
Secure Coding 
Standards
2008 February 5th

R b t C S dRobert C. Seacord

© 2009 Carnegie Mellon University



Agendag
Software Securityy
CERT Secure Coding Initiative
CERT Secure Coding Standards
Future Directions and Key PointsFuture Directions and Key Points

2



Increasing Vulnerabilitiesg
Reacting to vulnerabilities in g
existing systems is not working

3



Application Securitypp y

4



Most Vulnerabilities caused by 
Programming ErrorsProgramming Errors
According to a study of vulnerabilities in the National 
Vulnerabilty Database (NVD) in 2004 by Heffley/Meunier:
• 64% of the vulnerabilities are due to programming errors
• 36% of vulnerabilities are due to configuration or design problems.

Most of these programming errors are repeated basic p g g p
mistakes.
• 20% buffer overflows 
• 11% directory traversal attacks 
• 9% format string vulnerabilities g
• 4% symlink attacks 
• 4% cross-site scripting vulnerabilities p g
• 3% shell metacharacter

5



Agendag
Software Securityy
CERT Secure Coding Initiative
CERT Secure Coding Standards
Future Directions and Key PointsFuture Directions and Key Points

6



Secure Coding Initiativeg
Initiative Goals Current Capabilities
Work with software developers and 
software development organizations
to eliminate vulnerabilities resulting

Secure coding standards
www.securecoding.cert.org
Source code analysis andto eliminate vulnerabilities resulting 

from coding errors before they are 
deployed.

Source code analysis and 
certification
Training courses
Involved in international standards 
development.Overall Thrusts 

Advance the state of the practice in 
disecure coding

Identify common programming 
errors that lead to softwareerrors that lead to software 
vulnerabilities
Establish standard secure coding stab s sta da d secu e cod g
practices
Educate software developers 

7



EXPLORE CREATE APPLY AMPLIFY SUSTAIN

CERT C Secure Coding Standard
• Open Group AdoptionOpen Group Adoption
• WG23 Language Annex

• Wiki content
• Software Certification

CERT C++ Secure Coding Standard

• Software Certification
• Tool Certification

CERT C++ Secure Coding Standard

The CERT Sun Microsystems Secure Coding Standard for Java

C Language Security Annex and Prototype

8



C Language Security Annex and Prototypeg g y yp
C language standard is undergoing a major revision “C1X”

• Originally about security, emphasis has shifted 180 degrees towards 
support for multithreading and performance optimizations that may actually 
hurt security.hurt security.

This work would develop a
• An informative “Analyzability” annex to the C standard that defines a y y

security “profile” 
— some enhancements would be implemented by simply recompiling

— others may require source code modification

• a prototype implementation using gcc
Annex could be implemented by compiler vendors who 

• want to provide a secure implementation
• do not have to compete head to head with other compilers only concerned 

with performance.

9



C Language Security Annex and Prototypeg g y yp

This project could have a greater positive impact on software 
security than anything I can imagine given that
• success of the C security annex would motivate C++ y

vendors to provide the same semantics for C++
• C and C++ account for ~26% of the market (according toC and C++ account for 26% of the market (according to 

the TIOBE index) 
• ~65% of vulnerabilities in the US CERT vulnerability• ~65% of vulnerabilities in the US-CERT vulnerability 

database involve these languages
t d di ti ill lt i b d d ti b il• standardization will result in broad adoption by compiler 

vendors

10



Agendag
Software Securityy
CERT Secure Coding Initiative
CERT Secure Coding Standards
Future Directions and Key PointsFuture Directions and Key Points

11



CERT Secure Coding Standardsg

Identify coding practices that can be used to improve 
the security of software systems under development

Coding practices are classified as either rules orCoding practices are classified as either rules or 
recommendations
• Rules need to be followed to claim compliance.
• Recommendations are guidelines or suggestions. 

Development of Secure Coding Standards is a 
community effortcommunity effort

12



Scopep
The secure coding standards proposed by CERT are based 
on documented standard language versions as defined by 
official or de facto standards organizations. 
Secure coding standards are under development for:
• C programming language (ISO/IEC 9899:1999)  p g g g g ( )
• C++ programming language (ISO/IEC 14882-2003 )  

Applicable technical corrigenda and documented languageApplicable technical corrigenda and documented language 
extensions such as the ISO/IEC TR 24731 extensions to the C 
library are also included.library are also included.

