
Safety Critical Open Systems

David Emery
emery@davebert.mitre.org

What is Safety Critical Software?

• Software that contributes to the function of a system where
a failure of the system can cause a risk to human life

• Software developed under the provisions of a systems
safety program, such as
– DO-178b (avionics)
– FDA 247 (medical devices)
– ANS 7.4.3.2 (nuclear powerplants)
– Mil-Std 882d (weapon systems)

Characteristics of a Safety Program

• The System has hazards (e.g. "airplane engines stop in
mid-flight")

• Hazards have consequences ("airplane proceeds to fall like
a rock, killing all aboard")
– Most safety standards identify severity levels of hazards

• Hazards require mitigations ("prevent engines from
stopping")
– Mitigation strategy based on severity level of the hazard, the

higher the hazard, the more rigorous the mitigation requirement

• System is certified that hazards have been mitigated

DO-178b as an example

• 5 Levels of Failure Condition
– Ranging from A - Catastrophic, to E - No

Effect
• 5 Levels of software effects

– Ranging from 1 - causes Level A failure, to 5 -
No �Effect on operational capability or pilot
workload

DO-178b defines processes

• Software Planning
• Software Development

– Requirements, Design, Coding, Integration
• Software Verification
• Software Configuration Management
• Software Quality Assurance
• Certification Considerations

Software Verification
• "Detect and Report errors introduced during the

development process".
– "System requirements properly allocated to software requirements"
– "High-level requirements decomposed into lower level

requirements [including derived requirements]"
– "Requirements developed into source code"
– "Executable object code implements requirements"
– "Means used to satisfy these objectives are technically correct and

complete for the software level"

• Software Testing
– "Software satisfies requirements"
– "Errors leading to unacceptable [hazards] have been removed"

DO-178b section 6

"Traditional" Safety Critical
Software Development

• Performed by prime and subs according to
rigorous, predefined process and procedures
– All code developed from scratch within existing vendor

team arrangements
– Processes pre-defined to facilitate safety verification

approach

• Reuse limited to code developed by the team
under the same/similar procedures

• Higher levels of software more restrictive
– E.g. no allocated storage allowed at level 1

Certification
(DO-178b approach)

• Inspection on the full set of processes
– 1. Developer proposes a "means of

compliance"
– 2. Certifier approves "means"
– 3. Developer provides evidence of

conformance to "approved means"
– 4. Certifier reviews evidence

Two key cost drivers for
safety-critical software

• Cost to develop
– Rigor in design process, traceability
– Impact of restrictions on language features

• Cost to verify/certify
– Testing, other verification measures

• ~$3k to execute each test

– Certification documentation

Impact of COTS

• Common avionics developer term for COTS:
– SOAP: Software of Unknown Pedigree

• "Pedigree" includes development process, test
process, verification process, CM process
– Bottom line to prime contractor/system integrator is

ability to certify the system (as part of delivery)
– Risk/uncertainty is A Bad Thing

The Challenge

• How to achieve cost savings via reuse of
COTS, without compromising safety
– Reduce development costs
– Reduce test and certification costs

Reminder

• Safety is a property of Systems, not
Software
– Software can perform correctly and system is

unsafe
– Software can perform incorrectly and system is

safe
"Safety critical software" is software potentially suitable for use
in a safety-critical system. Without system hazards, no proof that
the software itself is "Safety critical"...

What can COTS developers do?

• Design/develop applications that meet
development process requirements
– Test applications that meet test process

requirements
• Provide documentation and other assistance

to verification process

"Openness" for Safety

• "Open" means that a piece of software is
potentially suitable for use in a variety of safety-
critical systems
– In particular, across system safety standards

• "Open" also means that a piece of software can
potentially be replaced by a functionally
equivalent piece of software

• Finally, "Open" means that appropriate access is
provided to software and documentation

Open Group RTE Forum Product:
Safety Critical COTS Recommended Practice

• “Reference model” for COTS integration into
safety critical systems

• Common model of artifacts for verification
– E.g. Documentation, test reporting, source code access
– Based on XML capturing content of data (but not

format of data)
• Common model of COTS vendor support for

certification activities

Advantages & Disadvantages
(for a R.P. for safety critical COTS)

+ Costs of development & certification spread across all
users of COTS products

+ Increased competition, larger market
• Number of software-intensive safety-critical systems growing

substantially...
• Applicability of safety techniques to other 'mission-critical' aspects of

systems

– Increased risks for primes due to less control over COTS
vendors

– Less understanding of behavior of software in a specific
system

Status of the R.P.
• Acceptance within Open Group RTE Forum

– Briefed at both US and European meetings
• Acceptance and interest in larger safety critical

community
– Briefed at US “Software Safety Working Group”

• Draft White Paper on COTS in Safety Critical
Systems

• Informal agreement to reuse existing XML for
safety critical documentation

Now we need to start writing the document!

References:
Example Safety Standards

• (Commercial) Avionics: DO-178b, DO-248a
• Medical Devices: FDA 247, FDA 351 draft
• Nuclear Power: NRC Guide 1.173 , ANS 7-4.3.2
• Weapon Systems: Mil-Std 882d, DefStan 00-55,

00-56, 00-58
• Electric/Electronic/Programmable Systems: IEC

61508 (series)

