

3D Graphics Standards and Product Development

Keith Cok Silicon Graphics Inc. February 2, 2004

A different perspective...

- Work with product marketing and engineering
- Work with partners, systems integrators and software vendors

Help port, optimize, differentiate applications

- Caveats

Standards and certifications at SGI

- Some standards are a matter of course
 - X11R5/Motif 2.1, GNOME, IEEE, POSIX, PCI ...
- Other standards are special case
 - Customer driven
 - Business case
 - Larger effort (COE, CAPP, LSPP)
- Some standards created to solve business or technical problem: OpenGL[™] 3D graphics standard

What is OpenGL[™]?

sgi

- Specification/API for low level (polygon) 3D data display
 - glDrawPixels(), glMultMatrix() ...
 - Vendors are free to concentrate on price, performance
- Popular adoption by commercial/professional products
 - OpenGL also popular with gaming community
- Successful because:
 - Good technical spec
 - Open to anyone
 - Planned for change, openness and competition
 - Solved a business problem
- SGI open sourced the sample implementation for Linux

History of OpenGL[™]

- sgi
- During mid-80's 3D graphics became popular and affordable
- Tower of Babel:
 - •Every vendor had their own API, spec, and style
 - Vendor languages IrisGL, PHIGS, PEX, etc. were incompatible
- Graphics adoption slowed by lack of standard
- 1992: OpenGL standard developed by SGI
- Adopted by many vendors and controlled by Architecture Review Board (ARB)
 - Consortium governed by ARB
 - •One vote for each member. Currently 12 voting members, many more non-voting members
 - •ARB defines conformance tests and approves new features
 - SGI-licensed trademark protects integrity

Partner View

- Had to convince our partners to port to OpenGL
 - •Standard allowed easier migration/port to our competitors; open to price/competition
- So, optimize in different ways
 - Run well everywhere, but especially on ours
 - Couldn't change behavior
 - Run on all platforms
 - Enable extensions for new features

Remember back when...?

- Computers were single processor?

- Now SSI computers are common
 •512 CPU SSI IA64 Linux system at NASA
- Adding a CPU is becoming commodity decision
 - Like adding storage effectively low \$ cost
 Problem shifts to good software and compilers
 - Software and tools assume multiple CPU's

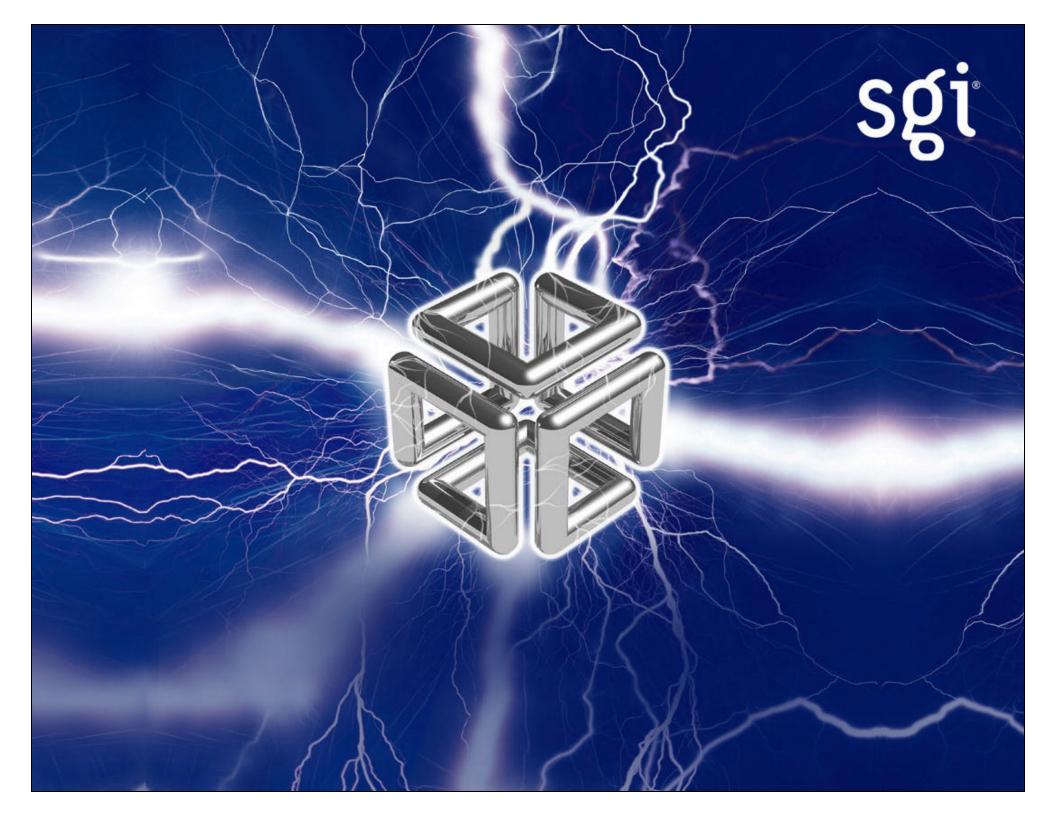
S

But 3D visualization problems persist...

- sgi
- Data is still too large, not local, or proprietary
- Graphics pipelines are never fast enough
- Solution: Many graphics processing units (GPU's)
- Dream: Adding another GPU will be like adding more disk space or CPUs

Graphics curve following CPU curve

- At first, just having a graphics board was interesting
- Then, features and speed made 3D graphics common place
- Now adding another graphics "pipe" is easier
 Problem shifts to good software
 - •Software assumes multiple GPU's
 - Lack of standards hurting adoption
 - Proprietary SDK's for SSI; clusters ??



Glimpse into the future?

- 3D data display is ubiquitous
- Cheap, pervasive
 - Many pipes on single system
 - •Small pipes (PDA's, phones)?
- Adding display is easy
 Becomes "graphics compiler" problem

S

