a problem than in the past. See the discussion on languages below.

Productivity
Enterprises are rightly concerned to improve productivity. This applies to the business
processes that need the right IT solutions. It also applies to the cost and maintenance of
software development.

Scalability
Customers, especially those from large enterprises or concerned with high volume traffic,
perhaps across global networks, will be concerned with the performance of the technologies
especially when present and interoperating in a multiple technology environment.

Security
Absolute security is probably unobtainable, however the highest level of security is needed in
today’s business environment and solutions must be found for handling security across systems
that employ multiple technologies. Security services differ for each technology. See the
discussion on services below.

Layers
We have identified some of the challenges by reference to our layered diagram and the matrix.

Services
Each technology offers a range of services differing from one another. Some provide or have
the potential to provide a rich variety of services.

The key question is whether in a distributed environment where one or more of the
technologies are employed one can have satisfactory interworking of services. Three areas
come immediately to mind: security, naming, and system management.

Where two or more middleware technologies are employed each has its own security service.
They are not compatible. This means that system administrators and users have to log into
each system. This gives rise to a multiplicity of passwords, etc., and makes single sign-on
virtually impossible. One has to ask whether one can really secure the system where more than
one security service is in use. What is the solution?

A second area of difficulty arises with naming services. Can one provide a satisfactory solution
where there is more than one naming service in place? Different naming services across the
systems mean that resources may not be identifiable; they may even get lost.

Distributed Computing Page 11
The Open Group July 1998

System management is that much more difficult with multiple technologies. The complexity
resulting from more than one environment translates into increased costs and the need for a
greater level of knowledge and skill.

Some Questions: What are the limitations caused by the multiplicity of middleware
technologies? Our problem is that services of the same type differ from one
technology to another. Can they be harmonized?

Transport
The specifications for Java RMI and CORBA IIOP need to be converged to meet the goal of
interoperation. Most systems employ TCP/IP, the concern is how, for example, they implement
RPC. These differences can probably be managed in the server, but in the client these
differences ensure that multiple stacks have to be present and this causes an overhead.

Question: Can we avoid different solutions at the Transport level?

Language
Nowadays language differences do not seem to be much of a problem in relation to distributed
computer systems. Those deployed, with the exception of Visual Basic, are platform
independent. Compilers are readily available.

The choice of language relates more to the strengths and weakness of each. Java has the virtue
of portability, ease of coding, and automatic storage management. There are questions of
performance. C++ provides good performance without recourse to an interpretive runtime
compiler but it requires a high skill level from the programmer.

Languages are in general standardized, and implementations adhere to these standards and are
widely available on key platforms. However, there are often a great number of proprietary
extensions.

For example, Visual Basic is easy to use, is graphically based, and analogous to scripting
languages that many users relate to. However, Visual Basic is not platform-independent.

Java has gained widespread market acceptance since 1997 for the following reasons:

• Java source code is highly portable and will progress rapidly to a formal standard.
• The same byte code can be executed by different virtual machines on a wide variety of

platforms.
• Its automatic storage management largely eliminates a primary cause of design errors in

C++.
• It fully supports object-oriented design techniques.
• Its object model is claimed to be cleaner and simpler than that of C++.
• It comes with powerful APIs for user interface construction, network access, database

access, etc.
• It supports multi-threading.
• It supports distribution.
• Its security model allows for safe loading of programs across a public network.

Distributed Computing Page 12
The Open Group July 1998

Whilst there are aspects of language choice that make distributed computing easier to
implement, it is not generally seen as a constraint on the choice of distribution technology.

Some questions: To what extent is the choice of language a factor in a distributed
computing environment based on multiple technologies? Are there significant
constraints?

Infrastructure
CORBA is language and platform-independent and by now well established. ORB
implementations are not necessarily platform-independent, vendors implement extensions to
the basic standard and can lock customers into a particular environment. COM is extremely
well established and is language independent. It is available for Window 95, NT, UNIX and
Mac.