13



Secure Coding Wiki
www.securecoding.cert.org

g

Rules are solicited from the 
community

Published as candidate rules 
d d ti thand recommendations  on the 

CERT Wiki.

Threaded discussions used 
for public vetting

Candidate coding practices are 
moved into a secure coding g
standard when consensus  is 
reached

14



Rules
Coding practices are defined as rules wheng p
1. Violation of the coding practice is likely to result in 

a security flaw that may result in an exploitablea security flaw that may result in an exploitable 
vulnerability.

2. There is a denumerable set of conditions for 
which violating the coding practice is necessary towhich violating the coding practice is necessary to 
ensure correct behavior.
C f t th di ti b3. Conformance to the coding practice can be 
determined through automated analysis, formal 
methods, or manual inspection techniques.

15



Recommendations
Coding practices are defined as recommendationsg p
when 
1 Application of the coding practice is likely to1. Application of the coding practice is likely to 

improve system security.
2. One or more of the requirements necessary for a 

coding practice to be considered a rule cannot be g p
met.

16



The CERT C Secure Coding Standardg
Developed with community p y
involvement, including over 
320 registered participants320 registered participants 
on the wiki. 
Version 1.0 published by 
Addison-Wesley in 
September, 2008.

134 Recommendations• 134 Recommendations
• 89 Rules

17



Noncompliant Examples & Compliant Solutions

Noncompliant Code Example
In this noncompliant code example, the char pointer p is 
initialized to the address of a string literal. Attempting to modify g p g y
the string literal results in undefined behavior.
char *p = "string literal"; p[0] = 'S';char p  string literal ; p[0]  S ; 

Compliant Solution
A i iti li t i lit l ifi th i iti l lAs an array initializer, a string literal specifies the initial values 
of characters in an array as well as the size of the array. This 

d t f th t i lit l i th ll t dcode creates a copy of the string literal in the space allocated 
to the character array a. The string stored in a can be safely 
modifiedmodified.
char a[] = "string literal"; a[0] = 'S'; 

18



Distribution of C Recommendations

0 5 10 15 20

11

16

Preprocessor (PRE)

Declarations and Initialization (DCL)

13

16

4

Expressions (EXP)

Integers (INT)

Fl ti P i t (FLP) 4

3

9

Floating Point (FLP)

Arrays (ARR)

Characters and Strings (STR)

11

17

Memory Management (MEM)

Input Output (FIO)

5

3

7

Environment (ENV)

Signals (SIG)

Error Handling (ERR) 7

16

3

Error Handling (ERR)

Miscellaneous (MSC)

POSIX (POS)

19



Distribution of C Rules
0 2 4 6 8 10 12 14 16

2

7

Preprocessor (PRE)

Declarations and Initialization (DCL)

9

6

5

Expressions (EXP)

Integers (INT)

Floating Point (FLP)

9

8

6

Arrays (ARR)

Characters and Strings (STR)

Memory Management (MEM)

15

4

5

y g ( )

Input Output (FIO)

Environment (ENV)

Si l (SIG) 5

3

2

Signals (SIG)

Error Handling (ERR)

Miscellaneous (MSC)

8POSIX (POS)

20



POSIX
Many of the core guidelines demonstrate compliant solutions 
that rely for POSIX-compliant systems.
The CERT C Secure Coding Standard also contains an g
appendix with guidelines (3 recommendations and 8 rules) for 
using functions that are defined as part of the POSIX family of g p y
standards but are not included in ISO/IEC 9899-1999. 
These rules and recommendations are not part of the coreThese rules and recommendations are not part of the core 
standard because they do not apply in all C language 
applications and because they represent an incomplete set. pp y p p
The intent of providing these guidelines is to demonstrate how 
rules and recommendations for other standards or specificrules and recommendations for other standards or specific 
implementations may be integrated with the core C99 
recommendations.

21

recommendations.



