Enterprise SOA Transformation – Experience from the Telco Industry

Dr. Matthias Grützner
EMEA Lead Architect
SOA Advanced Technologies
IBM Software Group

March 12, 2007
Agenda

1. What is Enterprise SOA Transformation?

2. Methods to support the Transformation

3. Case Studies from the Field
 - Study 1: Ad hoc transformation for fast success
 - Study 2: eTOM level 4/5 mapping onto Packaged applications (COTS)
 - Study 3: Bottom up SOA, attempt to transform legacy

4. Lessons Learned

5. Conclusion and Outlook
SOA-based Enterprise Architecture

“A holistic approach to the control and co-ordination of IT based business projects”
Ed Kahan, IBM Fellow, 2003

Aligning Business and IT Objectives

Business Objectives

Accelerate Time to Market
Increase Revenue
Reduce Costs

Enterprise Architecture

Reference Architecture
Governance
Roadmap

IT Objectives

Function (Service Definition)
Security & Compliance
Performance & Quality (KPI)
The “A” in SOA

A set of services that a business wants to expose to customers and clients

An architectural style which requires a service provider, requestor and a service description.

A set of architectural principles and patterns which address characteristics such as modularity, encapsulation, loose coupling, separation of concerns, reuse, composable and single implementation.

A programming model complete with standards, tools, methods and technologies such as web services.
SOA – Vision

Today

Applications

Dedicated Application Systems

Tomorrow

Services

‘Basket’ of Services

Presentation Layer

Business processes

process choreography

Services

atomic & composite

Components

Existing Application Resources and Assets

Custom Applic. Package Industry Models

Including Open Standards (Web Services, WSDL, SOAP, HTTP, ….)
Business Goals & Technical implications in SOA Transformation

➢ To optimize profitability there is a requirement on streamlining the operation as well as being able to act more quickly (agility & flexibility) on change in the marketplace

- Enterprise benefits to be realized by introducing an SOA:
 - Leverage existing **assets**
 - Provide an well defined service catalog from new and leveraged assets
 - Reduce Redundant and non-reusable programming (application portfolio consolidation, common components, reuse)
 - Support all required types of integration (user interaction, process integration, application connectivity, information integration; build to integrate)
 - Allow for incremental implementations and light weight migration of assets
 -
Methods (CBM, SOMA) to support the Transformation

Flexible Business
- Transformation
- Business Process Outsourcing
- Mergers, Acquisitions, and Divestitures

Requires

Flexible IT
- On Demand Operating Environment
- Services Oriented Architecture (SOA)
 - Development: Software Development
 - Infrastructure: Integration
 - Management: Infrastructure Management

Composable Processes
- CBM (Component Business Modeling)
- SOMA (Service-Oriented Modeling and Architecture)
- Composable Services (SOA)

Requires

Flexible IT
- On Demand Operating Environment
- Services Oriented Architecture (SOA)
 - Development: Software Development
 - Infrastructure: Integration
 - Management: Infrastructure Management

Composable Processes
- CBM (Component Business Modeling)
- SOMA (Service-Oriented Modeling and Architecture)
- Composable Services (SOA)
Method: Component Business Modeling (CBM)

Domains

- Customer Relationship
- Business & Finance
- Compliance, Risk & Quality
- Information Management
- Solution Development
- Solution Value Chain (Supply Chain, Support & Services)

Directing
- Client Business Development
- Business & Finance Strategy
- Business Resilience Strategy
- Asset & Information Management Strategy
- Research & Development Strategy

Controlling
- Market Portfolio Management
- Manage Standard Business Models
- Business Process Compliance
- Information Resource Management
- Solutions Architecture

Executing
- Client profile management
- Opportunity Management
- Sales Management
- Financial Management
- Security, Privacy & Data Protection
- Intellectual Property Management
- Platform Strategy

Responsibilities
- Account & Territory Management
- Solution Marketing
- Manage Contract Lifecycle
- Financial Operations
- Bus. Processes & IT Infrastructure
- HR Operations
- Implement Compliance Policies
- Quality Management
- Data & Content Management
- Knowledge Capture & Availability
- IP Capitalization
- Business Resilience & Disaster recovery
- Asset Lifecycle Management
- Engineering support
- Business Process Compliance
- IT Management
- Human Resources Management
- Business Process Performance
- Regulatory Compliance Strategy
- Regulatory Compliance Mgt.