The main problem at this level is interoperability between the technologies. Some form of
bridge can provide a solution at this level although the key concern would be the
incompatibility of the services (see above). Bridging solutions do not provide a complete
answer to the problem of deploying multiple technologies. The convergence of Java/RMI and
CORBA through the development of an open standard for interoperability is to be welcomed
and shows a determination to solve the problems.

Question: How far is it worth pursuing bridging solutions at the infrastructural level
without compatible services to run on top of them?

Conclusions and Recommended Actions
Enterprises need to work with multiple technologies and require that they interoperate with
one another.

We need a careful analysis of the technologies to establish how they can be made to
interoperate effectively and we need to see coalescence rather than divergence. In particular
we need to see like services working in the same way.

Enterprises are looking for high-level component orientation such as is promised by Business
Objects. They need technologies that can support these working across multiple technologies.
Of course, business objects themselves need to be portable across the underlying
implementations to allow independent evolution of the customer’s application software and
the hardware, OS,and middleware that support it.

There is a case for greater awareness and training for those concerned with deploying multiple
technologies. Sharing of experiences and assistance in weighing up and making judgements
concerning mixed environments is called for.

The subject needs to be looked at in relation to the IT DialTone Architecture and Vision and also
set against developments in Network Computing.

Once again there is a case for greater standardization at the protocol and API level.

Some questions: How can we prepare and present information to aid customers in
solving the problems arising from the deployment of multiple technologies? How do

Distributed Computing Page 13
The Open Group July 1998

we encourage the vendors to co-operate and adopt common practices and standards?
How do we get convergence rather than divergence?

Distributed Computing Page 14
The Open Group July 1998

TECHNICAL ANNEX

Four Technologies

As an introduction to each of technologies we quote from the vendor web sites giving a high-
level introduction to their offering. These pieces reveal some of the underlying rationale as well
as the original purpose.

What is CORBA?
“The Common Object Request Broker Architecture (CORBA), is the Object Management Group’s
answer to the need for interoperability among the rapidly proliferating number of hardware
and software products today. Simply stated, CORBA allows applications to communicate with
one another no matter where they are located or who has designed them. CORBA 1.1 was
introduced in 1991 by the Object Management Group (OMG) and defined the Interface
Definition Language (IDL) and the Application Program Interface (API) that enable client/server
object interaction within a specific implementation of an Object Request Broker (ORB). CORBA
2.0 adopted in December 1994 and CORBA 2.2 adopted in February 1998 defines true
interoperability by specifying how ORBs from different vendors can interoperate.” Further
information is available at http://www.omg.org/about/.

IIOP (Internet Interoperability ORB Protocol), the CORBA interoperability protocol, has been
demonstrated to work and is actively used to achieve interoperability of applications that work
on different ORBs.

What is DCE?
“The OSF Distributed Computing Environment (DCE) is an industry standard, vendor-neutral set
of distributed computing technologies. It provides security services to protect and control
access to data, name services that make it easy to find distributed resources, and a highly
scalable model for organizing widely scattered users, services, and data. DCE runs on all major
computing platforms and is designed to support distributed applications in heterogeneous
hardware and software environments. DCE is a key technology in three of today’s most
important areas of computing: security, the World Wide Web, and distributed objects.” Further
information is available at http://www.camb.opengroup.org/dce/.

What are COM and DCOM?
“The Component Object Model (COM) is a software architecture that allows applications to be
built from binary software components. COM is the underlying architecture that forms the
foundation for higher-level software services, like those provided by OLE. OLE services span
various aspects of commonly needed system functionality, including compound documents,
custom controls, inter-application scripting, data transfer, and other software interactions.

