
The XENOMAI Project
Implementing a RTOS emulation framework on GNU/Linux.

Phi l ippe Gerum

IDEALX, Open Source Engineering

15-17 avenue de Segur, Paris, France

rpm@idealx.com

Abstract

Xenomai is a GNU/Linux-based framework which aims at being a foundation fo r a set o f traditional RTOS API emulators

running on top o f a host sof tware architecture, such as RTAI when hard real-time support is required.

Generally speaking, this project aims at helping application designers relying on traditional RTOS t o move as smoothly as

possible t o a GNU/Linux-based execution environment, wi thout having t o rewrite their applications entirely.

This paper discusses the motivat ions fo r proposing this framework, the general observations concerning the traditional

RTOS directing this project, and some in-depth details about its undergoing implementation.

The Xenomai project has been launched in August 2001. I t is hosted at http:/ / freesoftware.fsf.org/projects/xenomai/.

Linux is a registered trademark o f Linus Torvalds. Other trademarks cited in this paper are the property o f their respective

owners.

1. Introduction

A simpler migration path f rom traditional RTOS t o

GNU/Linux can favour a wider acceptance o f the latter as a

real-time embedded platform. Providing emulators t o mimic

the traditional RTOS APIs is one o f the initiative the free

sof tware community can take t o fill the gap between the

very fragmented traditional RTOS wor ld and the

GNU/Linux world, in order fo r the application designers

relying on traditional RTOS t o move as

smoothly as possible t o a GNU/Linux real-time

environment.

There is a lack o f common sof tware framework fo r

developing these emulators, whereas the behavioural

similarities between the traditional RTOS are obvious, most

variations being only di f ferent "w indow dressings" o f

well-known operating system concepts (multi-threading,

synchronization etc).

The Xenomai project aims at fulfilling this gap. I t aims at

providing a consistent framework that helps implementing

real-time interfaces and debugging real-time sof tware on

GNU/Linux. Xenomai comes wi th a growing set o f

emulators o f traditional RTOS APIs, tha t ease the migration

o f applications f rom these systems t o a GNU/Linux-based

real-time environment.

The Xenomai project relies on the common features and

behaviours found between many embedded traditional

RTOS, especially f rom the thread scheduling and

synchronization standpoints. These similarities are

exploited t o implement a nanokernel export ing a set o f

generic services. These services grouped in a high-level

interface can be used in turn t o implement real-time

interfaces such as emulation modules o f traditional RTOS

which mimic the emulated real-time kernel APIs.

A similar approach was used fo r the CarbonKernel project

[1] in the simulation field, in which RTOS simulation models

are built on top o f a generic virtual RTOS based on

event-dr iven techniques.

2. Porting traditional RTOS-based
applications to GNU/Linux

2. Porting traditional RTOS-based
applications to GNU/Linux

The idea o f using GNU/Linux as an embedded system wi th

real-time capabilities is no t novel. The reader can refer t o

Jerry Epplin's article in the October 97 issue o f Embedded

Systems Programming fo r a discussion about GNU/Linux

potential in the embedded field [2].

Throughough this document, we will use the expression

source RTOS t o indicate the traditional real-time operating

system from which the application is t o be ported, and

target OS t o indicate GNU/Linux or any other free

operating system t o which the application could be ported.

2.1 . L imi ted h igh- leve l code modi f icat ion

Keeping the initial design and implementation o f a hard

real-time application when attempting t o po r t i t t o another

architecture is obviously o f the greatest interest. Reliability

and performance may have been obtained after a long,

complex and costly engineering process one does no t want

t o compromise. Consequently, the best situation is t o have

the closest possible equivalence between the source and

destination RTOS programming interfaces, as far as bo th

the syntax and the semantics are concerned.

For instance, if the application needs dynamic memory

allocation wi th success guarantee fo r its real-time threads

(which is di f ferent f rom a real-time guarantee), por t ing it t o

a GNU/Linux hard real-time extension (such as RTAI or

RTLinux) raises the fol lowing issues:

° Linux kernel's kmalloc()/kfree() services should no t be
called on behalf o f a real-time thread, since these services
are no t reentrant. Consequently, the needed memory has
t o be pre-allocated statically or during the application
startup, on behalf o f the Linux kernel context .

° A dynamic allocator callable f rom a real-time contex t is
provided by RTAI (i.e. rt_mem_mgr), but its services are
based on an algorithm anticipating the memory
starvat ions using an asynchronous pre-allocation
technique, but no t guaranteeing tha t no failure could
occur. To give a reasonable guarantee o f success in
allocating memory blocks, i.e. t o be sure that valid memory
will always be returned t o the real-time thread as soon as
it is available f rom the Linux kernel, the calling thread
should be put in a wait state until the memory it has
requested is available.

In bo th cases, it may be necessary t o adapt the memory

management strategy according t o these constraints,

which could be a quite diff icult and error-prone task.

