cent

Secure Coding
Standards

2008 February 5t

Robert C. Seacord

—== Software Engineering Institute | CarnegieMellon © 2009 Carnegie Mellon University

Software Security

CERT Secure Coding Initiative
CERT Secure Coding Standards
Future Directions and Key Points

CERT | == Software Engineering Institute | CarnegieMellon 2

Increasing Vulnerabilities

Reacting to vulnerabilities in
existing systems is not working

| | . \\ﬁ
- | |

2007

CEQ | == Software Engineering Institute | CarnegieMellon 3

Application Security

CE(-\RT | === Software Engineering Institute | CarnegieMellon 4

Most Vulnerabilities caused by

According to a study of vulnerabilities in the National
Vulnerabilty Database (NVD) in 2004 by Heffley/Meunier:

« 64% of the vulnerabilities are due to programming errors

« 36% of vulnerabilities are due to configuration or design problems.

Most of these programming errors are repeated basic
mistakes.

« 20% buffer overflows
11% directory traversal attacks

« 9% format string vulnerabilities

« 4% symlink attacks

« 4% cross-site scripting vulnerabilities
« 3% shell metacharacter

CERT | == Software Engineering Institute | CarnegieMellon 5

Software Security

CERT Secure Coding Initiative
CERT Secure Coding Standards
Future Directions and Key Points

CERT | == Software Engineering Institute | CarnegieMellon 6

Secure Coding Initiative

Initiative Goals

Work with software developers and
software development organizations
to eliminate vulnerabilities resulting
from coding errors before they are
deployed.

Overall Thrusts

Advance the state of the practice in
secure coding

|ldentify common programming
errors that lead to software
vulnerabilities

Establish standard secure coding
practices

Educate software developers

CERT ‘ % Software Engineering Institute | CarnegieMellon

Current Capabilities

Secure coding standards
www.securecoding.cert.org

Source code analysis and

certification

Training courses

Involved in international standards

development.

T CERT" C
SECURE CODING
STANDARD

* Secure Coding
in C and C++

Robert C. Seacord |

EXPLORE CREATE APPLY AMPLIFY SUSTAIN

CERTC Secure Codlng Standard

* Open Group Adoptlon
* WG23 Language Annex

: : » Wiki content
. Software Certlflcatlon

. Tool Certification

CERT C++ Secure Coding Standard

The CERT Sun: Mlcrosystems Secure Coding Standard for Java

C Language Securlty Annex and Prototype

CERT ‘ % Software Engineering Institute | CarnegieMellon 8

C Language Security Annex and Prototype
C language standard is undergoing a major revision “C1X”

« Originally about security, emphasis has shifted 180 degrees towards
support for multithreading and performance optimizations that may actually
hurt security.

This work would develop a

« An informative “Analyzability” annex to the C standard that defines a
security “profile”

— some enhancements would be implemented by simply recompiling
— others may require source code modification

a prototype implementation using gcc
Annex could be implemented by compiler vendors who

want to provide a secure implementation

« do not have to compete head to head with other compilers only concerned
with performance.

CERT | == Software Engineering Institute | CarnegieMellon 9

C Language Security Annex and Prototype

This project could have a greater positive impact on software
security than anything | can imagine given that

« success of the C security annex would motivate C++
vendors to provide the same semantics for C++

« C and C++ account for ~26% of the market (according to
the TIOBE index)

« ~65% of vulnerabilities in the US-CERT vulnerability
database involve these languages

« standardization will result in broad adoption by compiler
vendors

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 10

Software Security

CERT Secure Coding Initiative
CERT Secure Coding Standards
Future Directions and Key Points

CERT ‘ Z== Software Engineering Institute | CarnegieMellon 11

CERT Secure Coding Standards

ldentify coding practices that can be used to improve
the security of software systems under development

Coding practices are classified as either rules or

recommendations

« Rules need to be followed to claim compliance.
« Recommendations are guidelines or suggestions.