The Distributed Component Object Model (DCOM) is a protocol that enables software
components to communicate directly over a network in a reliable, secure, and efficient manner.
Previously called "Network OLE," DCOM is designed for use across multiple network transports,
including Internet protocols such as HTTP. DCOM is based on The Open Group's DCE RPC
specification and will work with both Java applets and ActiveX components through its use of
the Component Object Model (COM). For example, a developer could use Java to build a Web

Distributed Computing Page 15
The Open Group July 1998

browser applet that calculates the value of a portfolio of securities, using DCOM to
communicate stock values to the applet in real time over the Internet."

What is the Java Platform and Java/RMI?
“The Java platform is a fundamentally new way of computing, based on the power of networks
and the idea that the same software should run on many different kinds of computers,
consumer gadgets, and other devices. With Java technology, you can use the same application
from any kind of machine – a PC, a Macintosh computer, a network computer, or even new
technologies like Internet screen phones. The idea is simple: Java software works just about
everywhere – from the smallest devices to supercomputers. Java technology components don’t
care what kind of computer, TV, or operating system they run on. They just work, on any kind
of compatible device that supports the Java platform.” Further information is available at
http://www.javasoft.com/nav/.

Java Remote Method Invocation (Java/RMI) was introduced with Java 1.1. It supports the
invocation of methods from non-local Java objects. Hence Java has distributed computing
capabilities that are comparable to those of CORBA.

The Marketplace
The Object Technology market 4 has been boosted during the last two years by the boom of the
Internet. A joint survey of Cutter Information Corporation and the OMG has revealed that Java
has brought object-oriented programming to the Web. An increasing number of Inter- and
Intranet projects are being developed in pure Java. Enterprise JavaBeans are about to replace
previously developed component technologies such as OpenDoc. Support for Java persistency
has increased demand for object databases, object relational databases, or object-persistency
frameworks for relational databases. Execution of Java applications has created a demand for
new operating system products such as Web servers and browsers. The need for integrating
new Java components with legacy components that exist in almost every enterprise has
doubled the size of the market for object-oriented middleware.

There has also been a large increase in business components written in visual basic. There are
large numbers of VB components available both on the Web and through third-party suppliers.
VB may be the most common form of business object programming in the financial community
where “VB rules”.

Object-Oriented Middleware products are designed to integrate different legacy applications
and legacy components in heterogeneous and distributed environments, hiding the complexity

4 Market Segmentation: (a) Object-Oriented Middleware – products that facilitate the
integration of heterogeneous and distributed applications, (b) Object-Oriented Application
Development – products that achieve the rapid development of applications from high-level
descriptions, (c) Object-Oriented Programming Languages – products that support the creation,
compilation and interpretation of object-oriented programs, (d) Object-Oriented Operating
Systems – products, such as Web servers and Web browsers that facilitate execution of object-
oriented programs, (e) Object-Oriented Case Tools – products that support the analysis and
design of object-oriented programs, (f) Object-Oriented and Object-Relational DBMSs –
products that achieve persistent storage, reliable updates and queries of object states, and (g)
Object-Oriented Component Technology – products that support the development of
applications by integrating existing components. It follows that categories (a), (g),
 and (f) are the most directly related to distributed computing.

Distributed Computing Page 16
The Open Group July 1998

from the user. They treat applications that need to be integrated as objects that have defined
interfaces. An Interface Definition Language (IDL) is used to define the services that an
application exports to other applications.

Key players in the object-oriented middleware market 5 are Microsoft with DCOM and around a
dozen vendors with implementations of CORBA and Java.

Convergence
In the near future, a CORBA specification will provide for interworking between RMI and
CORBA’s IIOP protocol. This will enable CORBA clients to invoke methods from Java objects via
RMI or vice versa. Moreover, several CORBA vendors integrate their implementations with
transaction monitors. 6 In addition, middleware products will be integrated into message-
oriented middleware systems. 7 DCE RPC is the basis of the Encina Transaction monitor used in
the portable CICS implementation supported by several suppliers.