Value Chain Strategy
Value Chain Planning
Value Chain Rules & Policies
Value Chain Management
Demand & Supply Management
Partner Process Integration
Partner management

Procurement Execution
Solution Operations Management
Warranty Management
Client Inventory Management

Services Management
Solution Operations & Maintenance
Solution Integration
Solution Logistics
Method: SOMA Service Identification

SOMA identifies services through three complementary techniques:

- **Domain Decomposition** (Top-down Analysis)
- **Existing Asset Analysis** (Bottom-up Analysis)
- **Goal-Service Modeling**
Method support by tooling: Using the SOA Integration Framework (SOA-IF)

SOA-IF Domain Analysis:
- Business Process Analysis
- Goal Analysis
- Existing Asset Analysis
- Model

Capabilities:
- Service-Oriented Modeling and Architecture (SOMA) Service Identification Support
- WebSphere Business Modeler (WBM) Integration
- WebSphere Studio Asset Analyzer (WSAA) support
- Support for Easy Customization of Underlying Meta-Model
- Access to Business Process, Service, and Key Performance Indicator (KPI) Catalogs
- Report Generation
- Export to UML 2.0 (RSA integration)
Case Studies from Telco Industries

- **Study 1**: Ad hoc transformation for fast success
- **Study 2**: eTOM level 4/5 mapping onto Packaged applications (COTS)
- **Study 3**: Bottom up SOA, attempt to transform legacy
Study 1: A path for fast success – Project Goals

- Implement a Pilot to fast path a previously mostly manual business process
- Show immediate business value
- Leverage existing implementations of business functions for services
- Generate baseline information for a potential Enterprise wide role out of SOA Transformation
- Leverage existing infrastructure
- Skill transfer to staff that will go on to transform the organisation
Study 1: A path for fast success - Approach

- Use a Business Process driven approach vs. analysis on Business maps and hot spots
 - A fragmented manual process was chosen and implemented as human driven business process
 - A process that has immediate business relevance and has additional value as a service mapping exercise
- Improve the current Process to a TO-BE Process
- Map the process tasks against a set of existing EJBs with the help of Business analysts, i.e develop a “kind of” Service Catalogue
- Show business success by improving process “time to complete” & ease of use (KPI)
Study 1: A path for fast success – Business Process Mapping

Driven by Process Tasks
identification of candidate services

identify

Candidate Services

Meet in the Middle

Service Portfolio

identify

Candidate Services

Identified all production EJBs
Study 1: A path for fast success – The Advantages of the Approach

1. Starting on an existing process accelerates the project right in the execution phase, i.e. very short initiation phase

2. Services are potentially already available requiring only slight modifications
 - relative small development effort,
 - nearly no design phase

3. The application of Method is reduced to an “Acid Test”, i.e. mapping the services to the To Be business processes

4. Skill development can concentrate on the new technology immediately, this keeps the team relatively small and very focused

➢ It is possible to move quit fast
Study 1: A path for fast success – The Disadvantages of the Approach

1. Missing alignment with Telco standards if not already reflected in current process
2. Service Catalogue not necessary stable for future since service candidate analysis done on limited scale
3. Application of an end-to-end Methodology missing
Study 1: A path for fast success – Results