Development of Secure Coding Standards is a
community effort

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 12

The secure coding standards proposed by CERT are based
on documented standard language versions as defined by
official or de facto standards organizations.

Secure coding standards are under development for:
« C programming language (ISO/IEC 9899:1999)
« C++ programming language (ISO/IEC 14882-2003)

Applicable technical corrigenda and documented language
extensions such as the ISO/IEC TR 24731 extensions to the C
library are also included.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 13

Secure Coding Wik

www.securecoding.cert.orqg
CERT Software Assurance

Dashboard = Secure Coding =

Secure Systems Organizational Security Coordinated Response

Rules are solicited from the

CERT Secure Coding Standards

Welcorme Robert Seacord | History | Preferences | Log ©ut .E}. E Communlty

Standards . sl
Overview CERT Secure Coding Standards
L language Added by Confluence Administrator , last edited by Robert Seacord on Sep 02, Publlshed as Candldate rules
S+t 2002 [(view change] .
Java Labels: (Mane) EDIT and recommendations on the
CERT Websites) Welcome to the Secure Coding Web Site CERT W|k|
CERT
w This web site exists to support the developrment of secure coding
Tech Tips standards for commonly used programming languages such as C

and C++. These standards are being developed through a . q
CERT
Employment broad-based comrunity effort including the CERT Secure Coding Threaded dlSCUSSIOﬂS used

Initiative and members of the software developrnent and
software security communities, For a further explanation of this
project and tips on how to caontribute, please see the
Development Guidelines.

Opportunities fOt‘ pUb“C Vett|ng

Secure Coding
in C and C++

&5 this is a developrnent web site, many of the pages are
incomplete or contain errors, If you are interested in furthering
this effort, vou may commment on existing itemns or send

Candidate coding practices are
moved into a secure coding

= recormmendations to secure-coding at cert dot org. You may also .
o e standard when consensus is

apply for an account to directly edit content on the site. Before
using this site, please familiarize yourself with the Terms and
Related Sites Conditions, reaChed

US-CERT
WA LUS-Cart. gov

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 14

Coding practices are defined as rules when

1. Violation of the coding practice is likely to result in
a security flaw that may result in an exploitable
vulnerability.

2. There Is a denumerable set of conditions for

which violating the coding practice Is necessary to
ensure correct behavior.

3. Conformance to the coding practice can be
determined through automated analysis, formal
methods, or manual inspection technigues.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 15

Recommendations

Coding practices are defined as recommendations
when

1. Application of the coding practice is likely to
Improve system security.

2. One or more of the requirements necessary for a

coding practice to be considered a rule cannot be
met.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 16

The CERT C Secure Coding Standard

Developed with community
Involvement, including over
320 registered participants
on the wiki.

Version 1.0 published by
Addison-Wesley In
September, 2008.

. 134 Recommendations
. 89 Rules

CERT ‘ Z== Software Engineering Institute | CarnegieMellon

TaE CERT" C
SECURE CODING
STANDARD

.....

. ROBERT C. SEACORD

17

Noncompliant Examples & Compliant Solutions

Noncompliant Code Example

In this noncompliant code example, the char pointer p is

Initialized to the address of a string literal. Attempting to modify
the string literal results in undefined behavior.

char *p = "string literal; p[0] = "S";
Compliant Solution

As an array Initializer, a string literal specifies the initial values
of characters in an array as well as the size of the array. This

code creates a copy of the string literal in the space allocated
to the character array a. The string stored in a can be safely

modified.
char aJ] = "string literal'; aJO] = °S*";

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 18

Distribution of C Recommendations

Preprocessor (PRE) 11
Declarations and Initialization (DCL) 16
Expressions (EXP) 13
Integers (INT) 16
Floating Point (FLP) 4
Arrays (ARR) 3

Characters and Strings (STR) 9

Memory Management (MEM) 11
Input Output (FIO) 17
Environment (ENV) 5
Signals (SIG) 3
Error Handling (ERR) 7