Microsoft integrates DCOM with MTS, the Microsoft Transaction Server product. In the future,
it will be integrated with MSMQ, Microsoft’s Message Queue Server, which will allow direct
access to MTS applications.

These developments open new application areas for object-oriented middleware applications in
which reliability, availability, and performance requirements are predominant.

The OMG has also adopted an Environment-Specific Interoperability Protocol (ESIOP) for
interoperability between ORBs based on OSF/RFCs, and it has defined an RPC interoperability
specification that allows interoperability between CORBA objects and OSF/RPC programs.

CORBA Implementations
Vendor Product URL

BEA ObjectBroker http://www.europe.digital.co
m/info/objectbroker

Expersoft PowerBroker http://www.expersoft.com/pr
od_ser/

HP ORBPlus http://www.dmo.external.hp
.com/gsy/orbplus.html

IBM SOM/DSOM http://www.software.ibm.co
m/sw-
guide/enu/ad/ad129.htm

ICL DAIS http://www.icl.co.uk/product
s/dais

IONA Orbix, OrbixWeb http://www.iona.com/Orbix/.
Inprise Visigenic/C++,

Visigenic/Java
http://www.visigenic.com/pr
od

5 The OBOE report (see footnote on page 3) suggests that since RMI has been re-focused as a
pure Java implementation rather than a CORBA implementation, it does not solve the
heterogeneity problem and, therefore, is not a real middleware product.
6 The Iceberg project at BEA integrates ObjectBroker, which BEA acquired from Digital, with
Tuxedo.
7 Examples include IBM’s integration of MQSeries with DSOM.

Distributed Computing Page 17
The Open Group July 1998

ParcPlace Dist. Smalltalk http://www.parcplace.com/p
roducts/dst

DCE Implementations

Vendor Product URL

Compaq DCE Product Family http://www.digital.com/dce
Dascom Interverse and DCE Cell

Manager
http://www.dascom.com

Gradient Technologies NetCrusader and PC-DCE
Product Families

http://www.gradient.com

Hewlett Packard DCE Product Family http://www.hp.com/go/dce
IBM DCE Product Family http://www.software.ibm.co

m/enetwork/dce
Siemens Nixdorf Open Enterprise Computing http://www.siemensnixdorf.c

om/servers/dce
The Open Group DCE (licensing) http://www.opengroup.org/

dce

DCOM Implementations
DCOM is ubiquitous.

Vendor Product URL

Microsoft COM/DCOM http://www.microsoft.com/c
om

Software AG EntireX DCOM http://www.sagus.com
The Open Group DCOM (licensing) http://www.opengroup.org

Java/RMI Implementations
Java/RMI has been adopted by a number of companies as a strategic development language.
These companies include Oracle, Netscape, IBM, Lotus and Microsoft. 8

Some questions: How important is it to consider maturity, range of product, and
support in deciding which technology to employ?

8 Microsoft have not implemented all the facilities of Java/RMI and are in a legal dispute with
the licensor Sun Microsystems. They are using the name J++ for their implementation.

Distributed Computing Page 18
The Open Group July 1998

Comparison

Common Features
These are all middleware products that are designed to facilitate the integration of
heterogeneous and distributed applications. They employ an Interface Definition Language
(IDL) to define services that an application exports to other applications.

Procedural Programming versus Object-Oriented Programming.
The majority of technologies discussed in this paper employ object-oriented programming
techniques. DCE is the exception since it was designed to support procedural programming.
However, DCE RPC is designed to be object-neutral. It supports several object programming
models, including CORBA, C++, and DCOM. The Mitre Report from 1995 considers that such a
fundamental difference ultimately influences the choice of technology for distributed
computing. However, nothing is so “black and white”.

Object-oriented programming environments, supported by CORBA, are usually characterized by
their support for:

• Encapsulation of data and functions that manipulate the data into objects. This enforces
data hiding, since the only way to access an object’s data is through the operations in the
object’s public interface.