Contributors and Reviewers
Contributors
A b b Ah d J Al d D A Abhi h k A BJ B h L i B d i k H lArbob Ahmad, Juan Alvarado, Dave Aronson, Abhishek Arya, BJ Bayha, Levi Broderick, Hal 
Burch, Steven Christey, Ciera Christopher, Geoff Clare, Joe Damato, Stephen C. Dewhurst, 
Susan Ditmore, Chad Dougherty, Mark Dowd, Xiaoyi Fei, William Fithen, Hallvard Furuseth, 
Jeffrey Gennari Douglas A Gwyn Shaun Hedrick Christina Johns David Keaton TakuyaJeffrey Gennari, Douglas A. Gwyn, Shaun Hedrick, Christina Johns, David Keaton, Takuya 
Kondo, Masaki Kubo, Richard Lane, Stephanie Wan-Ruey Lee, Jonathan Leffler, Fred Long, 
Gregory K. Look, Nat Lyle, Larry Maccherone, John McDonald, Dhruv Mohindra, Bhaswanth
Nalabothula Justin Pincar Randy Meyers David M Pickett Thomas Plum Dan Saks RobertNalabothula, Justin Pincar, Randy Meyers, David M. Pickett, Thomas Plum, Dan Saks, Robert 
C. Seacord, David Svoboda, Chris Taschner, Ben Tucker, Fred J. Tydeman, Nick Stoughton, 
Wietse Venema, Alex Volkovitsky, Grant Watters, and Gary Yuan.
ReviewersReviewers
Kevin Bagust, Greg Beeley, Arjun Bijanki, John Bode, Stewart Brodie, G Bulmer, Kyle Comer, 
Sean Connelly, Ale Contenti, Tom Danielsen, Török Edwin, Brian Ewins, Justin Ferguson, 
St h F i dl S i G ff K ik G P t G t Ri h d H thfi ldStephen Friedl, Samium Gromoff, Kowsik Guruswamy, Peter Gutmann, Richard Heathfield, 
Darryl Hill, Paul Hsieh, Ivan Jager, Steven G. Johnson, Anders Kaseorg, Jerry Leichter, 
Nicholas Marriott, Scott Meyers, Eric Miller, Ron Natalie, Heikki Orsila, Dan Plakosh, P.J. 
Plauger Michel Schinz Eric Sosman Chris Tapp Andrey Tarasevich Josh Triplett PavelPlauger, Michel Schinz, Eric Sosman, Chris Tapp, Andrey Tarasevich, Josh Triplett, Pavel
Vasilyev, Ivan Vecerina, Zeljko Vrba, David Wagner, Henry S. Warren, Colin Watson, Zhenyu
Wu, Drew Yao, and Christopher Yeleighton.

22



Priorities and Levels

High severity
L1 P12-P27 

High severity, 
likely, 
inexpensive to 

i fl
L2  P6-P9

repair flaws

L3 P1-P4

Low severity, 
unlikelyMed severity, unlikely, 
expensive to 
repair flaws

probable, med 
cost to repair
flaws

23



FIO30-C. Exclude user input from format stringsg

24



CERT Mitigation Informationg

Vulnerability Note VU#649732u e ab ty ote U#6 9 3
This vulnerability occurred as a 
result of failing to comply with rule 
FIO30-C of the CERT C 
Programming Language Secure 
Coding Standard

US CERT Technical Alerts
Coding Standard. 

Examples of vulnerabilities 
resulting from the violation 
of this recommendation can

CERT Secure Coding Standard

of this recommendation can 
be found on the CERT 
website . 

25



Secure Coding Standard Applicationsg pp
Establish secure coding practices within an g p
organization
• may be extended with organization specific rules• may be extended with organization-specific rules 
• cannot replace or remove existing rules 

Train software professionals 
Certify programmers in secureCertify programmers in secure 
coding
Establish requirements for 
software analysis toolsy
Software Certification

26



Major Software Vendor LDRA Adopts 
CERT C Secure Coding StandardCERT C Secure Coding Standard

LDRA ships new TBsecure™ complete with p p
CERT C Secure Coding programming checker 

Screenshot from the LDRA tool suite shows the selection of the CERT C secure coding standard from the C standards models

27



LDRA Press Release
Boston, MA – October 26, 2008. LDRA (Booth , , (
1017), provider of the most complete automated 
software verification source code analysis and testsoftware verification, source code analysis and test 
tools covering the full development lifecycle, has 
released its new TBsecure plug in complete with thereleased its new TBsecure plug-in complete with the 
Carnegie Mellon Software Engineering Institute (SEI) 
CERT C di t d dCERT C secure coding standard. 
TBsecure identifies security vulnerabilities andTBsecure identifies security vulnerabilities and 
enables implementation of the just released CERT C 
Secure Coding Standard version 1 0Secure Coding Standard version 1.0. 

