
Testing Safety Critical ApplicationsTesting Safety Critical Applications
Geoffrey Bessin

Product Manager – Test RealTime
Geoffrey Bessin

Product Manager – Test RealTime

Safety Critical ApplicationsSafety Critical Applications

If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million
miles per gallon, and explode once a year,

killing everyone inside.
- Robert X. Cringely

If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million
miles per gallon, and explode once a year,

killing everyone inside.
- Robert X. Cringely

AgendaAgenda
Defining Our Terms
Design Responsibilities
Test Responsibilities
Conclusion

Defining Our Terms
Design Responsibilities
Test Responsibilities
Conclusion

What is a Safety Critical Application?What is a Safety Critical Application?
Safety Critical Application:

An application where human safety is dependent upon the
correct operation of the system

Examples
Aircraft fly-by-wire system
Railway signaling systems
Medical devices
Traffic light
CAD Tools

Safety Critical Application:
An application where human safety is dependent upon the

correct operation of the system
Examples

Aircraft fly-by-wire system
Railway signaling systems
Medical devices
Traffic light
CAD Tools

Minimization of RiskMinimization of Risk
Risk = magnitude of danger * probability of exposureRisk = magnitude of danger * probability of exposure
IEC61508 Safety Integrity Levels

Level 4 – PFD 1:10,000 to 1:100,000
Catastrophic Community Impact
Level 3 – PFD 1:1000 to 1:10,000
Employee/Community Impact
Level 2 – PFD 1:100 to 1:1000
Major Property/Production Protection – Possible Employee
Injury
Level 1 – PFD 1:10 to 1:100
Minor Property/Production Protection

IEC61508 Safety Integrity Levels
Level 4 – PFD 1:10,000 to 1:100,000
Catastrophic Community Impact
Level 3 – PFD 1:1000 to 1:10,000
Employee/Community Impact
Level 2 – PFD 1:100 to 1:1000
Major Property/Production Protection – Possible Employee
Injury
Level 1 – PFD 1:10 to 1:100
Minor Property/Production Protection

Obligatory Safety Critical Example Obligatory Safety Critical Example
Ariane 5, 1996
Exploded 40 seconds
after launch
Had reused Ariane 4
code
Code was felt to be
adequate
Ariane 5 was too fast!
64-bit number was
stuffed into 16-bit
variable – overflow
error

Ariane 5, 1996
Exploded 40 seconds
after launch
Had reused Ariane 4
code
Code was felt to be
adequate
Ariane 5 was too fast!
64-bit number was
stuffed into 16-bit
variable – overflow
error

Safety Critical StandardsSafety Critical Standards
ISO9001 – Recommended minimum standard of quality
IEC1508 – General standard
EN50128 – Railway Industry
IEC880 – Nuclear Industry
RTCA/DO178B – Avionics and Airborne Systems
MISRA – Motor Industry
Defence Standard 00-55/00-56

ISO9001 – Recommended minimum standard of quality
IEC1508 – General standard
EN50128 – Railway Industry
IEC880 – Nuclear Industry
RTCA/DO178B – Avionics and Airborne Systems
MISRA – Motor Industry
Defence Standard 00-55/00-56

Strategies for Avoiding Critical Software FailureStrategies for Avoiding Critical Software Failure
Design Diversity
Fault Avoidance
Extensive Testing

Design Diversity
Fault Avoidance
Extensive Testing

AgendaAgenda
Defining Our Terms
Design Responsibilities
Test Responsibilities
Conclusion

Defining Our Terms
Design Responsibilities
Test Responsibilities
Conclusion

Software DesignSoftware Design

One way is to make it so simple that there are obviously
no deficiencies and the other is to make it so complicated
that there are no obvious deficiencies.

C.A.R. Hoare

One way is to make it so simple that there are obviously
no deficiencies and the other is to make it so complicated
that there are no obvious deficiencies.

C.A.R. Hoare

SimplicitySimplicity

Preventing Bugs – Not Just TestingPreventing Bugs – Not Just Testing
Mature Development Processes

Capability Maturity Model
Inspection Methods

Walkthroughs, formal inspections, code reading
Design Styles

Testability
Clarity

Languages
Strong typing
Runtime constraint checking
Parameter checking

Mature Development Processes
Capability Maturity Model

Inspection Methods
Walkthroughs, formal inspections, code reading

Design Styles
Testability
Clarity

Languages
Strong typing
Runtime constraint checking
Parameter checking

Designing for TestabilityDesigning for Testability

Testability

The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to

determine whether those criteria have been met.

The effort required to apply a given testing strategy to a system.

The ease with which faults in a system can be made to reveal
themselves during testing.

Testability

The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to

determine whether those criteria have been met.

The effort required to apply a given testing strategy to a system.

The ease with which faults in a system can be made to reveal
themselves during testing.

Since You Can’t Test Safety Into An Application….Since You Can’t Test Safety Into An Application….