• Abstraction of common features shared by objects into classes. A class definition described
the data associated with each instance of the class, defines the set of operations that can
be invoked on an instance of the class, and prescribes the functions that are executed in
response to requests for those operations.

• Inheritance of interfaces and implementations. This is the mechanism that supports the
specialization or refinement of classes into subclasses. It is also one example of reuse in
object-oriented programming.

• Polymorphism, which is the ability for a request for a specific operation to be handled
differently depending on the type of object on which it is invoked. For example, subclasses
of a common superclass may override functions defined by the superclass to differentiate
how instances of the subclasses and superclass behave. 9

Distributed procedural programming environments, supported by DCE, support a different set
of capabilities than those of object-oriented programming environments. The basic approach
to a procedural program is to:

1. Partition the program’s data and the functions that manipulate the data into servers,
2. Distribute those servers across multiple hosts, and
3. Change function calls to RPCs, as appropriate.

9 In addition to these common characteristics, object-oriented programming environments
usually support a style of programming in which (a) not only new objects, but new classes may
be created at runtime, (b) late binding of operation invocations to function calls allow
programs to be written without regard for the types of objects they will manipulate, (c) object
references are passed among objects freely, which can lead to dynamic patterns of request
invocations among objects of arbitrary types (by virtue of late binding), and (d) once defined,
objects and classes may be reused or refined in subsequent applications, extending the
usefulness of object implementations across multiple applications.

Distributed Computing Page 19
The Open Group July 1998

This style of programming does encapsulate data and functions in servers, because the only
way to access the data is through the server’s RPC interface. It does not protect any of the data
within a server from access by any of the functions in the server. Nor does it support
abstraction, inheritance polymorphism, or the dynamic style of programming.10,11

Having said this, DCE does have comparable capabilities:

• A DCE client can determine at runtime the specific servers to which it will bind and make
RPCs (although the interfaces supported by those servers must be fixed at compile time).

• A DCE server may generate what are called object UUIDs (universal unique identifiers) to
denote different resources managed by the server. A client that does a remote procedure
call to the server can use an object UUID to identify a specific resource. For example, a
print server might generate object UUIDs for the different printers it controls, and a client
submitting a print request would specify the desired printer.

• A DCE server may also generate what are called object type UUIDs, associate each object
UUID with an object type UUID, and register a separate set of RPC handlers for each object
type UUID. When a client does a remote procedure call to the server and specifies an
object UUID, the specific function that is invoked in the server might associate one object
type UUID with RPC handlers that support line printers and another object type UUISD with
a corresponding set of RPC handlers that support Postscript printers.

The object UUID and object type UUID mechanisms in DCE equate to some of the characteristics
of object-oriented systems, such that object type UUIDs provide some form of abstraction and
polymorphism.

Although procedural programming is not object-oriented programming, it can be used to
implement an object-oriented programming environment, just as C is often used to implement
C++ (that is to say, C++ is often pre-processed into C before compilation). Many CORBA
conformant ORB vendors (Digital, HP, and IBM for example) are implementing ORBs on top of
DCE.

Characteristics
Characteristics of the underlying (object-oriented) middleware that can be used in comparison
of technologies and products:

• Object Model – Whether object-based, if so what are the properties and how rich is the
model?

• Interface Definition – Which language constructs are available to determine the properties
(of objects)?

• Communication Primitives – What primatives are available for interaction (between
objects)?

• Architecture – Which architectural components are involved in an (object) request?

10 This observation relates more properly to a comparison of the procedural versus object style
programming than of DCE RPC. For example, HP’s OODCE does support abstraction and
inheritance.
11 At this point one might highlight the importance of portability of objects across
implementations and scalability, since what might work for 100 users won’t always work for 1
million users.

Distributed Computing Page 20
The Open Group July 1998

• Programming Language Bindings – Which programming languages can be used to
implement client and server objects?

