

Grid Computing and

DoD's Global Information Grid (GIG) Enterprise Services (ES) Initiative

Net-centric Challenge & Payoff

The Key Components of Net-Centric GIG Infrastructure

Foundation

Communications

Computing

Applications

Data Management

- Provides an approach to manage, operate, and change the culture
- Provides a comprehensive terrestrial and space network
- → Provides services to exploit the network and support applications
- → Provides tools needed for a capabilities based force
- → Ensures all data is discoverable and understandable

Information Assurance → Protects the data and the network

The Enterprise Infrastructure is Greater Than the

Sum of the Components

GIG Enterprise Services Scope

Domain & COI Enterprise Services

include levels of services beyond the

9 Core, Net-Centric Enterprise Services

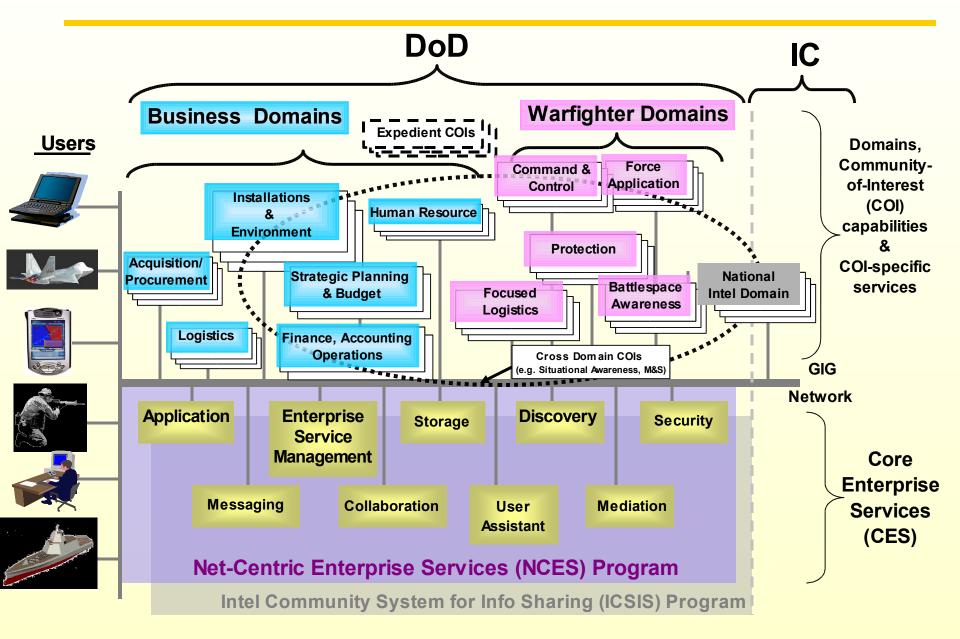
Domains and their COI: - Business - Warfighter - Intel

Plus: Cross-Domain COI

Plus: Expedient COI

GIG Services

Net-Centric Enterprise Services (NCES Program)


FY04-09: \$380M

Milestone B, 2nd QTR FY04

Scope Includes:

- 9 Core Enterprise Services
- Application Program Interfaces (APIs) for CES

GIG Enterprise Services (GIG ES)

What is Grid?

(Our View)

- Parallel and distributed architecture that enables sharing, selection, & aggregation of geographically distributed Resources including:
 - Computers (PCs, workstations, clusters, supercomputers, laptops, notebooks, mobile devices, PDAs, etc)
 - Software (e.g., Service Providers vending content and expensive special purpose applications on demand)
 - Catalogued data and databases (e.g. transparent access to unit readiness, weapons characteristics databases etc.)
 - Special devices/sensors (e.g., reconnaissance satellites, UAVs etc.)
 - People/collaborators
- Deals in resource availability, capability, costs, and user Quality of Service (QoS) requirements
- Traditionally oriented toward efficient use of all available processing horsepower
 UNCLASSIFIED

6

Classes of Potential Grid Applications

- Service-Oriented Computing (SOC):
 - Market-based Utility Computing: New Net-Centric paradigm, New applications, New industries, and New business
- Distributed HPC (Supercomputing):
 - Computational science
- High-Capacity/Throughput Computing:
 - Large scale simulation/chip design & parameter studies
- Content Sharing (free or paid)
 - Sharing digital contents among peers (e.g., Napster)
- Remote software access/content vending services:
 - Application service provides (ASPs) & Web services
- Data-intensive computing:
 - Drug Design, Particle Physics, Stock Prediction...
- On-demand, real-time computing:
 - Medical instrumentation & Mission Critical
 - Collaborative Computing:
 - Collaborative design, Data exploration, education

Grid Requirements

- Services that enable execution and monitoring of jobs on resources under multiple control authorities
- Security mechanisms that permit resources to be accessed only by authorized users
- 3. Tools to:
 - a. Grid-enable applications
 - b. Translate application processing requirements into requirements for specific computers, network applications hosting and data storage resources
 - c. Perform resource discovery, trading, selection/allocation, scheduling and distribution of jobs as well as collecting and pubishing results

DoD View of how GRID applies to Transformation

- <u>Technical Objective</u>: Transform Defense Intranets into powerful, self-managing, virtual computers
 - Enable Processing Environment for full <u>Net-Centricity</u>
- Fits with DoD Global Information Grid (GIG) Vision
 - Next evolutionary step in Distributed Computing
- DoD's Current State:
 - VAST collection of heterogeneous systems, just beginning to share communications and computing resources on Wide Area Nets
- Coming Soon: GIG Enterprise Services (GES)
 - Provides ubiquitous Service-Oriented access to DoD data
 - Allows rapid, efficient coupling of legacy transactions systems and new Warrior or Business applications
 - Will begin to address globally distributed computing issues

9

Grid Computing and GIG ES

- Same Service-oriented, Market-driven model
 - Aimed at efficient use of all available Processing Horsepower
 - Processing resources not pre-allocated!
 - Able to discover free horsepower and harness on demand to do jobs
 - Defense requires hybrid of dedicated and allocable resources

GIG Core Enterprise Service (CES) Grid focal points:

- Discovery
- Storage
- Application Hosting
- IA/Security
- Enterprise Services Management (ESM)

Thinking about Specifics

Grid Issues

- Many different definitions; meaning still in flux
 - Marketing (Hype) versus technical (products)
 - Scope
- Control and Security in abstracted Hardware layer
 - Who decides on priorities and how?
 - How to monitor what's happening where?
 - Better on closed, Classified Defense networks than Internet?
- Lots of competing players
 - Commercial directions, market leaders etc. unclear
- Grid Requirements re: Networks as Computers
 - Current concept falls short of full-blown OS
 - Now acquiring Enterprise (Net-centric) Services
 - Where is the sweet spot?

Summary and Conclusions

- Grid Computing = <u>next generation environment</u> to address large scale processing problems
- Fits with GIG Enterprise Services concept . . . BUT
- Computing resource management is extremely complex and immature
 - Services must be adaptive, scalable, competitive, and QoS-driven
 - Significant control and security issues
 - Not appropriate for every problem

Need:

- Market (vice Command) computing resource allocation and regulation in non-profit government context
- Easy to use tools for creating and managing Grid-enabled applications