Another example can be taken f rom the support o f a

priori ty inheritance protocol [3] by the mutual exclusion

services. These services allow concurrent threads t o

protect themselves f rom race condit ions that could occur

into critical sections o f code. The purpose o f this

discussion is no t t o argue whether relying on priori ty

inheritance fo r resolving priori ty inversion problems is a

major design flaw or a necessary safety belt f o r a real-time

application, but only t o emphasize that in any cases, if this

feature is used in the source RTOS, but no t available f rom

the target OS, the resource management strategy must be

reevaluated fo r the application, since priori ty inversion risks

will exist.

2.2 . RTOS behav iora l compat ib i l i t y

During the past years, major embedded RTOS, such as

VRTX, VxWorks, pSOS+ and a few others, have

implemented a real-time kernel behavior which has become

a de facto standard, notably fo r thread scheduling,

inter-thread synchronization, and asynchonous event

management. To illustrate this, let us talk about a specific

concern in the interrupt service management.

A well-known behavior o f such RTOS is t o lock the

rescheduling procedure until the outer interrupt service

routine (or ISR) - called f i rs t upon possibly nested

interrupts - has exited, after which a global rescheduling is

finally started. This way, an interrupt service routine can

always assume that no synchronous thread activity may run

until i t has exited. Moreover, all changes impacting the

scheduling order o f threads, due t o the actions taken by

any number o f nested ISRs (e.g. signaling a

synchronization object on which one or more threads are

pending) are considered once and conjunctively, instead o f

disjunctively.

For instance, if a suspended thread is f i rs t resumed by an

ISR, then forcibly suspended later by another part o f the

same ISR, the outcome will be that the thread will no t run,

and remain suspended after the ISR has exited. In the

other hand, if the RTOS sees ISRs as non-specific code

that can be preempted by threads, the considered thread

will be given the opportuni ty t o execute immediately after i t

is resumed, until i t is suspended anew. Obviously, the

respective resulting situations won ' t be identical.

For instance, if a suspended thread is f i rs t resumed by an

ISR, then forcibly suspended later by another part o f the

same ISR, the outcome will be that the thread will no t run,

and remain suspended after the ISR has exited. In the

other hand, if the RTOS sees ISRs as non-specific code

that can be preempted by threads, the considered thread

will be given the opportuni ty t o execute immediately after i t

is resumed, until i t is suspended anew. Obviously, the

respective resulting situations won ' t be identical.

2.3 . Reeva lua t ion o f the rea l - t ime cons t ra in ts

Making GNU/Linux a hard real-time system is currently

achieved by using a co-kernel approach which takes control

o f the hardware interrupt management, and allows running

real-time tasks seamlessly aside o f the host ing GNU/Linux

system [4]. The 'regular' Linux kernel is eventually seen as a

low-prior i ty, background task o f the small real-time

executive. The RTAI (ht tp: / /www.r ta i .org/) and RTLinux

(ht tp: / /www.r t l inux.org/) projects are representative o f

this technical path. However, this approach has a major

drawback when it comes t o po r t complex applications f rom

a foreign sof tware platform: since the real-time tasks run

outside the Linux kernel control , the GNU/Linux

progamming model cannot be preserved when por t ing

these applications. The result is increased complexity in

redesigning and debugging the por ted code.

In some cases, choosing a traditional RTOS t o run an

embedded application has been initially dictated by the

memory constraints imposed by the target hardware,

instead o f actual real-time constraints imposed by the

application itself. Since embedded devices tend t o exhibit

ever increasing memory and processing horsepower, i t

seems judicious t o reevaluate the need fo r real-time

guarantee when considering the por t ing e f fo r t t o

GNU/Linux on a new target hardware. This way, the best

underlying sof tware architecture can be selected. In this

respect, the fol lowing criteria need t o be considered :

Determinism and criticality.

What is the worst case interrupt and dispatch latencies

needed ? Does a missed deadline lead to a catastophic

failure ?

Programming model.

What is the overall application complexity, provided that

the highest the complexity, the greatest the need for

powerful debugging aid and monitoring tools.

Is there a need for low-level hardware control ?

Is the real-time activity coupled to non-real-time services,

such as GUI or databases, requiring sophisticated

communications with the non real-t ime world ?

2.4 . Some ex is t ing so lu t ions

In order t o get whether hard or so f t real-time support ,

several GNU/Linux-based solutions exist [5][6]. I t is no t

the purpose o f this paper t o present them all exhaustively.

We will only consider a two- fo ld approach based on free

sof tware solutions which is likely t o be suited fo r many

por t ing tasks, depending on the actual real-time

constraints imposed by the application.

2.4 .1 . Par t ia l rewr i t i ng us ing a rea l - t ime GNU/L inux
e x t e n s i o n

Real-time enabling GNU/Linux using RTAI. Str ict ly speaking,

Linux/RTAI [7] is no t a real-time operating system but

rather a real-time Linux kernel extension, which allows

running real-time tasks seamlessly aside o f the host ing

GNU/Linux system. The RTAI co-kernel is hooked t o the

host ing system through an hardware abstraction layer

(HAL) which redirects external events t o it, thus ensuring

low interrupt latencies. RTAI provides a fixed-prior i ty

driven scheduler t o run concurrent real-time activities

loaded f rom dynamic kernel modules. Globally-scoped

scheduling decisions are made by the co-kernel which

always considers the host Linux kernel as its

lowest-prior i ty thread o f activity. In other words, RTAI

considers the Linux kernel as a background task that

should run when no real-time activity occurs, a kind o f idle

task fo r common RTOS. RTAI provides a wealth o f other

useful services, including counting semaphores, POSIX

1003.1-1996 facilities such as pthreads, mutexes and

condit ion variables, also adding remote procedure call

facility, mailboxes, and precision timers.

