

The Good, The Bad, and The Ugly of Interoperability Metrics

Dr. Lee Whitt February 2004 Northrop Grumman Mission Systems

DEFINITIONS

ROP GRUMMAN

• Interoperability usually defined at the 30,000ft level

 The ability of two systems to exchange information and to mutually use that information

Interoperability is not an "absolute"

 The degree of interoperability should be defined when referring to specific cases

✓ The probability of successful interoperation of subscribers in a network under specified conditions for a given mission time

What do these mean at ground level?

CONTEXT INTEROPERABILITY METRICS:

• Quantify "suitability" for inclusion in GIG/NCES/JC2

✓ GIG/NCES/JC2 Implementation details remain fluid

✓ Legacy/heritage/deployed systems retain important role

• Encompass diverse requirements

✓ Interoperability, functionality, security, usability, ...

✓ Technical, Operational, System requirements

• Define a calculus for an Interoperability Quotient (IQ)

NORTHROP GRUMMAN

THE GOOD INTEROPERABILITY METRICS:

 Embolden acquisition commands to make technical decisions

✓ Mitigates push-back from "emotional" stake-holders

Quantify a program's degree of interoperability

✓ Provides repeatable & defendable discriminators

Focus design/development on interoperability

✓ Not a bolt-on-later capability

✓ Development, integration, deployment, support

THE BAD

INTEROPERABILITY METRICS:

- Limit flexibility
 - ✓ Legacy/deployed systems impose constraints

Limit innovation

 "Better" may be less important than "consistent" or "common" or "integrated" or "sustainable" or ...

Slow technology insertion

 Impedance mismatch between new and old technology must be addressed

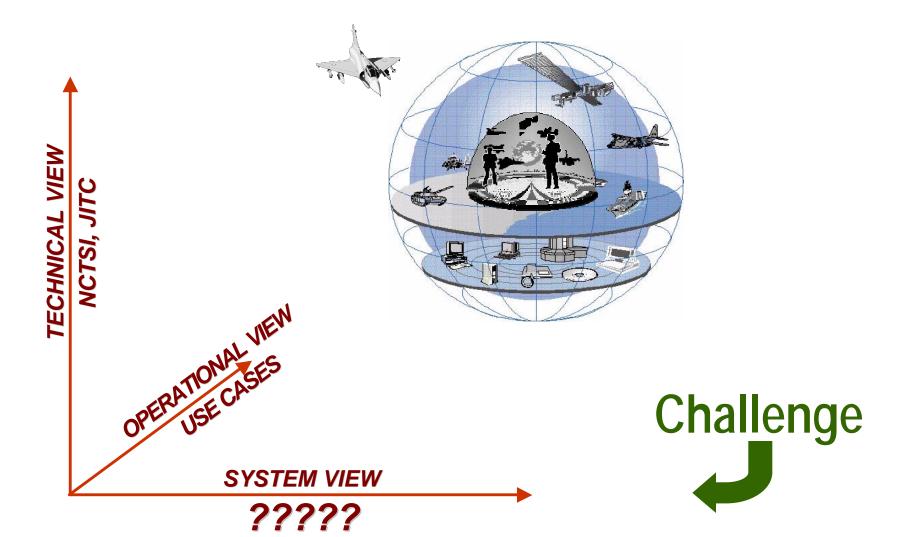
THE UGLY INTEROPERABILITY:

- Defies actionable definition
 - ✓ Does it apply to applications or interfaces?
 - ✓ How far into an application does interoperability apply?
- Leads to significant software complexity
 - ✓ Backward compatibility is mandated
- Facilitates propagation of viruses

 Boundary-less global network is prime breeding ground for destructive effect of network-borne viruses

 Combination of complexity and boundary-less environment may lead to a "Perfect Storm"

Seemingly unrelated events cascade into a sequence of unexpected actions that are perfect – in the worse sense – leading to meltdown


..... so what's my approach to addressing the broad range of interoperability issues?

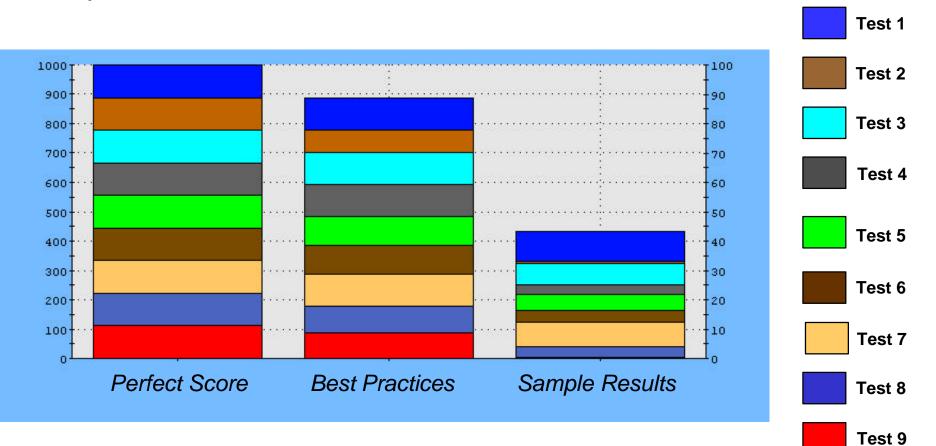
Design IQ to combine Technical, Operational, and System Views

Interoperability tests for the <u>System View</u>

- Taxonomy
 - ✓ External Interfaces
 - ✓ Internal Context

"System View" IQ – 10 External Interface Tests

- 1. Interface security inbound (validation, access control)
- 2. Interface security outbound (digital signature, encryption options)
- 3. Data integrity -low level (syntactic & semantic validation)
- 4. Data integrity high level (semantic cast/loss, precision cast/loss)
- 5. Interface flexibility (data formats, transport protocols)
- 6. Interface bandwidth (manage/control bandwidth use)
- 7. Interface registration & version control (register information on interface, provide version control)
- 8. Interface management (flow control, health status, error conditions)
- 9. Interface performance (support operational data rates, support multiple connections, degrade gracefully under load)
- 10. Interface documentation (clear & complete documentation)



"System View" IQ – 10 Internal Context Tests

- 1. Security (access control tied to user profile)
- 2. Data processing integrity (compliant business logic)
- 3. Data presentation (dynamic updates, customizable, UI compliant)
- 4. User help, prompts, process controls (on-line context-sensitive help, user prompts & error/status alerts, activity status, training scenarios)
- 5. Web enabled (browser, web services, PDA access)
- 6. Sysadmin (logging, monitoring, trouble-shooting tools)
- 7. Collaboration (support for collab sharing/viewing/annotation)
- 8. Upgrade & version control (upgrade without loss of data, compatibility between versions on LAN/WAN)
- **9. Reliability/Robustness** (self-protecting from data loss/contamination, survivable from catastrophic failure, resilient to network failure)
- 10. Special processing/performance (MLS, RT, smart "down-sampling")

Sample IQ Assessment

Any Questions?

Interoperability and the Quantum Effect

- Quantum Physics
 - ✓ Act of observing <u>affects</u> what is being observed
 - ✓ Act of observing sometimes <u>creates</u> what is being observed
- Quantum Computing (new definition)
 - ✓ Act of test & evaluation <u>affects</u> the occurrence of problems
 - ✓ Act of test & evaluation <u>creates</u> the occurrence of problems
- Conclusion
 - Computing Systems work properly until being observed (e.g., tested or used)
 - Reduction of observations effectively and efficiently reduces problems and saves money (by eliminating T&E labs)