28



Software Validation & Verification
Implementing checkers for various software analysis p g y
tools to verify compliance with CERT secure coding 
standardsstandards
• LDRA 
• Fortify SCA
• Lawrence Livermore National Laboratory (LLNL) 

Compass / ROSE
• Coverity Preventy

29



CMU/SEI-2008-TR-014 
“Evaluation of CERT Secure Coding Rules through Integration 

with Source Code Analysis Tools”
Study to evaluate the effectiveness of secure coding practices, y g p ,
including the use of static analysis tools coupled with secure 
coding rule sets g
• the CERT C Programming Language Secure Coding Standard 
• CERT C++ Programming Language Secure Coding Standardg g g g g

This study was a joint effort between the CERT Secure Coding 
Initiative and JPCERT/CC.Initiative and JPCERT/CC. 
The objectives of the study were to evaluate the efficacy of the 
CERT Secure Coding Standards and source code analysisCERT Secure Coding Standards and source code analysis 
tools in improving the quality and security of commercial 
software projects

30

software projects. 



Study Designy g
Two static analysis tools were selected for their extensibility as 
well as overall effectiveness:
• Fortify Source Code Analysis (SCA) from Fortify Software and 
• Compass/ROSE from Lawrence Livermore National Laboratory. 

Checkers were developed for each tool to check code for p
violations of the CERT C and C++ Secure Coding Standards. 
These tools were provided to Software Research AssociatesThese tools were provided to Software Research Associates, 
Inc. (SRA), a Japanese software development firm. 
SRA evaluated the extended versions of Fortify SCA andSRA evaluated the extended versions of Fortify SCA and 
Compass/ROSE on two existing projects: 

a toll collection system related GUI application written in C++• a toll collection system-related GUI application written in C++ 
• a Video Service Communication Protocol written in the C 

programming language

31

programming language. 



Study Conclusionsy
The project successfully extended source code analysis tools 
to discover a number of software defects in both projects 
evaluated, demonstrating the effectiveness of both the CERT 
Secure Coding Standards and the static analysis tools 
evaluated in improving software quality. 
The project was also successful in identifying ways in which 
both the CERT Secure Coding Standards and the static 
analysis tools could be further improved. 

32



CERT SCALe (Source Code Analysis Lab)( y )

The use of secure coding standards defines a proscriptive set 
of rules and recommendations to which the source code can 
be evaluated for compliance.

INT30-C. Provably nonconforming

C

INT32-C. Conforming

INT31-C. Documented deviation

INT33-C. Provably Conforming

Enable buyers and developers of software to ensure that 
software is correct, secure, and fault resistant, even when 
source code and design information is not fully available.

33



Secure Coding in C/C++ Trainingg g
Secure Coding in C and C++ provides practicalg p p
guidance on secure programming
• provides a detailed explanation of common programming• provides a detailed explanation of common programming 

errors
d ib h l d t l bl d• describes how errors can lead to vulnerable code

• evaluates available mitigation strategies
Useful to anyone involved in developing secure C 
and C++ programs regardless of the applicationand C++ programs regardless of the application

34



Software Assurance Education
CMU CS 15392 Secure Programming offered as an g g
undergraduate elective in the School of  Computer 
Science in S07 S08 S09Science in S07, S08, S09
• More of a vocational course than an “enduring 

knowledge” courseknowledge  course.
• Students are interested in taking a class that goes 

b d “ li ”beyond “policy”
CMU INI Graduate Class in Secure Software 
Engineering14735
Courses based on this material currently beingCourses based on this material currently being 
offered at several universities

35



Software Assurance Education
The SEI is organizing a small group of universities g g g p
around the theme of secure coding. 
The SEI to host a workshop that brings professorsThe SEI to host a workshop that brings professors 
together to design parallel efforts to 

1. promulgate secure coding to their students and 
2. measure the impact of #1 on student abilities to develop2. measure the impact of #1 on student abilities to develop 

software that is not vulnerable to known attacks.