• Openness/Interoperability – With which other systems can the middleware interoperate?

• Services and facilities available for reuse – What higher-level services and facilities does the
middleware support? Here we can examine security, naming, etc.

• Platforms – On which platforms is the middleware available?

Distributed Computing Page 21
The Open Group July 1998

OMG/CORBA DCE DCOM Java/RMI
Object Model Based on objects,

designed to
support object-
oriented
programming.
One type of object
which determines
the operations and
attributes that the
object exports to
other objects. 12

Object model-
neutral. Designed
originally to
support procedural
programming.
Supports layered
object models.

DCOM’s object
model is COM. A
COM object can
have multiple types
at the same time;
however, COM
objects do not
support multiple
inheritence. 13

Java and Java/RMI
use the same
object model.
Supports methods,
instance,and class
variables with
different degrees
of visibility (public,
protected, and
private). 14

Interface Definition OMG/IDL Interface.
Includes language
constructs for all
concepts of the
object model. It is
programming
language-
independent and
not
computationally
complete.
OMG/IDL supports
multiple
inheritance and
defines a
hierarchical
namespace. In
addition to a static
stub interface,
CORBA defines a
dynamic invocation
interface that can
be used by a client
to invoke an
arbitrary operation
on an arbitrary

DCE uses an IDL
based on the C
programming
language. C++
interface support is
added for DCE 1.2.
As with CORBA, a
client application
calls a client stub
to request a
service. The client
stub interfaces to
the runtime
system, which
eventually invokes
server code that
implements the
requested service
through the
appropriate server
stub. Originally
DCE IDL did not
support interface
inheritance and
defines a flat
namespace. 15 DCE

COM and DCOM
objects are
specified using
Microsoft’s
Interface Definition
Language (MIDL).
MIDL provides
language concepts
for all concepts of
the object model
and it reflects the
differences
between CORBA,
and the
COM/DCOM object
model. 16

No interface
definition
(regarded as
superfluous since
methods can only
be invoked by
another Java
method). Public
methods can be
invoked remotely,
with no restrictions
to parameters or
result types. Hence
objects can be
passed and generic
servers and mobile
agents
implemented in
Java.

12 Objects can request the execution of an operation or the value of an attribute of a server
object from an ORB. In order to make the request they have to submit a reference to the server
object and the name of the attribute or method and possibly method parameters. Operations
may raise exceptions and these exceptions are considered an essential part of the object model.
There is one root to the object type hierarchy referred to as Object and this defines common
properties that all CORBA objects support.
13 Each type is expressed by an interface that represents a different behavior of the object. An
interface consists of a set of methods that are related in functionality. Like CORBA clients, COM
clients use an object reference to interact with the DCOM server object.
14 Mappings between different object models as they occur in CORBA’s programming language
bindings do not exist. Operations may raise exceptions to indicate failures. Java supports
single inheritance. In addition, it supports the concept of interfaces, which can be compared to
abstract classes. A Java class may implement many interfaces but can only inherit from one
class.
15 However, DCE servers can export multiple interfaces, with multiple versions of the same
interface supported for compatibility. Interfaces can also be constructed out of other interfaces
using include statements. Later versions with C++ support language inheritance.
16 A further difference between OMG/IDL and MIDL is in the support for error handling.
OMG/IDL supports the concept of exceptions that are bound to the exception handling
mechanism of the respective programming languages used for clients and servers MIDL forces
programmers to return a 32-bit error code of type HRESULT.

Distributed Computing Page 22
The Open Group July 1998

object type at
runtime.

has no dynamic
invocation
interface – the
appropriate RPC
stubs must be
linked into the DCE
client.

