POSIX Tracing Standard

IEEE POSIX Standard 2001

What is Tracing?

- A way of recording the behavior of an application
 - without having the sources
 - with a minimum of disturbance
 - by tracing both operating system and application generated events

POSIX Tracing Standard

- Known as IEEE Std 1003.1q-2000,
 - work started in 1994
 - official IEEE project (PAR) launched in 1996
- IEEE approved standard, September 2000
- The Open Group Verification Suite available
- Included in the POSIX.1 standard,
 - approved by The Open Group in September 2001
 - approved by IEEE in December 2001
 - soon ISO 9945-2002

Tracing API Inputs

- Real Time OS implementors: Harris, Wind River
- Classic OS implementors: SUN/Solaris, IBM/AIX, Tandem/NonStopKernel
- End Users: DoD
- Universities: Cantabria (Spain)
- Application Developers: Raytheon, DoD

Tracing: State of the Art

- Many OSes already have a tracing subsystem
- Tracing subsystems are not compatible
 - in terms of their APIs
 - in terms of the traced data formats
 - with different levels of abstraction
- Specific trace analysis tool for each OS

Benefits of a Tracing Standard

• For application providers

– a common API to instrument applications

• For OS implementors

possibility of porting applications increases market base

- For analysis tools providers
 - the same tool for several platforms
- For users
 - a common way to report failure from applications

Tracing Model (1)

Tracing Model (2)

Tracing Model Without Disk

Tracing Roles

- Instrumented-application – controllable tracing points
- Tracing Controller
 - monitor trace stream operations from a traced instrumented-application
- Tracing Analyzer
 - get tracing events plus information from a completed trace stream

POSIX Tracing API Features

- Clear tracing API model
- High level of abstraction (opaque data)
 - functions to manipulate opaque data
 - each OS implementation defines its own data format
- Trace event type naming model
- Trace stream storing strategies
- Various information carried by trace event

Tracing Functionality Grouping

- Useful to allow different levels of implementation
- Tracing
 - provides the minimal set of functions for a reduced implementation like an OS without disk
- Event Filtering
 - provides mechanism to select a set of trace events
- Tracing Log
 - provides mechanisms to store a trace stream on disk
- Tracing Inheritance
 - defines inheritance through fork() operation

4/17/2002

Final Remarks

- Some Interpretations available
- Already one existing implementation

 an Ada-language implementation
- For more information, mail to:
 - richef@fr.ibm.com
 - pierre-jean.arcos@windriver.com