Moreover, RTAI provides a mean t o execute hard real-time

tasks in user-space context , but still outside the Linux

kernel control , which is best described as running

'user-space kernel modules'. This feature, namely LXRT, is a

major step toward a simpler migration path f rom

traditional RTOS, since programming errors ocurring within

real-time tasks don ' t jeopardize the overall GNU/Linux

system sanity, at the expense o f a few microseconds more

latency.

Moreover, RTAI provides a mean t o execute hard real-time

tasks in user-space context , but still outside the Linux

kernel control , which is best described as running

'user-space kernel modules'. This feature, namely LXRT, is a

major step toward a simpler migration path f rom

traditional RTOS, since programming errors ocurring within

real-time tasks don ' t jeopardize the overall GNU/Linux

system sanity, at the expense o f a few microseconds more

latency.

Ad hoc services emulation. A f i rs t approach consists in

emulating each real-time facility needed by the application

using a combination o f the RTAI services. An ad hoc

wrapping interface has t o be wr i t ten t o support the

needed funct ion calls. The benefit o f the wrapping

approach lies in the limited modifications made t o the

original code. However, some RTAI behaviors may no t be

compliant w i th the source operating system's. For the very

same reason, confl icts between the emulated and native

RTAI services may occur in some way.

Complete port t o RTAI. A second approach consists in fully

por t ing the application natively t o RTAI. In such a case,

RTAI facilities are globally substituted fo r the facilities f rom

the source RTOS. This solution brings improved

consistency at the expense o f a possibly large-scale

rewrit ing o f the application, due t o some fundamental

behavioral differences that may exist between the

traditional RTOS and RTAI.

2.4 .2 . Unconst ra ined user -space emula t ions

A few traditional RTOS emulators exists in the free

sof tware world. They are generally designed on top o f the

GNU/Linux POSIX 1003.1-1996 layer, and allow t o

emulate the source RTOS API in a user-space execution

context , under the control o f the Linux kernel.

One o f the most proeminent e f fo r t in this area is the

Legacy2linux project [8]. This project, sponsored by

Montavista Sof tware, aims at providing "a series o f

Linux-resident emulators fo r various legacy RTOS kernels".

Just like Xenomai, " these emulators are designed t o ease the

task o f porting legacy RTOS code t o an embedded Linux

environment".

Two emulators are currently available f rom this project,

respectively mimicking the APIs o f WindRiver's pSOS+ and

VxWorks real-time operating systems.

Two emulators are currently available f rom this project,

respectively mimicking the APIs o f WindRiver's pSOS+ and

VxWorks real-time operating systems.

The benefits o f this approach is mainly t o keep the

development process in the GNU/Linux user-space

environment, instead o f moving t o a rather 'hostile'

kernel/supervisor mode context . This way, the rich set o f

existing tools such as debuggers, code profilers, and

monitors usable in this contex t are immediately available t o

the application developer. Moreover, the standard

GNU/Linux programming model is preserved, allowing the

application t o use the full set o f facilities existing in the user

space (e.g. full POSIX support , including inter-process

communication). Last but no t least, programming errors

occurring in this contex t don ' t jeopardize the overall

GNU/Linux system stability, unlike what can happen if a

bug is encountered on behalf o f a hard real-time RTAI task

which could cause serious damages t o the running Linux

kernel.

However, we can see at least four problems in using these

emulators, depending on the application constraints:

° First, the emulated API they provide is usually incomplete
fo r an easy po r t f rom the source RTOS. In other words,
only a limited syntactic compatibility is available.

° Second, the exact behavior o f the source RTOS is no t
reproduced fo r all the functional areas. In other words,
the semantic compatibility might no t be guaranteed.

° These emulators don ' t share any common code base fo r
implementing the fundamental real-time behaviors, even
so bo th pSOS+ and VxWorks share most o f them. The
resulting situation leads t o redundant implementation
ef for ts , wi thout any benefit one can see in code
mutualization.

° And finally, even combined t o existing Linux kernel
patches providing f ixed-prior i ty scheduling (Montavista's
RTSched) and fine-grain kernel preemption (Ingo Molnar's
Linux kernel patches fo r improved preemptability), these
emulators cannot deliver hard real-time performance.