Miscellaneous (MSC) 16

POSIX (POS) 3

CERT ‘ Z== Software Engineering Institute | CarnegieMellon

19

Distribution of C Rules

Preprocessor (PRE)
Declarations and Initialization (DCL)
Expressions (EXP)

Integers (INT)

Floating Point (FLP)

Arrays (ARR)

Characters and Strings (STR)
Memory Management (MEM)
Input Output (FIO)
Environment (ENV)

Signals (SIG)

Error Handling (ERR)
Miscellaneous (MSC)

POSIX (POS)

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon

10

12

14

16

15

20

Many of the core guidelines demonstrate compliant solutions
that rely for POSIX-compliant systems.

The CERT C Secure Coding Standard also contains an
appendix with guidelines (3 recommendations and 8 rules) for
using functions that are defined as part of the POSIX family of
standards but are not included in ISO/IEC 9899-1999.

These rules and recommendations are not part of the core
standard because they do not apply in all C language
applications and because they represent an incomplete set.

The intent of providing these guidelines is to demonstrate how
rules and recommendations for other standards or specific
Implementations may be integrated with the core C99
recommendations.

CERT | == Software Engineering Institute | CarnegieMellon 21

Contributors and Reviewers

Contributors

Arbob Ahmad, Juan Alvarado, Dave Aronson, Abhishek Arya, BJ Bayha, Levi Broderick, Hal
Burch, Steven Christey, Ciera Christopher, Geoff Clare, Joe Damato, Stephen C. Dewhurst,
Susan Ditmore, Chad Dougherty, Mark Dowd, Xiaoyi Fei, William Fithen, Hallvard Furuseth,
Jeffrey Gennari, Douglas A. Gwyn, Shaun Hedrick, Christina Johns, David Keaton, Takuya
Kondo, Masaki Kubo, Richard Lane, Stephanie Wan-Ruey Lee, Jonathan Leffler, Fred Long,
Gregory K. Look, Nat Lyle, Larry Maccherone, John McDonald, Dhruv Mohindra, Bhaswanth
Nalabothula, Justin Pincar, Randy Meyers, David M. Pickett, Thomas Plum, Dan Saks, Robert
C. Seacord, David Svoboda, Chris Taschner, Ben Tucker, Fred J. Tydeman, Nick Stoughton,
Wietse Venema, Alex Volkovitsky, Grant Watters, and Gary Yuan.

Reviewers

Kevin Bagust, Greg Beeley, Arjun Bijanki, John Bode, Stewart Brodie, G Bulmer, Kyle Comer,
Sean Connelly, Ale Contenti, Tom Danielsen, T6rok Edwin, Brian Ewins, Justin Ferguson,
Stephen Friedl, Samium Gromoff, Kowsik Guruswamy, Peter Gutmann, Richard Heathfield,
Darryl Hill, Paul Hsieh, Ivan Jager, Steven G. Johnson, Anders Kaseorg, Jerry Leichter,
Nicholas Marriott, Scott Meyers, Eric Miller, Ron Natalie, Heikki Orsila, Dan Plakosh, P.J.
Plauger, Michel Schinz, Eric Sosman, Chris Tapp, Andrey Tarasevich, Josh Triplett, Pavel
Vasilyev, lvan Vecerina, Zeljko Vrba, David Wagner, Henry S. Warren, Colin Watson, Zhenyu
Wu, Drew Yao, and Christopher Yeleighton.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 22

Priorities and Levels

High severity,
likely,
inexpensive to
repair flaws L

L2 P6-P9

Med severity,
probable, med
cost to repair
flaws

CERT | == Software Engineering Institute | CarnegieMellon

Low severity,

rinlilzalvy
Ul HikClYy,

expensive to
repair flaws

23

FIO30-C. Exclude user input from format strings

Risk Assessment

Failing to exclude user input from format specifiers may allow an attacker to execute arbitrary
code.