- Optimized an existing business process (8 Tasks, 2 sub-processes, 3 Portlets)
- Analyzed and modified existing EJB for Services
- Developed a base line for an potential Enterprise wide role out of an SOA transformation
- Build up skill in particular on the new product stacks (tooling & runtime, monitoring)
- Develop a Business Monitoring (WBI Monitor) model of implemented business process and implemented it
 - KPIs=13, Aggregate Measures= 23, Metrics=60 defined , Stopwatches=11, Measures=35
- Provides Business value (KPI) by reducing business process duration and throughput
- Went into production in 8 weeks
 - Products: Application Server, Process Server, Portal, Monitoring, and Tooling
Case Studies from Telco Industries

- **Study 1**: Ad hoc transformation for fast success
- **Study 2**: eTOM level 4/5 mapping onto Packaged applications (COTS)
- **Study 3**: Bottom up SOA, attempt to transform legacy
Study 2: eTOM to COTS – Project Goals

- Provide a standard-based service model for a key business process in the Telco service fulfilment area in order to achieve the following benefits:
 - Abstraction of current COTS packages in order to support plug-and-play them in the Telco infrastructure
 - Provisioning of a business analyst view on standardized business processes implemented over a service model with a shared data model
 - Establishment of an industry standard compliant service catalogue of reusable services
Study 2: eTOM to COTS – Approach

- A model and method driven approach is taken:
 - Modelling of business process starts from eTOM/SID/TAM (with extensions)
 - SOMA is used for service modelling

- Separation of business and technical concerns:
 - Shield standardized business activities (business process and services) from current IT implementation (service components and application packages)

- Service modelling:
 - Performing a top-down approach using eTOM and TAM to categorize and identify services
 - Analyzing the to-be installed COTS packages
 - Perform a bottom-up approach using these COTS packages to realize the services
Study 2: eTOM to COTS – Service portfolio in Domain Analysis

Service Portfolio aligned with TMF TAM down to level 5

Full TMF SID information model for exposing services

eTOM map decomposition
Using the standard GB921D level 3 as a base
Study 2: eTOM to COTS – Challenges & Solution Pattern

- Service realization difficult (i.e. mapping services to COTS packages):
 - COTS packages are too coarse-grained
 - COTS packages offer too few APIs
 - Internal packages of COTS packages can’t be externally controlled (but offer events to report status progress)

- Solution patterns:
 - Aggregating service (to reflect coarse-grained COTS packages)
 - Wrapper service components using COTS events to control process flow
 - Req: Refactor COTS packages (finer grained COTS components and/or more external APIs)
Study 2: eTOM to COTS – Results

- Service modelling using SOMA:
 - Service identification using top-down and bottom-up approach
 - Refined Service specification using the Service Litmus Test (SLT)
 - Service realization by mapping the identified services to COTS packages

- Layering architected:
 - Standard Model-based business processes (i.e. eTOM & SID with extensions) and Services shield from current implementation
 - Services with standard eTOM service interfaces exposed (i.e. WSDLs with eTOM-based operations and SID-based Business Objects)
 - Delivered standardized Service Catalogue
 - Service components to abstract COTS adapters (i.e. realizing COTS package neutral interfaces for the service layer invocation and performs the mapping to the COTS low level APIs)
Case Studies from Telco Industries

- **Study 1**: Ad hoc transformation for fast success
- **Study 2**: eTOM level 4/5 mapping onto Packaged applications (COTS)
- **Study 3**: Bottom up SOA, attempt to transform legacy
Study 3: Legacy Transform – Project Goals

- Develop an SOA concept for **Product Data Management (PDM)** [part of Product Lifecycle Management (PLM)]
- Perform a **bottom-up approach** from the existing IT environment (mostly z/OS, DB2, COBOL/C++)
- Document and assess all PDM-relevant **APIs**
- Provide a list of **recommended PDM services**, based on current IT, APIs, internal usage experience and industry standards
- Propose **naming conventions** for services
- Develop a **service versioning concept** and suitable tool support
- Show the benefit of a PDM SOA and plan next steps
Study 3: Legacy Transform - Service Identification