36



Agendag
Software Securityy
CERT Secure Coding Initiative
CERT Secure Coding Standards
Future Directions and Key PointsFuture Directions and Key Points

37



CERT C and ISO/IEC WG14
The idea for a CERT C Secure Coding standard arose at the 
ISO/IEC WG14 (the international standardization working 
group for the programming language C) meeting in Berlin in 
March 2006.
The CERT C guideline has been twice reviewed by WG14, at g y
the London and Kona meetings.
During the Delft 2008 meeting, PL22.11 discussed if it shouldDuring the Delft 2008 meeting, PL22.11 discussed if it should 
submit the CERT Secure Coding Standard to WG14 as a 
candidate for publication as a Type 2 or Type 3 technical p yp yp
report. 
The next revision of the C Secure Coding Guideline is beingThe next revision of the C Secure Coding Guideline is being 
prepared in proper format for approval as an ISO C Technical 
Report and should be available by the end of this month.

38

Report and should be available by the end of this month.



ISO/IEC C Secure Coding Guidelineg
Goal is to publish as a Type II technical report.p yp p
Target audience would include source code analysis 
tool vendorstool vendors.
The secure coding guidelines would focus on rules g g
and “analyzable” recommendations.
The CERT C Secure Coding Standard is being usedThe CERT C Secure Coding Standard is being used 
as a base document.
Cut down to eliminate non-normative text such as
• compliant solutionscompliant solutions
• risk analysis

39



Publication as an Open Standardp
Publishing secure coding guidelines as an open standard will 
allow the content to be controlled through an open standards 
process.
Particularly important In the case where government or other 
industry bodies begin to require conformance with this y g q
document.
• The corollary is that not publishing as an open standard may not y p g p y

prevent the US government or other software consumers from 
requiring conformance to the existing document.

• For example, procurement language under development by the 
State of New York and other state governments already is being 
adjusted to use the CWE/SANS TOP 25 Programming Errors whichadjusted to use the CWE/SANS TOP 25 Programming Errors which 
is mapped to CERT Secure Coding Standards.

40



Roadmapp
at

e CERT C 
S C di pl

y Training, 
P f i l ify Adoption by 

d

C
re

a Secure Coding 
Standard A

pp Professional 
Certification, 
Application A

m
pl

i source code 
analysis 
vendors andC Application 

Certification

A vendors and 
developers

e CERT C++ y Training y Adoption by

re
at

e CERT C++ 
Secure Coding 
Standard A

pp
ly Training, 

Professional 
Certification, m

pl
ify Adoption by 

source code 
analysis 

C
r A ,

Application 
Certification A

m y
vendors and 
developers

at
e CERT Sun 

Microsystems pl
y Training, 

Professional pl
ify Adoption by 

source code

C
re

a Microsystems 
Secure Coding 
Standard for 
J

A
p Professional 

Certification, 
Application 
C tifi ti A

m
p source code 

analysis 
vendors and 
d l

41

Java Certification developers



Future Directions
Continue to develop and enhance existing secure p g
coding standards and associated checkers
Develop secure coding standards for otherDevelop secure coding standards for other 
languages and programming environments
• Web Development
• Language independentLanguage independent
• Ada, SPARK

D l di d i ttDevelop secure coding design patterns

42



Key Pointsy
Everyday software defects cause the majority of y y j y
software vulnerabilities.
Software developers are not always properly trainedSoftware developers are not always properly trained
and equipped to program securely.
The result is numerous delivered defects, some of 
which can lead to vulnerabilities.which can lead to vulnerabilities.
Understanding the sources of vulnerabilities and 
l i t l i i ti tlearning to program securely is imperative to 
protecting the Internet and ourselves from attack.

43



Questions

44



For More Information
Visit CERT® web sites:    
http://www cert org/secure coding/http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/

Contact Presenter
Robert C. Seacord rcs@cert.org

Contact CERT Coordination Center:
Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue4500 Fifth Avenue

Pittsburgh PA 15213-3890

USA

Hotline: +1 412 268 7090
CERT/CC personnel answer 24x7, 365 
ddays per year
Fax:       +1 412 268 6989
Mailto: cert@cert.org

45

@ g