3. A common emulation framework

3.1 . Common t rad i t i ona l RTOS behav io rs

In order t o build a generic and versatile framework fo r

emulating traditional RTOS, we chose t o concentrate on a

set o f common behaviors they all exhibit. A limited set o f

specific RTOS features which are no t so common, but

would be more efficiently implemented into the nanokernel

than into the emulators, has also been retained. The basic

behaviors selected cover four dist inct fields:

In order t o build a generic and versatile framework fo r

emulating traditional RTOS, we chose t o concentrate on a

set o f common behaviors they all exhibit. A limited set o f

specific RTOS features which are no t so common, but

would be more efficiently implemented into the nanokernel

than into the emulators, has also been retained. The basic

behaviors selected cover four dist inct fields:

3.1 .1 . Mu l t i - t h read ing

Multi-threading provides the fundamental mechanism fo r

an application t o control and react t o multiple, discrete

external events. The nanokernel should provide the basic

multi-threading environment.

Thread states. The nanokernel has t o maintain the current

state o f each thread in the system. A state transit ion f rom

one state t o another may occur as the result o f specific

nanokernel services called by the RTOS emulator. The

fundamental thread states that should be defined are:

° DORMANT and S U S P E N D E D states are cumulative,
meaning that the newly created thread will still remain in a
suspended state after being resumed f rom the DORMANT
state.

° PENDING and S U S P E N D E D states are cumulative too,
meaning that a thread can be forcibly suspended by
another thread or service routine while pending on a
synchronization resource (e.g. semaphore, message
queue). In such a case, the resource is dispatched t o it,
but i t remains suspended until explicitely resumed by the
proper nanokernel service.

° PENDING and DELAYED states may be combined t o
express a timed wait on a resource. In such a case, the
time the thread can be blocked is bound t o a limit
enforced by a watchdog.

Scheduling policies. By default, threads are scheduled

according t o a f ixed priori ty value, using a preemptive

algorithm. There must also be a support f o r round-robin

scheduling among a group o f threads having the same

priority, allowing them t o run during a given time slice, in

rotat ion. Moreover, each thread undergoing the

round-robin scheduling should be given an individual time

quantum.

Scheduling policies. By default, threads are scheduled

according t o a f ixed priori ty value, using a preemptive

algorithm. There must also be a support f o r round-robin

scheduling among a group o f threads having the same

priority, allowing them t o run during a given time slice, in

rotat ion. Moreover, each thread undergoing the

round-robin scheduling should be given an individual time

quantum.

Priori ty management. I t should be possible t o use whether

an increasing or decreasing thread priori ty ordering,

depending on an initial configuration. In other words,

numerically highest priori ty values could whether represent

highest or lowest scheduling priorities depending on the

configuration choosen. This feature is motivated by the

existence o f these t w o possible ordering among traditional

RTOS. For instance, VxWorks, VRTX, ThreadX and Chorus

O/S use a reversed priori ty management scheme, where the

highest the value, the lowest the priority. pSOS+ instead

uses the opposite ordering, in which the highest the value,

the highest the priority.

Running thread. A t any given time, the highest priori ty

thread which has been ready t o run fo r the longuest time

among the currently runnable threads (i.e. no t currently

blocked by any delay or resource wait) should be elected t o

run by the scheduler.

Preemption. When preempted by a more prioritary thread,

the running thread should be put at f r o n t o f the ready

thread queue wait ing fo r the processor resource, provided

it has no t been suspended or blocked in any way. Thus it is

expected t o regain the processor resource as soon as no

other prioritary activity (i.e. a thread having a higher

priori ty level, o r an interrupt service routine) is eligible fo r

running.

Manual round-robin . As a side-effect o f attempting t o

resume an already runnable thread or the running thread

itself, this thread should be moved at the end o f its priori ty

group in the ready thread queue. This operation should be

functionally equivalent t o a manual round-robin scheduling.

Even if they are no t as widespread as those above in

traditional RTOS, the fol lowing features are also retained

fo r the sake o f efficiency in the implementation o f some

emulators:

Priori ty inversion. In order t o provide support f o r

prevent ing priori ty inversion when using inter-thread

synchronization services, the priori ty inheritance protocol

should be implemented.

Signaling. A support f o r sending signals t o threads and

running asynchronous service routines t o process them

should be implemented. The asynchronous service routine

should run on behalf o f the signaled thread contex t the

next time it returns f rom the nanokernel level o f execution,

as soon as one or more signals are pending.

3.1 .2 . Thread synchron iza t ion

Traditional RTOS provide a large spectrum o f inter-thread

communication facilities involving thread synchronization,

such as semaphores, message queues, event flags or

mailboxes. In looking at them closely, we can define the

characteristics o f a basic mecanism which will be usable in

turn t o build these facilities.

Pending mode. The thread synchronization facility should

provide a mean fo r threads t o pend either by priori ty or

FIFO ordering. Multiple threads should be able t o pend on

a single resource.

Priori ty inheritance protocol . In order t o prevent priori ty

inversion problems, the thread synchronization facility

should implement a priori ty inheritance protocol in

conjunction wi th the thread scheduler. The implementation

should allow fo r support ing the priori ty ceiling protocol as

a derivative o f the priori ty inheritance protocol .

Time-bounded wait. The thread synchronization facility

should provide a mean t o limit the time a thread waits f o r a

given resource using a watchdog.