SOMA identifies services through three complementary techniques:

- **Domain Decomposition** (Top-down Analysis)
- **Existing Asset Analysis** (Bottom-up Analysis)
- **Goal-Service Modeling**

Our focus in this engagement: Leverage existing assets

These techniques are applied as well (to a minimal extent)
Study 3: Legacy Transform - Solution approach Bottom-up Service Identification extended by Process and Industry Models using SOMA

IT Landscape driven

APIs
- PIQLB
- PIXF4

Functional Area
- FA: Structure Analysis
- Structure
- Analysis
- Product
- Relation

Core Services candidates
- Manage_Structure
 - Analyze_Structure_Version-States
 - Make_Product_Structure_Document_from_Existing

Business Support Services candidates
- Review_Product_Package

Business Process Services candidates
- Prepare_Product_Package

Service Portfolio + Service Hierarchy from service candidates
Project Goals and Scope:

- Develop an SOA concept for **Product Data Management (PDM)** [part of Product Lifecycle Management (PLM)]
- Perform a **bottom-up approach** in the existing IT environment (mostly z/OS, DB2, COBOL/C++)
- Document and assess all PDM-relevant **APIs**
- Provide a list of **recommended PDM services**, based on current IT, APIs, internal usage experience and industry standards
- Propose **naming conventions** for services
- Develop a **service versioning concept** and suitable tool support
- Show the benefit of a PDM SOA and plan next steps
Study 3: Legacy Transform - Building the Service Hierarchy in SOA-IF

- **Functional Decomposition:** Starting from CBM competencies down to (reference) process structures (E2E)
- **Goal Service Modeling:** Business goals, sub-goals and KPIs
- **Existing Asset Analysis:** Captured ~300 APIs in various systems, as potential basis for services and to ensure modeling completeness
- **PDM Information Model**
Study 3: Legacy Transform - Overall approach

Flexible IT
On Demand Operating Environment

Service Oriented Architecture (SOA)

Development
Infrastructure
Management

Software Development
Integration
Infrastructure Management

1. Existing asset analysis (APM)
2. Market Planning
3. Process decomposition + PDM industry models
4. Business Goals, KPIs
5. Iterative Service identification (1-4)
6. Service specification
7. Service realization decisions
8. SOA design

Service Modeling using SOMA

1. Existing asset analysis (APM)
2. CBM import
3. Process decomposition + PDM industry models
4. Business Goals, KPIs
5. Iterative Service identification (1-4)
6. Service specification
7. Service realization decisions
8. SOA design

Flexible IT
On Demand Operating Environment

Service Oriented Architecture (SOA)
Study 3: Legacy Transform - Results

- **Existing PDM APIs** (~ 300) documented with APM method

- **CBM Model for Electronics** imported into SOA-IF
 - Domain decomposition based on the CBM competencies
- **Industry models** (from IBM ISD) contributed
 - Domain decomposition refined with **models of key processes** (in WBM), e.g. Engineering Change, Commercial Product Packaging.

- Elicited business goals, sub-goals and KPIs

- Business information pane used for Product Data Model

- **PDM service hierarchy** created: 3 levels
 - Guidance to expose higher-level business services
 - Clearly shows how existing APIs can be used in service realizations (unique / redundant / overlapping / missing APIs)

- Issues solved:
 - Initial reluctance of sponsor to share business information (e.g. business goals)
 - “Cultural move” from fine-grained APIs to coarse-grained business services
Lessons Learned from the Studies (the narrow view)

- Could show fast transformation success by a straightforward mapping of Services to EJBs for a human-driven process in production, serving as a base line for full Enterprise role out.

- Could show results to encapsulate COTS packages and expose their Services in an SOA way by offering standard services and standard process artifacts, avoiding typical silo issues.