Rule Severity Likelihood Remediation Cost Priority Level
FIO30-C 3 (high) 3 (probable) 3 (low) P27 L1

Two recent examples of format string vulnerabilities resulting from a violation of this rule include
Ettercap” and Samba”. In Ettercap v.NG-0.7.2, the ncurses user interface suffers from a format
string defect. The curses msg() function in ec curses.c calls wdg scroll print(), which takes

a format string and its parameters and passes it to vw printw(). The curses msg() function

uses one of its parameters as the format string. This input can include user-data, allowing for a
format string vulnerability [VU#286468]. The Samba AFS ACL mapping VFS plug-in fails to
properly sanitize user-controlled filenames that are used in a format specifier supplied to
snprintf (). This security flaw becomes exploitable when a user is able to write to a share that

uses Samba's atsacl.so library for setting Windows NT access control lists on files residing on
an AFS file system.

Examples of vulnerabilities resulting from the violation of this rule can be found on the CERT
website”.

CERT | == Software Engineering Institute | CarnegieMellon 24

CERT Mitigation Information

Vulnerability Note VU#649732

This vulnerability occurred as a
result of failing to comply with rule
FIO30-C of the CERT C

Programming Language Secure
Coding Standard.

/ US CERT Technical Alerts
== Examples of vulnerabilities

" e Ty resulting from the violation

ﬁ __ | nf thic rarammaondatinn ~ran

Ul U11o ICL;UIIIIIICIIUC[LIUII CAall

be found on the CERT
CERT Secure Coding Standard website .

CERT ‘ Z== Software Engineering Institute | CarnegieMellon 25

Secure Coding Standard Applications

Establish secure coding practices within an
organization
« may be extended with organization-specific rules
« cannot replace or remove existing rules

Train software professionals

Certify programmers in secure ch,

coding
Establish requirements for i ST STIEY
software analysis tools | strepy(a f(a)s stri
Software Certification T i oo 1arse

CERT ‘ 1_:._5 Software Engineering Institute | CarnegieMellon

26

Major Software Vendor LDRA Adopts
CERT C Secure Coding Standard

LDRA ships new TBsecure™ complete with
CERT C Secure Coding programming checker

G5 1rA Tovion 780 © 2008 GRATSS R :
Source View Configure Help
Explorer [4 .
Startup Page |
— - | |
a & alloc struct Remowve Mode ;{taﬁlefsettnload
a B Calls _ 5 !
E,L malloc - File Caligraph
Ep free Set Filter Opticns »
= Return Type - void
4 & finale Information Filters »
B Calls |
4 () Parameters C Standard Models 3 Standard
{) UCHAR - bitmap | = |
Wi Code R
€) const CHAR ™ - sny tew Code Rewview Customer Sample
[= i = CERT
2 Return Type-void | gy | i Quality Qualification [
A ger podt MISRA-C:1998
=2 Return Type - UINT_1§ E-j Wiew Fault Qualification
% get_pte Ld View Security Qualification S
= Return Type - UINT_33 2 VsOs
4 o initialise View Memory Qualification MISRA-C:2004
{) Parameters i
=3 Return Type - void EADS
4 & main GJB
B Calls
s = - | CAST
CMSE
TBwision Log Window Window
HIS
LMTCP
Executing LDRA Testbed to load in a single file port Writer - Individual Report started
AIE bort Writer - Individual Report finished
Execution of Testbed completed Mo Standards Model

—rport Writer started

v
' Executing LDRA Testbed to run Static Analysis for C: Test Manager Report Writer finished

WLDRA_WORKAREAVExamples\Tbhwvision\Demo_setinitialise.c

Execution of Testbed completed

Processing File CALDRA_WORKAREA\tbwrkfisUnitialise_4.glh

Processing File Completed

Creating GLH Results Repository started
Creating GLH Results Repository finished

m

HTML Index Files not generated - option disabled

Screenshot from the LDRA tool suite shows the selection of the CERT C secure coding standard from the C standards models

CERT ‘

——
——
=
—

Software Engineering Institute | CarnegieMellon

27

LDRA Press Release

Boston, MA — October 26, 2008. LDRA (Booth
1017), provider of the most complete automated
software verification, source code analysis and test
tools covering the full development lifecycle, has
released its new TBsecure plug-in complete with the
Carnegie Mellon Software Engineering Institute (SEI)
CERT C secure coding standard.