Forcible deletion. It should be legal to destroy a resource

while threads are pending on it. This action should resume

all waiters atomically.

3.1 .3 . In te r rup t management

Since the handling o f interrupts is one o f the least well

defined areas in RTOS design, a generalized mechanism is

provided wi th sufficient hooks fo r specific real-time

interfaces t o be built on to .

Since the handling o f interrupts is one o f the least well

defined areas in RTOS design, a generalized mechanism is

provided wi th sufficient hooks fo r specific real-time

interfaces t o be built on to .

Nesting. Interrupt management code should be reentrant in

order t o support interrupt nesting safely.

Atomicity . Interrupts need t o be associated wi th dedicated

service routines called ISRs. In order fo r these routines no t

t o be preempted by thread execution, the rescheduling

procedure should be locked until the outer ISR has exited

(i.e. in case o f nested interrupts).

Priori ty . ISRs should always be considered as prioritary

over thread execution.

3.1 .4 . T i m e m a n a g e m e n t

Traditional RTOS usually represent time in units o f ticks.

These are clock-specific time units and are usually the period

o f the hardware timer interrupt, o r a multiple thereof.

Sof tware timer support. A watchdog facility is needed t o

manage time-bound operations by the nanokernel.

Absolute and relative clock. The nanokernel should keep a

global clock value which can be set by the RTOS emulator

as being the system-defined epoch.

Some RTOS like pSOS+ also provide support f o r

date-based timing, but conversion o f ticks into

conventional time and date units is an uncommon need that

should be taken in charge by the RTOS emulator itself.

3.2 . An arch i tec ture-neut ra l abs t rac t ion layer

Af ter having selected the basic behaviors shared by

traditional RTOS, we can implement them in a nanokernel

export ing a few service classes. These generic services will

then serve as a founding layer fo r developing each

emulated RTOS API, according t o their own flavour and

semantics.

In order fo r this layer t o be architecture neutral, the needed

support f o r hardware control and real-time capabilities will

be obtained f rom an underlying host sof tware architecture,

through a rather simple standardized interface. Thus,

por t ing the nanokernel t o a new real-time architecture will

solely consist in implementing this low-level interface fo r

the target platform.

In order fo r this layer t o be architecture neutral, the needed

support f o r hardware control and real-time capabilities will

be obtained f rom an underlying host sof tware architecture,

through a rather simple standardized interface. Thus,

por t ing the nanokernel t o a new real-time architecture will

solely consist in implementing this low-level interface fo r

the target platform.

3.3 . Rea l - t ime capab i l i t i es

The host sof tware architecture is expected t o provide the

primary real-time capabilities t o the RTOS abstraction layer.

Basically, the host real-time layer must handle at least the

fol lowing tasks:

° Start/stop dispatching on request the external interrupts
to an abstraction layer's specialized handler ;

° Provide a mean to mask and unmask interrupts ;
° Provide a mean to create new threads of control in their

simplest form ;
° Provide support for a periodic interrupt source used in

timer management ;
° Provide support for allocating chunks of non-pageable

memory.

When the host sof tware architecture has no direct access

t o the underlying hardware, such as in a so f t real-time

user-space execution environment, interrupts may be

simulated by POSIX signals, and hard real-time constraints

imposed t o the services above may be relaxed (e.g.

memory can be pageable).

3.4 . Bene f i t s

The project described herein aims at helping application

designers relying on traditional RTOS t o move as smoothly

as possible t o a GNU/Linux-based execution environment,

wi thout having t o rewrite their applications entirely. Aside

o f the advantages o f using GNU/Linux as an embedded

system, the benefits expected f rom the described

approach are:

Reduced complexity in designing new RTOS emulations. The

architecture-neutral abstraction layer provides the

foundat ion fo r developing accurate emulations o f

traditional RTOS API, saving the burden o f implementing

each time their fundamental real-time behaviors. Since the

abstraction layer also favours code sharing and

mutualization, we can expect the RTOS emulations t o take

advantage o f them in terms o f code stability and reliability.

Reduced complexity in designing new RTOS emulations. The

architecture-neutral abstraction layer provides the

foundat ion fo r developing accurate emulations o f

traditional RTOS API, saving the burden o f implementing

each time their fundamental real-time behaviors. Since the

abstraction layer also favours code sharing and

mutualization, we can expect the RTOS emulations t o take

advantage o f them in terms o f code stability and reliability.

Generic support f o r RTOS-aware tools . One o f the most

potential show-stopper fo r a broader use o f GNU/Linux in

the real-time space is probably the lack o f powerful and

user-friendly debugging and monitor ing tools fo r real-time

applications. However, this gap is about t o be filled by the

maturation o f tools like the Linux Trace Toolkit (LTT) [9]

which now of fers unprecedented capabilities fo r inspecting

the dynamics o f a running GNU/Linux system. Since a

version o f LTT is available fo r the 'regular' Linux kernel and

Linux/RTAI, the next step will be t o take advantage o f this

toolkit , implementing the proper hooks t o support i t in to

the nanokernel internals and interface, in order t o provide

RTOS-aware tools as soon as possible.