OPTION ONE
Specify, design and build the perfect system.

Document everything
Review everything
Test everything

OPTION TWO
Aim for Option One, but accept that man is flawed.

Include error detection and recovery capabilities
Iterate

OPTION ONE
Specify, design and build the perfect system.

Document everything
Review everything
Test everything

OPTION TWO
Aim for Option One, but accept that man is flawed.

Include error detection and recovery capabilities
Iterate

AgendaAgenda
Defining Our Terms
Design Responsibilities
Test Responsibilities
Conclusion

Defining Our Terms
Design Responsibilities
Test Responsibilities
Conclusion

FactsFacts
On average, there are 3 bugs per 100 statements
Testing typically consumes at least 40% of software
development labor
50% of software projects are behind schedule
25% of software projects are abandoned

On average, there are 3 bugs per 100 statements
Testing typically consumes at least 40% of software
development labor
50% of software projects are behind schedule
25% of software projects are abandoned

Hardware’s LessonsHardware’s Lessons
Code ownership
Test responsibility
Field execution

Code ownership
Test responsibility
Field execution

Developer Responsibility

Code Quality

REDUCED RISKREDUCED RISK

Software TestingSoftware Testing
Test First

encourages explicit definition of implementation scope
helps separate logical design from physical design from implementation
grows confidence in the correct functioning of the system as the system
grows
simplifies your designs

Pair Program
Two-heads ARE better than one

Use Simulation
Using the intended processor and I/O ports (if applicable)

Static Metrics
Complexity metrics
Code adherence to formally defined conventions

Test First
encourages explicit definition of implementation scope
helps separate logical design from physical design from implementation
grows confidence in the correct functioning of the system as the system
grows
simplifies your designs

Pair Program
Two-heads ARE better than one

Use Simulation
Using the intended processor and I/O ports (if applicable)

Static Metrics
Complexity metrics
Code adherence to formally defined conventions

Fundamental ResposibilitiesFundamental Resposibilities
Unit Testing
Code Coverage Analysis
Requirements Traceability

Unit Testing
Code Coverage Analysis
Requirements Traceability

Unit TestingUnit Testing
Test harness, stub, driver creation
Clear data definition

Equivalence classes
Boundary conditions

Batch execution for regression testing
Easily traceable error reporting
Amenable to clear documentation
Versionability

Test harness, stub, driver creation
Clear data definition

Equivalence classes
Boundary conditions

Batch execution for regression testing
Easily traceable error reporting
Amenable to clear documentation
Versionability

Test Class/Data Definition – Regression TestingTest Class/Data Definition – Regression Testing

Test ReportingTest Reporting

Code CoverageCode Coverage
Coverage Levels

Procedure Entries and Exits
Calls
Statements, Decisions, Loops
Basic, Forced and MC/DC Conditions

Clear linkage to test cases
Eliminate test redundency

Support safety critical coverage levels
Easily documented

Coverage Levels
Procedure Entries and Exits
Calls
Statements, Decisions, Loops
Basic, Forced and MC/DC Conditions

Clear linkage to test cases
Eliminate test redundency

Support safety critical coverage levels
Easily documented

Multi-Level Code CoverageMulti-Level Code Coverage

Requirements TraceabilityRequirements Traceability
Cornerstone to safety-critical development standards
Properly implemented traceability

Ensures all requirements have tests
Ensures tests are updated when requirements change

Enables independent verification
Be Careful!

Requirements coverage is necessary but not sufficient
Does all code come from a requirement?

Cornerstone to safety-critical development standards
Properly implemented traceability

Ensures all requirements have tests
Ensures tests are updated when requirements change

Enables independent verification
Be Careful!

Requirements coverage is necessary but not sufficient
Does all code come from a requirement?

Test ManagementTest Management

Automation OptionsAutomation Options
Automatic, target-independent test deployment
Linkage between test results and source code
Runtime Analysis

Memory leak detection
Performance Profiling
Runtime Tracing

Automatic, target-independent test deployment
Linkage between test results and source code
Runtime Analysis

Memory leak detection
Performance Profiling
Runtime Tracing

Test

AnalyzeResolve

AgendaAgenda
Defining Our Terms
Design Responsibilities
Test Responsibilities
Conclusion

Defining Our Terms
Design Responsibilities
Test Responsibilities
Conclusion

The Old DaysThe Old Days

Testing Safety Critical Applications - ConclusionTesting Safety Critical Applications - Conclusion
Present

Responsibility lies with developer
Design and test are equally crucial
Developers need proper test training

Future
Formal requirements defintion is enabled by automated
toolsets
Formal requirements are translated into UML-like models
Models serve to generate both tests and code
Traceability is “built” into the model

Present
Responsibility lies with developer
Design and test are equally crucial
Developers need proper test training

Future
Formal requirements defintion is enabled by automated
toolsets
Formal requirements are translated into UML-like models
Models serve to generate both tests and code
Traceability is “built” into the model