- Could show that legacy transformation to Service Catalogs and an alignment to Business needs is feasible.
Conclusion (the broader view)

- Studies show that **powerful** methods (CBM, SOMA, APM, …), tools, and products for SOA are the key to an Enterprise reengineering success
 - **Method adoption** provides flexibility: focus on business/process-driven, top-down aspects or technically-driven, bottom-up aspects or other approaches
 - **Products and tools** speed up the method usage considerably, e.g. SOA-IF, RSA, RMC (Rational Method Composer) plug-ins, i.e. RUP-SOMA Also Source Analyzer tooling to help decompose existing SW packages

AND not to forget....

- **SOA Governance** issues have been raised from each SOA project
 - Follow-on work usually includes guidelines, roles and responsibilities for SOA design, implementation and management decisions.
 - Software support by Registry & Repository functionality
Back-up
Powerful Source Analyzers help Understand and Transform the Application Architecture

Enterprise customer mainframe application development artifacts

Enterprise customer distributed application development artifacts

COBOL, PL/1, DB2, IMS/DC, CICS, JCL, HLASM

Application Metadata (DB2)

Inventory process

Inventory process

Impact analysis

Application understanding

Web browser

Web services

User Community

Other tools

Business analysts, system analysts, developers, testers, project managers

Example: IBM WebSphere Studio Asset Analyzer
More information on SOMA …

- [Arsanjani 2004]
 A. Arsanjani: Service-Oriented Modeling and Architecture.
 http://www-128.ibm.com/developerworks/webservices/library/ws-soa-
design1/
 November 2004.

- [IBM 2006]
 IBM RUP for Service-Oriented Modeling and Architecture V2.4 (Rational Method Composer plug-in)
 November 2006.
General Lessons: Avoiding Pitfalls (1)

1. **Beware of vendor proprietary service offerings.** Do not get locked into SOA vendor offerings that are proprietary in nature; you could lose the interoperability and flexibility benefits of a true SOA.

2. **Seek stability in the use of open standards.** The latest open standard specification in the industry is not always the most stable; as a result, it may not be mature enough for adoption.

3. **Carefully assess your legacy modernization.** Take a holistic view of the enterprise when choosing particular legacy systems for modernization. Silo approaches for SOA transition may create redundancy.

4. **Avoid "waterfall" development and lack of service versioning.** SOA transition should be iterative in nature. A service life-cycle management should possess the capability to maintain multiple versions of a service.

5. **Know the technical constraints of your legacy system.** Consider all the technology limitations of a legacy system before jumping ahead into a legacy modernization effort.

6. **Don't equate SOA with Web services.** Acknowledge the difference between SOA (an architectural style) and Web services (a set of standards for SOA implementation).

7. **Avoid the silo approach to service creation and ownership.** Understand the paradigm shift between traditional application development and an SOA-based development.
General Lessons: Avoiding Pitfalls (2)

8. **Steer away from the use of fine-grained services.** A service is a higher-level abstraction than fine-grained application program interfaces (APIs). Services should be coarse-grained and business aligned.

9. **Avoid point-to-point invocation.** Make an SOA ecosystem manageable and loosely coupled. Bring in a mediation layer that handles service discovery, invocation, and neutralizes underlying technical differences between different SOA implementations.

10. **Avoid lack of adherence to standards.** Adopt stable and proven industry-specific standards. This approach will bring in interoperability benefits for your SOA.

11. **Use redundant data stores.** Concentrate on a data consolidation strategy. Mask the data redundancy by creating a virtualized data service.

12. **Stay away from using a "Big Bang" approach.** For complex SOA transitions, forget a Big Bang approach to the finish line. Acknowledge and respect that a smooth SOA transition is best achieved by adopting an iterative approach.

13. **Allocate service ownership.** Do not orphan a service. Give it a home and make a line of business its owner. This ownership allows someone to be responsible to maintain the nonfunctional qualities of your services.

14. **Institute SOA governance.** Empower a governance body to manage the entire service life cycle.

→ **Tilak Mitra in DeveloperWorks:**