

Fujitsu's Challenges in Grid Computing

July 2003 Kimio Miyazawa Fujitsu Laboratories Ltd.

Outline

- Fujitsu's Experience in Grid
- Fujitsu's Grid Strategy
- Fujitsu's Activity
 - Computational Grid
 - Data Grid
 - Access Grid
 - Utility Computing
- Conclusion

Fujitsu's Experience in Grid

ITBL Project

Basic software Development for Collaborative Research Environment

Super-SINET Project

 Construction of Grid Environments by Globus Toolkit on Super Computer VPP

VizGrid Project

- System Development for Virtual Reality Collaborative Research Environment
- UNICORE Project
 - Research and Development of Server side Software for Grid
- NAREGI Project
 - Started from April 2003, Contribution as key members

Issues for Grid Business

- How to create New Paradigm by integrating "Grid", "Web Services" and "Organic Computing"
- How to establish Success Story by Grid not only in Scientific domain, but in Real Business

Fujitsu's Strategy to realize New Paradigm

1

Relationship with "Autonomy", "Virtualization" and "Integration"

Web Services powered by Grid

Integrated Layer Structure

Strategy focusing on Grid

How to establish Success Story in Grid

Computational Grid

Focusing on Massive Computing

- Manufacturing industry
 - Many high quantity simulations to reduce TAT and to improve the quality of products
 - e.g.) LSI development, Crash Analysis, Electromagnetic Field Analysis
 - Aerospace, Auto industry, Electrical equipment manufacturer
- Financial business
 - A large quantity simulations
 - e.g.) Derivative, Risk management and etc..
 - Data processing under time restrictions
 - e.g.) Shortening a settlement-of-accounts period, Current price evaluation, Global risk management and etc..
- Distribution industry
 - Marketing strategy planning using data mining

Are Users Satisfied?

- Manufacturing industry
 - People manage compute resources by hands
 - Various scale of simulation
 - -> Have to interrupt simulation due to time limit
 - -> Retrogression of development, Great losses caused by remake of LSI
- Financial business
 - I more figure of simulation accuracy
 - -> Lost business chance
- Distribution industry
 - data mining
 - -> Necessity of supercomputer

Problem Solving with Grid

Do you use compute resource fully?

- Usage of servers : Under 30%
- Usage dispersion for each working group
- Large remaining power leaves desktop PCs

How to get best efficiency of all compute resources in a enterprise!!

Characteristics of GRIP

- Monitoring the state of all resources
- Matching most suitable resource for each job
- Organic Job Control
- Real time feed back of computing results

Simulation Program for Field trial

- -Target: W-CDMA Communication between Mobile Phone and Exchange System
- -Purpose: To get the value of electric power (X-axis) when the error rate (Y-axis) becomes below than base value

Simulation Program for Field trial

- -Target: W-CDMA Communication between Mobile Phone and Exchange System
- -Purpose: To get the value of electric power (X-axis) when the error rate (Y-axis) becomes below than base value

Organic Job Controller

Graph is automatically created from simulation

Results of Field Trial

Data Grid

Research Target of Data Grid

Virtualization of Heterogeneous and Distributed Database Systems

Realization of Data Migration

Basic Architecture of Data Grid

Data Migration (Organic Storage System)

- A Storage System with Autonomy & Unlimited Scalability
 - Delivers Disk Volume Image over IP Network
 - Autonomic Module Architecture Enables Unlimited Scalability, and Parallel Data Transfer between Modules Accelerates Volume Duplication and Migration

PIV: Particle Image Velocimetry

Establishment of Collaborative Research Environment

for Experiments and Simulations

Process Integration

KMU-PIV System

Particle Image Velocimetry (PIV) developed by Korea Maritime Un

1

Architecture of PIV Virtual Laboratory

Experimental Data (Obstacle)

Demonstration by Amira

Collaboration Plan of PIV Research transcending National Barriers in Summer, 2003

Utility Computing (Concept Idea)

Utility Computing (Accounting)

Dynamic resource allocation/control according to load status.
Various account control according to amount of use of resource.

Linkage among Local IDC and Central IDC

Web Services powered by GRID computing + TRIOLE (Organic Computing)

THE POSSIBILITIES ARE INFINITE