TBsecure identifies security vulnerabilities and
enables implementation of the just released CERT C

Choariirn CONnAdinAa Ctandard viareceinn 1 N
JCOLUUI T \/UU"'H J LA |u IU VCIOIVUII L.V.

CERT ‘ Software Engineering Institute | CarnegieMellon 28

Software Validation & Verification

Implementing checkers for various software analysis
tools to verify compliance with CERT secure coding
standards

- LDRA

« Fortify SCA

« Lawrence Livermore National Laboratory (LLNL)
Compass / ROSE

« Coverity Prevent

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 29

CMU/SEI-2008-TR-014

“Evaluation of CERT Secure Coding Rules through Integration
with Source Code Analysis Tools”

Study to evaluate the effectiveness of secure coding practices,
Including the use of static analysis tools coupled with secure
coding rule sets

« the CERT C Programming Language Secure Coding Standard
« CERT C++ Programming Language Secure Coding Standard

This study was a joint effort between the CERT Secure Coding
Initiative and JPCERT/CC.

The objectives of the study were to evaluate the efficacy of the

CERT QQ(“IIFQ Codinna {|tandardec and cniirce rnde analvcic
N/ b=l \ 1 o UUUL U s UL |H WLLATI IUUCALI UV CAITTU DUUIT VUL UUuULUL QL |u|y~)|\)

tools in improving the quality and security of commercial
software projects.

CERT ‘ Software Engineering Institute | Carnegie Mellon 30

Study Design

Two static analysis tools were selected for their extensibility as
well as overall effectiveness:

« Fortify Source Code Analysis (SCA) from Fortify Software and

« Compass/ROSE from Lawrence Livermore National Laboratory.

Checkers were developed for each tool to check code for
violations of the CERT C and C++ Secure Coding Standards.

These tools were provided to Software Research Associates,
Inc. (SRA), a Japanese software development firm.

SRA evaluated the extended versions of Fortify SCA and
Compass/ROSE on two existing projects:

Py | Iy | —~d o~ [Py P R, | ~dr o~ i

« a toll collection Systeme-reiated GUI dppllCdLlUll written in C++

« a Video Service Communication Protocol written in the C
programming language.

CERT ‘ Software Engineering Institute | Carnegie Mellon 31

Study Conclusions

The project successfully extended source code analysis tools
to discover a number of software defects in both projects
evaluated, demonstrating the effectiveness of both the CERT
Secure Coding Standards and the static analysis tools
evaluated in improving software quality.

The project was also successful in identifying ways in which
both the CERT Secure Coding Standards and the static
analysis tools could be further improved.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 32

CERT SCALe (Source Code Analysis Lab)

The use of secure coding standards defines a proscriptive set
of rules and recommendations to which the source code can
be evaluated for compliance.

INT30-C. Provably nonconforming
INT31-C.

INT32-C. Conforming

INT33-C. Provably Conforming

Enable buyers and developers of software to ensure that
software Is correct, secure, and fault resistant, even when
source code and design information is not fully available.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 33

Secure Coding in C/C++ Training

Secure Coding in C and C++ provides practical
guidance on secure programming

« provides a detailed explanation of common programming
errors

- describes how errors can lead to vulnerable code
« evaluates available mitigation strategies

Useful to anyone involved in developing secure C
and C++ programs regardless of the application

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 34

Software Assurance Education

CMU CS 15392 Secure Programming offered as an
undergraduate elective in the School of Computer
Science In S07, S08, S09

« More of a vocational course than an “enduring
knowledge” course.

