Quality of Service Task Force

Service Level Agreements in Enterprise QoS:

A Boeing Scenario

Carl F. Bunje, Jr. – Boeing David M. Lounsbury – Open Group

QoS Task Force
Open Group Members Conference
Cannes, France
16 October 2002
Selected slides from presentation at:
Open Group Members Conference
Amsterdam, Netherlands
25 October 2001

THE Open GROUP

DCAC/MRM Overview

- Integrated collection of (large) applications containing business logic and data
 - Computer-Aided Process Planning (CAPP)
 - Product Data Manager (PDM)
 - Enterprise Resource Planner (ERP)
 - etc.
- Integrated through object wrappers on application functions and an extensive, custom, CORBA-based Application Integration (AI) layer
- Multi-
 - System
 - Site
 - Vendor

DCAC/MRM SLA Environment

Business Drivers for SLAs

- DCAC/MRM system supports manufacturing operations at multiple sites
- Slow response impacts factory manpower and inventory
 - "Thou shall not idle the factory floor!"
- Overall customer satisfaction
 - Service is measurable and actionable
 - Support for IT spend decisions
- Mechanism to quantify IT priorities

SLAs in DCAC/MRM

- SLAs represent agreement between manufacturing users and IT management on acceptable level of transaction response time
 - Enforcement based on percentage of transactions that exceed limit within a stated time period
 - Metrics agreed up front and shared with users
- Focused on top 20% of critical business transactions
 - This still results in 100+ SLAs

SLAs and Transactions

SLA Policy and Mechanism

- SLA represents performance policy on highest level of transaction
- Performance measurement occurs at component level
- Note components may participate in multiple SLAs
 - Maintaining sufficient context for analysis is significant issue
 - Results in manual process for SLA enforcement

Instrumentation

- Extensive component instrumentation provides mechanism to observe SLA compliance
 - Application components instrumented using ARM to measure transaction start-stop times
 - Contextual data such as network and CPU use also collected
 - Data kept in repository for later analysis
- Commercial tools used for analysis and display
 - OpenView, Measureware

SLAs in Operation

- Users and IT staff monitor compliance using agreed measures
- Users report service problems to IT Help Desk
 - Triage process to dispatch appropriate action
- If analysis shows SLA not being met for 90% of transactions over specified time period, analysis and repair initiated by IT
 - Repairs prioritized by business impact
- SLAs also monitored for 100% compliance
 - May indicate overprovisioning or permissive specification

SLA Issues From Scenario

- While SLAs represent end-to-end path through multiple components, measurements done at component level
 - Limited contextual information, unnecessary differences in data reporting = slow/costly correlation of instrumentation data to reported failure
 - Pushes up cost of Mean Time To Repair
- Gratuitous complexity still a problem

SLA Issues From Scenario

- Different SLAs have different criticality to manufacturing business, however metrics don't contain sufficient context tags to allow differentiation of transaction flow data
 - Must distinguish critical from non-critical traffic in service restoration
 - Prevents automated resource prioritization or service restoration for critical flows

Areas for Standardization

Technical Needs	Standardization Areas
SLA Specification	 Language and tools for creating and interpreting SLAs
Prioritization of resources	 CPU resource monitoring and control
	 Network traffic differentiation and prioritization
	 Mechanisms to pass application prioritization and classification through OS and middleware layers

Areas for Standardization (2)

Technical Needs	Standardization Areas
Instrumentation and data collection	 Consistent application performance instrumentation Metrics at and below middleware layer Mechanisms for collecting and labeling contextual/situational information for performance and failure data Mechanisms for tying gathered data to application
	transaction flow

Areas for Standardization (3)

Technical Needs	Standardization Areas
Identification of performance bottlenecks and failures	 Tools for correlation of performance and diagnostic information across multiple platforms
	 Tools which display end-to-end views of performance, rather than component-focused approach Cross-platform and cross-resource resource monitoring tools

Areas for Standardization (4)

Technical Needs	Standardization Areas
Automation	 Automated collection and reduction of performance, failure and contextual data Automated mechanisms for prioritized resource
	reassignment for service restoration