OMG/CORBA DCE DCOM Java/RMI
Communication
Primitives

CORBA object
requests are
synchronous
invocations of
operations that
server objects
exported.
Asynchronous
requests are
supported by the
messaging and the
event notification
services. 17

DCE has a variety
of communications
semantics
controlled by the
interface definition,
including at-most-
once, idempotent,
maybe, broadcast,
and pipe

Remote DCOM
operation
executions are
synchronous calls.
Equivalents to
deferred
synchronous or
oneway requests
that are available in
CORBA do not exit.
Asynchronous
executions can be
implemented in
DCOM using multi-
threading in the
same way as these
are implemented in
CORBA and
Java/RMI.

Similarly to remote
procedure calls,
Java remote
method
invocations are
strictly
synchronous.
Asynchronous
behaviour can be
implemented using
Java threads. 18

Infrastructure Based on an ORB19.
Use of either the
dynamic invocation
interface or by
invoking a client
stub.

DCE supplies
transparent service
and object location
through the name
service, built in
security providing
authentication,
authorization and
access control, and
dynamic service
instantiation
through dced. DCE
also provides an
extensible and
scriptable remote
management tool.

Distribution
between client and
server DCOM
objects is through
an RPC channel.
The interface proxy
and the interface
stub perform the
same tasks as the
client stubs and
server skeletons in
CORBA and
Java/RMI. 20

Similar to CORBA,
Java includes client
stubs and server
skeletons that
perform the
marshaling and
unmarshaling of
parameters and the
results that are
returned in reply
messages. RMI
does not include a
dynamic invocation
interface.

17 If an operation is declared one way in the interface of the server object, the client regains
control as soon as the ORB has accepted the request. For one way requests, operations cannot
return output of result types and must not raise specific exceptions.
18 The main thread is not blocked while the remote method executes. When the remote
method is completed, the two threads are synchronized using various methods of
synchronization supported by Java’s thread model. Note that a lightweight equivalent to
CORBA’s one way operations and deferred synchronous requests does not exist for Java/RMI.
19 Transfers requests made by client objects to server objects in a way that location,
programming language, and platform of the server object remains transparent for the client.
20 The Service Control Manager (SCM) performs approximately the same tasks as the object
adapter and the request broker in CORBA. The registry is equivalent to CORBA’s
implementation repository.

Distributed Computing Page 23
The Open Group July 1998

OMG/CORBA DCE DCOM Java/RMI
Programming
Language bindings

C,C++, Smalltalk,
Ada-95, Cobol, and
Java bindings.
CORBA facilitates
distributed system
construction using
multiple different
programming
languages.

C and C++ built
in. Other language
bindings (Cobol
and Ada) available
through third
parties.

DCOM does not
specify
programming
language bindings.
COM objects have
to follow a
standard memory
layout. 21 Hence
DCOM does not
provide portable
source code nor
platform
independence (see
below).

Java remote
method
invocations can
only be done
within other Java
objects. Using Java
Native Invocation
(JNI) it is possible
to implement a
method of a Java
server object in C
or C++ rather than
Java. 22

Openness Industry consensus
specifications
(adopted by TOG)

Open Specifications
adopted by The
Open Group and
ISO.
Implementations
available from
multiple
manufacturers.
Reference
implementations
freely available.
Has been re-
implemented from
specification by
Microsoft.

COM and DCOM
are not based on
open standards.
However, there is a
DCOM
implementation
based on the DCE
RPC Specification
available from The
Open Group.

Currently not a very
open approach.
However there is
the prospect of an
interoperability
specification
between Java/RMI
and CORBA’s IIOP.
Sun also
announced support
for embedding
Java objects in
COM components
and vice versa

Services and
Facilities

CORBA services
include naming,
trading,
transactions,
concurrency
control,
persistence, event
notification,
externalization,
licensing,
messages, and life
cycle and
relationships.
CORBA facilities are
objects that are
useful across many
different
application
domains; examples
include printing,

See entry for
“Infrastructure”
above.