4. The Xenomai approach

4.1 . Xenomai a rch i tec tu re

The common emulation framework precedently envisioned

translates in the Xenomai architecture as follows:

4.2 . Host so f tware arch i tec ture

Xenomai's nanokernel relies on an host sof tware

architecture t o provide the needed hardware control and

real-time capabilities.

The nanokernel is connected to the host architecture

through a standardized interface. The following services

compose the nanokernel-to-real-time subsystem interface:

Depending on the execution environment, some o f the

above services may be emulated or simply stubbed as soon

as they are no t needed. However, all o f them are needed

fo r por t ing the nanokernel on top o f RTAI. For instance,

the interrupt-related services can be emulated by the

POSIX signal feature when running a combination o f the

nanokernel, the RTOS emulator and the (so f t) real-time

application as a user-space GNU/Linux process. In the

same spirit, the real-time contex t switch routines have no

purpose, thus can be empty in such environment.

4.2 .1 . Us ing RTAI as the hos t so f tware arch i tec ture

The Real-Time Application Interface (RTAI) is a real-time

GNU/Linux extension, which allows running real-time tasks

seamlessly aside o f the host ing GNU/Linux system. The

RTAI co-kernel is hooked t o the host ing system through an

hardware abstraction layer (HAL) . RTAI considers the

Linux kernel as a background task that should run when no

real-time activity occurs. RTAI applications run in supervisor

mode, in the Linux kernel address space.

When running on top o f RTAI, the Xenomai framework

gains hard real-time capabilities, replacing the standard

RTAI scheduler module (namely rtai_sched) in order t o

provide the real-time scheduling subsystem. RTOS

emulation modules can then be loaded on top o f Xenomai's

nanokernel, fol lowed by a client application module using

the emulated API.

RTAI po r t o f Xenomai is based on the facilities provided by

the core H A L module (namely rtai). The nanokernel-to-host

sof tware architecture interface is implemented using the

real-time services exported by this module. For instance, let

us look t o the implementation o f t w o critical functions,

which respectively allow t o enter and exit the RTAI

context , thus preempting then reinstating the Linux kernel

context .

From the file xenomai/include/arch/rtai-386.h,

#define INTERFACE_TO_LINUX

#include "asm/rtai_sched.h"

#include "rtai.h"

DEFINE_LINUX_CR0

static inline void xnarch_enter_realtime () {

r t_switch_to_real_t ime(0);

save_cr0_and_clts(l inux_cr0);

}

static inline void xnarch_exit_realtime () {

r t_switch_to_l inux(0);

restore_cr0(l inux_cr0);

}

4.2 .2 . Us ing the POSIX 1003 .1 -1996 l aye r as the hos t

so f tware arch i tec ture

4.2 .2 . Us ing the POSIX 1003 .1 -1996 l aye r as the hos t

so f tware arch i tec ture

The aftermaths o f the real-time constraints reevaluation -

tha t we suggest t o conduct when considering a por t o f a

real-time application t o a GNU/Linux system - may lead t o

envision a user-space execution, since so f t real-time

capabilities may be sufficient t o support the requirements.

In such a case, implementing the nanokernel-to-host

sof tware architecture interface should be quite

stra ight forward. For instance, the thread-related services

can be mapped t o the POSIX thread facility, and the

periodic timer can be obtained f rom the POSIX virtual timer

facility.

Combined t o existing Linux kernel patches providing

f ixed-prior i ty scheduling and fine-grain kernel

preemptability, Xenomai's user-space execution may well

deliver the expected so f t t o f irm real-time performance

needed while preserving the standard GNU/Linux

programming model.

4.2 .3 . Us ing Xenoma i ' s M inu te V i r t ua l Mach ine

The Minute Virtual Machine (MVM) is one of the real-time

layers on top of which the Xenomai nanokernel and even

RTAI's UP-scheduler module (rtai_sched) can run.

Like the other two real-t ime layers, the MVM provides the

nanokernel (and the RTAI UP-scheduler) with the low-level

resources it needs to schedule threads, handle interrupts,

manage memory and so on, so it eventually thinks it runs

on real hardware.

The MVM comes with a "RTOS-aware" graphical debugger

named the Xenoscope that allows tracing the execution of

real-time software at source code level in a simulated

environment. This tool shows precisely how the multiple

threads running in the system work together sharing the

resources of a given real-time interface (e.g. who is locking

a semaphore, which thread has been readied or suspended

by a given system call, and so on).

Using the MVM to run a real-time application has a lot of

advantages: it does not require the cross-development

tools, gives extended debugging, monitoring and tracing

features and provides an easy way to stress the application

under test with run-time situations otherwise barely

conceivable on a real target. For instance, one can simulate

bursts of interrupts generated at a very unreasonable

rate...

Using the MVM to run a real-time application has a lot of

advantages: it does not require the cross-development

tools, gives extended debugging, monitoring and tracing

features and provides an easy way to stress the application

under test with run-time situations otherwise barely

conceivable on a real target. For instance, one can simulate

bursts of interrupts generated at a very unreasonable

rate...