« Students are interested in taking a class that goes
beyond “policy”
CMU INI Graduate Class in Secure Software
Engineering14735

P B Y aVYaeaVe L~ IA [T V0 IA

Courses based on this material currently being
offered at several universities

CERT ‘ Software Engineering Institute | CarnegieMellon 35

Software Assurance Education

The SEI Is organizing a small group of universities
around the theme of secure coding.

The SEI to host a workshop that brings professors
together to design parallel efforts to

1. promulgate secure coding to their students and

2. measure the impact of #1 on student abllities to develop
software that is not vulnerable to known attacks.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 36

Software Security

CERT Secure Coding Initiative
CERT Secure Coding Standards
Future Directions and Key Points

CERT ‘ Z== Software Engineering Institute | CarnegieMellon 37

CERT C and ISO/IEC WG14

The idea for a CERT C Secure Coding standard arose at the
ISO/IEC WG14 (the international standardization working
group for the programming language C) meeting in Berlin in
March 2006.

The CERT C guideline has been twice reviewed by WG14, at
the London and Kona meetings.

During the Delft 2008 meeting, PL22.11 discussed if it should
submit the CERT Secure Coding Standard to WG14 as a

candidate for publication as a Type 2 or Type 3 technical
report.

The next revision of the C Secure (‘ndmn Guideline Is hplnn

Wil W e’ f AN WAITWIW I I\ LA g N il

prepared in proper format for approval as an ISO C Technlcal
Report and should be available by the end of this month.

CERT ‘ Software Engineering Institute | Carnegie Mellon 38

ISO/IEC C Secure Coding Guideline

Goal Is to publish as a Type Il technical report.

Target audience would include source code analysis
tool vendors.

The secure coding guidelines would focus on rules
and “analyzable” recommendations.

The CERT C Secure Coding Standard Is being used
as a base document.

Cut down to eliminate non-normative text such as

« combliant solutions
rlllul IV JIVJITARIVIT TV

* risk analysis

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 39

Publication as an Open Standard

Publishing secure coding guidelines as an open standard will
allow the content to be controlled through an open standards
Process.

Particularly important In the case where government or other
Industry bodies begin to require conformance with this
document.

« The corollary is that not publishing as an open standard may not

prevent the US government or other software consumers from
requiring conformance to the existing document.

« For example, procurement language under development by the

State of New York and other state governments already is being
adjusted to use the CWE/SANS TOP 25 Programming Errors which

IS mapped to CERT Secure Coding Standards.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 40

O CERTC 2> Adoption by

e . S —

@ Secure Coding | ; S source code

O standard Certification, analysis

O Application < vendors and
| . Certinication developers

@ CERT C++ | > Adoption by

@ Secure Coding S _source code

O standard Certificatior c analysis

O Application < vendors and
| = Certification developers

o CERT Sun 2 Adoption by

@ Microsystems | | S source code

O Secure Coding Certificatior & analysis

O Standard for Application < Vvendors and
. Java = Certification developers

CERT ‘ Z== Software Engineering Institute | Carnegie Mellon 41

Future Directions

Continue to develop and enhance existing secure
coding standards and associated checkers

Develop secure coding standards for other
languages and programming environments
« Web Development
« Language independent
. Ada, SPARK

Develop secure coding design patterns

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 42

Key Points

Everyday software defects cause the majority of
software vulnerabillities.

Software developers are not always properly trained
and equipped to program securely.

The result Is numerous delivered defects, some of
which can lead to vulnerabilities.

Understanding the sources of vulnerabilities and
earning to program securely Is imperative to
orotecting the Internet and ourselves from attack.

CERT ‘ 1_;= Software Engineering Institute | CarnegieMellon 43

For More Information

Visit CERT® web sites:
http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/

Contact Presenter
Robert C. Seacord rcs@cert.org

Contact CERT Coordination Center:
Software Engineering Institute

Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA

Hotline: +1 412 268 7090

CERT/CC personnel answer 24x7, 365
days per year

Fax: +1 412 268 6989

Mailto: cert@cert.org

CEQ | == Software Engineering Institute | CarnegieMellon 45

