

www.opengroup.org

Open Source Standards
John Schmidt

Methodology Committee Chairman, EAI Industry Consortium

The great thing about software and standards is that there
are so many to choose from. So goes the familiar adage.
This statement regularly elicits snickers from IT
professionals. But why? Aren’t standards good? The issue
is that we’ve got multiple proposed standards for the same
problem, so how can it be a standard if there is more than
one?

Part of the problem may be definitional. A generic
dictionary definition is “something established by
authority, custom, or general consent as a model or
example“. I propose the following definition which is more
explicit for information technology:

Standard: A specific category of information
technology that is a) defined by an open (public)
specification, b) governed by an egalitarian
(democratic) organization, and c) in use for at
least one year by >50% of the applications in it’s
class.

Since few technologies meet this test, we might want to
add a few qualifiers. If a given technology satisfies (c), but
not (a) or (b), then it is a de facto standard. If it meets
criteria (b), but not (a) or (c), then it is a proposed standard.
If it satisfies (a), but not (b) or (c), then it is an emerging
standard. For a given technology to be considered a
standard without qualifications, then it must meet all three
criteria. With this stricter definition, most of what many
refer to as standards would demand some form of qualifier.
De facto standards include Windows, COM, and certain
Java protocols. Proposed or emerging standards include
MDA, XMI, XLANG, WSFL, BPML, SAML, XKMS,
UDDI, ebXML, WSDL, and SOAP (you get the idea).

Examples of unqualified standards include HTTP, SSL,
SMTP, FTP, Apache, and TCP/IP. Admittedly, even with a
more strict definition, there is still lots of room for
subjectivity. Achieving >50% usage is subject to the
segmentation and classification scheme used and the
accuracy of the market study. For example, is JMS in the
category of Enterprise Messaging Middleware or in the
category of Java Component Communications? The level
of granularity and how you slice the pie can drive different
results. Or look at Apache; it commands well over 50% of
the web-server market, has a public specification (source
code available to all), and is governed by an open
foundation (a meritocracy actually). Although the
traditional definition of standard would not have included
Apache, it meets all criteria of my proposed definition.

There are many hurdles to achieving a standard. The “not
invented here” syndrome, proprietary intellectual capital,
and competitive pressures all conspire to create a never-
ending stream of new standards. And it doesn’t help that
end-user organizations have, in general, abdicated
responsibility for establishing standards. Take a look at the

board, architectural committee, or sub-committee of any
major standards organization and you will see that virtually
100% of active, involved participants are vendor
organizations. Oh sure, end users are members of the
standards bodies, but they typically don’t take an active
role on the committees.

One of the opportunities for open source standards driven
by end-users may be in the development of interface
standards. While many end-user IT departments have
drastically reduced their level of in-house application
development over the past 10 years as a result of increasing
use of commercial-off-the-shelf software, the task of
integrating the systems remains. Many IT departments are
finding that much of their in-house development effort is
around building and sustaining interfaces, and they are
starting to create highly functional and reusable
frameworks to solve the problem.

Many people believe that formal specifications should
precede implementation. But since a true standard is only
formed after broad acceptance, I would argue that an
empirical process, rather than an analytical process, is a
perfectly valid - and often better - way to achieve the goal.

As the chart highlights, there are two basic approaches for
achieving standards. The traditional approach is driven by
vendors through standards bodies, validated through
analysis, accepted by agreement (a political process),
delivered as a specification document, and ultimately
motivated by market share objectives. The open source
approach on the other hand is driven by developers and
users, validated by an evolutionary process, accepted
through successful production use, delivered as software,
and ultimately motivated by addressing operational needs.

The marketing mechanism of the global open source
community is described by Bruce Perens, a consultant and
open source evangelist for many years, as a massively
parallel drunkards walk, filtered by a Darwinistic process.
The open source community may be sobering up. By
adopting software such as Eclipse, JUnit/NUnit, Ant/Nant,
and Linux, user organizations are creating the standards of
tomorrow by supporting the open source projects of today.

Attribute

Traditional
Approach

Open Source
Approach

Leadership Vendors Users and
developers

Validation Analysis Trial and error

Acceptance Agreement Empirical use

Definition Specification
(document)

Software
(code)

Motivation Sales and
marketing

Production
operations