DCOM comes with
a naming service
(referred to as the
registry) that
supports DCOM
components in a
location-
transparent way.
DCOM integrates
with the Microsoft
Transaction Server
(MTS) which
provides
concurrency
control, distributed
transaction
processing, and
security
capabilities. These
may not be as

Fewer services than
CORBA. Naming is
very similar.

21 If the objects run on the same hardware and operating system architecture, binary
compatibility is achieved irrespective of the programming language(s). This contrasts with
CORBA where source code compatibility is achieved at the expense of portability.
22 JNI is provided for the construction of wrappers around legacy components. ILOG have
announced a product called TwinPeak that will generate Java wrapper classes for C++ classes
fully automatically. The JNI approach is not so general as CORBA’s programming language
bindings. It might be questioned how many as legacy C++ (business) objects there are that
could be wrapped using JNI.

Distributed Computing Page 24
The Open Group July 1998

spooling, and help. extensive as
CORBA. 23,.24

OMG/CORBA DCE DCOM Java/RMI
Platforms Windows (3x, 95, &

NT), OS2, UNIX,
OS400, MVS,
OpenVMS, and
OpenVME

All major computer
systems available
including Windows
95, NT, VMS, MVS,
OS400, OS/2, and
UNIX.

DCOM is shipped
with Windows NT
(Version 4.0 and
upward). It is
available on both
Intel and Digital
Aplha hardware.
DCOM
implementations
are available for
various UNIX
platforms. It is
unclear how
effective these are
working in
isolation from, for
example, MTS. Nor
is it clear when
COM+ might be
available on UNIX
platforms.

A Java Virtual
Machine (JVM)
with Java V 1.1 is
required to execute
Java/RMI. JVM’s in
the form of byte
code interpreters
are available for all
PCs and UNIX
platforms.
However, few
browsers support
Java/RMI directly
(Netscape requires
a plug-in and
Microsoft do not
intend to support
RMI). 25

23 Microsoft is working in a message-oriented middleware (Microsoft’s Message Queue Server)
that will be integrated with COM+ (an extension of COM/DCOM). This middleware will
probably be used to replace RPC-based interaction between clients and servers in order to have
a more reliable form of transport that also supports non-synchronous operation and multi-cast
operation executions in a more natural way.
24 One might take into account the number of third-party objects including those implemented
in Visual Basic.
25 The absence of direct browser support for Java/RMI is a limitation. This has often led the
choice of CORBA for browser applications with Java used for component implementations.

Distributed Computing Page 25
The Open Group July 1998

A comparison of DCE versus CORBA reveals some further differences in capability not included
in the table above:

CORBA DCE
Datatypes No equivalent datatype, equivalent

behavior is obtained using a CORBA
sequence.

A varying array in DCE is an array of
fixed size, of which only part is
passed between client and server.
However, the entire array is
allocated at the server, which may
return more array elements than
were passed to it.

Pipes An extension to CORBA is needed to
pass large data sets.

DCE pipes permit very large
parameter values to be passed in a
series of smaller blocks so that data
transmission and processing may be
pipelined.

Contexts No corresponding mechanism
(CORBA contexts are concerned
with user preferences and requests
to an object).

Contexts provide a mechanism for
maintaining server state during a
series of logically, related requests
from a single client.

Pointers CORBA does not support the use of
pointers as, or within, operation
parameters. The programmer has
to write additional code to create
pointer free data types with the
actual values and then reconstitute
them as pointers in the client, or
redefine the complex data structure
as a collection of one or more
objects, since CORBA does not
support complex structures
composed of objects.

Fully supports the use of pointers
as, and within, operation
parameters. An operation that is
defined in DCE IDL may take a
pointer as a parameter.

“Any” data type CORBA supports an “any” data type
permitting a value of an arbitrary
type to be passed between a client
and server.

Not supported.

Interface Repository Defines an interface repository that
contains information equivalent to
that in the IDL files and can be
queried at runtime.

No such repository.

Server Activation CORBA supports automatic server
activation.

DCE supports dynamic service
activation and tear down.