Here is a snapshot of a Xenoscope debug session running

the Xenomai nanokernel on top of the Minute Virtual

Machine:

4.3 . Nanokerne l descr ip t ion

Xenomai's nanokernel implements a set o f generic services

aimed at being a foundation fo r a set o f RTOS API

emulators running on top o f a host sof tware architecture.

These services exhibit common traditional RTOS behaviors.

RTOS emulations are sof tware modules which connects t o

the nanokernel through the pod abstraction. Only one pod

can be active at a given time on top o f the host sof tware

architecture. The pod is responsible fo r the critical

housekeeping chores, and the real-time scheduling o f

threads.

4.3 .1 . Mu l t i - th read ing suppor t

The nanokernel provides thread object (xnthread) and pod

(xnpod) abstractions which exhibit the fol lowing

characteristics:

° Threads are scheduled according t o a 32bi t integer
priori ty value, using a preemptive algorithm. Priori ty
ordering can be increasing or decreasing depending on

the pod configuration.

° Threads are scheduled according t o a 32bi t integer
priori ty value, using a preemptive algorithm. Priori ty
ordering can be increasing or decreasing depending on

the pod configuration.

° A thread can be either wait ing fo r initialization, forcibly
suspended, pending on a resource, delayed fo r a count o f
ticks, ready-to-run or running.

° Timed wait f o r a resource can be bounded by a per-thread
watchdog.

° The priori ty inheritance protocol is supported t o prevent
thread priori ty inversion when it is detected by a
synchronization object.

° A group o f threads having the same base priori ty can
undergo a round-robin scheduling, each o f them being
given an individual time quantum.

° A support f o r sending signals t o threads and running
asynchronous service routines (ASR) t o process them is
built-in.

° FPU support can be optionally enabled or disabled fo r any
thread at creation time.

° Each thread can wait on a synchronization resource.

Thread scheduler-related services are the following:

4.3 .2 . Basic synchronizat ion suppor t

The nanokernel provides a synchronization object

abstraction (xnsynch) aimed at implementing the common

behavior o f RTOS resources, which has the fol lowing

characteristics:

° Suppor t f o r the priori ty inheritance protocol , in order t o
prevent priori ty inversion problems. The implementation is
shared wi th the scheduler code.

° Support for t ime-bounded wait and forcible deletion with
waiters awakening.

xnsynch_ini t Initialize a synchronization

object
xnsynch_destroy Flush and destroy a

synchronization object

xnsynch_sleep_on Make the running thread pend

on the resource

xnsynch_set_ownership Set a thread as the resource

ownerxnsynch_wakeup_one_sle

eper

Release the next thread from

pending on the resource

xnsynch_wakeup_this_sle

eper

Release a given thread from

pending on the resource

xnsynch_flush Release all threads from

pending on the resource

4.3 .3 . In te r rup t management

A threaded interrupt model has been chosen in order to:

° Provide a mean to priorit ize interrupt handling by
software.

° Allow the interrupt code to synchronize with other
system code using kernel mutexes, therefore reducing the
need for hard interrupt masking in critical sections.

Xenomai's nanokernel exhibits a split interrupt handling

scheme, in which interrupt handling is separated into two

parts. The first part is known as the Interrupt Service

Routine (ISR), the second being the Interrupt Service Task

(IST).

When an interrupt occurs, the ISR is fired in order to deal

with the hardware event as fast as possible, without any

interaction with the nanokernel. If the interrupt service

code needs to reenter the nanokernel (e.g. to resume a

blocked thread), the ISR may require an associated

interrupt service task to be scheduled immediately upon

return. The IST has a l ightweight thread context that

allows it to invoke the nanokernel services safely. A

Xenomai interrupt object may be associated an ISR and/or

an IST to process each event.

When an interrupt occurs, the ISR is fired in order to deal

with the hardware event as fast as possible, without any

interaction with the nanokernel. If the interrupt service

code needs to reenter the nanokernel (e.g. to resume a

blocked thread), the ISR may require an associated

interrupt service task to be scheduled immediately upon

return. The IST has a l ightweight thread context that

allows it to invoke the nanokernel services safely. A

Xenomai interrupt object may be associated an ISR and/or

an IST to process each event.

This rather sophisticated scheme allows to easily emulate

virtually all RTOS interrupt handling scheme on top of the

nanokernel.

4.3 .4 . T imer and c lock management

Xenomai's nanokernel measures time as a count o f periodic

clock ticks. The periodic source is usually an external

interrupt controlled by the underlying host architecture.

Under RTAI/x86 fo r instance, the 8254 chip can be

programmed t o generate a periodic interrupt which can be

hooked t o a user-defined handler through the

rt_request_timer() service. Each incoming clock tick is

announced t o the timer manager which fires in turn the

timeout handlers o f elapsed timers. The scheduler itself uses

per-thread watchdogs t o wake up threads undergoing a

bounded time wait, while wait ing fo r a resource availability

or being delayed.

