
Bob Blakley
Chief Scientist, Security and Privacy
IBM Tivoli Software
15 Oct 2002

Security Patterns Workshop



Design Patterns: Background



Why Patterns?

§ History:
Ø Long history of TOG security specifications
Ø structural guidelines
Ø C language interface definitions

§ Problems
Ø most systems already exist

– can’t easily be revised to conform
Ø C language is interface definitions decreasingly relevant
Ø Audience needs guidance, not prescription

– adaptable to its own problems, dealing with existing systems

§ Need
Ø Language independent security guidance
Ø Instructional rather than prescriptive



Who is The Audience for Patterns?

§ A system designer or architect
§ With a specific security problem in a specifc context
§ Who would like to know how the Open Group’s security experts would 

approach1 his (or her) problem
§ But doesn’t want to come to our meetings or pay our consulting rates

1Not solve!



What is a Pattern?

§ “A pattern is a named nugget of instructive information that 
captures the essential structure and insight of a successful family 
of proven solutions to a recurring problem that arises within a 
certain context and system of forces.”



What Does a Pattern Look Like?

§ Minimally:
Ø Pattern name. A memorable and descriptive way to refer to the pattern.
Ø The problem. A description of the contexts and situations in which the pattern is 

useful.
Ø The solution. A specific but flexible approach to solving the problem.
Ø Consequences. Implementing the solution described in the pattern will require 

making specific tradeoffs among competing forces. These tradeoffs and their 
consequences are described.

§ Specifically:
Ø We use (approximately) GOF format



How Do You Design A System Using Patterns?

§ Stepwise Refinement
Ø Start with a high-level solution and refine it until you have the level of detail 

you require to build the system

§ Generative Sequences
Ø Sequence of operations
Ø No backtracking
Ø Well-identified choices at each step
Ø Each step involves a choice of which patterns to apply



The Open Group Security Design Patterns



Open Group Security Pattern Catalogs

§ Protected System Catalog
Ø Contains structural design patterns which facilitate construction of systems 

which protect valuable resources against unauthorized disclosure or 
modification.

§ Available System Catalog
Ø Contains structural design patterns which facilitate construction of systems 

which provide predictable uninterrupted access to the services and 
resources they offer to users.



Open Group Available System Pattern Catalog

§ Available System Patterns
Ø Recoverable Component
Ø Checkpointed System
Ø Cold Standby
Ø Comparator-Checked Fault-Tolerant System
Ø Journalled Component
Ø Hot Standby
Ø External Storage
Ø Replicated System
Ø Error Detection/Correction



Open Group Protected System Pattern Catalog

§ Protected System Patterns
Ø Protected System
Ø Policy Enforcement Point
Ø Subject Descriptor
Ø Secure Communication
Ø Security Context
Ø Secure Association
Ø Policy
Ø Proxy Patterns

– Trusted Proxy
– Authenticating Impersonator
– Identity-Asserting Impersonator
– Delegate
– Authorizing Proxy
– Login Tunnel



Protected System ***

Intent: Structure a system so that all access by clients to 
resources is mediated by a guard which enforces a security policy.

Client ResourceMgrrequest(resource)

Guard

ProxyPEP



Policy Enforcement Point **

Intent: Isolate policy enforcement to a discrete component of an 
information system; ensure that policy enforcement activities are 
performed in the proper sequence.

Client

ResourceMgr

request(resource)
get_client_attrs()

authenticate()
authn_result()
get_…_attrs()

PEP

Mediator

PDP
request_allowed()

AA
get_attributes()

AS
authenticate()

Resource



Subject Descriptor *

Intent: Provide access to security-relevant attributes of an entity 
on whose behalf operations are to be performed.



Secure Communication ***

Intent: Ensure that mutual security policy objectives are met 
when there is a need for two parties to communicate in the 
presence of threats. 

Sender

Communication
 Channel

Communication
Protection

 Proxy

Receiver

Communication
Protection

 Proxy



Security Context ***

Intent: Provide a container for, and mediate access to, security 
attributes and data relating to a particular process, operation or 
action. 

Security Context Security Context

Protection Proxy Protection Proxy

Secure Association

Protection Policy Protection Policy

Secure Association Structure



Secure Association ***

Security Context Security Context

Protection Proxy Protection Proxy

Secure Association

Protection Policy Protection Policy

Secure Association Structure

Intent: establish and maintain a security relationship, between two entities that wish to 
communicate securely, in line with mutual security policy objectives, across a 
communication link that is subject to a well-known set of communication related 
threats. 



Policy ***

Protection Policy

Constraints

Obligations

Constraints govern what must be in the security context in order for the policy 
to allow an operation
Obligations govern what secure associations may be created

Security 
context

Secure 
Association

Intent: Define which operations are allowed to occur and which 
operations are required to occur in a protected system 



Trusted Proxy

resourcesrequesters



Authenticating Impersonator

resourcesrequesters



Identity-Asserting Impersonator

resourcesrequesters



Delegate

resourcesrequesters



Authorizing Proxy

resourcesrequesters



Login Tunnel

resourcesrequesters



Open Group Protected System Generative Sequence

1. Identify resources and actors
2. Define one or more PROTECTED SYSTEM instances
3. For each PS, define POLICY
4. For each POLICY, define required SECURE COMMUNICATIONs
5. Derive TARGET DESCRIPTOR requirements from POLICY 
6. Derive SECURITY CONTEXT from POLICY at each end of SC
7. Derive SECURE ASSOCIATION and SUBJECT DESCRIPTOR 

from SCTXTs for each SC
8. Examine each SC to determine whether it needs to be factored into 

a PS with multiple SCs

Note: we haven’t updated this to accommodate Proxy patterns yet
Note: we haven’t addressed deriving audit requirements from policy 



Example Problem: Secure Email



Using The Open Group Security Design Patterns

An Example



Refinement 1: Identify Resources and Actors

Resource

Actor



Refinement 2: Define PS Instances

Guard



Refinement 3: Define Policy

Guard

Const: any may write
Const: recipient may read



Refinement 4: Define Secure Communications

Guard

Const: any may write
Const: recipient may read

Must protect confidentiality
(constraint restricts read)



Refinement 5: Derive Target Descriptors

Guard

Const: any may write
Const: recipient may read

recipient name



Refinement 6: Derive Security Contexts

Guard

Const: any may write
Const: recipient may read

recipient name

partner name



Refinement 7: Derive Secure Associations, Subject Descriptors

Guard

Const: any may write
Const: recipient may read

recipient name

name

partner name

Must authenticate 
(constraint restricts subject actions) 



Interlude

§ The system depicted is Hushmail
Ø The PS boundary is enforced by encryption
Ø Thus the message is inside the PS boundary even when it isn’t on the 

sender’s machine

§ Problem:
Ø Both parties must share a key

– therefore the system scales as N^2

§ Solution:
Ø Introduce a mutually trusted party with whom all parties share a key

– resulting system would scale as N
Ø To do this, we factor the PS



Refinement 8: Consider Factoring PSs

Guard

Const: any may write
Const: recipient may read

recipient name

name

partner name



Homework Problem: Digital Music Distribution



Homework Problem: Environment

Record
Label

Media
Manufacturer

Music
Retailer

Music
Player

Artist Buyer



Homework Problem: Goals

§ The Record Label should pay the artist for use of his music
§ The Music Retailer should pay the Record Label for every sale to

the buyer
§ The Buyer should be able to listen to music only if he has paid