A special care has been taken t o of fe r bounded worst-case

time fo r start ing, stopping and maintaining timers. The

timer facility is based on the timer wheel algorithm[11]

described by Adam M. Costello and George Varghese,

which is implemented in the NetBSD operating system fo r

instance.

The nanokernel globally maintains three dist inct time values,

all expressed in clock ticks:

° The absolute number of elapsed ticks announced since the
nanokernel is running

° The last date set by a call to xnpod_set_date().
° The number of clock ticks announced since the last time

the date was set.

xnpod_tick_announce Announce a new clock tick to the

scheduler

xnpod_set_date Set the system date (in ticks)

xnpod_get_date Get the system date (in ticks)

xntimer_init Initialize a timer

xnt imer_destroy Stop and destroy a t imer

xnt imer_start Start a t imer

xnt imer_stop Stop a t imer

4.3 .5 . Bas ic memory a l locat ion

Xenomai's nanokernel provides dynamic memory allocation

support w i th real-time guarantee, based on McKusick's &

Karels' proposal f o r a general purpose memory

allocator[10]. Any number o f memory heaps can be

maintained dynamically by Xenomai, only limited by the

actual amount o f system memory.

The memory chunks are obtained f rom the underlying

sof tware architecture. As far as RTAI is concerned, the

memory pages composing the allocation heap are managed

using the kmalloc()/kfree() Linux kernel routines. As soon

as it is called on behalf o f a real-time thread, the allocator

transparently switches t o the Linux kernel contex t using

the RTAI-to-Linux service request feature when needed

(i.e. rt_pend_linux_srq()). The proposed services are

synchronous t o the calling thread.

Memory-related services are the following:

xnheap_init Initialize a new memory heap

xnheap_destroy Destroy a memory heap

xnheap_alloc Allocate a variable-size block of memory

xnheap_free Free a block of memory

5. Features overview

The major focus of the Xenomai project is to help creating

emulators of traditional RTOS APIs that ease the migration

from these systems to a GNU/Linux-based real-time

environment. As of now, the following real-t ime interfaces

are available:

° pSOS+ emulator
° VRTXsa emulator
° VxWorks emulator
° uITRON implementation

Aside of the emulators, Xenomai ships with an experimental

real-time interface called Dualion. Dualion is an API running

on top of the X e n o m a i nanokernel, based on the direct

message-passing paradigm. Such design is aimed at

distributing more easily the application workload between

kernel-based real-time threads and userland Linux

processes by unifying these two domains messaging

capabilities in a single and fast one.

Dualion uses a specialized driver called DBridge to establish

communication channels between the real-time kernel space

and the userland process space. DBridge stands for

Domain Bridge, and can be used independently to have

Xenomai threads talk to Linux processes, since it is directly

based on both the nanokernel API and the Linux device

driver interface.

X e n o m a i also provides a full-featured simulation engine as

one of the supported real-time infrastructure. Running

X e n o m a i on top of the Minute Virtual Machine (MVM)

allows you to debug and stress most of the final real-time

code using a RTOS-aware debugger in a comfortable

user-space environment, including the application code, the

real-time interface and the nanokernel.

An existing port of RTAI's original rtai_sched and

rt_mem_mgr modules to X e n o m a i ' s Minute Virtual

Machine, called 'Virtual RTAI', allows writing the

hardware-independent part of a kernel-based R T A I

application in userland, using a powerful RTOS-aware

debugger to trace it. One should note that VRTAI only

requires the M V M , and not the Xenomai nanokernel since

the regular RTAI UP-scheduler is in charge of controlling

the simulated real-time system.

References

[1] The CarbonKernel project, at

http:/ / freesoftware.fsf.org/projects/carbonkernel/

[2] Jerry Epplin's paper "Linux as embedded operating

system", at http:/ /www.embedded.com/97/fe39710.htm

[3] Lui Sha, Raghunathan Rajkumar and John Lehoczky,

"Priority Inheritance Protocols", at

http://data.uta.edu/~ramesh/cse5326/papers/sha90.html

[4] M. Barabanov and V. Yodaiken paper "Real-Time Linux",

at http:/ /www.rt l inux.org/documents/papers/ l j .pdf

[5] Montavista's white paper, "Linux for Real-Time:

Strategies and Solutions" available from

http: / / www.mvista.com.

[6] Kevin Dankwardt's article in Linuxdevices "Comparing

real-time Linux alternatives", at

http://www.l inuxdevices.com/articles/AT4503827066.html

[7] The RTAI position paper, at

http://www.aero.polimi. i t /projects/rtai/posit ion_paper.pdf

[8] The Legacy2Linux project, at

http://www.sourceforge.net/projects/legacy2linux/

[9] The Linux Trace Toolkit project, at

http://opersys.com/LTT/

[10] "Design of a General Purpose Memory Allocator for

the 4.3BSD Unix Kernel" by Marshall K. McKusick and

Michael J. Karels, USENIX 1988.

[11] "Redesigning the BSD Callout and Timer

Facilities" by Adam M. Costello and George Varghese.

